| OLD | NEW |
| 1 // Copyright 2016 the V8 project authors. All rights reserved. | 1 // Copyright 2016 the V8 project authors. All rights reserved. |
| 2 // Use of this source code is governed by a BSD-style license that can be | 2 // Use of this source code is governed by a BSD-style license that can be |
| 3 // found in the LICENSE file. | 3 // found in the LICENSE file. |
| 4 | 4 |
| 5 #include "src/builtins/builtins.h" | 5 #include "src/builtins/builtins.h" |
| 6 #include "src/builtins/builtins-utils.h" | 6 #include "src/builtins/builtins-utils.h" |
| 7 | 7 |
| 8 #include "src/code-factory.h" | 8 #include "src/code-factory.h" |
| 9 | 9 |
| 10 namespace v8 { | 10 namespace v8 { |
| 11 namespace internal { | 11 namespace internal { |
| 12 | 12 |
| 13 // ----------------------------------------------------------------------------- | 13 // ----------------------------------------------------------------------------- |
| 14 // ES6 section 20.2.2 Function Properties of the Math Object | 14 // ES6 section 20.2.2 Function Properties of the Math Object |
| 15 | 15 |
| 16 // ES6 section - 20.2.2.1 Math.abs ( x ) | 16 // ES6 section - 20.2.2.1 Math.abs ( x ) |
| 17 void Builtins::Generate_MathAbs(CodeStubAssembler* assembler) { | 17 void Builtins::Generate_MathAbs(compiler::CodeAssemblerState* state) { |
| 18 typedef CodeStubAssembler::Label Label; | 18 typedef CodeStubAssembler::Label Label; |
| 19 typedef compiler::Node Node; | 19 typedef compiler::Node Node; |
| 20 typedef CodeStubAssembler::Variable Variable; | 20 typedef CodeStubAssembler::Variable Variable; |
| 21 CodeStubAssembler assembler(state); |
| 21 | 22 |
| 22 Node* context = assembler->Parameter(4); | 23 Node* context = assembler.Parameter(4); |
| 23 | 24 |
| 24 // We might need to loop once for ToNumber conversion. | 25 // We might need to loop once for ToNumber conversion. |
| 25 Variable var_x(assembler, MachineRepresentation::kTagged); | 26 Variable var_x(&assembler, MachineRepresentation::kTagged); |
| 26 Label loop(assembler, &var_x); | 27 Label loop(&assembler, &var_x); |
| 27 var_x.Bind(assembler->Parameter(1)); | 28 var_x.Bind(assembler.Parameter(1)); |
| 28 assembler->Goto(&loop); | 29 assembler.Goto(&loop); |
| 29 assembler->Bind(&loop); | 30 assembler.Bind(&loop); |
| 30 { | 31 { |
| 31 // Load the current {x} value. | 32 // Load the current {x} value. |
| 32 Node* x = var_x.value(); | 33 Node* x = var_x.value(); |
| 33 | 34 |
| 34 // Check if {x} is a Smi or a HeapObject. | 35 // Check if {x} is a Smi or a HeapObject. |
| 35 Label if_xissmi(assembler), if_xisnotsmi(assembler); | 36 Label if_xissmi(&assembler), if_xisnotsmi(&assembler); |
| 36 assembler->Branch(assembler->TaggedIsSmi(x), &if_xissmi, &if_xisnotsmi); | 37 assembler.Branch(assembler.TaggedIsSmi(x), &if_xissmi, &if_xisnotsmi); |
| 37 | 38 |
| 38 assembler->Bind(&if_xissmi); | 39 assembler.Bind(&if_xissmi); |
| 39 { | 40 { |
| 40 // Check if {x} is already positive. | 41 // Check if {x} is already positive. |
| 41 Label if_xispositive(assembler), if_xisnotpositive(assembler); | 42 Label if_xispositive(&assembler), if_xisnotpositive(&assembler); |
| 42 assembler->BranchIfSmiLessThanOrEqual( | 43 assembler.BranchIfSmiLessThanOrEqual( |
| 43 assembler->SmiConstant(Smi::FromInt(0)), x, &if_xispositive, | 44 assembler.SmiConstant(Smi::FromInt(0)), x, &if_xispositive, |
| 44 &if_xisnotpositive); | 45 &if_xisnotpositive); |
| 45 | 46 |
| 46 assembler->Bind(&if_xispositive); | 47 assembler.Bind(&if_xispositive); |
| 47 { | 48 { |
| 48 // Just return the input {x}. | 49 // Just return the input {x}. |
| 49 assembler->Return(x); | 50 assembler.Return(x); |
| 50 } | 51 } |
| 51 | 52 |
| 52 assembler->Bind(&if_xisnotpositive); | 53 assembler.Bind(&if_xisnotpositive); |
| 53 { | 54 { |
| 54 // Try to negate the {x} value. | 55 // Try to negate the {x} value. |
| 55 Node* pair = assembler->IntPtrSubWithOverflow( | 56 Node* pair = assembler.IntPtrSubWithOverflow( |
| 56 assembler->IntPtrConstant(0), assembler->BitcastTaggedToWord(x)); | 57 assembler.IntPtrConstant(0), assembler.BitcastTaggedToWord(x)); |
| 57 Node* overflow = assembler->Projection(1, pair); | 58 Node* overflow = assembler.Projection(1, pair); |
| 58 Label if_overflow(assembler, Label::kDeferred), | 59 Label if_overflow(&assembler, Label::kDeferred), |
| 59 if_notoverflow(assembler); | 60 if_notoverflow(&assembler); |
| 60 assembler->Branch(overflow, &if_overflow, &if_notoverflow); | 61 assembler.Branch(overflow, &if_overflow, &if_notoverflow); |
| 61 | 62 |
| 62 assembler->Bind(&if_notoverflow); | 63 assembler.Bind(&if_notoverflow); |
| 63 { | 64 { |
