Chromium Code Reviews

Unified Diff: src/gpu/GrDistanceFieldGenFromVector.cpp

Issue 2447403002: Revert of Generate Signed Distance Field directly from vector path (Closed) Base URL: https://skia.googlesource.com/skia.git@master
Patch Set: Created 4 years, 2 months ago
Use n/p to move between diff chunks; N/P to move between comments.
Jump to:
View side-by-side diff with in-line comments
« no previous file with comments | « src/gpu/GrDistanceFieldGenFromVector.h ('k') | src/gpu/batches/GrAADistanceFieldPathRenderer.cpp » ('j') | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: src/gpu/GrDistanceFieldGenFromVector.cpp
diff --git a/src/gpu/GrDistanceFieldGenFromVector.cpp b/src/gpu/GrDistanceFieldGenFromVector.cpp
deleted file mode 100644
index 6fc4d6beb4bb4e3846e3e6eaa832b7294ecfd52b..0000000000000000000000000000000000000000
--- a/src/gpu/GrDistanceFieldGenFromVector.cpp
+++ /dev/null
@@ -1,827 +0,0 @@
-/*
- * Copyright 2016 ARM Ltd.
- *
- * Use of this source code is governed by a BSD-style license that can be
- * found in the LICENSE file.
- */
-
-#include "GrDistanceFieldGenFromVector.h"
-#include "SkPoint.h"
-#include "SkGeometry.h"
-#include "SkPathOps.h"
-#include "GrPathUtils.h"
-#include "GrConfig.h"
-
-/**
- * If a scanline (a row of texel) cross from the kRight_SegSide
- * of a segment to the kLeft_SegSide, the winding score should
- * add 1.
- * And winding score should subtract 1 if the scanline cross
- * from kLeft_SegSide to kRight_SegSide.
- * Always return kNA_SegSide if the scanline does not cross over
- * the segment. Winding score should be zero in this case.
- * You can get the winding number for each texel of the scanline
- * by adding the winding score from left to right.
- * Assuming we always start from outside, so the winding number
- * should always start from zero.
- * ________ ________
- * | | | |
- * ...R|L......L|R.....L|R......R|L..... <= Scanline & side of segment
- * |+1 |-1 |-1 |+1 <= Winding score
- * 0 | 1 ^ 0 ^ -1 |0 <= Winding number
- * |________| |________|
- *
- * .......NA................NA..........
- * 0 0
- */
-enum SegSide {
- kLeft_SegSide = -1,
- kOn_SegSide = 0,
- kRight_SegSide = 1,
- kNA_SegSide = 2,
-};
-
-struct DFData {
- float fDistSq; // distance squared to nearest (so far) edge
- int fDeltaWindingScore; // +1 or -1 whenever a scanline cross over a segment
-};
-
-///////////////////////////////////////////////////////////////////////////////
-
-/*
- * Type definition for double precision DPoint and DAffineMatrix
- */
-
-// Point with double precision
-struct DPoint {
- double fX, fY;
-
- static DPoint Make(double x, double y) {
- DPoint pt;
- pt.set(x, y);
- return pt;
- }
-
- double x() const { return fX; }
- double y() const { return fY; }
-
- void set(double x, double y) { fX = x; fY = y; }
-
- /** Returns the euclidian distance from (0,0) to (x,y)
- */
- static double Length(double x, double y) {
- return sqrt(x * x + y * y);
- }
-
- /** Returns the euclidian distance between a and b
- */
- static double Distance(const DPoint& a, const DPoint& b) {
- return Length(a.fX - b.fX, a.fY - b.fY);
- }
-
- double distanceToSqd(const DPoint& pt) const {
- double dx = fX - pt.fX;
- double dy = fY - pt.fY;
- return dx * dx + dy * dy;
- }
-};
-
-// Matrix with double precision for affine transformation.
-// We don't store row 3 because its always (0, 0, 1).
