| Index: src/core/SkColorSpaceXformPriv.h
|
| diff --git a/src/core/SkColorSpaceXformPriv.h b/src/core/SkColorSpaceXformPriv.h
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..1cb533c9f3e8f1f97bdd83c202f6500e2832e3c2
|
| --- /dev/null
|
| +++ b/src/core/SkColorSpaceXformPriv.h
|
| @@ -0,0 +1,281 @@
|
| +/*
|
| + * Copyright 2016 Google Inc.
|
| + *
|
| + * Use of this source code is governed by a BSD-style license that can be
|
| + * found in the LICENSE file.
|
| + */
|
| +
|
| +#ifndef SkColorSpaceXformPriv_DEFINED
|
| +#define SkColorSpaceXformPriv_DEFINED
|
| +
|
| +#include "SkColorSpace_Base.h"
|
| +#include "SkHalf.h"
|
| +#include "SkSRGB.h"
|
| +
|
| +#define AI SK_ALWAYS_INLINE
|
| +
|
| +#define SkCSXformPrintfDefined 0
|
| +#define SkCSXformPrintf(...)
|
| +
|
| +static const int kDstGammaTableSize = SkColorSpaceXform_Base::kDstGammaTableSize;
|
| +
|
| +// Interpolating lookup in a variably sized table.
|
| +static AI float interp_lut(float input, const float* table, int tableSize) {
|
| + float index = input * (tableSize - 1);
|
| + float diff = index - sk_float_floor2int(index);
|
| + return table[(int) sk_float_floor2int(index)] * (1.0f - diff) +
|
| + table[(int) sk_float_ceil2int(index)] * diff;
|
| +}
|
| +
|
| +
|
| +static AI void transform_gamut(const Sk4f& r, const Sk4f& g, const Sk4f& b, const Sk4f& a,
|
| + const Sk4f& rXgXbX, const Sk4f& rYgYbY, const Sk4f& rZgZbZ,
|
| + Sk4f& dr, Sk4f& dg, Sk4f& db, Sk4f& da) {
|
| + dr = rXgXbX[0]*r + rYgYbY[0]*g + rZgZbZ[0]*b;
|
| + dg = rXgXbX[1]*r + rYgYbY[1]*g + rZgZbZ[1]*b;
|
| + db = rXgXbX[2]*r + rYgYbY[2]*g + rZgZbZ[2]*b;
|
| + da = a;
|
| +}
|
| +
|
| +static AI void translate_gamut(const Sk4f& rTgTbT, Sk4f& dr, Sk4f& dg, Sk4f& db) {
|
| + dr = dr + rTgTbT[0];
|
| + dg = dg + rTgTbT[1];
|
| + db = db + rTgTbT[2];
|
| +}
|
| +
|
| +static AI void load_matrix(const float matrix[16],
|
| + Sk4f& rXgXbX, Sk4f& rYgYbY, Sk4f& rZgZbZ, Sk4f& rTgTbT) {
|
| + rXgXbX = Sk4f::Load(matrix + 0);
|
| + rYgYbY = Sk4f::Load(matrix + 4);
|
| + rZgZbZ = Sk4f::Load(matrix + 8);
|
| + rTgTbT = Sk4f::Load(matrix + 12);
|
| +}
|
| +
|
| +
|
| +enum Order {
|
| + kRGBA_Order,
|
| + kBGRA_Order,
|
| +};
|
| +
|
| +static AI void set_rb_shifts(Order kOrder, int* kRShift, int* kBShift) {
|
| + if (kRGBA_Order == kOrder) {
|
| + *kRShift = 0;
|
| + *kBShift = 16;
|
| + } else {
|
| + *kRShift = 16;
|
| + *kBShift = 0;
|
| + }
|
| +}
|
| +
|
| +template <Order kOrder>
|
| +static AI void load_rgb_linear(const uint32_t* src, Sk4f& r, Sk4f& g, Sk4f& b, Sk4f& a,
|
| + const float* const[3]) {
|
| + int kRShift, kGShift = 8, kBShift;
|
| + set_rb_shifts(kOrder, &kRShift, &kBShift);
|
| + r = (1.0f / 255.0f) * SkNx_cast<float>((Sk4u::Load(src) >> kRShift) & 0xFF);
|
| + g = (1.0f / 255.0f) * SkNx_cast<float>((Sk4u::Load(src) >> kGShift) & 0xFF);
|
| + b = (1.0f / 255.0f) * SkNx_cast<float>((Sk4u::Load(src) >> kBShift) & 0xFF);
|
| + a = 0.0f; // Don't let the compiler complain that |a| is uninitialized.
