Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(319)

Unified Diff: pkg/analyzer/lib/src/generated/type_system.dart

Issue 2456803004: fixes #27586, prefer context type in generic inference (Closed)
Patch Set: fix Created 3 years, 9 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
Index: pkg/analyzer/lib/src/generated/type_system.dart
diff --git a/pkg/analyzer/lib/src/generated/type_system.dart b/pkg/analyzer/lib/src/generated/type_system.dart
index 1e1d1824caf386948df9cb9b1832c51cb8801a16..595d1a0afa0c9ae5408ecf94c021532e23b21fcc 100644
--- a/pkg/analyzer/lib/src/generated/type_system.dart
+++ b/pkg/analyzer/lib/src/generated/type_system.dart
@@ -8,7 +8,7 @@ import 'dart:collection';
import 'dart:math' as math;
import 'package:analyzer/dart/ast/ast.dart' show AstNode;
-import 'package:analyzer/dart/ast/token.dart' show TokenType;
+import 'package:analyzer/dart/ast/token.dart' show Keyword, TokenType;
import 'package:analyzer/dart/element/element.dart';
import 'package:analyzer/dart/element/type.dart';
import 'package:analyzer/error/listener.dart' show ErrorReporter;
@@ -22,7 +22,10 @@ import 'package:analyzer/src/generated/resolver.dart' show TypeProvider;
import 'package:analyzer/src/generated/utilities_dart.dart' show ParameterKind;
bool _isBottom(DartType t, {bool dynamicIsBottom: false}) {
- return (t.isDynamic && dynamicIsBottom) || t.isBottom || t.isDartCoreNull;
+ return (t.isDynamic && dynamicIsBottom) ||
+ t.isBottom ||
+ t.isDartCoreNull ||
+ identical(t, UnknownInferredType.instance);
}
bool _isTop(DartType t, {bool dynamicIsBottom: false}) {
@@ -30,7 +33,9 @@ bool _isTop(DartType t, {bool dynamicIsBottom: false}) {
if (t.isDartAsyncFutureOr) {
return _isTop((t as InterfaceType).typeArguments[0]);
}
- return (t.isDynamic && !dynamicIsBottom) || t.isObject;
+ return (t.isDynamic && !dynamicIsBottom) ||
+ t.isObject ||
+ identical(t, UnknownInferredType.instance);
}
typedef bool _GuardedSubtypeChecker<T>(T t1, T t2, Set<Element> visited);
@@ -125,6 +130,14 @@ class StrongTypeSystemImpl extends TypeSystem {
return type1;
}
+ // For any type T, GLB(?, T) == T.
+ if (identical(type1, UnknownInferredType.instance)) {
+ return type2;
+ }
+ if (identical(type2, UnknownInferredType.instance)) {
+ return type1;
+ }
+
// The GLB of top and any type is just that type.
// Also GLB of bottom and any type is bottom.
if (_isTop(type1, dynamicIsBottom: dynamicIsBottom) ||
@@ -204,7 +217,7 @@ class StrongTypeSystemImpl extends TypeSystem {
* Given a generic function type `F<T0, T1, ... Tn>` and a context type C,
* infer an instantiation of F, such that `F<S0, S1, ..., Sn>` <: C.
*
- * This is similar to [inferGenericFunctionCall], but the return type is also
+ * This is similar to [inferGenericFunctionOrType], but the return type is also
* considered as part of the solution.
*
* If this function is called with a [contextType] that is also
@@ -212,7 +225,8 @@ class StrongTypeSystemImpl extends TypeSystem {
* no effect and return [fnType].
*/
FunctionType inferFunctionTypeInstantiation(
- FunctionType contextType, FunctionType fnType) {
+ FunctionType contextType, FunctionType fnType,
+ {ErrorReporter errorReporter, AstNode errorNode}) {
if (contextType.typeFormals.isNotEmpty || fnType.typeFormals.isEmpty) {
return fnType;
}
@@ -221,36 +235,27 @@ class StrongTypeSystemImpl extends TypeSystem {
// inferred. It will optimistically assume these type parameters can be
// subtypes (or supertypes) as necessary, and track the constraints that
// are implied by this.
- var inferringTypeSystem =
- new _StrongInferenceTypeSystem(typeProvider, this, fnType.typeFormals);
+ var inferrer = new _GenericInferrer(typeProvider, this, fnType.typeFormals);
// Since we're trying to infer the instantiation, we want to ignore type
// formals as we check the parameters and return type.
var inferFnType =
fnType.instantiate(TypeParameterTypeImpl.getTypes(fnType.typeFormals));
- if (!inferringTypeSystem.isSubtypeOf(inferFnType, contextType)) {
- return fnType;
- }
-
- // Try to infer and instantiate the resulting type.
- var resultType = inferringTypeSystem._infer(
- fnType, fnType.typeFormals, fnType.returnType);
+ inferrer.constrainReturnType(inferFnType, contextType);
- // If the instantiation failed (because some type variable constraints
- // could not be solved, in other words, we could not find a valid subtype),
- // then return the original type, so the error is in terms of it.
- //
- // It would be safe to return a partial solution here, but the user
- // experience may be better if we simply do not infer in this case.
- //
- // TODO(jmesserly): this heuristic is old. Maybe we should we issue the
- // inference error?
- return resultType ?? fnType;
+ // Infer and instantiate the resulting type.
+ return inferrer.infer(fnType, fnType.typeFormals,
+ downwardsInferPhase: true,
+ errorReporter: errorReporter, errorNode: errorNode);
}
- /// Given a function type with generic type parameters, infer the type
- /// parameters from the actual argument types, and return the instantiated
- /// function type. If we can't, returns the original function type.
+ /// Infers a generic type, function, method, or list/map literal
+ /// instantiation, using the downward context type as well as the argument
+ /// types if available.
+ ///
+ /// For example, given a function type with generic type parameters, this
+ /// infers the type parameters from the actual argument types, and returns the
+ /// instantiated function type.
///
/// Concretely, given a function type with parameter types P0, P1, ... Pn,
/// result type R, and generic type parameters T0, T1, ... Tm, use the
@@ -261,21 +266,20 @@ class StrongTypeSystemImpl extends TypeSystem {
/// recording the lower or upper bound it must satisfy. At the end, all
/// constraints can be combined to determine the type.
///
- /// As a simplification, we do not actually store all constraints on each type
- /// parameter Tj. Instead we track Uj and Lj where U is the upper bound and
- /// L is the lower bound of that type parameter.
- /*=T*/ inferGenericFunctionCall/*<T extends ParameterizedType>*/(
+ /// All constraints on each type parameter Tj are tracked, as well as where
+ /// they originated, so we can issue an error message tracing back to the
+ /// argument values, type parameter "extends" clause, or the return type
+ /// context.