-class DAffineMatrix {
-public:
- double operator[](int index) const {
- SkASSERT((unsigned)index < 6);
- return fMat[index];
- }
-
- double& operator[](int index) {
- SkASSERT((unsigned)index < 6);
- return fMat[index];
- }
-
- void setAffine(double m11, double m12, double m13,
- double m21, double m22, double m23) {
- fMat[0] = m11;
- fMat[1] = m12;
- fMat[2] = m13;
- fMat[3] = m21;
- fMat[4] = m22;
- fMat[5] = m23;
- }
-
- /** Set the matrix to identity
- */
- void reset() {
- fMat[0] = fMat[4] = 1.0;
- fMat[1] = fMat[3] =
- fMat[2] = fMat[5] = 0.0;
- }
-
- // alias for reset()
- void setIdentity() { this->reset(); }
-
- DPoint mapPoint(const SkPoint& src) const {
- DPoint pt = DPoint::Make(src.x(), src.y());
- return this->mapPoint(pt);
- }
-
- DPoint mapPoint(const DPoint& src) const {
- return DPoint::Make(fMat[0] * src.x() + fMat[1] * src.y() + fMat[2],
- fMat[3] * src.x() + fMat[4] * src.y() + fMat[5]);
- }
-private:
- double fMat[6];
-};
-
-///////////////////////////////////////////////////////////////////////////////
-
-static const double kClose = (SK_Scalar1 / 16.0);
-static const double kCloseSqd = SkScalarMul(kClose, kClose);
-static const double kNearlyZero = (SK_Scalar1 / (1 << 18));
-
-static inline bool between_closed_open(double a, double b, double c,
- double tolerance = 0.0,
- bool xformToleranceToX = false) {
- SkASSERT(tolerance >= 0.0);
- double tolB = tolerance;
- double tolC = tolerance;
-
- if (xformToleranceToX) {
- // Canonical space is y = x^2 and the derivative of x^2 is 2x.
- // So the slope of the tangent line at point (x, x^2) is 2x.
- //
- // /|
- // sqrt(2x * 2x + 1 * 1) / | 2x
- // /__|
- // 1
- tolB = tolerance / sqrt(4.0 * b * b + 1.0);
- tolC = tolerance / sqrt(4.0 * c * c + 1.0);
- }
- return b < c ? (a >= b - tolB && a < c - tolC) :
- (a >= c - tolC && a < b - tolB);
-}
-
-static inline bool between_closed(double a, double b, double c,
- double tolerance = 0.0,
- bool xformToleranceToX = false) {
- SkASSERT(tolerance >= 0.0);
- double tolB = tolerance;
- double tolC = tolerance;
-
- if (xformToleranceToX) {
- tolB = tolerance / sqrt(4.0 * b * b + 1.0);
- tolC = tolerance / sqrt(4.0 * c * c + 1.0);
- }
- return b < c ? (a >= b - tolB && a <= c + tolC) :
- (a >= c - tolC && a <= b + tolB);
-}
-
-static inline bool nearly_zero(double x, double tolerance = kNearlyZero) {
- SkASSERT(tolerance >= 0.0);
- return fabs(x) <= tolerance;
-}
-
-static inline bool nearly_equal(double x, double y,
- double tolerance = kNearlyZero,
- bool xformToleranceToX = false) {
- SkASSERT(tolerance >= 0.0);
- if (xformToleranceToX) {
- tolerance = tolerance / sqrt(4.0 * y * y + 1.0);
- }
- return fabs(x - y) <= tolerance;
-}
-
-static inline double sign_of(const double &val) {
- return (val < 0.0) ? -1.0 : 1.0;
-}
-
-static bool is_colinear(const SkPoint pts[3]) {
- return nearly_zero((pts[1].y() - pts[0].y()) * (pts[1].x() - pts[2].x()) -
- (pts[1].y() - pts[2].y()) * (pts[1].x() - pts[0].x()), kCloseSqd);
-}
-
-class PathSegment {
-public:
- enum {
- // These enum values are assumed in member functions below.
