| Index: lib/Transforms/NaCl/ExceptionInfoWriter.cpp
|
| diff --git a/lib/Transforms/NaCl/ExceptionInfoWriter.cpp b/lib/Transforms/NaCl/ExceptionInfoWriter.cpp
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..7fbf5245c4738679769f69c86fa04c89ba89132f
|
| --- /dev/null
|
| +++ b/lib/Transforms/NaCl/ExceptionInfoWriter.cpp
|
| @@ -0,0 +1,281 @@
|
| +//===- ExceptionInfoWriter.cpp - Generate C++ exception info for PNaCl-----===//
|
| +//
|
| +// The LLVM Compiler Infrastructure
|
| +//
|
| +// This file is distributed under the University of Illinois Open Source
|
| +// License. See LICENSE.TXT for details.
|
| +//
|
| +//===----------------------------------------------------------------------===//
|
| +//
|
| +// The ExceptionInfoWriter class converts the clauses of a
|
| +// "landingpad" instruction into data tables stored in global
|
| +// variables. These tables are interpreted by PNaCl's C++ runtime
|
| +// library (either libsupc++ or libcxxabi), which is linked into a
|
| +// pexe.
|
| +//
|
| +// This is similar to the lowering that the LLVM backend does to
|
| +// convert landingpad clauses into ".gcc_except_table" sections. The
|
| +// difference is that ExceptionInfoWriter is an IR-to-IR
|
| +// transformation that runs on the PNaCl user toolchain side. The
|
| +// format it produces is not part of PNaCl's stable ABI; the PNaCl
|
| +// translator and LLVM backend do not know about this format.
|
| +//
|
| +// Encoding:
|
| +//
|
| +// A landingpad instruction contains a list of clauses.
|
| +// ExceptionInfoWriter encodes each clause as a 32-bit "clause ID". A
|
| +// clause is one of the following forms:
|
| +//
|
| +// 1) "catch i8* @ExcType"
|
| +// * This clause means that the landingpad should be entered if
|
| +// the C++ exception being thrown has type @ExcType (or a
|
| +// subtype of @ExcType). @ExcType is a pointer to the
|
| +// std::type_info object (an RTTI object) for the C++ exception
|
| +// type.
|
| +// * Clang generates this for a "catch" block in the C++ source.
|
| +// * @ExcType is NULL for "catch (...)" (catch-all) blocks.
|
| +// * This is encoded as the integer "type ID" @ExcType, X,
|
| +// such that: __pnacl_eh_type_table[X] == @ExcType, and X >= 0.
|
| +//
|
| +// 2) "filter [i8* @ExcType1, ..., i8* @ExcTypeN]"
|
| +// * This clause means that the landingpad should be entered if
|
| +// the C++ exception being thrown *doesn't* match any of the
|
| +// types in the list (which are again specified as
|
| +// std::type_info pointers).
|
| +// * Clang uses this to implement C++ exception specifications, e.g.
|
| +// void foo() throw(ExcType1, ..., ExcTypeN) { ... }
|
| +// * This is encoded as the filter ID, X, where X < 0, and
|
| +// &__pnacl_eh_filter_table[-X-1] points to a -1-terminated
|
| +// array of integer "type IDs".
|
| +//
|
| +// 3) "cleanup"
|
| +// * This means that the landingpad should always be entered.
|
| +// * Clang uses this for calling objects' destructors.
|
| +// * ExceptionInfoWriter encodes this the same as "catch i8* null"
|
| +// (which is a catch-all).
|
| +//
|
| +// ExceptionInfoWriter generates the following data structures:
|
| +//
|
| +// struct action_table_entry {
|
| +// int32_t clause_id;
|
| +// uint32_t next_clause_list_id;
|
| +// };
|
| +//
|
| +// // Represents singly linked lists of clauses.
|
| +// extern const struct action_table_entry __pnacl_eh_action_table[];
|
| +//
|
| +// // Allows std::type_infos to be represented using small integer IDs.
|
| +// extern std::type_info *const __pnacl_eh_type_table[];
|
| +//
|
| +// // Used to represent type arrays for "filter" clauses.
|
| +// extern const int32_t __pnacl_eh_filter_table[];
|
| +//
|
| +// A "clause list ID" is either:
|
| +// * 0, representing the empty list; or
|
| +// * an index into __pnacl_eh_action_table[] with 1 added, which
|
| +// specifies a node in the clause list.