+ /*=T*/ inferGenericFunctionOrType/*<T extends ParameterizedType>*/(
/*=T*/ genericType,
- List<DartType> declaredParameterTypes,
+ List<ParameterElement> parameters,
List<DartType> argumentTypes,
- DartType declaredReturnType,
DartType returnContextType,
{ErrorReporter errorReporter,
- AstNode errorNode}) {
+ AstNode errorNode,
+ bool downwards: false}) {
// TODO(jmesserly): expose typeFormals on ParameterizedType.
- List<TypeParameterElement> typeFormals = genericType is FunctionType
- ? genericType.typeFormals
- : genericType.typeParameters;
+ List<TypeParameterElement> typeFormals = typeFormalsAsElements(genericType);
if (typeFormals.isEmpty) {
return genericType;
}
@@ -284,22 +288,27 @@ class StrongTypeSystemImpl extends TypeSystem {
// inferred. It will optimistically assume these type parameters can be
// subtypes (or supertypes) as necessary, and track the constraints that
// are implied by this.
- var inferringTypeSystem =
- new _StrongInferenceTypeSystem(typeProvider, this, typeFormals);
+ var inferrer = new _GenericInferrer(typeProvider, this, typeFormals);
+
+ DartType declaredReturnType =
+ genericType is FunctionType ? genericType.returnType : genericType;
if (returnContextType != null) {
- inferringTypeSystem.isSubtypeOf(declaredReturnType, returnContextType);
+ inferrer.constrainReturnType(declaredReturnType, returnContextType);
}
for (int i = 0; i < argumentTypes.length; i++) {
// Try to pass each argument to each parameter, recording any type
// parameter bounds that were implied by this assignment.
- inferringTypeSystem.isSubtypeOf(
- argumentTypes[i], declaredParameterTypes[i]);
+ inferrer.constrainArgument(
+ argumentTypes[i], parameters[i].type, parameters[i].name,
+ genericType: genericType);
}
- return inferringTypeSystem._infer(
- genericType, typeFormals, declaredReturnType, errorReporter, errorNode);
+ return inferrer.infer(genericType, typeFormals,
+ errorReporter: errorReporter,
+ errorNode: errorNode,
+ downwardsInferPhase: downwards);
}
/**
@@ -312,7 +321,8 @@ class StrongTypeSystemImpl extends TypeSystem {
* TODO(scheglov) Move this method to elements for classes, typedefs,
* and generic functions; compute lazily and cache.
*/
- DartType instantiateToBounds(DartType type, {List<bool> hasError}) {
+ DartType instantiateToBounds(DartType type,
+ {List<bool> hasError, Map<TypeParameterType, DartType> knownTypes}) {
List<TypeParameterElement> typeFormals = typeFormalsAsElements(type);
int count = typeFormals.length;
if (count == 0) {
@@ -320,16 +330,20 @@ class StrongTypeSystemImpl extends TypeSystem {
}
Set<TypeParameterType> all = new Set<TypeParameterType>();
- Map<TypeParameterType, DartType> defaults = {}; // all ground
- Map<TypeParameterType, DartType> partials = {}; // not ground
+ // all ground
+ Map<TypeParameterType, DartType> defaults = knownTypes ?? {};
+ // not ground
+ Map<TypeParameterType, DartType> partials = {};
for (TypeParameterElement typeParameterElement in typeFormals) {
TypeParameterType typeParameter = typeParameterElement.type;
all.add(typeParameter);
- if (typeParameter.bound == null) {
- defaults[typeParameter] = DynamicTypeImpl.instance;
- } else {
- partials[typeParameter] = typeParameter.bound;
+ if (!defaults.containsKey(typeParameter)) {
+ if (typeParameter.bound == null) {
+ defaults[typeParameter] = DynamicTypeImpl.instance;
+ } else {
+ partials[typeParameter] = typeParameter.bound;
+ }
}
}
@@ -570,6 +584,87 @@ class StrongTypeSystemImpl extends TypeSystem {
return t;
}
+ // Given a [type] T that may have an unknown type `?`, returns a type
+ // R such that T <: R for any type substituted for `?`.
+ //
+ // In practice this will always replace `?` with either bottom or top
+ // (dynamic), depending on the position of `?`.
+ DartType upperBoundForType(DartType type) {
+ return _substituteForUnknownType(type);
+ }
+
+ // Given a [type] T that may have an unknown type `?`, returns a type
+ // R such that R <: T for any type substituted for `?`.
+ //
+ // In practice this will always replace `?` with either bottom or top
+ // (dynamic), depending on the position of `?`.
+ DartType lowerBoundForType(DartType type) {
+ return _substituteForUnknownType(type, lowerBound: true);
+ }
+
+ DartType _substituteForUnknownType(DartType type,
+ {bool lowerBound: false, dynamicIsBottom: false}) {
+ if (identical(type, UnknownInferredType.instance)) {
+ if (lowerBound && !dynamicIsBottom) {
+ // TODO(jmesserly): this should be the bottom type, once i can be
+ // reified.
+ return typeProvider.nullType;
+ }
+ return typeProvider.dynamicType;
+ }
+ if (type is InterfaceTypeImpl) {
+ // Generic types are covariant, so keep the constraint direction.
+ var newTypeArgs = _transformList(type.typeArguments,
+ (t) => _substituteForUnknownType(t, lowerBound: lowerBound));
+ if (identical(type.typeArguments, newTypeArgs)) return type;
+ return new InterfaceTypeImpl(type.element, type.prunedTypedefs)
+ ..typeArguments = newTypeArgs;
+ }
+ if (type is FunctionType) {
+ var parameters = type.parameters;
+ var returnType = type.returnType;
+ var newParameters = _transformList(parameters, (ParameterElement p) {
+ // Parameters are contravariant, so flip the constraint direction.
+ // Also pass dynamicIsBottom, because this is a fuzzy arrow.
+ var newType = _substituteForUnknownType(p.type,
+ lowerBound: !lowerBound, dynamicIsBottom: true);
+ return identical(p.type, newType) && p is ParameterElementImpl
+ ? p
+ : new ParameterElementImpl.synthetic(
+ p.name, newType, p.parameterKind);
+ });
+ // Return type is covariant.
+ var newReturnType =
+ _substituteForUnknownType(returnType, lowerBound: lowerBound);
+ if (identical(parameters, newParameters) &&
+ identical(returnType, newReturnType)) {
+ return type;
+ }
+
+ var function = new FunctionElementImpl(type.name, -1)
+ ..isSynthetic = true
+ ..returnType = newReturnType
+ ..shareTypeParameters(type.typeFormals)
+ ..shareParameters(newParameters);
+ return function.type = new FunctionTypeImpl(function);
+ }
+ return type;
+ }
+
+ static List/*<T>*/ _transformList/*<T>*/(
+ List/*<T>*/ list, /*=T*/ f(/*=T*/ t)) {
+ List/*<T>*/ newList = null;
+ for (var i = 0; i < list.length; i++) {
+ var item = list[i];
+ var newItem = f(item);
+ if (!identical(item, newItem)) {
+ newList ??= new List.from(list);
+ newList[i] = newItem;
+ }
+ }
+ return newList ?? list;
+ }
+
/**
* Compute the greatest lower bound of function types [f] and [g].
