| Index: runtime/lib/math.cc
|
| diff --git a/runtime/lib/math.cc b/runtime/lib/math.cc
|
| index 0199782bdfa6ecd0ca9f0f3a276c71bd784a77d6..d95e32ff8eb578a764f2ee3632d2861341707189 100644
|
| --- a/runtime/lib/math.cc
|
| +++ b/runtime/lib/math.cc
|
| @@ -68,8 +68,8 @@ DEFINE_NATIVE_ENTRY(Math_log, 1) {
|
| DEFINE_NATIVE_ENTRY(Math_doublePow, 2) {
|
| const double operand =
|
| Double::CheckedHandle(arguments->NativeArgAt(0)).value();
|
| - GET_NON_NULL_NATIVE_ARGUMENT(
|
| - Double, exponent_object, arguments->NativeArgAt(1));
|
| + GET_NON_NULL_NATIVE_ARGUMENT(Double, exponent_object,
|
| + arguments->NativeArgAt(1));
|
| const double exponent = exponent_object.value();
|
| return Double::New(pow(operand, exponent));
|
| }
|
| @@ -106,14 +106,14 @@ DEFINE_NATIVE_ENTRY(Random_nextState, 1) {
|
| uint64_t state = (A * state_lo) + state_hi;
|
| array.SetUint32(0, static_cast<uint32_t>(state));
|
| array.SetUint32(array.ElementSizeInBytes(),
|
| - static_cast<uint32_t>(state >> 32));
|
| + static_cast<uint32_t>(state >> 32));
|
| return Object::null();
|
| }
|
|
|
|
|
| RawTypedData* CreateRandomState(Zone* zone, uint64_t seed) {
|
| - const TypedData& result = TypedData::Handle(
|
| - zone, TypedData::New(kTypedDataUint32ArrayCid, 2));
|
| + const TypedData& result =
|
| + TypedData::Handle(zone, TypedData::New(kTypedDataUint32ArrayCid, 2));
|
| result.SetUint32(0, static_cast<uint32_t>(seed));
|
| result.SetUint32(result.ElementSizeInBytes(),
|
| static_cast<uint32_t>(seed >> 32));
|
| @@ -125,11 +125,11 @@ uint64_t mix64(uint64_t n) {
|
| // Thomas Wang 64-bit mix.
|
| // http://www.concentric.net/~Ttwang/tech/inthash.htm
|
| // via. http://web.archive.org/web/20071223173210/http://www.concentric.net/~Ttwang/tech/inthash.htm
|
| - n = (~n) + (n << 21); // n = (n << 21) - n - 1;
|
| + n = (~n) + (n << 21); // n = (n << 21) - n - 1;
|
| n = n ^ (n >> 24);
|
| - n = n * 265; // n = (n + (n << 3)) + (n << 8);
|
| + n = n * 265; // n = (n + (n << 3)) + (n << 8);
|
| n = n ^ (n >> 14);
|
| - n = n * 21; // n = (n + (n << 2)) + (n << 4);
|
| + n = n * 21; // n = (n + (n << 2)) + (n << 4);
|
| n = n ^ (n >> 28);
|
| n = n + (n << 31);
|
| return n;
|
|
|