| 64 // There is a Smi representation for negated {x}. | 65 // There is a Smi representation for negated {x}. |
| 65 Node* result = assembler->Projection(0, pair); | 66 Node* result = assembler.Projection(0, pair); |
| 66 result = assembler->BitcastWordToTagged(result); | 67 result = assembler.BitcastWordToTagged(result); |
| 67 assembler->Return(result); | 68 assembler.Return(result); |
| 68 } | 69 } |
| 69 | 70 |
| 70 assembler->Bind(&if_overflow); | 71 assembler.Bind(&if_overflow); |
| 71 { | 72 { |
| 72 Node* result = assembler->NumberConstant(0.0 - Smi::kMinValue); | 73 Node* result = assembler.NumberConstant(0.0 - Smi::kMinValue); |
| 73 assembler->Return(result); | 74 assembler.Return(result); |
| 74 } | 75 } |
| 75 } | 76 } |
| 76 } | 77 } |
| 77 | 78 |
| 78 assembler->Bind(&if_xisnotsmi); | 79 assembler.Bind(&if_xisnotsmi); |
| 79 { | 80 { |
| 80 // Check if {x} is a HeapNumber. | 81 // Check if {x} is a HeapNumber. |
| 81 Label if_xisheapnumber(assembler), | 82 Label if_xisheapnumber(&assembler), |
| 82 if_xisnotheapnumber(assembler, Label::kDeferred); | 83 if_xisnotheapnumber(&assembler, Label::kDeferred); |
| 83 assembler->Branch( | 84 assembler.Branch(assembler.WordEqual(assembler.LoadMap(x), |
| 84 assembler->WordEqual(assembler->LoadMap(x), | 85 assembler.HeapNumberMapConstant()), |
| 85 assembler->HeapNumberMapConstant()), | 86 &if_xisheapnumber, &if_xisnotheapnumber); |
| 86 &if_xisheapnumber, &if_xisnotheapnumber); | |
| 87 | 87 |
| 88 assembler->Bind(&if_xisheapnumber); | 88 assembler.Bind(&if_xisheapnumber); |
| 89 { | 89 { |
| 90 Node* x_value = assembler->LoadHeapNumberValue(x); | 90 Node* x_value = assembler.LoadHeapNumberValue(x); |
| 91 Node* value = assembler->Float64Abs(x_value); | 91 Node* value = assembler.Float64Abs(x_value); |
| 92 Node* result = assembler->AllocateHeapNumberWithValue(value); | 92 Node* result = assembler.AllocateHeapNumberWithValue(value); |
| 93 assembler->Return(result); | 93 assembler.Return(result); |
| 94 } | 94 } |
| 95 | 95 |
| 96 assembler->Bind(&if_xisnotheapnumber); | 96 assembler.Bind(&if_xisnotheapnumber); |
| 97 { | 97 { |
| 98 // Need to convert {x} to a Number first. | 98 // Need to convert {x} to a Number first. |
| 99 Callable callable = | 99 Callable callable = CodeFactory::NonNumberToNumber(assembler.isolate()); |
| 100 CodeFactory::NonNumberToNumber(assembler->isolate()); | 100 var_x.Bind(assembler.CallStub(callable, context, x)); |
| 101 var_x.Bind(assembler->CallStub(callable, context, x)); | 101 assembler.Goto(&loop); |
| 102 assembler->Goto(&loop); | |
| 103 } | 102 } |
| 104 } | 103 } |
| 105 } | 104 } |
| 106 } | 105 } |
| 107 | 106 |
| 108 namespace { | 107 namespace { |
| 109 | 108 |
| 110 void Generate_MathRoundingOperation( | 109 void Generate_MathRoundingOperation( |
| 111 CodeStubAssembler* assembler, | 110 CodeStubAssembler* assembler, |
| 112 compiler::Node* (CodeStubAssembler::*float64op)(compiler::Node*)) { | 111 compiler::Node* (CodeStubAssembler::*float64op)(compiler::Node*)) { |
| (...skipping 62 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 175 Node* context = assembler->Parameter(4); | 174 Node* context = assembler->Parameter(4); |
| 176 Node* x_value = assembler->TruncateTaggedToFloat64(context, x); | 175 Node* x_value = assembler->TruncateTaggedToFloat64(context, x); |
| 177 Node* value = (assembler->*float64op)(x_value); | 176 Node* value = (assembler->*float64op)(x_value); |
| 178 Node* result = assembler->AllocateHeapNumberWithValue(value); | 177 Node* result = assembler->AllocateHeapNumberWithValue(value); |
| 179 assembler->Return(result); | 178 assembler->Return(result); |
| 180 } | 179 } |
| 181 | 180 |
| 182 } // namespace | 181 } // namespace |
| 183 | 182 |
| 184 // ES6 section 20.2.2.2 Math.acos ( x ) | 183 // ES6 section 20.2.2.2 Math.acos ( x ) |
| 185 void Builtins::Generate_MathAcos(CodeStubAssembler* assembler) { | 184 void Builtins::Generate_MathAcos(compiler::CodeAssemblerState* state) { |
| 186 Generate_MathUnaryOperation(assembler, &CodeStubAssembler::Float64Acos); | 185 CodeStubAssembler assembler(state); |
| 186 Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Acos); |
| 187 } | 187 } |
| 188 | 188 |
| 189 // ES6 section 20.2.2.3 Math.acosh ( x ) | 189 // ES6 section 20.2.2.3 Math.acosh ( x ) |
| 190 void Builtins::Generate_MathAcosh(CodeStubAssembler* assembler) { | 190 void Builtins::Generate_MathAcosh(compiler::CodeAssemblerState* state) { |
| 191 Generate_MathUnaryOperation(assembler, &CodeStubAssembler::Float64Acosh); | 191 CodeStubAssembler assembler(state); |
| 192 Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Acosh); |
