Index: src/core/SkColorSpaceXformPriv.h |
diff --git a/src/core/SkColorSpaceXformPriv.h b/src/core/SkColorSpaceXformPriv.h |
new file mode 100644 |
index 0000000000000000000000000000000000000000..6938198a83ac14a7a52af5b60abbcfd5211008eb |
--- /dev/null |
+++ b/src/core/SkColorSpaceXformPriv.h |
@@ -0,0 +1,354 @@ |
+/* |
+ * Copyright 2016 Google Inc. |
+ * |
+ * Use of this source code is governed by a BSD-style license that can be |
+ * found in the LICENSE file. |
+ */ |
+ |
+#ifndef SkColorSpaceXformPriv_DEFINED |
+#define SkColorSpaceXformPriv_DEFINED |
+ |
+#include "SkColorSpace_Base.h" |
+#include "SkHalf.h" |
+#include "SkSRGB.h" |
+ |
+#define AI SK_ALWAYS_INLINE |
+ |
+#define SkCSXformPrintfDefined 0 |
msarett
2016/10/26 20:43:29
What's this for?
raftias
2016/10/27 18:39:38
To block out chunks of code (variable declarations
|
+#define SkCSXformPrintf(...) |
+ |
+static AI void interp_3d_clut(float dst[3], float src[3], const SkColorLookUpTable* colorLUT) { |
msarett
2016/10/26 20:43:29
Can this be moved to SkColorSpaceXform_A2B.cpp?
raftias
2016/10/27 18:39:38
Done.
|
+ // Call the src components x, y, and z. |
+ uint8_t maxX = colorLUT->fGridPoints[0] - 1; |
+ uint8_t maxY = colorLUT->fGridPoints[1] - 1; |
+ uint8_t maxZ = colorLUT->fGridPoints[2] - 1; |
+ |
+ // An approximate index into each of the three dimensions of the table. |
+ float x = src[0] * maxX; |
+ float y = src[1] * maxY; |
+ float z = src[2] * maxZ; |
+ |
+ // This gives us the low index for our interpolation. |
+ int ix = sk_float_floor2int(x); |
+ int iy = sk_float_floor2int(y); |
+ int iz = sk_float_floor2int(z); |
+ |
+ // Make sure the low index is not also the max index. |
+ ix = (maxX == ix) ? ix - 1 : ix; |
+ iy = (maxY == iy) ? iy - 1 : iy; |
+ iz = (maxZ == iz) ? iz - 1 : iz; |
+ |
+ // Weighting factors for the interpolation. |
+ float diffX = x - ix; |
+ float diffY = y - iy; |
+ float diffZ = z - iz; |
+ |
+ // Constants to help us navigate the 3D table. |
+ // Ex: Assume x = a, y = b, z = c. |
+ // table[a * n001 + b * n010 + c * n100] logically equals table[a][b][c]. |
+ const int n000 = 0; |
+ const int n001 = 3 * colorLUT->fGridPoints[1] * colorLUT->fGridPoints[2]; |
+ const int n010 = 3 * colorLUT->fGridPoints[2]; |
+ const int n011 = n001 + n010; |
+ const int n100 = 3; |
+ const int n101 = n100 + n001; |
+ const int n110 = n100 + n010; |
+ const int n111 = n110 + n001; |
+ |
+ // Base ptr into the table. |
+ const float* ptr = &(colorLUT->table()[ix*n001 + iy*n010 + iz*n100]); |
+ |
+ // The code below performs a tetrahedral interpolation for each of the three |
+ // dst components. Once the tetrahedron containing the interpolation point is |
+ // identified, the interpolation is a weighted sum of grid values at the |
+ // vertices of the tetrahedron. The claim is that tetrahedral interpolation |
+ // provides a more accurate color conversion. |
+ // blogs.mathworks.com/steve/2006/11/24/tetrahedral-interpolation-for-colorspace-conversion/ |
+ // |
+ // I have one test image, and visually I can't tell the difference between |
+ // tetrahedral and trilinear interpolation. In terms of computation, the |