*
@@ -829,15 +924,15 @@ class StrongTypeSystemImpl extends TypeSystem {
return true;
}
- // Guard recursive calls
- _GuardedSubtypeChecker<DartType> guardedSubtype = _guard(_isSubtypeOf);
-
// The types are void, dynamic, bottom, interface types, function types,
// FutureOr<T> and type parameters.
//
// We proceed by eliminating these different classes from consideration.
// Trivially true.
+ //
+ // Note that `?` is treated as a top and a bottom type during inference,
+ // so it's also covered here.
if (_isTop(t2, dynamicIsBottom: dynamicIsBottom) ||
_isBottom(t1, dynamicIsBottom: dynamicIsBottom)) {
return true;
@@ -879,11 +974,13 @@ class StrongTypeSystemImpl extends TypeSystem {
if (t1 is TypeParameterType) {
if (t2 is TypeParameterType &&
t1.definition == t2.definition &&
- guardedSubtype(t1.bound, t2.bound, visited)) {
+ _typeParameterBoundsSubtype(t1.bound, t2.bound, true)) {
return true;
}
DartType bound = t1.element.bound;
- return bound == null ? false : guardedSubtype(bound, t2, visited);
+ return bound == null
+ ? false
+ : _typeParameterBoundsSubtype(bound, t2, false);
}
if (t2 is TypeParameterType) {
return false;
@@ -979,6 +1076,21 @@ class StrongTypeSystemImpl extends TypeSystem {
.substitute2([typeProvider.objectType], [type2]);
return getLeastUpperBound(type1, type2);
}
+
+ bool _typeParameterBoundsSubtype(
+ DartType t1, DartType t2, bool recursionValue) {
+ if (_comparingTypeParameterBounds) {
+ return recursionValue;
+ }
+ _comparingTypeParameterBounds = true;
+ try {
+ return isSubtypeOf(t1, t2);
+ } finally {
+ _comparingTypeParameterBounds = false;
+ }
+ }
+
+ static bool _comparingTypeParameterBounds = false;
}
/**
@@ -1026,6 +1138,15 @@ abstract class TypeSystem {
if (identical(type1, type2)) {
return type1;
}
+
+ // For any type T, LUB(?, T) == T.
+ if (identical(type1, UnknownInferredType.instance)) {
+ return type2;
+ }
+ if (identical(type2, UnknownInferredType.instance)) {
+ return type1;
+ }
+
// The least upper bound of top and any type T is top.
// The least upper bound of bottom and any type T is T.
if (_isTop(type1, dynamicIsBottom: dynamicIsBottom) ||
@@ -1444,7 +1565,7 @@ class TypeSystemImpl extends TypeSystem {
/// (due to covariant generic types) as would `() -> A <: () -> num`. In
/// contrast `(A) -> void <: (num) -> void`.
///
-/// Once the lower/upper bounds are determined, [_infer] should be called to
+/// Once the lower/upper bounds are determined, [infer] should be called to
/// finish the inference. It will instantiate a generic function type with the
/// inferred types for each type parameter.
///
@@ -1454,164 +1575,594 @@ class TypeSystemImpl extends TypeSystem {
///
/// As currently designed, an instance of this class should only be used to
/// infer a single call and discarded immediately afterwards.
-class _StrongInferenceTypeSystem extends StrongTypeSystemImpl {
- /// The outer strong mode type system, used for GLB and LUB, so we don't
- /// recurse into our constraint solving code.
+class _GenericInferrer {
final StrongTypeSystemImpl _typeSystem;
- final Map<TypeParameterType, _TypeParameterBound> _bounds;
+ final TypeProvider typeProvider;
+ final Map<TypeParameterElement, List<_TypeConstraint>> _constraints;
- _StrongInferenceTypeSystem(TypeProvider typeProvider, this._typeSystem,
+ /// Counter internally by [_matchSubtypeOf] to see if a recursive call
+ /// added anything to [_constraints].
+ ///
+ /// Essentially just an optimization for:
+ /// `_constraints.values.expand((x) => x).length`
+ int _constraintCount = 0;
+
+ _GenericInferrer(this.typeProvider, this._typeSystem,
Iterable<TypeParameterElement> typeFormals)
- : _bounds = new Map.fromIterable(typeFormals,
- key: (t) => t.type, value: (t) => new _TypeParameterBound()),
- super(typeProvider);
+ : _constraints = new HashMap(
+ equals: (x, y) => x.location == y.location,
+ hashCode: (x) => x.location.hashCode) {
+ for (var formal in typeFormals) {
+ _constraints[formal] = [];
+ }
+ }
+
+ /// Apply a return type constraint, which asserts that the [declaredType]
+ /// is a subtype of the [contextType].
+ void constrainReturnType(DartType declaredType, DartType contextType) {
+ var origin = new _TypeConstraintFromReturnType(declaredType, contextType);
+ _matchSubtypeOf(declaredType, contextType, null, origin, covariant: true);
+ }
+
+ /// Apply an argument constraint, which asserts that the [argument] staticType
+ /// is a subtype of the [parameterType].
+ void constrainArgument(
+ DartType argumentType, DartType parameterType, String parameterName,
+ {DartType genericType}) {
+ var origin = new _TypeConstraintFromArgument(
+ argumentType, parameterType, parameterName,
+ genericType: genericType);
+ _matchSubtypeOf(argumentType, parameterType, null, origin,
+ covariant: false);
+ }
+
+ /// Assert that [t1] will be a subtype of [t2], and returns if the constraint
+ /// can be satisfied.
+ ///
+ /// [covariant] must be true if [t1] is a declared type of the generic
+ /// function and [t2] is the context type, or false if the reverse. For
+ /// example [covariant] is used when [t1] is the declared return type
+ /// and [t2] is the context type. Contravariant would be used if [t1] is the
+ /// argument type (i.e. passed in to the generic function) and [t2] is the
+ /// declared parameter type.
+ ///
+ /// [origin] indicates where the constraint came from, for example an argument
+ /// or return type.
