| Index: gm/labpcsdemo.cpp
|
| diff --git a/gm/labpcsdemo.cpp b/gm/labpcsdemo.cpp
|
| index d2a4ba9535d9136b90eccf7330544cee07677905..26e48a88908406001064171a18cdd8c7f0fd913a 100644
|
| --- a/gm/labpcsdemo.cpp
|
| +++ b/gm/labpcsdemo.cpp
|
| @@ -21,99 +21,6 @@
|
| #include "SkSurface.h"
|
| #include "SkTypes.h"
|
|
|
| -static inline void interp_3d_clut(float dst[3], float src[3], const SkColorLookUpTable* colorLUT) {
|
| - // Call the src components x, y, and z.
|
| - uint8_t maxX = colorLUT->fGridPoints[0] - 1;
|
| - uint8_t maxY = colorLUT->fGridPoints[1] - 1;
|
| - uint8_t maxZ = colorLUT->fGridPoints[2] - 1;
|
| -
|
| - // An approximate index into each of the three dimensions of the table.
|
| - float x = src[0] * maxX;
|
| - float y = src[1] * maxY;
|
| - float z = src[2] * maxZ;
|
| -
|
| - // This gives us the low index for our interpolation.
|
| - int ix = sk_float_floor2int(x);
|
| - int iy = sk_float_floor2int(y);
|
| - int iz = sk_float_floor2int(z);
|
| -
|
| - // Make sure the low index is not also the max index.
|
| - ix = (maxX == ix) ? ix - 1 : ix;
|
| - iy = (maxY == iy) ? iy - 1 : iy;
|
| - iz = (maxZ == iz) ? iz - 1 : iz;
|
| -
|
| - // Weighting factors for the interpolation.
|
| - float diffX = x - ix;
|
| - float diffY = y - iy;
|
| - float diffZ = z - iz;
|
| -
|
| - // Constants to help us navigate the 3D table.
|
| - // Ex: Assume x = a, y = b, z = c.
|
| - // table[a * n001 + b * n010 + c * n100] logically equals table[a][b][c].
|
| - const int n000 = 0;
|
| - const int n001 = 3 * colorLUT->fGridPoints[1] * colorLUT->fGridPoints[2];
|
| - const int n010 = 3 * colorLUT->fGridPoints[2];
|
| - const int n011 = n001 + n010;
|
| - const int n100 = 3;
|
| - const int n101 = n100 + n001;
|
| - const int n110 = n100 + n010;
|
| - const int n111 = n110 + n001;
|
| -
|
| - // Base ptr into the table.
|
| - const float* ptr = &(colorLUT->table()[ix*n001 + iy*n010 + iz*n100]);
|
| -
|
| - // The code below performs a tetrahedral interpolation for each of the three
|
| - // dst components. Once the tetrahedron containing the interpolation point is
|
| - // identified, the interpolation is a weighted sum of grid values at the
|
| - // vertices of the tetrahedron. The claim is that tetrahedral interpolation
|
| - // provides a more accurate color conversion.
|
| - // blogs.mathworks.com/steve/2006/11/24/tetrahedral-interpolation-for-colorspace-conversion/
|
| - //
|
| - // I have one test image, and visually I can't tell the difference between
|
| - // tetrahedral and trilinear interpolation. In terms of computation, the
|
| - // tetrahedral code requires more branches but less computation. The
|
| - // SampleICC library provides an option for the client to choose either
|
| - // tetrahedral or trilinear.
|
| - for (int i = 0; i < 3; i++) {
|
| - if (diffZ < diffY) {
|
| - if (diffZ < diffX) {
|
| - dst[i] = (ptr[n000] + diffZ * (ptr[n110] - ptr[n010]) +
|
| - diffY * (ptr[n010] - ptr[n000]) +
|
| - diffX * (ptr[n111] - ptr[n110]));
|
| - } else if (diffY < diffX) {
|
| - dst[i] = (ptr[n000] + diffZ * (ptr[n111] - ptr[n011]) +
|
| - diffY * (ptr[n011] - ptr[n001]) +
|
| - diffX * (ptr[n001] - ptr[n000]));
|
| - } else {
|
| - dst[i] = (ptr[n000] + diffZ * (ptr[n111] - ptr[n011]) +
|
| - diffY * (ptr[n010] - ptr[n000]) +
|
| - diffX * (ptr[n011] - ptr[n010]));
|
| - }
|
| - } else {
|
| - if (diffZ < diffX) {
|
| - dst[i] = (ptr[n000] + diffZ * (ptr[n101] - ptr[n001]) +
|
| - diffY * (ptr[n111] - ptr[n101]) +
|
| - diffX * (ptr[n001] - ptr[n000]));
|
| - } else if (diffY < diffX) {
|
| - dst[i] = (ptr[n000] + diffZ * (ptr[n100] - ptr[n000]) +
|
| - diffY * (ptr[n111] - ptr[n101]) +
|
| - diffX * (ptr[n101] - ptr[n100]));
|
| - } else {
|
| - dst[i] = (ptr[n000] + diffZ * (ptr[n100] - ptr[n000]) +
|
| - diffY * (ptr[n110] - ptr[n100]) +
|
| - diffX * (ptr[n111] - ptr[n110]));
|
| - }
|
| - }
|
| -
|
| - // Increment the table ptr in order to handle the next component.
|
| - // Note that this is the how table is designed: all of nXXX
|
| - // variables are multiples of 3 because there are 3 output
|
| - // components.
|
| - ptr++;
|
| - }
|
| -}
|
| -
|
| -
|
| /**
|
| * This tests decoding from a Lab source image and displays on the left
|
| * the image as raw RGB values, and on the right a Lab PCS.
|
| @@ -152,7 +59,7 @@ protected:
|
| return;
|
| }
|
| std::unique_ptr<SkCodec> codec(SkCodec::NewFromStream(stream));
|
| -
|
| +
|
|
|
| // srgb_lab_pcs.icc is an elaborate way to specify sRGB but uses
|
| // Lab as the PCS, so we can take any arbitrary image that should
|
| @@ -179,7 +86,7 @@ protected:
|
| bool printConversions = false;
|
| // We're skipping evaluating the TRCs and the matrix here since they aren't
|
| // in the ICC profile initially used here.
|
| - for (size_t e = 0; e < cs.count(); ++e) {
|
| + for (int e = 0; e < cs.count(); ++e) {
|
| switch (cs.element(e).type()) {
|
| case SkColorSpace_A2B::Element::Type::kGammaNamed:
|
| SkASSERT(kLinear_SkGammaNamed == cs.element(e).gammaNamed());
|
| @@ -207,9 +114,9 @@ protected:
|
| }
|
|
|
| float lab[4] = { r * (1.f/255.f), g * (1.f/255.f), b * (1.f/255.f), 1.f };
|
| -
|
| - interp_3d_clut(lab, lab, colorLUT);
|
| -
|
| +
|
| + colorLUT->interp3D(lab, lab);
|
| +
|
| // Lab has ranges [0,100] for L and [-128,127] for a and b
|
| // but the ICC profile loader stores as [0,1]. The ICC
|
| // specifies an offset of -128 to convert.
|
|
|