|
| +//
|
| +// Example:
|
| +//
|
| +// std::type_info *const __pnacl_eh_type_table[] = {
|
| +// // defines type ID 0 == ExcA and clause ID 0 == "catch ExcA"
|
| +// &typeinfo(ExcA),
|
| +// // defines type ID 1 == ExcB and clause ID 1 == "catch ExcB"
|
| +// &typeinfo(ExcB),
|
| +// // defines type ID 2 == ExcC and clause ID 2 == "catch ExcC"
|
| +// &typeinfo(ExcC),
|
| +// };
|
| +//
|
| +// const int32_t __pnacl_eh_filter_table[] = {
|
| +// 0, // refers to ExcA; defines clause ID -1 as "filter [ExcA, ExcB]"
|
| +// 1, // refers to ExcB; defines clause ID -2 as "filter [ExcB]"
|
| +// -1, // list terminator; defines clause ID -3 as "filter []"
|
| +// 2, // refers to ExcC; defines clause ID -4 as "filter [ExcC]"
|
| +// -1, // list terminator; defines clause ID -5 as "filter []"
|
| +// };
|
| +//
|
| +// const struct action_table_entry __pnacl_eh_action_table[] = {
|
| +// // defines clause list ID 1:
|
| +// {
|
| +// -4, // "filter [ExcC]"
|
| +// 0, // end of list (no more actions)
|
| +// },
|
| +// // defines clause list ID 2:
|
| +// {
|
| +// -1, // "filter [ExcA, ExcB]"
|
| +// 1, // else go to clause list ID 1
|
| +// },
|
| +// // defines clause list ID 3:
|
| +// {
|
| +// 1, // "catch ExcB"
|
| +// 2, // else go to clause list ID 2
|
| +// },
|
| +// // defines clause list ID 4:
|
| +// {
|
| +// 0, // "catch ExcA"
|
| +// 3, // else go to clause list ID 3
|
| +// },
|
| +// };
|
| +//
|
| +// So if a landingpad contains the clause list:
|
| +// [catch ExcA,
|
| +// catch ExcB,
|
| +// filter [ExcA, ExcB],
|
| +// filter [ExcC]]
|
| +// then this can be represented as clause list ID 4 using the tables above.
|
| +//
|
| +// The C++ runtime library checks the clauses in order to decide
|
| +// whether to enter the landingpad. If a clause matches, the
|
| +// landingpad BasicBlock is passed the clause ID. The landingpad code
|
| +// can use the clause ID to decide which C++ catch() block (if any) to
|
| +// execute.
|
| +//
|
| +// The purpose of these exception tables is to keep code sizes
|
| +// relatively small. The landingpad code only needs to check a small
|
| +// integer clause ID, rather than having to call a function to check
|
| +// whether the C++ exception matches a type.
|
| +//
|
| +// ExceptionInfoWriter's encoding corresponds loosely to the format of
|
| +// GCC's .gcc_except_table sections. One difference is that
|
| +// ExceptionInfoWriter writes fixed-width 32-bit integers, whereas
|
| +// .gcc_except_table uses variable-length LEB128 encodings. We could
|
| +// switch to LEB128 to save space in the future.
|
| +//
|
| +//===----------------------------------------------------------------------===//
|
| +
|
| +#include "ExceptionInfoWriter.h"
|
| +#include "llvm/Support/raw_ostream.h"
|
| +
|
| +using namespace llvm;
|
| +
|
| +ExceptionInfoWriter::ExceptionInfoWriter(LLVMContext *Context):
|
| + Context(Context) {
|
| + Type *I32 = Type::getInt32Ty(*Context);
|
| + Type *Fields[] = { I32, I32 };
|
| + ActionTableEntryTy = StructType::create(Fields, "action_table_entry");
|
| +}
|
| +
|
| +unsigned ExceptionInfoWriter::getIDForExceptionType(Value *ExcTy) {
|
| + Constant *ExcTyConst = dyn_cast<Constant>(ExcTy);
|
| + if (!ExcTyConst)
|
| + report_fatal_error("Exception type not a constant");
|
| +
|
| + // Reuse existing ID if one has already been assigned.
|
| + TypeTableIDMapType::iterator Iter = TypeTableIDMap.find(ExcTyConst);
|
| + if (Iter != TypeTableIDMap.end())
|
| + return Iter->second;
|
| +
|
| + unsigned Index = TypeTableData.size();
|
| + TypeTableIDMap[ExcTyConst] = Index;
|
| + TypeTableData.push_back(ExcTyConst);
|
| + return Index;
|
| +}
|
| +
|
| +unsigned ExceptionInfoWriter::getIDForClauseListNode(
|
| + unsigned ClauseID, unsigned NextClauseListID) {
|
| + // Reuse existing ID if one has already been assigned.
|
| + ActionTableEntry Key(ClauseID, NextClauseListID);
|
| + ActionTableIDMapType::iterator Iter = ActionTableIDMap.find(Key);
|
| + if (Iter != ActionTableIDMap.end())
|
| + return Iter->second;
|
| +
|
| + Type *I32 = Type::getInt32Ty(*Context);
|
| + Constant *Fields[] = { ConstantInt::get(I32, ClauseID),
|
| + ConstantInt::get(I32, NextClauseListID) };
|
| + Constant *Entry = ConstantStruct::get(ActionTableEntryTy, Fields);
|
| +
|
| + // Add 1 so that the empty list can be represented as 0.