+ void _matchSubtypeOf(DartType t1, DartType t2, Set<Element> visited,
+ _TypeConstraintOrigin origin,
+ {bool covariant, bool dynamicIsBottom: false}) {
+ // TODO(jmesserly): I think we should handle `dynamicIsBottom`
+ // https://github.com/dart-lang/sdk/issues/29041
+ if (covariant && t1 is TypeParameterType) {
+ var constraints = _constraints[t1.element];
+ if (constraints != null) {
+ if (!identical(t2, UnknownInferredType.instance)) {
+ constraints.add(new _TypeConstraint(origin, t1, upper: t2));
+ _constraintCount++;
+ }
+ return;
+ }
+ }
+ if (!covariant && t2 is TypeParameterType) {
+ var constraints = _constraints[t2.element];
+ if (constraints != null) {
+ if (!identical(t1, UnknownInferredType.instance)) {
+ constraints.add(new _TypeConstraint(origin, t2, lower: t1));
+ _constraintCount++;
+ }
+ return;
+ }
+ }
+
+ if (identical(t1, t2)) {
+ return;
+ }
+
+ // TODO(jmesserly): this logic is taken from subtype.
+ void matchSubtype(DartType t1, DartType t2) {
+ _matchSubtypeOf(t1, t2, null, origin, covariant: covariant);
+ }
+
+ // Handle FutureOr<T> union type.
+ if (t1 is InterfaceType && t1.isDartAsyncFutureOr) {
+ var t1TypeArg = t1.typeArguments[0];
+ if (t2 is InterfaceType && t2.isDartAsyncFutureOr) {
+ var t2TypeArg = t2.typeArguments[0];
+ // FutureOr<A> <: FutureOr<B> iff A <: B
+ matchSubtype(t1TypeArg, t2TypeArg);
+ return;
+ }
+
+ // given t1 is Future<A> | A, then:
+ // (Future<A> | A) <: t2 iff Future<A> <: t2 and A <: t2.
+ var t1Future = typeProvider.futureType.instantiate([t1TypeArg]);
+ matchSubtype(t1Future, t2);
+ matchSubtype(t1TypeArg, t2);
+ return;
+ }
+
+ if (t2 is InterfaceType && t2.isDartAsyncFutureOr) {
+ // given t2 is Future<A> | A, then:
+ // t1 <: (Future<A> | A) iff t1 <: Future<A> or t1 <: A
+ var t2TypeArg = t2.typeArguments[0];
+ var t2Future = typeProvider.futureType.instantiate([t2TypeArg]);
+
+ int constraintCount = _constraintCount;
+ matchSubtype(t1, t2Future);
+
+ // We only want to record these as "or" constraints, so if we matched
+ // the `t1 <: Future<A>` constraint, don't add `t1 <: A` constraint, as
+ // that would be interpreted incorrectly as `t1 <: Future<A> && t1 <: A`.
+ if (constraintCount == _constraintCount) {
+ matchSubtype(t1, t2TypeArg);
+ }
+ return;
+ }
+
+ // S <: T where S is a type variable
+ // T is not dynamic or object (handled above)
+ // True if T == S
+ // Or true if bound of S is S' and S' <: T
+
+ if (t1 is TypeParameterType) {
+ // Guard against recursive type parameters
+ void guardedSubtype(DartType t1, DartType t2) {
+ var visitedSet = visited ?? new HashSet<Element>();
+ if (visitedSet.add(t1.element)) {
+ matchSubtype(t1, t2);
+ visitedSet.remove(t1.element);
+ }
+ }
+
+ if (t2 is TypeParameterType && t1.definition == t2.definition) {
+ guardedSubtype(t1.bound, t2.bound);
+ return;
+ }
+ guardedSubtype(t1.bound, t2);
+ return;
+ }
+ if (t2 is TypeParameterType) {
+ return;
+ }
+
+ if (t1 is InterfaceType && t2 is InterfaceType) {
+ _matchInterfaceSubtypeOf(t1, t2, visited, origin, covariant: covariant);
+ return;
+ }
+
+ // An interface type can only subtype a function type if
+ // the interface type declares a call method with a type
+ // which is a super type of the function type.
+ if (t1 is InterfaceType) {
+ t1 = _typeSystem.getCallMethodDefiniteType(t1);
+ if (t1 == null) return;
+ }
+
+ if (t1 is FunctionType && t2 is FunctionType) {
+ FunctionTypeImpl.relate(
+ t1,
+ t2,
+ (t1, t2, _, __) {
+ _matchSubtypeOf(t2, t1, null, origin,
+ covariant: !covariant, dynamicIsBottom: true);
+ return true;
+ },
+ _typeSystem.instantiateToBounds,
+ returnRelation: (t1, t2) {
+ matchSubtype(t1, t2);
+ return true;
+ });
+ }
+ }
+
+ void _matchInterfaceSubtypeOf(InterfaceType i1, InterfaceType i2,
+ Set<Element> visited, _TypeConstraintOrigin origin,
+ {bool covariant}) {
+ if (identical(i1, i2)) {
+ return;
+ }
+
+ if (i1.element == i2.element) {
+ List<DartType> tArgs1 = i1.typeArguments;
+ List<DartType> tArgs2 = i2.typeArguments;
+ assert(tArgs1.length == tArgs2.length);
+ for (int i = 0; i < tArgs1.length; i++) {
+ _matchSubtypeOf(tArgs1[i], tArgs2[i], visited, origin,
+ covariant: covariant);
+ }
+ return;
+ }
+ if (i2.isDartCoreFunction && i1.element.getMethod("call") != null) {
+ return;
+ }
+ if (i1.isObject) {
+ return;
+ }
+
+ // Guard against loops in the class hierarchy
+ void guardedInterfaceSubtype(InterfaceType t1) {
+ var visitedSet = visited ?? new HashSet<Element>();
+ if (visitedSet.add(t1.element)) {
+ _matchInterfaceSubtypeOf(t1, i2, visited, origin, covariant: covariant);
+ visitedSet.remove(t1.element);
+ }
+ }
+
+ guardedInterfaceSubtype(i1.superclass);
+ for (final parent in i1.interfaces) {
+ guardedInterfaceSubtype(parent);
+ }
+ for (final parent in i1.mixins) {
+ guardedInterfaceSubtype(parent);
+ }
+ }
/// Given the constraints that were given by calling [isSubtypeOf], find the
/// instantiation of the generic function that satisfies these constraints.
- /*=T*/ _infer/*<T extends ParameterizedType>*/(/*=T*/ genericType,
- List<TypeParameterElement> typeFormals, DartType declaredReturnType,
- [ErrorReporter errorReporter, AstNode errorNode]) {
- List<TypeParameterType> fnTypeParams =
- TypeParameterTypeImpl.getTypes(typeFormals);
+ ///
+ /// If [downwardsInferPhase] is set, we are in the first pass of inference,
+ /// pushing context types down. At that point we are allowed to push down
+ /// `?` to precisely represent an unknown type. If [downwardsInferPhase] is
+ /// false, we are on our final inference pass, have all available information
+ /// including argument types, and must not conclude `?` for any type formal.
