OLD | NEW |
1 // Copyright 2011 the V8 project authors. All rights reserved. | 1 // Copyright 2011 the V8 project authors. All rights reserved. |
2 // Use of this source code is governed by a BSD-style license that can be | 2 // Use of this source code is governed by a BSD-style license that can be |
3 // found in the LICENSE file. | 3 // found in the LICENSE file. |
4 | 4 |
5 #ifndef V8_STORE_BUFFER_H_ | 5 #ifndef V8_STORE_BUFFER_H_ |
6 #define V8_STORE_BUFFER_H_ | 6 #define V8_STORE_BUFFER_H_ |
7 | 7 |
8 #include "src/allocation.h" | 8 #include "src/allocation.h" |
9 #include "src/base/logging.h" | 9 #include "src/base/logging.h" |
10 #include "src/base/platform/platform.h" | 10 #include "src/base/platform/platform.h" |
| 11 #include "src/cancelable-task.h" |
11 #include "src/globals.h" | 12 #include "src/globals.h" |
12 #include "src/heap/slot-set.h" | 13 #include "src/heap/slot-set.h" |
13 | 14 |
14 namespace v8 { | 15 namespace v8 { |
15 namespace internal { | 16 namespace internal { |
16 | 17 |
17 // Intermediate buffer that accumulates old-to-new stores from the generated | 18 // Intermediate buffer that accumulates old-to-new stores from the generated |
18 // code. On buffer overflow the slots are moved to the remembered set. | 19 // code. Moreover, it stores invalid old-to-new slots with two entries. |
| 20 // The first is a tagged address of the start of the invalid range, the second |
| 21 // one is the end address of the invalid range or null if there is just one slot |
| 22 // that needs to be removed from the remembered set. On buffer overflow the |
| 23 // slots are moved to the remembered set. |
19 class StoreBuffer { | 24 class StoreBuffer { |
20 public: | 25 public: |
21 static const int kStoreBufferSize = 1 << (14 + kPointerSizeLog2); | 26 static const int kStoreBufferSize = 1 << (14 + kPointerSizeLog2); |
22 static const int kStoreBufferMask = kStoreBufferSize - 1; | 27 static const int kStoreBufferMask = kStoreBufferSize - 1; |
| 28 static const int kStoreBuffers = 2; |
| 29 static const intptr_t kDeletionTag = 1; |
23 | 30 |
24 static void StoreBufferOverflow(Isolate* isolate); | 31 static void StoreBufferOverflow(Isolate* isolate); |
25 | 32 |
26 explicit StoreBuffer(Heap* heap); | 33 explicit StoreBuffer(Heap* heap); |
27 void SetUp(); | 34 void SetUp(); |
28 void TearDown(); | 35 void TearDown(); |
29 | 36 |
30 // Used to add entries from generated code. | 37 // Used to add entries from generated code. |
31 inline Address* top_address() { return reinterpret_cast<Address*>(&top_); } | 38 inline Address* top_address() { return reinterpret_cast<Address*>(&top_); } |
32 | 39 |
33 void MoveEntriesToRememberedSet(); | 40 // Moves entries from a specific store buffer to the remembered set. This |
| 41 // method takes a lock. |
| 42 void MoveEntriesToRememberedSet(int index); |
| 43 |
| 44 // This method ensures that all used store buffer entries are transfered to |
| 45 // the remembered set. |
| 46 void MoveAllEntriesToRememberedSet(); |
| 47 |
| 48 inline bool IsDeletionAddress(Address address) const { |
| 49 return reinterpret_cast<intptr_t>(address) & kDeletionTag; |
| 50 } |
| 51 |
| 52 inline Address MarkDeletionAddress(Address address) { |
| 53 return reinterpret_cast<Address>(reinterpret_cast<intptr_t>(address) | |
| 54 kDeletionTag); |
| 55 } |
| 56 |
| 57 inline Address UnmarkDeletionAddress(Address address) { |
| 58 return reinterpret_cast<Address>(reinterpret_cast<intptr_t>(address) & |
| 59 ~kDeletionTag); |
| 60 } |
| 61 |
| 62 // If we only want to delete a single slot, end should be set to null which |
| 63 // will be written into the second field. When processing the store buffer |
| 64 // the more efficient Remove method will be called in this case. |
| 65 void DeleteEntry(Address start, Address end = nullptr); |
| 66 |
| 67 // Used by the concurrent processing thread to transfer entries from the |
| 68 // store buffer to the remembered set. |
| 69 void ConcurrentlyProcessStoreBuffer(); |
| 70 |
| 71 bool Empty() { |
| 72 for (int i = 0; i < kStoreBuffers; i++) { |
| 73 if (lazy_top_[i]) { |
| 74 return false; |
| 75 } |
| 76 } |
| 77 return top_ == start_[current_]; |
| 78 } |
34 | 79 |
35 private: | 80 private: |
| 81 // There are two store buffers. If one store buffer fills up, the main thread |
| 82 // publishes the top pointer of the store buffer that needs processing in its |
| 83 // global lazy_top_ field. After that it start the concurrent processing |
| 84 // thread. The concurrent processing thread uses the pointer in lazy_top_. |
| 85 // It will grab the given mutex and transfer its entries to the remembered |
| 86 // set. If the concurrent thread does not make progress, the main thread will |
| 87 // perform the work. |
| 88 // Important: there is an ordering constrained. The store buffer with the |
| 89 // older entries has to be processed first. |
| 90 class Task : public CancelableTask { |
| 91 public: |
| 92 Task(Isolate* isolate, StoreBuffer* store_buffer) |
| 93 : CancelableTask(isolate), store_buffer_(store_buffer) {} |
| 94 virtual ~Task() {} |
| 95 |
| 96 private: |
| 97 void RunInternal() override { |
| 98 store_buffer_->ConcurrentlyProcessStoreBuffer(); |
| 99 } |
| 100 StoreBuffer* store_buffer_; |
| 101 DISALLOW_COPY_AND_ASSIGN(Task); |
| 102 }; |
| 103 |
| 104 void FlipStoreBuffers(); |
| 105 |
36 Heap* heap_; | 106 Heap* heap_; |
37 | 107 |
38 Address* top_; | 108 Address* top_; |
39 | 109 |
40 // The start and the limit of the buffer that contains store slots | 110 // The start and the limit of the buffer that contains store slots |
41 // added from the generated code. | 111 // added from the generated code. We have two chunks of store buffers. |
42 Address* start_; | 112 // Whenever one fills up, we notify a concurrent processing thread and |
43 Address* limit_; | 113 // use the other empty one in the meantime. |
| 114 Address* start_[kStoreBuffers]; |
| 115 Address* limit_[kStoreBuffers]; |
| 116 |
| 117 // At most one lazy_top_ pointer is set at any time. |
| 118 Address* lazy_top_[kStoreBuffers]; |
| 119 base::Mutex mutex_; |
| 120 |
| 121 // We only want to have at most one concurrent processing tas running. |
| 122 bool task_running_; |
| 123 |
| 124 // Points to the current buffer in use. |
| 125 int current_; |
44 | 126 |
45 base::VirtualMemory* virtual_memory_; | 127 base::VirtualMemory* virtual_memory_; |
46 }; | 128 }; |
47 | 129 |
48 } // namespace internal | 130 } // namespace internal |
49 } // namespace v8 | 131 } // namespace v8 |
50 | 132 |
51 #endif // V8_STORE_BUFFER_H_ | 133 #endif // V8_STORE_BUFFER_H_ |
OLD | NEW |