|
| + unsigned ClauseListID = ActionTableData.size() + 1;
|
| + ActionTableIDMap[Key] = ClauseListID;
|
| + ActionTableData.push_back(Entry);
|
| + return ClauseListID;
|
| +}
|
| +
|
| +unsigned ExceptionInfoWriter::getIDForFilterClause(Value *Filter) {
|
| + unsigned FilterClauseID = -(FilterTableData.size() + 1);
|
| + Type *I32 = Type::getInt32Ty(*Context);
|
| + ArrayType *ArrayTy = dyn_cast<ArrayType>(Filter->getType());
|
| + if (!ArrayTy)
|
| + report_fatal_error("Landingpad filter clause is not of array type");
|
| + unsigned FilterLength = ArrayTy->getNumElements();
|
| + // Don't try the dyn_cast if the FilterLength is zero, because Array
|
| + // could be a zeroinitializer.
|
| + if (FilterLength > 0) {
|
| + ConstantArray *Array = dyn_cast<ConstantArray>(Filter);
|
| + if (!Array)
|
| + report_fatal_error("Landingpad filter clause is not a ConstantArray");
|
| + for (unsigned I = 0; I < FilterLength; ++I) {
|
| + unsigned TypeID = getIDForExceptionType(Array->getOperand(I));
|
| + FilterTableData.push_back(ConstantInt::get(I32, TypeID));
|
| + }
|
| + }
|
| + // Add array terminator.
|
| + FilterTableData.push_back(ConstantInt::get(I32, -1));
|
| + return FilterClauseID;
|
| +}
|
| +
|
| +unsigned ExceptionInfoWriter::getIDForLandingPadClauseList(LandingPadInst *LP) {
|
| + unsigned NextClauseListID = 0; // ID for empty list.
|
| +
|
| + if (LP->isCleanup()) {
|
| + // Add catch-all entry. There doesn't appear to be any need to
|
| + // treat "cleanup" differently from a catch-all.
|
| + unsigned TypeID = getIDForExceptionType(
|
| + ConstantPointerNull::get(Type::getInt8PtrTy(*Context)));
|
| + NextClauseListID = getIDForClauseListNode(TypeID, NextClauseListID);
|
| + }
|
| +
|
| + for (int I = (int) LP->getNumClauses() - 1; I >= 0; --I) {
|
| + unsigned ClauseID;
|
| + if (LP->isCatch(I)) {
|
| + ClauseID = getIDForExceptionType(LP->getClause(I));
|
| + } else if (LP->isFilter(I)) {
|
| + ClauseID = getIDForFilterClause(LP->getClause(I));
|
| + } else {
|
| + report_fatal_error("Unknown kind of landingpad clause");
|
| + }
|
| + NextClauseListID = getIDForClauseListNode(ClauseID, NextClauseListID);
|
| + }
|
| +
|
| + return NextClauseListID;
|
| +}
|
| +
|
| +static void defineArray(Module *M, const char *Name,
|
| + const SmallVectorImpl<Constant *> &Elements,
|
| + Type *ElementType) {
|
| + ArrayType *ArrayTy = ArrayType::get(ElementType, Elements.size());
|
| + Constant *ArrayData = ConstantArray::get(ArrayTy, Elements);
|
| + GlobalVariable *OldGlobal = M->getGlobalVariable(Name);
|
| + if (OldGlobal) {
|
| + if (OldGlobal->hasInitializer()) {
|
| + report_fatal_error(std::string("Variable ") + Name +
|
| + " already has an initializer");
|
| + }
|
| + Constant *NewGlobal = new GlobalVariable(
|
| + *M, ArrayTy, /* isConstant= */ true,
|
| + GlobalValue::InternalLinkage, ArrayData);
|
| + NewGlobal->takeName(OldGlobal);
|
| + OldGlobal->replaceAllUsesWith(ConstantExpr::getBitCast(
|
| + NewGlobal, OldGlobal->getType()));
|
| + OldGlobal->eraseFromParent();
|
| + } else {
|
| + if (Elements.size() > 0) {
|
| + // This warning could happen for a program that does not link
|
| + // against the C++ runtime libraries. Such a program might
|
| + // contain "invoke" instructions but never throw any C++
|
| + // exceptions.
|
| + errs() << "Warning: Variable " << Name << " not referenced\n";
|
| + }
|
| + }
|
| +}
|
| +
|
| +void ExceptionInfoWriter::defineGlobalVariables(Module *M) {
|
| + defineArray(M, "__pnacl_eh_type_table", TypeTableData,
|
| + Type::getInt8PtrTy(M->getContext()));
|
| +
|
| + defineArray(M, "__pnacl_eh_action_table", ActionTableData,
|
| + ActionTableEntryTy);
|
| +
|
| + defineArray(M, "__pnacl_eh_filter_table", FilterTableData,
|
| + Type::getInt32Ty(M->getContext()));
|
| +}
|
|
|