| 192 } | 193 } |
| 193 | 194 |
| 194 // ES6 section 20.2.2.4 Math.asin ( x ) | 195 // ES6 section 20.2.2.4 Math.asin ( x ) |
| 195 void Builtins::Generate_MathAsin(CodeStubAssembler* assembler) { | 196 void Builtins::Generate_MathAsin(compiler::CodeAssemblerState* state) { |
| 196 Generate_MathUnaryOperation(assembler, &CodeStubAssembler::Float64Asin); | 197 CodeStubAssembler assembler(state); |
| 198 Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Asin); |
| 197 } | 199 } |
| 198 | 200 |
| 199 // ES6 section 20.2.2.5 Math.asinh ( x ) | 201 // ES6 section 20.2.2.5 Math.asinh ( x ) |
| 200 void Builtins::Generate_MathAsinh(CodeStubAssembler* assembler) { | 202 void Builtins::Generate_MathAsinh(compiler::CodeAssemblerState* state) { |
| 201 Generate_MathUnaryOperation(assembler, &CodeStubAssembler::Float64Asinh); | 203 CodeStubAssembler assembler(state); |
| 204 Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Asinh); |
| 202 } | 205 } |
| 203 | 206 |
| 204 // ES6 section 20.2.2.6 Math.atan ( x ) | 207 // ES6 section 20.2.2.6 Math.atan ( x ) |
| 205 void Builtins::Generate_MathAtan(CodeStubAssembler* assembler) { | 208 void Builtins::Generate_MathAtan(compiler::CodeAssemblerState* state) { |
| 206 Generate_MathUnaryOperation(assembler, &CodeStubAssembler::Float64Atan); | 209 CodeStubAssembler assembler(state); |
| 210 Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Atan); |
| 207 } | 211 } |
| 208 | 212 |
| 209 // ES6 section 20.2.2.7 Math.atanh ( x ) | 213 // ES6 section 20.2.2.7 Math.atanh ( x ) |
| 210 void Builtins::Generate_MathAtanh(CodeStubAssembler* assembler) { | 214 void Builtins::Generate_MathAtanh(compiler::CodeAssemblerState* state) { |
| 211 Generate_MathUnaryOperation(assembler, &CodeStubAssembler::Float64Atanh); | 215 CodeStubAssembler assembler(state); |
| 216 Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Atanh); |
| 212 } | 217 } |
| 213 | 218 |
| 214 // ES6 section 20.2.2.8 Math.atan2 ( y, x ) | 219 // ES6 section 20.2.2.8 Math.atan2 ( y, x ) |
| 215 void Builtins::Generate_MathAtan2(CodeStubAssembler* assembler) { | 220 void Builtins::Generate_MathAtan2(compiler::CodeAssemblerState* state) { |
| 216 using compiler::Node; | 221 using compiler::Node; |
| 222 CodeStubAssembler assembler(state); |
| 217 | 223 |
| 218 Node* y = assembler->Parameter(1); | 224 Node* y = assembler.Parameter(1); |
| 219 Node* x = assembler->Parameter(2); | 225 Node* x = assembler.Parameter(2); |
| 220 Node* context = assembler->Parameter(5); | 226 Node* context = assembler.Parameter(5); |
| 221 Node* y_value = assembler->TruncateTaggedToFloat64(context, y); | 227 Node* y_value = assembler.TruncateTaggedToFloat64(context, y); |
| 222 Node* x_value = assembler->TruncateTaggedToFloat64(context, x); | 228 Node* x_value = assembler.TruncateTaggedToFloat64(context, x); |
| 223 Node* value = assembler->Float64Atan2(y_value, x_value); | 229 Node* value = assembler.Float64Atan2(y_value, x_value); |
| 224 Node* result = assembler->AllocateHeapNumberWithValue(value); | 230 Node* result = assembler.AllocateHeapNumberWithValue(value); |
| 225 assembler->Return(result); | 231 assembler.Return(result); |
| 226 } | 232 } |
| 227 | 233 |
| 228 // ES6 section 20.2.2.10 Math.ceil ( x ) | 234 // ES6 section 20.2.2.10 Math.ceil ( x ) |
| 229 void Builtins::Generate_MathCeil(CodeStubAssembler* assembler) { | 235 void Builtins::Generate_MathCeil(compiler::CodeAssemblerState* state) { |
| 230 Generate_MathRoundingOperation(assembler, &CodeStubAssembler::Float64Ceil); | 236 CodeStubAssembler assembler(state); |
| 237 Generate_MathRoundingOperation(&assembler, &CodeStubAssembler::Float64Ceil); |
| 231 } | 238 } |
| 232 | 239 |
| 233 // ES6 section 20.2.2.9 Math.cbrt ( x ) | 240 // ES6 section 20.2.2.9 Math.cbrt ( x ) |
| 234 void Builtins::Generate_MathCbrt(CodeStubAssembler* assembler) { | 241 void Builtins::Generate_MathCbrt(compiler::CodeAssemblerState* state) { |
| 235 Generate_MathUnaryOperation(assembler, &CodeStubAssembler::Float64Cbrt); | 242 CodeStubAssembler assembler(state); |
| 243 Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Cbrt); |
| 236 } | 244 } |
| 237 | 245 |
| 238 // ES6 section 20.2.2.11 Math.clz32 ( x ) | 246 // ES6 section 20.2.2.11 Math.clz32 ( x ) |
| 239 void Builtins::Generate_MathClz32(CodeStubAssembler* assembler) { | 247 void Builtins::Generate_MathClz32(compiler::CodeAssemblerState* state) { |
| 240 typedef CodeStubAssembler::Label Label; | 248 typedef CodeStubAssembler::Label Label; |
| 241 typedef compiler::Node Node; | 249 typedef compiler::Node Node; |
| 242 typedef CodeStubAssembler::Variable Variable; | 250 typedef CodeStubAssembler::Variable Variable; |