- kLine = 0,
- kQuad = 1,
- } fType;
-
- // line uses 2 pts, quad uses 3 pts
- SkPoint fPts[3];
-
- DPoint fP0T, fP2T;
- DAffineMatrix fXformMatrix;
- double fScalingFactor;
- double fScalingFactorSqd;
- double fNearlyZeroScaled;
- SkRect fBoundingBox;
-
- void init();
-
- int countPoints() {
- GR_STATIC_ASSERT(0 == kLine && 1 == kQuad);
- return fType + 2;
- }
-
- const SkPoint& endPt() const {
- GR_STATIC_ASSERT(0 == kLine && 1 == kQuad);
- return fPts[fType + 1];
- }
-};
-
-typedef SkTArray<PathSegment, true> PathSegmentArray;
-
-void PathSegment::init() {
- const DPoint p0 = DPoint::Make(fPts[0].x(), fPts[0].y());
- const DPoint p2 = DPoint::Make(this->endPt().x(), this->endPt().y());
- const double p0x = p0.x();
- const double p0y = p0.y();
- const double p2x = p2.x();
- const double p2y = p2.y();
-
- fBoundingBox.set(fPts[0], this->endPt());
-
- if (fType == PathSegment::kLine) {
- fScalingFactorSqd = fScalingFactor = 1.0;
- double hypotenuse = DPoint::Distance(p0, p2);
-
- const double cosTheta = (p2x - p0x) / hypotenuse;
- const double sinTheta = (p2y - p0y) / hypotenuse;
-
- fXformMatrix.setAffine(
- cosTheta, sinTheta, -(cosTheta * p0x) - (sinTheta * p0y),
- -sinTheta, cosTheta, (sinTheta * p0x) - (cosTheta * p0y)
- );
- } else {
- SkASSERT(fType == PathSegment::kQuad);
-
- // Calculate bounding box
- const SkPoint _P1mP0 = fPts[1] - fPts[0];
- SkPoint t = _P1mP0 - fPts[2] + fPts[1];
- t.fX = _P1mP0.x() / t.x();
- t.fY = _P1mP0.y() / t.y();
- t.fX = SkScalarClampMax(t.x(), 1.0);
- t.fY = SkScalarClampMax(t.y(), 1.0);
- t.fX = _P1mP0.x() * t.x();
- t.fY = _P1mP0.y() * t.y();
- const SkPoint m = fPts[0] + t;
- fBoundingBox.growToInclude(&m, 1);
-
- const double p1x = fPts[1].x();
- const double p1y = fPts[1].y();
-
- const double p0xSqd = p0x * p0x;
- const double p0ySqd = p0y * p0y;
- const double p2xSqd = p2x * p2x;
- const double p2ySqd = p2y * p2y;
- const double p1xSqd = p1x * p1x;
- const double p1ySqd = p1y * p1y;
-
- const double p01xProd = p0x * p1x;
- const double p02xProd = p0x * p2x;
- const double b12xProd = p1x * p2x;
- const double p01yProd = p0y * p1y;
- const double p02yProd = p0y * p2y;
- const double b12yProd = p1y * p2y;
-
- const double sqrtA = p0y - (2.0 * p1y) + p2y;
- const double a = sqrtA * sqrtA;
- const double h = -1.0 * (p0y - (2.0 * p1y) + p2y) * (p0x - (2.0 * p1x) + p2x);
- const double sqrtB = p0x - (2.0 * p1x) + p2x;
- const double b = sqrtB * sqrtB;
- const double c = (p0xSqd * p2ySqd) - (4.0 * p01xProd * b12yProd)
- - (2.0 * p02xProd * p02yProd) + (4.0 * p02xProd * p1ySqd)
- + (4.0 * p1xSqd * p02yProd) - (4.0 * b12xProd * p01yProd)
- + (p2xSqd * p0ySqd);
- const double g = (p0x * p02yProd) - (2.0 * p0x * p1ySqd)
- + (2.0 * p0x * b12yProd) - (p0x * p2ySqd)
- + (2.0 * p1x * p01yProd) - (4.0 * p1x * p02yProd)
- + (2.0 * p1x * b12yProd) - (p2x * p0ySqd)
- + (2.0 * p2x * p01yProd) + (p2x * p02yProd)
- - (2.0 * p2x * p1ySqd);
- const double f = -((p0xSqd * p2y) - (2.0 * p01xProd * p1y)
- - (2.0 * p01xProd * p2y) - (p02xProd * p0y)
- + (4.0 * p02xProd * p1y) - (p02xProd * p2y)
- + (2.0 * p1xSqd * p0y) + (2.0 * p1xSqd * p2y)
- - (2.0 * b12xProd * p0y) - (2.0 * b12xProd * p1y)
- + (p2xSqd * p0y));
-
- const double cosTheta = sqrt(a / (a + b));
- const double sinTheta = -1.0 * sign_of((a + b) * h) * sqrt(b / (a + b));
-
- const double gDef = cosTheta * g - sinTheta * f;
- const double fDef = sinTheta * g + cosTheta * f;
-
-
- const double x0 = gDef / (a + b);