+ /*=T*/ infer/*<T extends ParameterizedType>*/(
+ /*=T*/ genericType,
+ List<TypeParameterElement> typeFormals,
+ {ErrorReporter errorReporter,
+ AstNode errorNode,
+ bool downwardsInferPhase: false}) {
+ var fnTypeParams = TypeParameterTypeImpl.getTypes(typeFormals);
// Initialize the inferred type array.
//
- // They all start as `dynamic` to offer reasonable degradation for f-bounded
- // type parameters.
+ // In the downwards phase, they all start as `?` to offer reasonable
+ // degradation for f-bounded type parameters.
var inferredTypes = new List<DartType>.filled(
- fnTypeParams.length, DynamicTypeImpl.instance,
- growable: false);
+ fnTypeParams.length, UnknownInferredType.instance);
+ var _inferTypeParameter = downwardsInferPhase
+ ? _inferTypeParameterFromContext
+ : _inferTypeParameterFromAll;
for (int i = 0; i < fnTypeParams.length; i++) {
TypeParameterType typeParam = fnTypeParams[i];
- _TypeParameterBound bound = _bounds[typeParam];
- // Apply the `extends` clause for the type parameter, if any.
- //
- // Assumption: if the current type parameter has an "extends" clause
- // that refers to another type variable we are inferring, it will appear
- // before us or in this list position. For example:
+ var typeParamBound = typeParam.bound;
+ _TypeConstraint extendsClause;
+ if (!typeParamBound.isDynamic) {
+ extendsClause = new _TypeConstraint.fromExtends(typeParam,
+ typeParam.bound.substitute2(inferredTypes, fnTypeParams));
+ }
+
+ var constraints = _constraints[typeParam.element];
+ inferredTypes[i] = _inferTypeParameter(constraints, extendsClause);
+ }
+
+ // If the downwards infer phase has failed, we'll catch this in the upwards
+ // phase later on.
+ if (downwardsInferPhase) {
+ return genericType.instantiate(inferredTypes) as dynamic/*=T*/;
+ }
+
+ // Check the inferred types against all of the constraints.
+ var knownTypes = new HashMap<TypeParameterType, DartType>(
+ equals: (x, y) => x.element == y.element,
+ hashCode: (x) => x.element.hashCode);
+ for (int i = 0; i < fnTypeParams.length; i++) {
+ TypeParameterType typeParam = fnTypeParams[i];
+ var constraints = _constraints[typeParam.element];
+ var typeParamBound =
+ typeParam.bound.substitute2(inferredTypes, fnTypeParams);
+ if (!typeParamBound.isDynamic) {
+ constraints
+ .add(new _TypeConstraint.fromExtends(typeParam, typeParamBound));
+ }
+ var inferred = inferredTypes[i];
+ if (constraints.any((c) => !c.isSatisifedBy(_typeSystem, inferred))) {
+ // Heuristic: keep the erroneous type, it should satisfy at least some
+ // of the constraints (e.g. the return context). If we fall back to
+ // instantiateToBounds, we'll typically get more errors (e.g. because
+ // `dynamic` is the most common bound).
+ knownTypes[typeParam] = inferred;
+ errorReporter?.reportErrorForNode(StrongModeCode.COULD_NOT_INFER,
+ errorNode, [typeParam, _formatError(inferred, constraints)]);
+ } else if (UnknownInferredType.isKnown(inferred)) {
+ knownTypes[typeParam] = inferred;
+ }
+ }
+
+ // Use instantiate to bounds to finish things off.
+ var hasError = new List<bool>.filled(fnTypeParams.length, false);
+ var result = _typeSystem.instantiateToBounds(genericType,
+ hasError: hasError, knownTypes: knownTypes) as dynamic/*=T*/;
+
+ // Report any errors from instantiateToBounds.
+ for (int i = 0; i < hasError.length; i++) {
+ if (hasError[i]) {
+ TypeParameterType typeParam = fnTypeParams[i];
+ var typeParamBound =
+ typeParam.bound.substitute2(inferredTypes, fnTypeParams);
+ // TODO(jmesserly): improve this error message.
+ errorReporter
+ ?.reportErrorForNode(StrongModeCode.COULD_NOT_INFER, errorNode, [
+ typeParam,
+ "\nRecursive bound cannot be instantiated: '$typeParamBound'."
+ "\nConsider passing explicit type argument(s) "
+ "to the generic.\n\n'"
+ ]);
+ }
+ }
+ return result;
+ }
+
+ DartType _inferTypeParameterFromContext(
+ Iterable<_TypeConstraint> constraints, _TypeConstraint extendsClause) {
+ DartType t = _chooseTypeFromConstraints(constraints);
+ if (UnknownInferredType.isUnknown(t)) {
+ return t;
+ }
+
+ // If we're about to make our final choice, apply the extends clause.
+ // This gives us a chance to refine the choice, in case it would violate
+ // the `extends` clause. For example:
+ //
+ // Object obj = math.min/*<infer Object, error>*/(1, 2);
+ //
+ // If we consider the `T extends num` we conclude `<num>`, which works.
+ if (extendsClause != null) {
+ constraints = constraints.toList()..add(extendsClause);
+ return _chooseTypeFromConstraints(constraints);
+ }
+ return t;
+ }
+
+ DartType _inferTypeParameterFromAll(
+ Iterable<_TypeConstraint> constraints, _TypeConstraint extendsClause) {
+ // See if we already fixed this type from downwards inference.
+ // If so, then we aren't allowed to change it based on argument types.
+ DartType t = _inferTypeParameterFromContext(
+ constraints.where((c) => c.isDownwards), extendsClause);
+ if (UnknownInferredType.isKnown(t)) {
+ return t;
+ }
+
+ if (extendsClause != null) {
+ constraints = constraints.toList()..add(extendsClause);
+ }
+
+ var choice = _chooseTypeFromConstraints(constraints, toKnownType: true);
+ return choice;
+ }
+
+ /// Choose the bound that was implied by the return type, if any.
+ ///
+ /// Which bound this is depends on what positions the type parameter
+ /// appears in. If the type only appears only in a contravariant position,
+ /// we will choose the lower bound instead.
+ ///
+ /// For example given:
+ ///
+ /// Func1<T, bool> makeComparer<T>(T x) => (T y) => x() == y;
+ ///
+ /// main() {
+ /// Func1<num, bool> t = makeComparer/* infer <num> */(42);
+ /// print(t(42.0)); /// false, no error.
+ /// }
+ ///
+ /// The constraints we collect are:
+ ///
+ /// * `num <: T`
+ /// * `int <: T`
+ ///
+ /// ... and no upper bound. Therefore the lower bound is the best choice.
