Chromium Code Reviews| OLD | NEW |
|---|---|
| (Empty) | |
| 1 // Copyright 2016 The Chromium Authors. All rights reserved. | |
| 2 // Use of this source code is governed by a BSD-style license that can be | |
| 3 // found in the LICENSE file. | |
| 4 | |
| 5 #ifndef BASE_TRACE_EVENT_ESTIMATE_MEMORY_USAGE_H_ | |
| 6 #define BASE_TRACE_EVENT_ESTIMATE_MEMORY_USAGE_H_ | |
| 7 | |
| 8 #include <array> | |
| 9 #include <list> | |
| 10 #include <map> | |
| 11 #include <memory> | |
| 12 #include <set> | |
| 13 #include <string> | |
| 14 #include <type_traits> | |
| 15 #include <unordered_map> | |
| 16 #include <unordered_set> | |
| 17 #include <vector> | |
| 18 | |
| 19 #include "base/template_util.h" | |
| 20 | |
| 21 // Composable memory usage estimators. | |
| 22 // | |
| 23 // This file defines set of EstimateMemoryUsage(object) functions that return | |
| 24 // approximate memory usage of their argument. | |
| 25 // | |
| 26 // The ultimate goal is to make memory usage estimation for a class simply a | |
| 27 // matter of aggregating EstimateMemoryUsage() results over all fields. | |
| 28 // | |
| 29 // That is achieved via composability: if EstimateMemoryUsage() is defined | |
| 30 // for T then EstimateMemoryUsage() is also defined for any combination of | |
| 31 // containers holding T (e.g. std::map<int, std::vector<T>>). | |
| 32 // | |
| 33 // There are two ways of defining EstimateMemoryUsage() for a type: | |
| 34 // | |
| 35 // 1. As a global function 'size_t EstimateMemoryUsage(T)' in type's namespace | |
| 36 // (or as a last resort, in base::trace_event namespace). | |
| 37 // | |
| 38 // 2. As 'size_t T::EstimateMemoryUsage() const' method. In this case global | |
| 39 // EstimateMemoryUsage(T) function in base::trace_event namespace is | |
| 40 // provided automatically. | |
| 41 // | |
| 42 // Here is an example implementation: | |
| 43 // | |
| 44 // size_t foo::bar::MyClass::EstimateMemoryUsage() const { | |
| 45 // using base::trace_event::EstimateMemoryUsage; | |
| 46 // return EstimateMemoryUsage(name_) + | |
| 47 // EstimateMemoryUsage(id_) + | |
| 48 // EstimateMemoryUsage(items_); | |
| 49 // } | |
| 50 // | |
| 51 // Two things to note: | |
| 52 // | |
| 53 // 1. It starts with 'using' declaration. This makes everything defined in | |
|
Primiano Tucci (use gerrit)
2016/11/08 14:09:16
?? Why this doesn't work if you just say base::tra
DmitrySkiba
2016/11/08 17:47:14
It won't work if EstimateMemoryUsage() for T is de
dcheng
2016/11/08 19:31:48
FWIW, if we can figure out some way to avoid 'usin
| |
| 54 // this file (i.e. all EstimateMemoryUsage variants) available for compiler | |
| 55 // to choose from. | |
| 56 // | |
| 57 // 2. It just calls EstimateMemoryUsage() on all (suitable) members. | |
| 58 // The pattern is simple: first call EstimateMemoryUsage() on all members, | |
| 59 // then fix compilation errors that are caused by types not implementing | |
| 60 // EstimateMemoryUsage(). | |
| 61 | |
| 62 namespace base { | |
| 63 namespace trace_event { | |
| 64 | |
| 65 // Declarations | |
| 66 | |
| 67 // If T declares 'EstimateMemoryUsage() const' member function, then | |
| 68 // global function EstimateMemoryUsage(T) is available, and just calls | |
| 69 // the member function. | |
| 70 template <class T> | |
| 71 auto EstimateMemoryUsage(const T& object) | |
|
Primiano Tucci (use gerrit)
2016/11/08 14:09:16
out of curiosity isn't this always size_t? Why do
DmitrySkiba
2016/11/08 17:47:14
The trick here is that if T doesn't have EMU membe
| |
| 72 -> decltype(object.EstimateMemoryUsage()); | |
| 73 | |
| 74 // String | |
| 75 | |
| 76 template <class C, class T, class A> | |
| 77 size_t EstimateMemoryUsage(const std::basic_string<C, T, A>& string); | |
| 78 | |
| 79 // Arrays | |
| 80 | |