- const double y0 = (1.0 / (2.0 * fDef)) * (c - (gDef * gDef / (a + b)));
-
-
- const double lambda = -1.0 * ((a + b) / (2.0 * fDef));
- fScalingFactor = fabs(1.0 / lambda);
- fScalingFactorSqd = fScalingFactor * fScalingFactor;
-
- const double lambda_cosTheta = lambda * cosTheta;
- const double lambda_sinTheta = lambda * sinTheta;
-
- fXformMatrix.setAffine(
- lambda_cosTheta, -lambda_sinTheta, lambda * x0,
- lambda_sinTheta, lambda_cosTheta, lambda * y0
- );
- }
-
- fNearlyZeroScaled = kNearlyZero / fScalingFactor;
-
- fP0T = fXformMatrix.mapPoint(p0);
- fP2T = fXformMatrix.mapPoint(p2);
-}
-
-static void init_distances(DFData* data, int size) {
- DFData* currData = data;
-
- for (int i = 0; i < size; ++i) {
- // init distance to "far away"
- currData->fDistSq = SK_DistanceFieldMagnitude * SK_DistanceFieldMagnitude;
- currData->fDeltaWindingScore = 0;
- ++currData;
- }
-}
-
-static inline void add_line_to_segment(const SkPoint pts[2],
- PathSegmentArray* segments) {
- segments->push_back();
- segments->back().fType = PathSegment::kLine;
- segments->back().fPts[0] = pts[0];
- segments->back().fPts[1] = pts[1];
-
- segments->back().init();
-}
-
-static inline void add_quad_segment(const SkPoint pts[3],
- PathSegmentArray* segments) {
- if (pts[0].distanceToSqd(pts[1]) < kCloseSqd ||
- pts[1].distanceToSqd(pts[2]) < kCloseSqd ||
- is_colinear(pts)) {
- if (pts[0] != pts[2]) {
- SkPoint line_pts[2];
- line_pts[0] = pts[0];
- line_pts[1] = pts[2];
- add_line_to_segment(line_pts, segments);
- }
- } else {
- segments->push_back();
- segments->back().fType = PathSegment::kQuad;
- segments->back().fPts[0] = pts[0];
- segments->back().fPts[1] = pts[1];
- segments->back().fPts[2] = pts[2];
-
- segments->back().init();
- }
-}
-
-static inline void add_cubic_segments(const SkPoint pts[4],
- PathSegmentArray* segments) {
- SkSTArray<15, SkPoint, true> quads;
- GrPathUtils::convertCubicToQuads(pts, SK_Scalar1, &quads);
- int count = quads.count();
- for (int q = 0; q < count; q += 3) {
- add_quad_segment(&quads[q], segments);
- }
-}
-
-static float calculate_nearest_point_for_quad(
- const PathSegment& segment,
- const DPoint &xFormPt) {
- static const float kThird = 0.33333333333f;
- static const float kTwentySeventh = 0.037037037f;
-
- const float a = 0.5f - (float)xFormPt.y();
- const float b = -0.5f * (float)xFormPt.x();
-
- const float a3 = a * a * a;
- const float b2 = b * b;
-
- const float c = (b2 * 0.25f) + (a3 * kTwentySeventh);
-
- if (c >= 0.f) {
- const float sqrtC = sqrt(c);
- const float result = (float)cbrt((-b * 0.5f) + sqrtC) + (float)cbrt((-b * 0.5f) - sqrtC);
- return result;
- } else {
- const float cosPhi = (float)sqrt((b2 * 0.25f) * (-27.f / a3)) * ((b > 0) ? -1.f : 1.f);
- const float phi = (float)acos(cosPhi);
- float result;
- if (xFormPt.x() > 0.f) {
- result = 2.f * (float)sqrt(-a * kThird) * (float)cos(phi * kThird);
- if (!between_closed(result, segment.fP0T.x(), segment.fP2T.x())) {
- result = 2.f * (float)sqrt(-a * kThird) * (float)cos((phi * kThird) + (SK_ScalarPI * 2.f * kThird));
- }
- } else {
- result = 2.f * (float)sqrt(-a * kThird) * (float)cos((phi * kThird) + (SK_ScalarPI * 2.f * kThird));
- if (!between_closed(result, segment.fP0T.x(), segment.fP2T.x())) {
- result = 2.f * (float)sqrt(-a * kThird) * (float)cos(phi * kThird);
- }
- }
- return result;
- }
-}
-
-// This structure contains some intermediate values shared by the same row.