| 251 CodeStubAssembler assembler(state); |
| 243 | 252 |
| 244 Node* context = assembler->Parameter(4); | 253 Node* context = assembler.Parameter(4); |
| 245 | 254 |
| 246 // Shared entry point for the clz32 operation. | 255 // Shared entry point for the clz32 operation. |
| 247 Variable var_clz32_x(assembler, MachineRepresentation::kWord32); | 256 Variable var_clz32_x(&assembler, MachineRepresentation::kWord32); |
| 248 Label do_clz32(assembler); | 257 Label do_clz32(&assembler); |
| 249 | 258 |
| 250 // We might need to loop once for ToNumber conversion. | 259 // We might need to loop once for ToNumber conversion. |
| 251 Variable var_x(assembler, MachineRepresentation::kTagged); | 260 Variable var_x(&assembler, MachineRepresentation::kTagged); |
| 252 Label loop(assembler, &var_x); | 261 Label loop(&assembler, &var_x); |
| 253 var_x.Bind(assembler->Parameter(1)); | 262 var_x.Bind(assembler.Parameter(1)); |
| 254 assembler->Goto(&loop); | 263 assembler.Goto(&loop); |
| 255 assembler->Bind(&loop); | 264 assembler.Bind(&loop); |
| 256 { | 265 { |
| 257 // Load the current {x} value. | 266 // Load the current {x} value. |
| 258 Node* x = var_x.value(); | 267 Node* x = var_x.value(); |
| 259 | 268 |
| 260 // Check if {x} is a Smi or a HeapObject. | 269 // Check if {x} is a Smi or a HeapObject. |
| 261 Label if_xissmi(assembler), if_xisnotsmi(assembler); | 270 Label if_xissmi(&assembler), if_xisnotsmi(&assembler); |
| 262 assembler->Branch(assembler->TaggedIsSmi(x), &if_xissmi, &if_xisnotsmi); | 271 assembler.Branch(assembler.TaggedIsSmi(x), &if_xissmi, &if_xisnotsmi); |
| 263 | 272 |
| 264 assembler->Bind(&if_xissmi); | 273 assembler.Bind(&if_xissmi); |
| 265 { | 274 { |
| 266 var_clz32_x.Bind(assembler->SmiToWord32(x)); | 275 var_clz32_x.Bind(assembler.SmiToWord32(x)); |
| 267 assembler->Goto(&do_clz32); | 276 assembler.Goto(&do_clz32); |
| 268 } | 277 } |
| 269 | 278 |
| 270 assembler->Bind(&if_xisnotsmi); | 279 assembler.Bind(&if_xisnotsmi); |
| 271 { | 280 { |
| 272 // Check if {x} is a HeapNumber. | 281 // Check if {x} is a HeapNumber. |
| 273 Label if_xisheapnumber(assembler), | 282 Label if_xisheapnumber(&assembler), |
| 274 if_xisnotheapnumber(assembler, Label::kDeferred); | 283 if_xisnotheapnumber(&assembler, Label::kDeferred); |
| 275 assembler->Branch( | 284 assembler.Branch(assembler.WordEqual(assembler.LoadMap(x), |
| 276 assembler->WordEqual(assembler->LoadMap(x), | 285 assembler.HeapNumberMapConstant()), |
| 277 assembler->HeapNumberMapConstant()), | 286 &if_xisheapnumber, &if_xisnotheapnumber); |
| 278 &if_xisheapnumber, &if_xisnotheapnumber); | |
| 279 | 287 |
| 280 assembler->Bind(&if_xisheapnumber); | 288 assembler.Bind(&if_xisheapnumber); |
| 281 { | 289 { |
| 282 var_clz32_x.Bind(assembler->TruncateHeapNumberValueToWord32(x)); | 290 var_clz32_x.Bind(assembler.TruncateHeapNumberValueToWord32(x)); |
| 283 assembler->Goto(&do_clz32); | 291 assembler.Goto(&do_clz32); |
| 284 } | 292 } |
| 285 | 293 |
| 286 assembler->Bind(&if_xisnotheapnumber); | 294 assembler.Bind(&if_xisnotheapnumber); |
| 287 { | 295 { |
| 288 // Need to convert {x} to a Number first. | 296 // Need to convert {x} to a Number first. |
| 289 Callable callable = | 297 Callable callable = CodeFactory::NonNumberToNumber(assembler.isolate()); |
| 290 CodeFactory::NonNumberToNumber(assembler->isolate()); | 298 var_x.Bind(assembler.CallStub(callable, context, x)); |
| 291 var_x.Bind(assembler->CallStub(callable, context, x)); | 299 assembler.Goto(&loop); |
| 292 assembler->Goto(&loop); | |
| 293 } | 300 } |
| 294 } | 301 } |
| 295 } | 302 } |
| 296 | 303 |
| 297 assembler->Bind(&do_clz32); | 304 assembler.Bind(&do_clz32); |
| 298 { | 305 { |
| 299 Node* x_value = var_clz32_x.value(); | 306 Node* x_value = var_clz32_x.value(); |
| 300 Node* value = assembler->Word32Clz(x_value); | 307 Node* value = assembler.Word32Clz(x_value); |
| 301 Node* result = assembler->ChangeInt32ToTagged(value); | 308 Node* result = assembler.ChangeInt32ToTagged(value); |
| 302 assembler->Return(result); | 309 assembler.Return(result); |
| 303 } | 310 } |
| 304 } | 311 } |
| 305 | 312 |
| 306 // ES6 section 20.2.2.12 Math.cos ( x ) | 313 // ES6 section 20.2.2.12 Math.cos ( x ) |
| 307 void Builtins::Generate_MathCos(CodeStubAssembler* assembler) { | 314 void Builtins::Generate_MathCos(compiler::CodeAssemblerState* state) { |
| 308 Generate_MathUnaryOperation(assembler, &CodeStubAssembler::Float64Cos); | 315 CodeStubAssembler assembler(state); |
| 316 Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Cos); |
| 309 } | 317 } |
| 310 | 318 |