+ DartType _chooseTypeFromConstraints(Iterable<_TypeConstraint> constraints,
+ {bool toKnownType: false}) {
+ DartType lower = UnknownInferredType.instance;
+ DartType upper = UnknownInferredType.instance;
+ for (var constraint in constraints) {
+ // Given constraints:
//
- // <TFrom, TTo extends TFrom>
+ // L1 <: T <: U1
+ // L2 <: T <: U2
//
- // We may infer TTo is TFrom. In that case, we already know what TFrom
- // is inferred as, so we can substitute it now. This also handles more
- // complex cases such as:
+ // These can be combined to produce:
//
- // <TFrom, TTo extends Iterable<TFrom>>
+ // LUB(L1, L2) <: T <: GLB(U1, U2).
//
- // Or if the type parameter's bound depends on itself such as:
+ // This can then be done for all constraints in sequence.
//
- // <T extends Clonable<T>>
- DartType declaredUpperBound = typeParam.element.bound;
- if (declaredUpperBound != null) {
- // Assert that the type parameter is a subtype of its bound.
- // TODO(jmesserly): the order of calling GLB here matters, because of
- // https://github.com/dart-lang/sdk/issues/28513
- bound.upper = _typeSystem.getGreatestLowerBound(bound.upper,
- declaredUpperBound.substitute2(inferredTypes, fnTypeParams));
- }
+ // This resulting constraint may be unsatisfiable; in that case inference
+ // will fail.
+ upper = _getGreatestLowerBound(upper, constraint.upperBound);
+ lower = _typeSystem.getLeastUpperBound(lower, constraint.lowerBound);
+ }
- // Now we've computed lower and upper bounds for each type parameter.
- //
- // To decide on which type to assign, we look at the return type and see
- // if the type parameter occurs in covariant or contravariant positions.
- //
- // If the type is "passed in" at all, or if our lower bound was bottom,
- // we choose the upper bound as being the most useful.
- //
- // Otherwise we choose the more precise lower bound.
- _TypeParameterVariance variance =
- new _TypeParameterVariance.from(typeParam, declaredReturnType);
-
- DartType lowerBound = bound.lower;
- DartType upperBound = bound.upper;
-
- // See if the bounds can be satisfied.
- // TODO(jmesserly): also we should have an error for unconstrained type
- // parameters, rather than silently inferring dynamic.
- if (upperBound.isBottom ||
- !_typeSystem.isSubtypeOf(lowerBound, upperBound)) {
- // Inference failed.
- if (errorReporter == null) {
- return null;
+ // Prefer the known bound, if any.
+ // Otherwise take whatever bound has partial information, e.g. `Iterable<?>`
+ //
+ // For both of those, prefer the lower bound (arbitrary heuristic).
+ if (UnknownInferredType.isKnown(lower)) {
+ return lower;
+ }
+ if (UnknownInferredType.isKnown(upper)) {
+ return upper;
+ }
+ if (!identical(UnknownInferredType.instance, lower)) {
+ return toKnownType ? _typeSystem.lowerBoundForType(lower) : lower;
+ }
+ if (!identical(UnknownInferredType.instance, upper)) {
+ return toKnownType ? _typeSystem.upperBoundForType(upper) : upper;
+ }
+ return lower;
+ }
+
+ /// This is first calls strong mode's GLB, but if it fails to find anything
+ /// (i.e. returns the bottom type), we kick in a few additional rules:
+ ///
+ /// - `GLB(FutureOr<A>, B)` is defined as:
+ /// - `GLB(FutureOr<A>, FutureOr<B>) == FutureOr<GLB(A, B)>`
+ /// - `GLB(FutureOr<A>, Future<B>) == Future<GLB(A, B)>`
+ /// - else `GLB(FutureOr<A>, B) == GLB(A, B)`
+ /// - `GLB(A, FutureOr<B>) == GLB(FutureOr<A>, B)` (defined above),
+ /// - else `GLB(A, B) == Null`
+ DartType _getGreatestLowerBound(DartType t1, DartType t2) {
+ var result = _typeSystem.getGreatestLowerBound(t1, t2);
+ if (result.isBottom) {
+ // See if we can do better by considering FutureOr rules.
+ if (t1 is InterfaceType && t1.isDartAsyncFutureOr) {
+ var t1TypeArg = t1.typeArguments[0];
+ if (t2 is InterfaceType) {
+ // GLB(FutureOr<A>, FutureOr<B>) == FutureOr<GLB(A, B)>
+ if (t2.isDartAsyncFutureOr) {
+ var t2TypeArg = t2.typeArguments[0];
+ return typeProvider.futureOrType
+ .instantiate([_getGreatestLowerBound(t1TypeArg, t2TypeArg)]);
+ }
+ // GLB(FutureOr<A>, Future<B>) == Future<GLB(A, B)>
+ if (t2.isDartAsyncFuture) {
+ var t2TypeArg = t2.typeArguments[0];
+ return typeProvider.futureType
+ .instantiate([_getGreatestLowerBound(t1TypeArg, t2TypeArg)]);
+ }
}
- errorReporter.reportErrorForNode(StrongModeCode.COULD_NOT_INFER,
- errorNode, [typeParam, lowerBound, upperBound]);
-
- // To make the errors more useful, we swap the normal heuristic.
- //
- // The normal heuristic prefers using the argument types (upwards
- // inference, lower bound) to choose a tighter type.
- //
- // Here we want to prefer the return context type, so we can put the
- // blame on the arguments to the function. That will result in narrow
- // error spans. But ultimately it's just a heuristic, as the code is
- // already erroneous.
- //
- // (we may adjust the normal heuristic too, once upwards+downwards
- // inference are fully integrated, to prefer downwards info).
- lowerBound = bound.upper;
- upperBound = bound.lower;
+ // GLB(FutureOr<A>, B) == GLB(A, B)
+ return _getGreatestLowerBound(t1TypeArg, t2);
}
- inferredTypes[i] =
- variance.passedIn && !upperBound.isDynamic || lowerBound.isBottom
- ? upperBound
- : lowerBound;
+ if (t2 is InterfaceType && t2.isDartAsyncFutureOr) {
+ // GLB(A, FutureOr<B>) == GLB(FutureOr<A>, B)
+ return _getGreatestLowerBound(t2, t1);
+ }
+ // TODO(jmesserly): fix this rule once we support non-nullable types.
+ return typeProvider.nullType;
}
-
- // Return the instantiated type.
- return genericType.instantiate(inferredTypes) as dynamic/*=T*/;
+ return result;
}
- @override
- bool _isSubtypeOf(DartType t1, DartType t2, Set<Element> visited,
- {bool dynamicIsBottom: false}) {
- // TODO(jmesserly): the trivial constraints are not treated as part of
- // the constraint set here. This seems incorrect once we are able to pin the
- // inferred type of a type parameter based on the downwards information.