-// It is used to calculate segment side of a quadratic bezier.
-struct RowData {
- // The intersection type of a scanline and y = x * x parabola in canonical space.
- enum IntersectionType {
- kNoIntersection,
- kVerticalLine,
- kTangentLine,
- kTwoPointsIntersect
- } fIntersectionType;
-
- // The direction of the quadratic segment/scanline in the canonical space.
- // 1: The quadratic segment/scanline going from negative x-axis to positive x-axis.
- // 0: The scanline is a vertical line in the canonical space.
- // -1: The quadratic segment/scanline going from positive x-axis to negative x-axis.
- int fQuadXDirection;
- int fScanlineXDirection;
-
- // The y-value(equal to x*x) of intersection point for the kVerticalLine intersection type.
- double fYAtIntersection;
-
- // The x-value for two intersection points.
- double fXAtIntersection1;
- double fXAtIntersection2;
-};
-
-void precomputation_for_row(
- RowData *rowData,
- const PathSegment& segment,
- const SkPoint& pointLeft,
- const SkPoint& pointRight
- ) {
- if (segment.fType != PathSegment::kQuad) {
- return;
- }
-
- const DPoint& xFormPtLeft = segment.fXformMatrix.mapPoint(pointLeft);
- const DPoint& xFormPtRight = segment.fXformMatrix.mapPoint(pointRight);;
-
- rowData->fQuadXDirection = (int)sign_of(segment.fP2T.x() - segment.fP0T.x());
- rowData->fScanlineXDirection = (int)sign_of(xFormPtRight.x() - xFormPtLeft.x());
-
- const double x1 = xFormPtLeft.x();
- const double y1 = xFormPtLeft.y();
- const double x2 = xFormPtRight.x();
- const double y2 = xFormPtRight.y();
-
- if (nearly_equal(x1, x2)) {
- rowData->fIntersectionType = RowData::kVerticalLine;
- rowData->fYAtIntersection = x1 * x1;
- rowData->fScanlineXDirection = 0;
- return;
- }
-
- // Line y = mx + b
- const double m = (y2 - y1) / (x2 - x1);
- const double b = -m * x1 + y1;
-
- const double c = m * m + 4.0 * b;
-
- if (nearly_zero(c, 4.0 * kNearlyZero * kNearlyZero)) {
- rowData->fIntersectionType = RowData::kTangentLine;
- rowData->fXAtIntersection1 = m / 2.0;
- rowData->fXAtIntersection2 = m / 2.0;
- } else if (c < 0.0) {
- rowData->fIntersectionType = RowData::kNoIntersection;
- return;
- } else {
- rowData->fIntersectionType = RowData::kTwoPointsIntersect;
- const double d = sqrt(c);
- rowData->fXAtIntersection1 = (m + d) / 2.0;
- rowData->fXAtIntersection2 = (m - d) / 2.0;
- }
-}
-
-SegSide calculate_side_of_quad(
- const PathSegment& segment,
- const SkPoint& point,
- const DPoint& xFormPt,
- const RowData& rowData) {
- SegSide side = kNA_SegSide;
-
- if (RowData::kVerticalLine == rowData.fIntersectionType) {
- side = (SegSide)(int)(sign_of(rowData.fYAtIntersection - xFormPt.y()) * rowData.fQuadXDirection);
- }
- else if (RowData::kTwoPointsIntersect == rowData.fIntersectionType) {
- const double p1 = rowData.fXAtIntersection1;
- const double p2 = rowData.fXAtIntersection2;
-
- int signP1 = (int)sign_of(p1 - xFormPt.x());
- bool includeP1 = true;
- bool includeP2 = true;
-
- if ((nearly_equal(p1, segment.fP0T.x(), segment.fNearlyZeroScaled, true) &&