| 311 // ES6 section 20.2.2.13 Math.cosh ( x ) | 319 // ES6 section 20.2.2.13 Math.cosh ( x ) |
| 312 void Builtins::Generate_MathCosh(CodeStubAssembler* assembler) { | 320 void Builtins::Generate_MathCosh(compiler::CodeAssemblerState* state) { |
| 313 Generate_MathUnaryOperation(assembler, &CodeStubAssembler::Float64Cosh); | 321 CodeStubAssembler assembler(state); |
| 322 Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Cosh); |
| 314 } | 323 } |
| 315 | 324 |
| 316 // ES6 section 20.2.2.14 Math.exp ( x ) | 325 // ES6 section 20.2.2.14 Math.exp ( x ) |
| 317 void Builtins::Generate_MathExp(CodeStubAssembler* assembler) { | 326 void Builtins::Generate_MathExp(compiler::CodeAssemblerState* state) { |
| 318 Generate_MathUnaryOperation(assembler, &CodeStubAssembler::Float64Exp); | 327 CodeStubAssembler assembler(state); |
| 328 Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Exp); |
| 319 } | 329 } |
| 320 | 330 |
| 321 // ES6 section 20.2.2.15 Math.expm1 ( x ) | 331 // ES6 section 20.2.2.15 Math.expm1 ( x ) |
| 322 void Builtins::Generate_MathExpm1(CodeStubAssembler* assembler) { | 332 void Builtins::Generate_MathExpm1(compiler::CodeAssemblerState* state) { |
| 323 Generate_MathUnaryOperation(assembler, &CodeStubAssembler::Float64Expm1); | 333 CodeStubAssembler assembler(state); |
| 334 Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Expm1); |
| 324 } | 335 } |
| 325 | 336 |
| 326 // ES6 section 20.2.2.16 Math.floor ( x ) | 337 // ES6 section 20.2.2.16 Math.floor ( x ) |
| 327 void Builtins::Generate_MathFloor(CodeStubAssembler* assembler) { | 338 void Builtins::Generate_MathFloor(compiler::CodeAssemblerState* state) { |
| 328 Generate_MathRoundingOperation(assembler, &CodeStubAssembler::Float64Floor); | 339 CodeStubAssembler assembler(state); |
| 340 Generate_MathRoundingOperation(&assembler, &CodeStubAssembler::Float64Floor); |
| 329 } | 341 } |
| 330 | 342 |
| 331 // ES6 section 20.2.2.17 Math.fround ( x ) | 343 // ES6 section 20.2.2.17 Math.fround ( x ) |
| 332 void Builtins::Generate_MathFround(CodeStubAssembler* assembler) { | 344 void Builtins::Generate_MathFround(compiler::CodeAssemblerState* state) { |
| 333 using compiler::Node; | 345 using compiler::Node; |
| 346 CodeStubAssembler assembler(state); |
| 334 | 347 |
| 335 Node* x = assembler->Parameter(1); | 348 Node* x = assembler.Parameter(1); |
| 336 Node* context = assembler->Parameter(4); | 349 Node* context = assembler.Parameter(4); |
| 337 Node* x_value = assembler->TruncateTaggedToFloat64(context, x); | 350 Node* x_value = assembler.TruncateTaggedToFloat64(context, x); |
| 338 Node* value32 = assembler->TruncateFloat64ToFloat32(x_value); | 351 Node* value32 = assembler.TruncateFloat64ToFloat32(x_value); |
| 339 Node* value = assembler->ChangeFloat32ToFloat64(value32); | 352 Node* value = assembler.ChangeFloat32ToFloat64(value32); |
| 340 Node* result = assembler->AllocateHeapNumberWithValue(value); | 353 Node* result = assembler.AllocateHeapNumberWithValue(value); |
| 341 assembler->Return(result); | 354 assembler.Return(result); |
| 342 } | 355 } |
| 343 | 356 |
| 344 // ES6 section 20.2.2.18 Math.hypot ( value1, value2, ...values ) | 357 // ES6 section 20.2.2.18 Math.hypot ( value1, value2, ...values ) |
| 345 BUILTIN(MathHypot) { | 358 BUILTIN(MathHypot) { |
| 346 HandleScope scope(isolate); | 359 HandleScope scope(isolate); |
| 347 int const length = args.length() - 1; | 360 int const length = args.length() - 1; |
| 348 if (length == 0) return Smi::kZero; | 361 if (length == 0) return Smi::kZero; |
| 349 DCHECK_LT(0, length); | 362 DCHECK_LT(0, length); |
| 350 double max = 0; | 363 double max = 0; |
| 351 bool one_arg_is_nan = false; | 364 bool one_arg_is_nan = false; |
| (...skipping 35 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 387 double summand = n * n - compensation; | 400 double summand = n * n - compensation; |
| 388 double preliminary = sum + summand; | 401 double preliminary = sum + summand; |
| 389 compensation = (preliminary - sum) - summand; | 402 compensation = (preliminary - sum) - summand; |
| 390 sum = preliminary; | 403 sum = preliminary; |
| 391 } | 404 } |
| 392 | 405 |
| 393 return *isolate->factory()->NewNumber(std::sqrt(sum) * max); | 406 return *isolate->factory()->NewNumber(std::sqrt(sum) * max); |
| 394 } | 407 } |
| 395 | 408 |
| 396 // ES6 section 20.2.2.19 Math.imul ( x, y ) | 409 // ES6 section 20.2.2.19 Math.imul ( x, y ) |
| 397 void Builtins::Generate_MathImul(CodeStubAssembler* assembler) { | 410 void Builtins::Generate_MathImul(compiler::CodeAssemblerState* state) { |
| 398 using compiler::Node; | 411 using compiler::Node; |