+ // tetrahedral code requires more branches but less computation. The |
+ // SampleICC library provides an option for the client to choose either |
+ // tetrahedral or trilinear. |
+ for (int i = 0; i < 3; i++) { |
+ if (diffZ < diffY) { |
+ if (diffZ < diffX) { |
+ dst[i] = (ptr[n000] + diffZ * (ptr[n110] - ptr[n010]) + |
+ diffY * (ptr[n010] - ptr[n000]) + |
+ diffX * (ptr[n111] - ptr[n110])); |
+ } else if (diffY < diffX) { |
+ dst[i] = (ptr[n000] + diffZ * (ptr[n111] - ptr[n011]) + |
+ diffY * (ptr[n011] - ptr[n001]) + |
+ diffX * (ptr[n001] - ptr[n000])); |
+ } else { |
+ dst[i] = (ptr[n000] + diffZ * (ptr[n111] - ptr[n011]) + |
+ diffY * (ptr[n010] - ptr[n000]) + |
+ diffX * (ptr[n011] - ptr[n010])); |
+ } |
+ } else { |
+ if (diffZ < diffX) { |
+ dst[i] = (ptr[n000] + diffZ * (ptr[n101] - ptr[n001]) + |
+ diffY * (ptr[n111] - ptr[n101]) + |
+ diffX * (ptr[n001] - ptr[n000])); |
+ } else if (diffY < diffX) { |
+ dst[i] = (ptr[n000] + diffZ * (ptr[n100] - ptr[n000]) + |
+ diffY * (ptr[n111] - ptr[n101]) + |
+ diffX * (ptr[n101] - ptr[n100])); |
+ } else { |
+ dst[i] = (ptr[n000] + diffZ * (ptr[n100] - ptr[n000]) + |
+ diffY * (ptr[n110] - ptr[n100]) + |
+ diffX * (ptr[n111] - ptr[n110])); |
+ } |
+ } |
+ |
+ // Increment the table ptr in order to handle the next component. |
+ // Note that this is the how table is designed: all of nXXX |
+ // variables are multiples of 3 because there are 3 output |
+ // components. |
+ ptr++; |
+ } |
+} |
+ |
+// Interpolating lookup in a variably sized table. |
+static AI float interp_lut(float input, const float* table, int tableSize) { |
+ float index = input * (tableSize - 1); |
+ float diff = index - sk_float_floor2int(index); |
+ return table[(int) sk_float_floor2int(index)] * (1.0f - diff) + |
+ table[(int) sk_float_ceil2int(index)] * diff; |
+} |
+ |
+ |
+static AI void transform_gamut(const Sk4f& r, const Sk4f& g, const Sk4f& b, const Sk4f& a, |
+ const Sk4f& rXgXbX, const Sk4f& rYgYbY, const Sk4f& rZgZbZ, |
msarett
2016/10/26 20:43:29
nit: spacing
raftias
2016/10/27 18:39:38
Will fix in next patchset
|
+ Sk4f& dr, Sk4f& dg, Sk4f& db, Sk4f& da) { |
+ dr = rXgXbX[0]*r + rYgYbY[0]*g + rZgZbZ[0]*b; |
+ dg = rXgXbX[1]*r + rYgYbY[1]*g + rZgZbZ[1]*b; |
+ db = rXgXbX[2]*r + rYgYbY[2]*g + rZgZbZ[2]*b; |
+ da = a; |
+} |
+ |
+static AI void translate_gamut(const Sk4f& rTgTbT, Sk4f& dr, Sk4f& dg, Sk4f& db) { |
+ dr = dr + rTgTbT[0]; |
+ dg = dg + rTgTbT[1]; |
+ db = db + rTgTbT[2]; |
+} |
+ |
+static AI void load_matrix(const float matrix[16], |
+ Sk4f& rXgXbX, Sk4f& rYgYbY, Sk4f& rZgZbZ, Sk4f& rTgTbT) { |
msarett
2016/10/26 20:43:29
nit: spacing
|
+ rXgXbX = Sk4f::Load(matrix + 0); |
+ rYgYbY = Sk4f::Load(matrix + 4); |
+ rZgZbZ = Sk4f::Load(matrix + 8); |
+ rTgTbT = Sk4f::Load(matrix + 12); |
+} |
+ |
+ |
+enum Order { |
+ kRGBA_Order, |
+ kBGRA_Order, |
+}; |
+ |
+static AI void set_rb_shifts(Order kOrder, int* kRShift, int* kBShift) { |
+ if (kRGBA_Order == kOrder) { |
+ *kRShift = 0; |
+ *kBShift = 16; |
+ } else { |
+ *kRShift = 16; |
+ *kBShift = 0; |
+ } |
+} |
+ |
+template <Order kOrder> |