- rowData.fQuadXDirection * rowData.fScanlineXDirection == -1) ||
- (nearly_equal(p1, segment.fP2T.x(), segment.fNearlyZeroScaled, true) &&
- rowData.fQuadXDirection * rowData.fScanlineXDirection == 1)) {
- includeP1 = false;
- }
- if ((nearly_equal(p2, segment.fP0T.x(), segment.fNearlyZeroScaled, true) &&
- rowData.fQuadXDirection * rowData.fScanlineXDirection == 1) ||
- (nearly_equal(p2, segment.fP2T.x(), segment.fNearlyZeroScaled, true) &&
- rowData.fQuadXDirection * rowData.fScanlineXDirection == -1)) {
- includeP2 = false;
- }
-
- if (includeP1 && between_closed(p1, segment.fP0T.x(), segment.fP2T.x(),
- segment.fNearlyZeroScaled, true)) {
- side = (SegSide)((-signP1) * rowData.fQuadXDirection);
- }
- if (includeP2 && between_closed(p2, segment.fP0T.x(), segment.fP2T.x(),
- segment.fNearlyZeroScaled, true)) {
- int signP2 = (int)sign_of(p2 - xFormPt.x());
- if (side == kNA_SegSide || signP2 == 1) {
- side = (SegSide)(signP2 * rowData.fQuadXDirection);
- }
- }
- } else if (RowData::kTangentLine == rowData.fIntersectionType) {
- // The scanline is the tangent line of current quadratic segment.
-
- const double p = rowData.fXAtIntersection1;
- int signP = (int)sign_of(p - xFormPt.x());
- if (rowData.fScanlineXDirection == 1 &&
- // The path start or end at the tangent point.
- (nearly_equal(p, segment.fP0T.x(), segment.fNearlyZeroScaled, true) ||
- nearly_equal(p, segment.fP2T.x(), segment.fNearlyZeroScaled, true))) {
- side = (SegSide)(signP * rowData.fQuadXDirection);
- }
- }
-
- return side;
-}
-
-static float distance_to_segment(const SkPoint& point,
- const PathSegment& segment,
- const RowData& rowData,
- SegSide* side) {
- SkASSERT(side);
-
- const DPoint xformPt = segment.fXformMatrix.mapPoint(point);
-
- if (segment.fType == PathSegment::kLine) {
- float result = SK_DistanceFieldPad * SK_DistanceFieldPad;
-
- if (between_closed(xformPt.x(), segment.fP0T.x(), segment.fP2T.x())) {
- result = (float)(xformPt.y() * xformPt.y());
- } else if (xformPt.x() < segment.fP0T.x()) {
- result = (float)(xformPt.x() * xformPt.x() + xformPt.y() * xformPt.y());
- } else {
- result = (float)((xformPt.x() - segment.fP2T.x()) * (xformPt.x() - segment.fP2T.x())
- + xformPt.y() * xformPt.y());
- }
-
- if (between_closed_open(point.y(), segment.fBoundingBox.top(),
- segment.fBoundingBox.bottom())) {
- *side = (SegSide)(int)sign_of(-xformPt.y());
- } else {
- *side = kNA_SegSide;
- }
- return result;
- } else {
- SkASSERT(segment.fType == PathSegment::kQuad);
-
- const float nearestPoint = calculate_nearest_point_for_quad(segment, xformPt);
-
- float dist;
-
- if (between_closed(nearestPoint, segment.fP0T.x(), segment.fP2T.x())) {
- DPoint x = DPoint::Make(nearestPoint, nearestPoint * nearestPoint);
- dist = (float)xformPt.distanceToSqd(x);
- } else {
- const float distToB0T = (float)xformPt.distanceToSqd(segment.fP0T);
- const float distToB2T = (float)xformPt.distanceToSqd(segment.fP2T);
-
- if (distToB0T < distToB2T) {
- dist = distToB0T;
- } else {
- dist = distToB2T;
- }
- }
-
- if (between_closed_open(point.y(), segment.fBoundingBox.top(),