| 412 CodeStubAssembler assembler(state); |
| 399 | 413 |
| 400 Node* x = assembler->Parameter(1); | 414 Node* x = assembler.Parameter(1); |
| 401 Node* y = assembler->Parameter(2); | 415 Node* y = assembler.Parameter(2); |
| 402 Node* context = assembler->Parameter(5); | 416 Node* context = assembler.Parameter(5); |
| 403 Node* x_value = assembler->TruncateTaggedToWord32(context, x); | 417 Node* x_value = assembler.TruncateTaggedToWord32(context, x); |
| 404 Node* y_value = assembler->TruncateTaggedToWord32(context, y); | 418 Node* y_value = assembler.TruncateTaggedToWord32(context, y); |
| 405 Node* value = assembler->Int32Mul(x_value, y_value); | 419 Node* value = assembler.Int32Mul(x_value, y_value); |
| 406 Node* result = assembler->ChangeInt32ToTagged(value); | 420 Node* result = assembler.ChangeInt32ToTagged(value); |
| 407 assembler->Return(result); | 421 assembler.Return(result); |
| 408 } | 422 } |
| 409 | 423 |
| 410 // ES6 section 20.2.2.20 Math.log ( x ) | 424 // ES6 section 20.2.2.20 Math.log ( x ) |
| 411 void Builtins::Generate_MathLog(CodeStubAssembler* assembler) { | 425 void Builtins::Generate_MathLog(compiler::CodeAssemblerState* state) { |
| 412 Generate_MathUnaryOperation(assembler, &CodeStubAssembler::Float64Log); | 426 CodeStubAssembler assembler(state); |
| 427 Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Log); |
| 413 } | 428 } |
| 414 | 429 |
| 415 // ES6 section 20.2.2.21 Math.log1p ( x ) | 430 // ES6 section 20.2.2.21 Math.log1p ( x ) |
| 416 void Builtins::Generate_MathLog1p(CodeStubAssembler* assembler) { | 431 void Builtins::Generate_MathLog1p(compiler::CodeAssemblerState* state) { |
| 417 Generate_MathUnaryOperation(assembler, &CodeStubAssembler::Float64Log1p); | 432 CodeStubAssembler assembler(state); |
| 433 Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Log1p); |
| 418 } | 434 } |
| 419 | 435 |
| 420 // ES6 section 20.2.2.22 Math.log10 ( x ) | 436 // ES6 section 20.2.2.22 Math.log10 ( x ) |
| 421 void Builtins::Generate_MathLog10(CodeStubAssembler* assembler) { | 437 void Builtins::Generate_MathLog10(compiler::CodeAssemblerState* state) { |
| 422 Generate_MathUnaryOperation(assembler, &CodeStubAssembler::Float64Log10); | 438 CodeStubAssembler assembler(state); |
| 439 Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Log10); |
| 423 } | 440 } |
| 424 | 441 |
| 425 // ES6 section 20.2.2.23 Math.log2 ( x ) | 442 // ES6 section 20.2.2.23 Math.log2 ( x ) |
| 426 void Builtins::Generate_MathLog2(CodeStubAssembler* assembler) { | 443 void Builtins::Generate_MathLog2(compiler::CodeAssemblerState* state) { |
| 427 Generate_MathUnaryOperation(assembler, &CodeStubAssembler::Float64Log2); | 444 CodeStubAssembler assembler(state); |
| 445 Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Log2); |
| 428 } | 446 } |
| 429 | 447 |
| 430 // ES6 section 20.2.2.26 Math.pow ( x, y ) | 448 // ES6 section 20.2.2.26 Math.pow ( x, y ) |
| 431 void Builtins::Generate_MathPow(CodeStubAssembler* assembler) { | 449 void Builtins::Generate_MathPow(compiler::CodeAssemblerState* state) { |
| 432 using compiler::Node; | 450 using compiler::Node; |
| 451 CodeStubAssembler assembler(state); |
| 433 | 452 |
| 434 Node* x = assembler->Parameter(1); | 453 Node* x = assembler.Parameter(1); |
| 435 Node* y = assembler->Parameter(2); | 454 Node* y = assembler.Parameter(2); |
| 436 Node* context = assembler->Parameter(5); | 455 Node* context = assembler.Parameter(5); |
| 437 Node* x_value = assembler->TruncateTaggedToFloat64(context, x); | 456 Node* x_value = assembler.TruncateTaggedToFloat64(context, x); |
| 438 Node* y_value = assembler->TruncateTaggedToFloat64(context, y); | 457 Node* y_value = assembler.TruncateTaggedToFloat64(context, y); |
| 439 Node* value = assembler->Float64Pow(x_value, y_value); | 458 Node* value = assembler.Float64Pow(x_value, y_value); |
| 440 Node* result = assembler->ChangeFloat64ToTagged(value); | 459 Node* result = assembler.ChangeFloat64ToTagged(value); |
| 441 assembler->Return(result); | 460 assembler.Return(result); |
| 442 } | 461 } |
| 443 | 462 |
| 444 // ES6 section 20.2.2.27 Math.random ( ) | 463 // ES6 section 20.2.2.27 Math.random ( ) |
| 445 void Builtins::Generate_MathRandom(CodeStubAssembler* assembler) { | 464 void Builtins::Generate_MathRandom(compiler::CodeAssemblerState* state) { |
| 446 using compiler::Node; | 465 using compiler::Node; |
| 466 CodeStubAssembler assembler(state); |
| 447 | 467 |
| 448 Node* context = assembler->Parameter(3); | 468 Node* context = assembler.Parameter(3); |
| 449 Node* native_context = assembler->LoadNativeContext(context); | 469 Node* native_context = assembler.LoadNativeContext(context); |