- if (identical(t1, t2) ||
- _isTop(t2, dynamicIsBottom: dynamicIsBottom) ||
- _isBottom(t1, dynamicIsBottom: dynamicIsBottom)) {
- return true;
+ String _formatError(
+ DartType inferred, Iterable<_TypeConstraint> constraints) {
+ var intro = "Inferred type '$inferred' does not work with constraints:";
+
+ var constraintsByOrigin = <_TypeConstraintOrigin, List<_TypeConstraint>>{};
+ for (var c in constraints) {
+ constraintsByOrigin.putIfAbsent(c.origin, () => []).add(c);
}
- if (t1 is TypeParameterType) {
- // TODO(jmesserly): we ignore `dynamicIsBottom` here, is that correct?
- _TypeParameterBound bound = _bounds[t1];
- if (bound != null) {
- // Ensure T1 <: T2, where T1 is a type parameter we are inferring.
- // T2 is an upper bound, so merge it with our existing upper bound.
- //
- // We already know T1 <: U, for some U.
- // So update U to reflect the new constraint T1 <: GLB(U, T2)
- //
- bound.upper = _typeSystem.getGreatestLowerBound(bound.upper, t2);
- // Optimistically assume we will be able to satisfy the constraint.
- return true;
- }
+ Iterable<_TypeConstraint> isSatisified(bool expected) => constraintsByOrigin
+ .values
+ .where((l) =>
+ l.every((c) => c.isSatisifedBy(_typeSystem, inferred)) == expected)
+ .expand((i) => i);
+
+ // Only report unique constraint origins.
+ String unsatisified = _formatConstraints(isSatisified(false));
+ String satisified = _formatConstraints(isSatisified(true));
+
+ assert(unsatisified.isNotEmpty);
+ if (satisified.isNotEmpty) {
+ satisified = "\nThe type '$inferred' was inferred from:\n$satisified";
}
- if (t2 is TypeParameterType) {
- _TypeParameterBound bound = _bounds[t2];
- if (bound != null) {
- // Ensure T1 <: T2, where T2 is a type parameter we are inferring.
- // T1 is a lower bound, so merge it with our existing lower bound.
- //
- // We already know L <: T2, for some L.
- // So update L to reflect the new constraint LUB(L, T1) <: T2
- //
- bound.lower = _typeSystem.getLeastUpperBound(bound.lower, t1);
- // Optimistically assume we will be able to satisfy the constraint.
- return true;
- }
+
+ return '\n\n$intro\n$unsatisified$satisified\n\n'
+ 'Consider passing explicit type argument(s) to the generic.\n\n';
+ }
+
+ static String _formatConstraints(Iterable<_TypeConstraint> constraints) {
+ List<List<String>> lineParts =
+ new Set<_TypeConstraintOrigin>.from(constraints.map((c) => c.origin))
+ .map((o) => o.formatError())
+ .toList();
+
+ int prefixMax = lineParts.map((p) => p[0].length).fold(0, math.max);
+ int middleMax = lineParts.map((p) => p[1].length).fold(0, math.max);
+
+ // Use a set to prevent identical message lines.
+ // (It's not uncommon for the same constraint to show up in a few places.)
+ var messageLines = new Set<String>.from(lineParts.map((parts) {
+ var prefix = parts[0];
+ var middle = parts[1];
+ var prefixPad = ' ' * (prefixMax - prefix.length);
+ var middlePad = ' ' * (middleMax - middle.length);
+ return ' $prefix$prefixPad $middle$middlePad ${parts[2]}'.trimRight();
+ }));
+
+ return messageLines.join('\n');
+ }
+}
+
+/// The origin of a type constraint, for the purposes of producing a human
+/// readable error message during type inference as well as determining whether
+/// the constraint was used to fix the type parameter or not.
+abstract class _TypeConstraintOrigin {
+ List<String> formatError();
+}
+
+class _TypeConstraintFromArgument extends _TypeConstraintOrigin {
+ final DartType argumentType;
+ final DartType parameterType;
+ final String parameterName;
+ final DartType genericType;
+
+ _TypeConstraintFromArgument(
+ this.argumentType, this.parameterType, this.parameterName,
+ {this.genericType});
+
+ @override
+ formatError() {
+ // TODO(jmesserly): we should highlight the span. That would be more useful.
+ // However in summary code it doesn't look like the AST node with span is
+ // available.
+ String prefix;
+ if ((genericType.name == "List" || genericType.name == "Map") &&
+ genericType?.element?.library?.isDartCore == true) {
+ // This will become:
+ // "List element"
+ // "Map key"
+ // "Map value"
+ prefix = "${genericType.name} $parameterName";
+ } else {
+ prefix = "Argument '$parameterName'";
}
- return super
- ._isSubtypeOf(t1, t2, visited, dynamicIsBottom: dynamicIsBottom);
+
+ return [
+ prefix,
+ "inferred as '$argumentType'",
+ "must be a '$parameterType'."
+ ];
}
}
-/// An [upper] and [lower] bound for a type variable.
-class _TypeParameterBound {
+class _TypeConstraintFromReturnType extends _TypeConstraintOrigin {
+ final DartType contextType;
+ final DartType declaredType;
+
+ _TypeConstraintFromReturnType(this.declaredType, this.contextType);
+
+ @override
+ formatError() {
+ return [
+ "Return type",
+ "declared as '$declaredType'",
+ "used where a '$contextType' is required."
+ ];
+ }
+}
+
+class _TypeConstraintFromExtendsClause extends _TypeConstraintOrigin {
+ final TypeParameterType typeParam;
+ final DartType extendsType;
+
+ _TypeConstraintFromExtendsClause(this.typeParam, this.extendsType);
+
+ @override
+ formatError() {
+ return [
+ "Type parameter '$typeParam'",
+ "declared to extend '$extendsType'.",
+ ""
+ ];
+ }
+}
+
+class _TypeRange {
/// The upper bound of the type parameter. In other words, T <: upperBound.
///
/// In Dart this can be written as `<T extends UpperBoundType>`.
@@ -1633,7 +2184,7 @@ class _TypeParameterBound {
///
/// Here the [lower] will be `String` and the upper bound will be `num`,
/// which cannot be satisfied, so this is ill typed.
- DartType upper = DynamicTypeImpl.instance;
+ final DartType upperBound;
/// The lower bound of the type parameter. In other words, lowerBound <: T.
///
@@ -1652,71 +2203,137 @@ class _TypeParameterBound {
///
/// In general, we choose the lower bound as our inferred type, so we can
/// offer the most constrained (strongest) result type.
- DartType lower = BottomTypeImpl.instance;
+ final DartType lowerBound;
+
+ _TypeRange({DartType lower, DartType upper})
+ : lowerBound = lower ?? UnknownInferredType.instance,
+ upperBound = upper ?? UnknownInferredType.instance;
}
-/// Records what positions a type parameter is used in.