- segment.fBoundingBox.bottom())) {
- *side = calculate_side_of_quad(segment, point, xformPt, rowData);
- } else {
- *side = kNA_SegSide;
- }
-
- return (float)(dist * segment.fScalingFactorSqd);
- }
-}
-
-static void calculate_distance_field_data(PathSegmentArray* segments,
- DFData* dataPtr,
- int width, int height) {
- int count = segments->count();
- for (int a = 0; a < count; ++a) {
- PathSegment& segment = (*segments)[a];
- const SkRect& segBB = segment.fBoundingBox.makeOutset(
- SK_DistanceFieldPad, SK_DistanceFieldPad);
- int startColumn = (int)segBB.left();
- int endColumn = SkScalarCeilToInt(segBB.right());
-
- int startRow = (int)segBB.top();
- int endRow = SkScalarCeilToInt(segBB.bottom());
-
- SkASSERT((startColumn >= 0) && "StartColumn < 0!");
- SkASSERT((endColumn <= width) && "endColumn > width!");
- SkASSERT((startRow >= 0) && "StartRow < 0!");
- SkASSERT((endRow <= height) && "EndRow > height!");
-
- for (int row = startRow; row < endRow; ++row) {
- SegSide prevSide = kNA_SegSide;
- const float pY = row + 0.5f;
- RowData rowData;
-
- const SkPoint pointLeft = SkPoint::Make((SkScalar)startColumn, pY);
- const SkPoint pointRight = SkPoint::Make((SkScalar)endColumn, pY);
-
- precomputation_for_row(&rowData, segment, pointLeft, pointRight);
-
- for (int col = startColumn; col < endColumn; ++col) {
- int idx = (row * width) + col;
-
- const float pX = col + 0.5f;
- const SkPoint point = SkPoint::Make(pX, pY);
-
- const float distSq = dataPtr[idx].fDistSq;
- int dilation = distSq < 1.5 * 1.5 ? 1 :
- distSq < 2.5 * 2.5 ? 2 :
- distSq < 3.5 * 3.5 ? 3 : SK_DistanceFieldPad;
- if (dilation > SK_DistanceFieldPad) {
- dilation = SK_DistanceFieldPad;
- }
-
- // Optimisation for not calculating some points.
- if (dilation != SK_DistanceFieldPad && !segment.fBoundingBox.roundOut()
- .makeOutset(dilation, dilation).contains(col, row)) {
- continue;
- }
-
- SegSide side = kNA_SegSide;
- int deltaWindingScore = 0;
- float currDistSq = distance_to_segment(point, segment, rowData, &side);
- if (prevSide == kLeft_SegSide && side == kRight_SegSide) {
- deltaWindingScore = -1;
- } else if (prevSide == kRight_SegSide && side == kLeft_SegSide) {
- deltaWindingScore = 1;
- }
-
- prevSide = side;
-
- if (currDistSq < distSq) {
- dataPtr[idx].fDistSq = currDistSq;
- }
-
- dataPtr[idx].fDeltaWindingScore += deltaWindingScore;
- }
- }
- }
-}
-
-template <int distanceMagnitude>
-static unsigned char pack_distance_field_val(float dist) {
- // The distance field is constructed as unsigned char values, so that the zero value is at 128,
- // Beside 128, we have 128 values in range [0, 128), but only 127 values in range (128, 255].
- // So we multiply distanceMagnitude by 127/128 at the latter range to avoid overflow.
- dist = SkScalarPin(-dist, -distanceMagnitude, distanceMagnitude * 127.0f / 128.0f);
-
- // Scale into the positive range for unsigned distance.
- dist += distanceMagnitude;
-
- // Scale into unsigned char range.
- // Round to place negative and positive values as equally as possible around 128
- // (which represents zero).