| 450 | 470 |
| 451 // Load cache index. | 471 // Load cache index. |
| 452 CodeStubAssembler::Variable smi_index(assembler, | 472 CodeStubAssembler::Variable smi_index(&assembler, |
| 453 MachineRepresentation::kTagged); | 473 MachineRepresentation::kTagged); |
| 454 smi_index.Bind(assembler->LoadContextElement( | 474 smi_index.Bind(assembler.LoadContextElement( |
| 455 native_context, Context::MATH_RANDOM_INDEX_INDEX)); | 475 native_context, Context::MATH_RANDOM_INDEX_INDEX)); |
| 456 | 476 |
| 457 // Cached random numbers are exhausted if index is 0. Go to slow path. | 477 // Cached random numbers are exhausted if index is 0. Go to slow path. |
| 458 CodeStubAssembler::Label if_cached(assembler); | 478 CodeStubAssembler::Label if_cached(&assembler); |
| 459 assembler->GotoIf(assembler->SmiAbove(smi_index.value(), | 479 assembler.GotoIf( |
| 460 assembler->SmiConstant(Smi::kZero)), | 480 assembler.SmiAbove(smi_index.value(), assembler.SmiConstant(Smi::kZero)), |
| 461 &if_cached); | 481 &if_cached); |
| 462 | 482 |
| 463 // Cache exhausted, populate the cache. Return value is the new index. | 483 // Cache exhausted, populate the cache. Return value is the new index. |
| 464 smi_index.Bind( | 484 smi_index.Bind( |
| 465 assembler->CallRuntime(Runtime::kGenerateRandomNumbers, context)); | 485 assembler.CallRuntime(Runtime::kGenerateRandomNumbers, context)); |
| 466 assembler->Goto(&if_cached); | 486 assembler.Goto(&if_cached); |
| 467 | 487 |
| 468 // Compute next index by decrement. | 488 // Compute next index by decrement. |
| 469 assembler->Bind(&if_cached); | 489 assembler.Bind(&if_cached); |
| 470 Node* new_smi_index = assembler->SmiSub( | 490 Node* new_smi_index = assembler.SmiSub( |
| 471 smi_index.value(), assembler->SmiConstant(Smi::FromInt(1))); | 491 smi_index.value(), assembler.SmiConstant(Smi::FromInt(1))); |
| 472 assembler->StoreContextElement( | 492 assembler.StoreContextElement( |
| 473 native_context, Context::MATH_RANDOM_INDEX_INDEX, new_smi_index); | 493 native_context, Context::MATH_RANDOM_INDEX_INDEX, new_smi_index); |
| 474 | 494 |
| 475 // Load and return next cached random number. | 495 // Load and return next cached random number. |
| 476 Node* array = assembler->LoadContextElement(native_context, | 496 Node* array = assembler.LoadContextElement(native_context, |
| 477 Context::MATH_RANDOM_CACHE_INDEX); | 497 Context::MATH_RANDOM_CACHE_INDEX); |
| 478 Node* random = assembler->LoadFixedDoubleArrayElement( | 498 Node* random = assembler.LoadFixedDoubleArrayElement( |
| 479 array, new_smi_index, MachineType::Float64(), 0, | 499 array, new_smi_index, MachineType::Float64(), 0, |
| 480 CodeStubAssembler::SMI_PARAMETERS); | 500 CodeStubAssembler::SMI_PARAMETERS); |
| 481 assembler->Return(assembler->AllocateHeapNumberWithValue(random)); | 501 assembler.Return(assembler.AllocateHeapNumberWithValue(random)); |
| 482 } | 502 } |
| 483 | 503 |
| 484 // ES6 section 20.2.2.28 Math.round ( x ) | 504 // ES6 section 20.2.2.28 Math.round ( x ) |
| 485 void Builtins::Generate_MathRound(CodeStubAssembler* assembler) { | 505 void Builtins::Generate_MathRound(compiler::CodeAssemblerState* state) { |
| 486 Generate_MathRoundingOperation(assembler, &CodeStubAssembler::Float64Round); | 506 CodeStubAssembler assembler(state); |
| 507 Generate_MathRoundingOperation(&assembler, &CodeStubAssembler::Float64Round); |
| 487 } | 508 } |
| 488 | 509 |
| 489 // ES6 section 20.2.2.29 Math.sign ( x ) | 510 // ES6 section 20.2.2.29 Math.sign ( x ) |
| 490 void Builtins::Generate_MathSign(CodeStubAssembler* assembler) { | 511 void Builtins::Generate_MathSign(compiler::CodeAssemblerState* state) { |
| 491 typedef CodeStubAssembler::Label Label; | 512 typedef CodeStubAssembler::Label Label; |
| 492 using compiler::Node; | 513 using compiler::Node; |
| 514 CodeStubAssembler assembler(state); |
| 493 | 515 |
| 494 // Convert the {x} value to a Number. | 516 // Convert the {x} value to a Number. |
| 495 Node* x = assembler->Parameter(1); | 517 Node* x = assembler.Parameter(1); |
| 496 Node* context = assembler->Parameter(4); | 518 Node* context = assembler.Parameter(4); |
| 497 Node* x_value = assembler->TruncateTaggedToFloat64(context, x); | 519 Node* x_value = assembler.TruncateTaggedToFloat64(context, x); |
| 498 | 520 |
| 499 // Return -1 if {x} is negative, 1 if {x} is positive, or {x} itself. | 521 // Return -1 if {x} is negative, 1 if {x} is positive, or {x} itself. |
| 500 Label if_xisnegative(assembler), if_xispositive(assembler); | 522 Label if_xisnegative(&assembler), if_xispositive(&assembler); |