+static AI void load_rgb_linear(const uint32_t* src, |
+ Sk4f& r, Sk4f& g, Sk4f& b, Sk4f& a, |
+ const float* const[3]) { |
+ int kRShift, kGShift = 8, kBShift; |
+ set_rb_shifts(kOrder, &kRShift, &kBShift); |
+ r = (1.0f / 255.0f) * SkNx_cast<float>((Sk4u::Load(src) >> kRShift) & 0xFF); |
+ g = (1.0f / 255.0f) * SkNx_cast<float>((Sk4u::Load(src) >> kGShift) & 0xFF); |
+ b = (1.0f / 255.0f) * SkNx_cast<float>((Sk4u::Load(src) >> kBShift) & 0xFF); |
+ a = 0.0f; // Don't let the compiler complain that |a| is uninitialized. |
+} |
+ |
+template <Order kOrder> |
+static AI void load_rgba_linear(const uint32_t* src, |
+ Sk4f& r, Sk4f& g, Sk4f& b, Sk4f& a, |
+ const float* const[3]) { |
+ int kRShift, kGShift = 8, kBShift; |
+ set_rb_shifts(kOrder, &kRShift, &kBShift); |
+ r = (1.0f / 255.0f) * SkNx_cast<float>((Sk4u::Load(src) >> kRShift) & 0xFF); |
+ g = (1.0f / 255.0f) * SkNx_cast<float>((Sk4u::Load(src) >> kGShift) & 0xFF); |
+ b = (1.0f / 255.0f) * SkNx_cast<float>((Sk4u::Load(src) >> kBShift) & 0xFF); |
+ a = (1.0f / 255.0f) * SkNx_cast<float>((Sk4u::Load(src) >> 24)); |
+} |
+ |
+static AI void premultiply(Sk4f& dr, Sk4f& dg, Sk4f& db, const Sk4f& da) { |
+ dr = da * dr; |
+ dg = da * dg; |
+ db = da * db; |
+} |
+ |
+template <Order kOrder> |
+static AI void store_srgb(void* dst, const uint32_t* src, |
+ Sk4f& dr, Sk4f& dg, Sk4f& db, Sk4f&, |
+ const uint8_t* const[3]) { |
+ int kRShift, kGShift = 8, kBShift; |
+ set_rb_shifts(kOrder, &kRShift, &kBShift); |
+ dr = sk_linear_to_srgb_needs_trunc(dr); |
+ dg = sk_linear_to_srgb_needs_trunc(dg); |
+ db = sk_linear_to_srgb_needs_trunc(db); |
+ |
+ dr = sk_clamp_0_255(dr); |
+ dg = sk_clamp_0_255(dg); |
+ db = sk_clamp_0_255(db); |
+ |
+ Sk4i da = Sk4i::Load(src) & 0xFF000000; |
+ |
+ Sk4i rgba = (SkNx_cast<int>(dr) << kRShift) |
+ | (SkNx_cast<int>(dg) << kGShift) |
+ | (SkNx_cast<int>(db) << kBShift) |
+ | (da ); |
+ rgba.store(dst); |
+} |
+ |
+static AI Sk4f linear_to_2dot2(const Sk4f& x) { |
+ // x^(29/64) is a very good approximation of the true value, x^(1/2.2). |
+ auto x2 = x.rsqrt(), // x^(-1/2) |
+ x32 = x2.rsqrt().rsqrt().rsqrt().rsqrt(), // x^(-1/32) |
+ x64 = x32.rsqrt(); // x^(+1/64) |
+ |
+ // 29 = 32 - 2 - 1 |
+ return 255.0f * x2.invert() * x32 * x64.invert(); |
+} |
+ |
+template <Order kOrder> |
+static AI void store_2dot2(void* dst, const uint32_t* src, |
+ Sk4f& dr, Sk4f& dg, Sk4f& db, Sk4f&, |
+ const uint8_t* const[3]) { |
+ int kRShift, kGShift = 8, kBShift; |
+ set_rb_shifts(kOrder, &kRShift, &kBShift); |
+ dr = linear_to_2dot2(dr); |
+ dg = linear_to_2dot2(dg); |
+ db = linear_to_2dot2(db); |
+ |
+ dr = sk_clamp_0_255(dr); |
+ dg = sk_clamp_0_255(dg); |
+ db = sk_clamp_0_255(db); |
+ |
+ Sk4i da = Sk4i::Load(src) & 0xFF000000; |
+ |
+ Sk4i rgba = (Sk4f_round(dr) << kRShift) |
+ | (Sk4f_round(dg) << kGShift) |
+ | (Sk4f_round(db) << kBShift) |
+ | (da ); |
+ rgba.store(dst); |
+} |
+ |
+template <Order kOrder> |
+static AI void store_linear(void* dst, const uint32_t* src, |
+ Sk4f& dr, Sk4f& dg, Sk4f& db, Sk4f&, |
+ const uint8_t* const[3]) { |
+ int kRShift, kGShift = 8, kBShift; |
+ set_rb_shifts(kOrder, &kRShift, &kBShift); |