- return (unsigned char)SkScalarRoundToInt(dist / (2 * distanceMagnitude) * 256.0f);
-}
-
-bool GrGenerateDistanceFieldFromPath(unsigned char* distanceField,
- const SkPath& path, const SkMatrix& drawMatrix,
- int width, int height, size_t rowBytes) {
- SkASSERT(distanceField);
-
- SkPath simplifiedPath;
- SkPath workingPath;
- if (Simplify(path, &simplifiedPath)) {
- workingPath = simplifiedPath;
- } else {
- workingPath = path;
- }
-
- if (!IsDistanceFieldSupportedFillType(workingPath.getFillType())) {
- return false;
- }
-
- SkMatrix m = drawMatrix;
- m.postTranslate(SK_DistanceFieldPad, SK_DistanceFieldPad);
- workingPath.transform(m);
-
- // create temp data
- size_t dataSize = width * height * sizeof(DFData);
- SkAutoSMalloc<1024> dfStorage(dataSize);
- DFData* dataPtr = (DFData*) dfStorage.get();
-
- // create initial distance data
- init_distances(dataPtr, width * height);
-
- SkPath::Iter iter(workingPath, true);
- SkSTArray<15, PathSegment, true> segments;
-
- for (;;) {
- SkPoint pts[4];
- SkPath::Verb verb = iter.next(pts);
- switch (verb) {
- case SkPath::kMove_Verb:
- break;
- case SkPath::kLine_Verb: {
- add_line_to_segment(pts, &segments);
- break;
- }
- case SkPath::kQuad_Verb:
- add_quad_segment(pts, &segments);
- break;
- case SkPath::kConic_Verb: {
- SkScalar weight = iter.conicWeight();
- SkAutoConicToQuads converter;
- const SkPoint* quadPts = converter.computeQuads(pts, weight, 0.5f);
- for (int i = 0; i < converter.countQuads(); ++i) {
- add_quad_segment(quadPts + 2*i, &segments);
- }
- break;
- }
- case SkPath::kCubic_Verb: {
- add_cubic_segments(pts, &segments);
- break;
- };
- default:
- break;
- }
- if (verb == SkPath::kDone_Verb) {
- break;
- }
- }
-
- calculate_distance_field_data(&segments, dataPtr, width, height);
-
- for (int row = 0; row < height; ++row) {
- int windingNumber = 0; // Winding number start from zero for each scanline
- for (int col = 0; col < width; ++col) {
- int idx = (row * width) + col;
- windingNumber += dataPtr[idx].fDeltaWindingScore;
-
- enum DFSign {
- kInside = -1,
- kOutside = 1
- } dfSign;
-
- if (workingPath.getFillType() == SkPath::kWinding_FillType) {
- dfSign = windingNumber ? kInside : kOutside;
- } else if (workingPath.getFillType() == SkPath::kInverseWinding_FillType) {
- dfSign = windingNumber ? kOutside : kInside;
- } else if (workingPath.getFillType() == SkPath::kEvenOdd_FillType) {
- dfSign = (windingNumber % 2) ? kInside : kOutside;
- } else {
- SkASSERT(workingPath.getFillType() == SkPath::kInverseEvenOdd_FillType);
- dfSign = (windingNumber % 2) ? kOutside : kInside;
- }
-
- // The winding number at the end of a scanline should be zero.
- // SkASSERT(((col != width - 1) || (windingNumber == 0)) &&
- // "Winding number should be zero at the end of a scan line.");
- // Fallback to use SkPath::contains to determine the sign of pixel instead of assertion.
- if (col == width - 1 && windingNumber != 0) {
- for (int col = 0; col < width; ++col) {
- int idx = (row * width) + col;
- dfSign = workingPath.contains(col + 0.5, row + 0.5) ? kInside : kOutside;
- const float miniDist = sqrt(dataPtr[idx].fDistSq);
- const float dist = dfSign * miniDist;
-
- unsigned char pixelVal = pack_distance_field_val<SK_DistanceFieldMagnitude>(dist);
-
- distanceField[(row * rowBytes) + col] = pixelVal;
- }
- continue;
- }
-
- const float miniDist = sqrt(dataPtr[idx].fDistSq);
- const float dist = dfSign * miniDist;
-
- unsigned char pixelVal = pack_distance_field_val<SK_DistanceFieldMagnitude>(dist);
-
- distanceField[(row * rowBytes) + col] = pixelVal;
- }
- }
- return true;
-}
« no previous file with comments | « src/gpu/GrDistanceFieldGenFromVector.h ('k') | src/gpu/batches/GrAADistanceFieldPathRenderer.cpp » ('j') | no next file with comments »

Powered by Google App Engine