| 501 assembler->GotoIf( | 523 assembler.GotoIf( |
| 502 assembler->Float64LessThan(x_value, assembler->Float64Constant(0.0)), | 524 assembler.Float64LessThan(x_value, assembler.Float64Constant(0.0)), |
| 503 &if_xisnegative); | 525 &if_xisnegative); |
| 504 assembler->GotoIf( | 526 assembler.GotoIf( |
| 505 assembler->Float64LessThan(assembler->Float64Constant(0.0), x_value), | 527 assembler.Float64LessThan(assembler.Float64Constant(0.0), x_value), |
| 506 &if_xispositive); | 528 &if_xispositive); |
| 507 assembler->Return(assembler->ChangeFloat64ToTagged(x_value)); | 529 assembler.Return(assembler.ChangeFloat64ToTagged(x_value)); |
| 508 | 530 |
| 509 assembler->Bind(&if_xisnegative); | 531 assembler.Bind(&if_xisnegative); |
| 510 assembler->Return(assembler->SmiConstant(Smi::FromInt(-1))); | 532 assembler.Return(assembler.SmiConstant(Smi::FromInt(-1))); |
| 511 | 533 |
| 512 assembler->Bind(&if_xispositive); | 534 assembler.Bind(&if_xispositive); |
| 513 assembler->Return(assembler->SmiConstant(Smi::FromInt(1))); | 535 assembler.Return(assembler.SmiConstant(Smi::FromInt(1))); |
| 514 } | 536 } |
| 515 | 537 |
| 516 // ES6 section 20.2.2.30 Math.sin ( x ) | 538 // ES6 section 20.2.2.30 Math.sin ( x ) |
| 517 void Builtins::Generate_MathSin(CodeStubAssembler* assembler) { | 539 void Builtins::Generate_MathSin(compiler::CodeAssemblerState* state) { |
| 518 Generate_MathUnaryOperation(assembler, &CodeStubAssembler::Float64Sin); | 540 CodeStubAssembler assembler(state); |
| 541 Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Sin); |
| 519 } | 542 } |
| 520 | 543 |
| 521 // ES6 section 20.2.2.31 Math.sinh ( x ) | 544 // ES6 section 20.2.2.31 Math.sinh ( x ) |
| 522 void Builtins::Generate_MathSinh(CodeStubAssembler* assembler) { | 545 void Builtins::Generate_MathSinh(compiler::CodeAssemblerState* state) { |
| 523 Generate_MathUnaryOperation(assembler, &CodeStubAssembler::Float64Sinh); | 546 CodeStubAssembler assembler(state); |
| 547 Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Sinh); |
| 524 } | 548 } |
| 525 | 549 |
| 526 // ES6 section 20.2.2.32 Math.sqrt ( x ) | 550 // ES6 section 20.2.2.32 Math.sqrt ( x ) |
| 527 void Builtins::Generate_MathSqrt(CodeStubAssembler* assembler) { | 551 void Builtins::Generate_MathSqrt(compiler::CodeAssemblerState* state) { |
| 528 Generate_MathUnaryOperation(assembler, &CodeStubAssembler::Float64Sqrt); | 552 CodeStubAssembler assembler(state); |
| 553 Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Sqrt); |
| 529 } | 554 } |
| 530 | 555 |
| 531 // ES6 section 20.2.2.33 Math.tan ( x ) | 556 // ES6 section 20.2.2.33 Math.tan ( x ) |
| 532 void Builtins::Generate_MathTan(CodeStubAssembler* assembler) { | 557 void Builtins::Generate_MathTan(compiler::CodeAssemblerState* state) { |
| 533 Generate_MathUnaryOperation(assembler, &CodeStubAssembler::Float64Tan); | 558 CodeStubAssembler assembler(state); |
| 559 Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Tan); |
| 534 } | 560 } |
| 535 | 561 |
| 536 // ES6 section 20.2.2.34 Math.tanh ( x ) | 562 // ES6 section 20.2.2.34 Math.tanh ( x ) |
| 537 void Builtins::Generate_MathTanh(CodeStubAssembler* assembler) { | 563 void Builtins::Generate_MathTanh(compiler::CodeAssemblerState* state) { |
| 538 Generate_MathUnaryOperation(assembler, &CodeStubAssembler::Float64Tanh); | 564 CodeStubAssembler assembler(state); |
| 565 Generate_MathUnaryOperation(&assembler, &CodeStubAssembler::Float64Tanh); |
| 539 } | 566 } |
| 540 | 567 |
| 541 // ES6 section 20.2.2.35 Math.trunc ( x ) | 568 // ES6 section 20.2.2.35 Math.trunc ( x ) |
| 542 void Builtins::Generate_MathTrunc(CodeStubAssembler* assembler) { | 569 void Builtins::Generate_MathTrunc(compiler::CodeAssemblerState* state) { |
| 543 Generate_MathRoundingOperation(assembler, &CodeStubAssembler::Float64Trunc); | 570 CodeStubAssembler assembler(state); |
| 571 Generate_MathRoundingOperation(&assembler, &CodeStubAssembler::Float64Trunc); |
| 544 } | 572 } |
| 545 | 573 |
| 546 void Builtins::Generate_MathMax(MacroAssembler* masm) { | 574 void Builtins::Generate_MathMax(MacroAssembler* masm) { |
| 547 Generate_MathMaxMin(masm, MathMaxMinKind::kMax); | 575 Generate_MathMaxMin(masm, MathMaxMinKind::kMax); |
| 548 } | 576 } |
| 549 | 577 |
| 550 void Builtins::Generate_MathMin(MacroAssembler* masm) { | 578 void Builtins::Generate_MathMin(MacroAssembler* masm) { |
| 551 Generate_MathMaxMin(masm, MathMaxMinKind::kMin); | 579 Generate_MathMaxMin(masm, MathMaxMinKind::kMin); |
| 552 } | 580 } |
| 553 | 581 |
| 554 } // namespace internal | 582 } // namespace internal |
| 555 } // namespace v8 | 583 } // namespace v8 |
| OLD | NEW |