+ dr = sk_clamp_0_255(255.0f * dr); |
+ dg = sk_clamp_0_255(255.0f * dg); |
+ db = sk_clamp_0_255(255.0f * db); |
+ |
+ Sk4i da = Sk4i::Load(src) & 0xFF000000; |
+ |
+ Sk4i rgba = (Sk4f_round(dr) << kRShift) |
+ | (Sk4f_round(dg) << kGShift) |
+ | (Sk4f_round(db) << kBShift) |
+ | (da ); |
+ rgba.store(dst); |
+} |
+ |
+template <Order kOrder> |
+static AI void store_f16(void* dst, const uint32_t* src, |
+ Sk4f& dr, Sk4f& dg, Sk4f& db, Sk4f& da, |
+ const uint8_t* const[3]) { |
+ Sk4h::Store4(dst, SkFloatToHalf_finite_ftz(dr), |
+ SkFloatToHalf_finite_ftz(dg), |
+ SkFloatToHalf_finite_ftz(db), |
+ SkFloatToHalf_finite_ftz(da)); |
+} |
+ |
+template <Order kOrder> |
+static AI void store_f32(void* dst, const uint32_t* src, |
+ Sk4f& dr, Sk4f& dg, Sk4f& db, Sk4f& da, |
+ const uint8_t* const[3]) { |
+ Sk4f::Store4(dst, dr, dg, db, da); |
+} |
+ |
+template <Order kOrder> |
+static AI void store_f16_opaque(void* dst, const uint32_t* src, |
+ Sk4f& dr, Sk4f& dg, Sk4f& db, Sk4f&, |
+ const uint8_t* const[3]) { |
+ Sk4h::Store4(dst, SkFloatToHalf_finite_ftz(dr), |
+ SkFloatToHalf_finite_ftz(dg), |
+ SkFloatToHalf_finite_ftz(db), |
+ SK_Half1); |
+} |
+ |
+template <Order kOrder> |
+static AI void store_generic(void* dst, const uint32_t* src, |
+ Sk4f& dr, Sk4f& dg, Sk4f& db, Sk4f&, |
+ const uint8_t* const dstTables[3]) { |
+ int kRShift, kGShift = 8, kBShift; |
+ set_rb_shifts(kOrder, &kRShift, &kBShift); |
+ dr = Sk4f::Min(Sk4f::Max(1023.0f * dr, 0.0f), 1023.0f); |
+ dg = Sk4f::Min(Sk4f::Max(1023.0f * dg, 0.0f), 1023.0f); |
+ db = Sk4f::Min(Sk4f::Max(1023.0f * db, 0.0f), 1023.0f); |
+ |
+ Sk4i ir = Sk4f_round(dr); |
+ Sk4i ig = Sk4f_round(dg); |
+ Sk4i ib = Sk4f_round(db); |
+ |
+ Sk4i da = Sk4i::Load(src) & 0xFF000000; |
+ |
+ uint32_t* dst32 = (uint32_t*) dst; |
+ dst32[0] = dstTables[0][ir[0]] << kRShift |
+ | dstTables[1][ig[0]] << kGShift |
+ | dstTables[2][ib[0]] << kBShift |
+ | da[0]; |
+ dst32[1] = dstTables[0][ir[1]] << kRShift |
+ | dstTables[1][ig[1]] << kGShift |
+ | dstTables[2][ib[1]] << kBShift |
+ | da[1]; |
+ dst32[2] = dstTables[0][ir[2]] << kRShift |
+ | dstTables[1][ig[2]] << kGShift |
+ | dstTables[2][ib[2]] << kBShift |
+ | da[2]; |
+ dst32[3] = dstTables[0][ir[3]] << kRShift |
+ | dstTables[1][ig[3]] << kGShift |
+ | dstTables[2][ib[3]] << kBShift |
+ | da[3]; |
+} |
+ |
+typedef decltype(load_rgb_linear<kRGBA_Order> )* LoadFn; |
+typedef decltype(store_linear<kRGBA_Order> )* StoreFn; |
+ |
+static AI int num_tables(SkColorSpace_XYZ* space) { |
+ switch (space->gammaNamed()) { |
+ case kSRGB_SkGammaNamed: |
+ case k2Dot2Curve_SkGammaNamed: |
+ case kLinear_SkGammaNamed: |
+ return 0; |
+ default: { |
+ const SkGammas* gammas = space->gammas(); |
+ SkASSERT(gammas); |
+ |
+ bool gammasAreMatching = (gammas->type(0) == gammas->type(1)) && |
+ (gammas->data(0) == gammas->data(1)) && |
+ (gammas->type(0) == gammas->type(2)) && |
+ (gammas->data(0) == gammas->data(2)); |
+ |
+ // It's likely that each component will have the same gamma. In this case, |
+ // we only need to build one table. |
+ return gammasAreMatching ? 1 : 3; |
+ } |
+ } |
+} |
+ |
+#undef AI |
+ |
+#endif |