|
| +}
|
| +
|
| +template <Order kOrder>
|
| +static AI void load_rgba_linear(const uint32_t* src, Sk4f& r, Sk4f& g, Sk4f& b, Sk4f& a,
|
| + const float* const[3]) {
|
| + int kRShift, kGShift = 8, kBShift;
|
| + set_rb_shifts(kOrder, &kRShift, &kBShift);
|
| + r = (1.0f / 255.0f) * SkNx_cast<float>((Sk4u::Load(src) >> kRShift) & 0xFF);
|
| + g = (1.0f / 255.0f) * SkNx_cast<float>((Sk4u::Load(src) >> kGShift) & 0xFF);
|
| + b = (1.0f / 255.0f) * SkNx_cast<float>((Sk4u::Load(src) >> kBShift) & 0xFF);
|
| + a = (1.0f / 255.0f) * SkNx_cast<float>((Sk4u::Load(src) >> 24));
|
| +}
|
| +
|
| +static AI void premultiply(Sk4f& dr, Sk4f& dg, Sk4f& db, const Sk4f& da) {
|
| + dr = da * dr;
|
| + dg = da * dg;
|
| + db = da * db;
|
| +}
|
| +
|
| +template <Order kOrder>
|
| +static AI void store_srgb(void* dst, const uint32_t* src, Sk4f& dr, Sk4f& dg, Sk4f& db, Sk4f&,
|
| + const uint8_t* const[3]) {
|
| + int kRShift, kGShift = 8, kBShift;
|
| + set_rb_shifts(kOrder, &kRShift, &kBShift);
|
| + dr = sk_linear_to_srgb_needs_trunc(dr);
|
| + dg = sk_linear_to_srgb_needs_trunc(dg);
|
| + db = sk_linear_to_srgb_needs_trunc(db);
|
| +
|
| + dr = sk_clamp_0_255(dr);
|
| + dg = sk_clamp_0_255(dg);
|
| + db = sk_clamp_0_255(db);
|
| +
|
| + Sk4i da = Sk4i::Load(src) & 0xFF000000;
|
| +
|
| + Sk4i rgba = (SkNx_cast<int>(dr) << kRShift)
|
| + | (SkNx_cast<int>(dg) << kGShift)
|
| + | (SkNx_cast<int>(db) << kBShift)
|
| + | (da );
|
| + rgba.store(dst);
|
| +}
|
| +
|
| +static AI Sk4f linear_to_2dot2(const Sk4f& x) {
|
| + // x^(29/64) is a very good approximation of the true value, x^(1/2.2).
|
| + auto x2 = x.rsqrt(), // x^(-1/2)
|
| + x32 = x2.rsqrt().rsqrt().rsqrt().rsqrt(), // x^(-1/32)
|
| + x64 = x32.rsqrt(); // x^(+1/64)
|
| +
|
| + // 29 = 32 - 2 - 1
|
| + return 255.0f * x2.invert() * x32 * x64.invert();
|
| +}
|
| +
|
| +template <Order kOrder>
|
| +static AI void store_2dot2(void* dst, const uint32_t* src, Sk4f& dr, Sk4f& dg, Sk4f& db, Sk4f&,
|
| + const uint8_t* const[3]) {
|
| + int kRShift, kGShift = 8, kBShift;
|
| + set_rb_shifts(kOrder, &kRShift, &kBShift);
|
| + dr = linear_to_2dot2(dr);
|
| + dg = linear_to_2dot2(dg);
|
| + db = linear_to_2dot2(db);
|
| +
|
| + dr = sk_clamp_0_255(dr);
|
| + dg = sk_clamp_0_255(dg);
|
| + db = sk_clamp_0_255(db);
|
| +
|
| + Sk4i da = Sk4i::Load(src) & 0xFF000000;
|
| +
|
| + Sk4i rgba = (Sk4f_round(dr) << kRShift)
|
| + | (Sk4f_round(dg) << kGShift)
|
| + | (Sk4f_round(db) << kBShift)
|
| + | (da );
|
| + rgba.store(dst);
|
| +}
|
| +
|
| +template <Order kOrder>
|
| +static AI void store_linear(void* dst, const uint32_t* src, Sk4f& dr, Sk4f& dg, Sk4f& db, Sk4f&,
|
| + const uint8_t* const[3]) {
|
| + int kRShift, kGShift = 8, kBShift;
|
| + set_rb_shifts(kOrder, &kRShift, &kBShift);
|
| + dr = sk_clamp_0_255(255.0f * dr);
|
| + dg = sk_clamp_0_255(255.0f * dg);
|
| + db = sk_clamp_0_255(255.0f * db);
|
| +
|
| + Sk4i da = Sk4i::Load(src) & 0xFF000000;
|
| +
|
| + Sk4i rgba = (Sk4f_round(dr) << kRShift)
|
| + | (Sk4f_round(dg) << kGShift)
|
| + | (Sk4f_round(db) << kBShift)
|
| + | (da );
|
| + rgba.store(dst);
|
| +}
|
| +
|
| +template <Order kOrder>
|
| +static AI void store_f16(void* dst, const uint32_t* src, Sk4f& dr, Sk4f& dg, Sk4f& db, Sk4f& da,
|
| + const uint8_t* const[3]) {
|
| + Sk4h::Store4(dst, SkFloatToHalf_finite_ftz(dr),
|
| + SkFloatToHalf_finite_ftz(dg),
|
| + SkFloatToHalf_finite_ftz(db),
|
| + SkFloatToHalf_finite_ftz(da));
|
| +}
|
| +
|
| +template <Order kOrder>
|