-class _TypeParameterVariance {
- /// The type parameter is a value passed out. It must satisfy T <: S,
- /// where T is the type parameter and S is what it's assigned to.
- ///
- /// For example, this could be the return type, or a parameter to a parameter:
- ///
- /// TOut method<TOut>(void f(TOut t));
- bool passedOut = false;
+/// A constraint on a type parameter that we're inferring.
+class _TypeConstraint extends _TypeRange {
+ /// The type parameter that is constrained by [lowerBound] or [upperBound].
+ final TypeParameterType typeParameter;
- /// The type parameter is a value passed in. It must satisfy S <: T,
- /// where T is the type parameter and S is what's being assigned to it.
- ///
- /// For example, this could be a parameter type, or the parameter of the
- /// return value:
+ /// Where this constraint comes from, used for error messages.
///
- /// typedef void Func<T>(T t);
- /// Func<TIn> method<TIn>(TIn t);
- bool passedIn = false;
+ /// See [toString].
+ final _TypeConstraintOrigin origin;
+
+ _TypeConstraint(this.origin, this.typeParameter,
+ {DartType upper, DartType lower})
+ : super(upper: upper, lower: lower);
+
+ _TypeConstraint.fromExtends(TypeParameterType type, DartType extendsType)
+ : this(new _TypeConstraintFromExtendsClause(type, extendsType), type,
+ upper: extendsType);
+
+ bool get isDownwards => origin is! _TypeConstraintFromArgument;
+
+ bool isSatisifedBy(TypeSystem ts, DartType type) =>
+ ts.isSubtypeOf(lowerBound, type) && ts.isSubtypeOf(type, upperBound);
- _TypeParameterVariance.from(TypeParameterType typeParam, DartType type) {
- _visitType(typeParam, type, false);
+ /// Converts this constraint to a message suitable for a type inference error.
+ @override
+ String toString() => !identical(upperBound, UnknownInferredType.instance)
+ ? "'$typeParameter' must extend '$upperBound'"
+ : "'$lowerBound' must extend '$typeParameter'";
+}
+
+/// The synthetic element for [UnknownInferredType].
+class UnknownInferredTypeElement extends ElementImpl
+ implements TypeDefiningElement {
+ static final UnknownInferredTypeElement instance =
+ new UnknownInferredTypeElement._();
+
+ @override
+ UnknownInferredType get type => UnknownInferredType.instance;
+
+ UnknownInferredTypeElement._() : super(Keyword.DYNAMIC.syntax, -1) {
+ setModifier(Modifier.SYNTHETIC, true);
}
- void _visitFunctionType(
- TypeParameterType typeParam, FunctionType type, bool paramIn) {
- for (ParameterElement p in type.parameters) {
- // If a lambda L is passed in to a function F, the parameters are
- // "passed out" of F into L. Thus we invert the "passedIn" state.
- _visitType(typeParam, p.type, !paramIn);
+ @override
+ ElementKind get kind => ElementKind.DYNAMIC;
+
+ @override
+ /*=T*/ accept/*<T>*/(ElementVisitor visitor) => null;
+}
+
+/// A type that is being inferred but is not currently known.
+///
+/// This type will only appear in a downward inference context for type
+/// parameters that we do not know yet. Notationally it is written `?`, for
+/// example `List<?>`. This is distinct from `List<dynamic>`. These types will
+/// never appear in the final resolved AST.
+class UnknownInferredType extends TypeImpl {
+ static final UnknownInferredType instance = new UnknownInferredType._();
+
+ UnknownInferredType._()
+ : super(UnknownInferredTypeElement.instance, Keyword.DYNAMIC.syntax);
+
+ @override
+ int get hashCode => 1;
+
+ @override
+ bool get isDynamic => true;
+
+ @override
+ bool operator ==(Object object) => identical(object, this);
+
+ @override
+ bool isMoreSpecificThan(DartType type,
+ [bool withDynamic = false, Set<Element> visitedElements]) {
+ // T is S
+ if (identical(this, type)) {
+ return true;
}
- // If a lambda L is passed in to a function F, and we call L, the result of
- // L is then "passed in" to F. So we keep the "passedIn" state.
- _visitType(typeParam, type.returnType, paramIn);
+ // else
+ return withDynamic;
}
- void _visitInterfaceType(
- TypeParameterType typeParam, InterfaceType type, bool paramIn) {
- // Currently in "strong mode" generic type parameters are covariant.
- //
- // This means we treat them as "out" type parameters similar to the result
- // of a function, and thus they follow the same rules.
- //
- // For example, we pass in Iterable<T> as a parameter. Then we iterate over
- // it. The "T" is essentially an input. So it keeps the same state.
- // Similarly, if we return an Iterable<T> it's equivalent to returning a T.
- for (DartType typeArg in type.typeArguments) {
- _visitType(typeParam, typeArg, paramIn);
+ @override
+ bool isSubtypeOf(DartType type) => true;
+
+ @override
+ bool isSupertypeOf(DartType type) => true;
+
+ @override
+ TypeImpl pruned(List<FunctionTypeAliasElement> prune) => this;
+
+ @override
+ DartType substitute2(
+ List<DartType> argumentTypes, List<DartType> parameterTypes,
+ [List<FunctionTypeAliasElement> prune]) {
+ int length = parameterTypes.length;
+ for (int i = 0; i < length; i++) {
+ if (parameterTypes[i] == this) {
+ return argumentTypes[i];
+ }
}
+ return this;
}
- void _visitType(TypeParameterType typeParam, DartType type, bool paramIn) {
- if (type == typeParam) {
- if (paramIn) {
- passedIn = true;
- } else {
- passedOut = true;
- }
- } else if (type is FunctionType) {
- _visitFunctionType(typeParam, type, paramIn);
- } else if (type is InterfaceType) {
- _visitInterfaceType(typeParam, type, paramIn);
+ @override
+ void appendTo(StringBuffer buffer, Set<TypeImpl> types) {
+ buffer.write('?');
+ }
+
+ /// Given a [type] T, return true if it does not have an unknown type `?`.
+ static bool isKnown(DartType type) => !isUnknown(type);
+
+ /// Given a [type] T, return true if it has an unknown type `?`.
+ static bool isUnknown(DartType type) {
+ if (identical(type, UnknownInferredType.instance)) {
+ return true;
}
+ if (type is InterfaceTypeImpl) {
+ return type.typeArguments.any(isUnknown);
+ }
+ if (type is FunctionType) {
+ return isUnknown(type.returnType) ||
+ type.parameters.any((p) => isUnknown(p.type));
+ }
+ return false;
}
}

Powered by Google App Engine
This is Rietveld 408576698