| Index: src/core/SkColorLookUpTable.cpp
|
| diff --git a/src/core/SkColorLookUpTable.cpp b/src/core/SkColorLookUpTable.cpp
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..73f3e8836c80f0c2f8914fdf4d424ec713f99305
|
| --- /dev/null
|
| +++ b/src/core/SkColorLookUpTable.cpp
|
| @@ -0,0 +1,101 @@
|
| +/*
|
| + * Copyright 2016 Google Inc.
|
| + *
|
| + * Use of this source code is governed by a BSD-style license that can be
|
| + * found in the LICENSE file.
|
| + */
|
| +
|
| +#include "SkColorLookUpTable.h"
|
| +#include "SkFloatingPoint.h"
|
| +
|
| +void SkColorLookUpTable::interp3D(float dst[3], float src[3]) const {
|
| + // Call the src components x, y, and z.
|
| + const uint8_t maxX = fGridPoints[0] - 1;
|
| + const uint8_t maxY = fGridPoints[1] - 1;
|
| + const uint8_t maxZ = fGridPoints[2] - 1;
|
| +
|
| + // An approximate index into each of the three dimensions of the table.
|
| + const float x = src[0] * maxX;
|
| + const float y = src[1] * maxY;
|
| + const float z = src[2] * maxZ;
|
| +
|
| + // This gives us the low index for our interpolation.
|
| + int ix = sk_float_floor2int(x);
|
| + int iy = sk_float_floor2int(y);
|
| + int iz = sk_float_floor2int(z);
|
| +
|
| + // Make sure the low index is not also the max index.
|
| + ix = (maxX == ix) ? ix - 1 : ix;
|
| + iy = (maxY == iy) ? iy - 1 : iy;
|
| + iz = (maxZ == iz) ? iz - 1 : iz;
|
| +
|
| + // Weighting factors for the interpolation.
|
| + const float diffX = x - ix;
|
| + const float diffY = y - iy;
|
| + const float diffZ = z - iz;
|
| +
|
| + // Constants to help us navigate the 3D table.
|
| + // Ex: Assume x = a, y = b, z = c.
|
| + // table[a * n001 + b * n010 + c * n100] logically equals table[a][b][c].
|
| + const int n000 = 0;
|
| + const int n001 = 3 * fGridPoints[1] * fGridPoints[2];
|
| + const int n010 = 3 * fGridPoints[2];
|
| + const int n011 = n001 + n010;
|
| + const int n100 = 3;
|
| + const int n101 = n100 + n001;
|
| + const int n110 = n100 + n010;
|
| + const int n111 = n110 + n001;
|
| +
|
| + // Base ptr into the table.
|
| + const float* ptr = &(table()[ix*n001 + iy*n010 + iz*n100]);
|
| +
|
| + // The code below performs a tetrahedral interpolation for each of the three
|
| + // dst components. Once the tetrahedron containing the interpolation point is
|
| + // identified, the interpolation is a weighted sum of grid values at the
|
| + // vertices of the tetrahedron. The claim is that tetrahedral interpolation
|
| + // provides a more accurate color conversion.
|
| + // blogs.mathworks.com/steve/2006/11/24/tetrahedral-interpolation-for-colorspace-conversion/
|
| + //
|
| + // I have one test image, and visually I can't tell the difference between
|
| + // tetrahedral and trilinear interpolation. In terms of computation, the
|
| + // tetrahedral code requires more branches but less computation. The
|
| + // SampleICC library provides an option for the client to choose either
|
| + // tetrahedral or trilinear.
|
| + for (int i = 0; i < 3; i++) {
|
| + if (diffZ < diffY) {
|
| + if (diffZ < diffX) {
|
| + dst[i] = (ptr[n000] + diffZ * (ptr[n110] - ptr[n010]) +
|
| + diffY * (ptr[n010] - ptr[n000]) +
|
| + diffX * (ptr[n111] - ptr[n110]));
|
| + } else if (diffY < diffX) {
|
| + dst[i] = (ptr[n000] + diffZ * (ptr[n111] - ptr[n011]) +
|
| + diffY * (ptr[n011] - ptr[n001]) +
|
| + diffX * (ptr[n001] - ptr[n000]));
|
| + } else {
|
| + dst[i] = (ptr[n000] + diffZ * (ptr[n111] - ptr[n011]) +
|
| + diffY * (ptr[n010] - ptr[n000]) +
|
| + diffX * (ptr[n011] - ptr[n010]));
|
| + }
|
| + } else {
|
| + if (diffZ < diffX) {
|
| + dst[i] = (ptr[n000] + diffZ * (ptr[n101] - ptr[n001]) +
|
| + diffY * (ptr[n111] - ptr[n101]) +
|
| + diffX * (ptr[n001] - ptr[n000]));
|
| + } else if (diffY < diffX) {
|
| + dst[i] = (ptr[n000] + diffZ * (ptr[n100] - ptr[n000]) +
|
| + diffY * (ptr[n111] - ptr[n101]) +
|
| + diffX * (ptr[n101] - ptr[n100]));
|
| + } else {
|
| + dst[i] = (ptr[n000] + diffZ * (ptr[n100] - ptr[n000]) +
|
| + diffY * (ptr[n110] - ptr[n100]) +
|
| + diffX * (ptr[n111] - ptr[n110]));
|
| + }
|
| + }
|
| +
|
| + // Increment the table ptr in order to handle the next component.
|
| + // Note that this is the how table is designed: all of nXXX
|
| + // variables are multiples of 3 because there are 3 output
|
| + // components.
|
| + ptr++;
|
| + }
|
| +}
|
|
|