| +static AI void store_f32(void* dst, const uint32_t* src, Sk4f& dr, Sk4f& dg, Sk4f& db, Sk4f& da,
|
| + const uint8_t* const[3]) {
|
| + Sk4f::Store4(dst, dr, dg, db, da);
|
| +}
|
| +
|
| +template <Order kOrder>
|
| +static AI void store_f16_opaque(void* dst, const uint32_t* src, Sk4f& dr, Sk4f& dg, Sk4f& db,
|
| + Sk4f&, const uint8_t* const[3]) {
|
| + Sk4h::Store4(dst, SkFloatToHalf_finite_ftz(dr),
|
| + SkFloatToHalf_finite_ftz(dg),
|
| + SkFloatToHalf_finite_ftz(db),
|
| + SK_Half1);
|
| +}
|
| +
|
| +template <Order kOrder>
|
| +static AI void store_generic(void* dst, const uint32_t* src, Sk4f& dr, Sk4f& dg, Sk4f& db, Sk4f&,
|
| + const uint8_t* const dstTables[3]) {
|
| + int kRShift, kGShift = 8, kBShift;
|
| + set_rb_shifts(kOrder, &kRShift, &kBShift);
|
| + dr = Sk4f::Min(Sk4f::Max(1023.0f * dr, 0.0f), 1023.0f);
|
| + dg = Sk4f::Min(Sk4f::Max(1023.0f * dg, 0.0f), 1023.0f);
|
| + db = Sk4f::Min(Sk4f::Max(1023.0f * db, 0.0f), 1023.0f);
|
| +
|
| + Sk4i ir = Sk4f_round(dr);
|
| + Sk4i ig = Sk4f_round(dg);
|
| + Sk4i ib = Sk4f_round(db);
|
| +
|
| + Sk4i da = Sk4i::Load(src) & 0xFF000000;
|
| +
|
| + uint32_t* dst32 = (uint32_t*) dst;
|
| + dst32[0] = dstTables[0][ir[0]] << kRShift
|
| + | dstTables[1][ig[0]] << kGShift
|
| + | dstTables[2][ib[0]] << kBShift
|
| + | da[0];
|
| + dst32[1] = dstTables[0][ir[1]] << kRShift
|
| + | dstTables[1][ig[1]] << kGShift
|
| + | dstTables[2][ib[1]] << kBShift
|
| + | da[1];
|
| + dst32[2] = dstTables[0][ir[2]] << kRShift
|
| + | dstTables[1][ig[2]] << kGShift
|
| + | dstTables[2][ib[2]] << kBShift
|
| + | da[2];
|
| + dst32[3] = dstTables[0][ir[3]] << kRShift
|
| + | dstTables[1][ig[3]] << kGShift
|
| + | dstTables[2][ib[3]] << kBShift
|
| + | da[3];
|
| +}
|
| +
|
| +typedef decltype(load_rgb_linear<kRGBA_Order> )* LoadFn;
|
| +typedef decltype(store_linear<kRGBA_Order> )* StoreFn;
|
| +
|
| +static AI int num_tables(SkColorSpace_XYZ* space) {
|
| + switch (space->gammaNamed()) {
|
| + case kSRGB_SkGammaNamed:
|
| + case k2Dot2Curve_SkGammaNamed:
|
| + case kLinear_SkGammaNamed:
|
| + return 0;
|
| + default: {
|
| + const SkGammas* gammas = space->gammas();
|
| + SkASSERT(gammas);
|
| +
|
| + bool gammasAreMatching = (gammas->type(0) == gammas->type(1)) &&
|
| + (gammas->data(0) == gammas->data(1)) &&
|
| + (gammas->type(0) == gammas->type(2)) &&
|
| + (gammas->data(0) == gammas->data(2));
|
| +
|
| + // It's likely that each component will have the same gamma. In this case,
|
| + // we only need to build one table.
|
| + return gammasAreMatching ? 1 : 3;
|
| + }
|
| + }
|
| +}
|
| +
|
| +// Inverse table lookup. Ex: what index corresponds to the input value? This will
|
| +// have strange results when the table is non-increasing. But any sane gamma
|
| +// function will be increasing.
|
| +static float inverse_interp_lut(float input, const float* table, int tableSize) {
|
| + if (input <= table[0]) {
|
| + return table[0];
|
| + } else if (input >= table[tableSize - 1]) {
|
| + return 1.0f;
|
| + }
|
| +
|
| + for (int i = 1; i < tableSize; i++) {
|
| + if (table[i] >= input) {
|
| + // We are guaranteed that input is greater than table[i - 1].
|
| + float diff = input - table[i - 1];
|
| + float distance = table[i] - table[i - 1];
|
| + float index = (i - 1) + diff / distance;
|
| + return index / (tableSize - 1);
|
| + }
|
| + }
|
| +
|
| + // Should be unreachable, since we'll return before the loop if input is
|
| + // larger than the last entry.
|
| + SkASSERT(false);
|
| + return 0.0f;
|
| +}
|
| +
|
| +#undef AI
|
| +
|
| +#endif
|
|
|