| 81 template <class T, size_t N> | |
| 82 size_t EstimateMemoryUsage(const std::array<T, N>& array); | |
| 83 | |
| 84 template <class T, size_t N> | |
| 85 size_t EstimateMemoryUsage(T (&array)[N]); | |
| 86 | |
| 87 template <class T> | |
| 88 size_t EstimateMemoryUsage(const T* array, size_t array_length); | |
| 89 | |
| 90 // std::unique_ptr | |
| 91 | |
| 92 template <class T> | |
| 93 size_t EstimateMemoryUsage(const std::unique_ptr<T>& ptr); | |
|
dcheng
2016/11/08 19:31:48
Note that unique_ptr has a custom delete parameter
| |
| 94 | |
| 95 template <class T> | |
| 96 size_t EstimateMemoryUsage(const std::unique_ptr<T[]>& array, | |
| 97 size_t array_length); | |
| 98 | |
| 99 // Containers | |
| 100 | |
| 101 template <class F, class S> | |
| 102 size_t EstimateMemoryUsage(const std::pair<F, S>& pair); | |
| 103 | |
| 104 template <class T, class A> | |
| 105 size_t EstimateMemoryUsage(const std::vector<T, A>& vector); | |
| 106 | |
| 107 template <class T, class A> | |
| 108 size_t EstimateMemoryUsage(const std::list<T, A>& list); | |
| 109 | |
| 110 template <class T, class C, class A> | |
| 111 size_t EstimateMemoryUsage(const std::set<T, C, A>& set); | |
| 112 | |
| 113 template <class T, class C, class A> | |
| 114 size_t EstimateMemoryUsage(const std::multiset<T, C, A>& set); | |
| 115 | |
| 116 template <class K, class V, class C, class A> | |
| 117 size_t EstimateMemoryUsage(const std::map<K, V, C, A>& map); | |
| 118 | |
| 119 template <class K, class V, class C, class A> | |
| 120 size_t EstimateMemoryUsage(const std::multimap<K, V, C, A>& map); | |
| 121 | |
| 122 template <class T, class H, class KE, class A> | |
| 123 size_t EstimateMemoryUsage(const std::unordered_set<T, H, KE, A>& set); | |
| 124 | |
| 125 template <class T, class H, class KE, class A> | |
| 126 size_t EstimateMemoryUsage(const std::unordered_multiset<T, H, KE, A>& set); | |
| 127 | |
| 128 template <class K, class V, class H, class KE, class A> | |
| 129 size_t EstimateMemoryUsage(const std::unordered_map<K, V, H, KE, A>& map); | |
| 130 | |
| 131 template <class K, class V, class H, class KE, class A> | |
| 132 size_t EstimateMemoryUsage(const std::unordered_multimap<K, V, H, KE, A>& map); | |
| 133 | |
| 134 // TODO(dskiba): | |
| 135 // std::forward_list | |
| 136 // std::deque | |
| 137 // std::queue | |
| 138 // std::stack | |
| 139 // std::queue | |
| 140 // std::priority_queue | |
| 141 | |
| 142 // Definitions | |
| 143 | |
| 144 namespace internal { | |
| 145 | |
| 146 // HasEMU<T>::value is true iff EstimateMemoryUsage(T) is available. | |
| 147 // (This is the default version, which is false.) | |
| 148 template <class T, class X = void> | |
| 149 struct HasEMU : std::false_type {}; | |
| 150 | |
| 151 // This HasEMU specialization is only picked up if there exists function | |
| 152 // EstimateMemoryUsage(const T&) that returns size_t. Simpler ways to | |
| 153 // achieve this don't work on MSVC. | |
| 154 template <class T> | |
| 155 struct HasEMU< | |
| 156 T, | |
| 157 typename std::enable_if<std::is_same< | |
| 158 size_t, | |
| 159 decltype(EstimateMemoryUsage(std::declval<const T&>()))>::value>::type> | |
| 160 : std::true_type {}; | |
| 161 | |
| 162 // EMUCaller<T> does three things: | |
| 163 // 1. Defines Call() method that calls EstimateMemoryUsage(T) if it's | |
| 164 // available. | |
| 165 // 2. If EstimateMemoryUsage(T) is not available, but T has trivial dtor | |
| 166 // (i.e. it's POD, integer, pointer, enum, etc.) then it defines Call() | |
| 167 // method that returns 0. This is useful for containers, which allocate | |
| 168 // memory regardless of T (also for cases like std::map<int, MyClass>). | |
| 169 // 3. Finally, if EstimateMemoryUsage(T) is not available, then it triggers | |
| 170 // a static_assert with a helpful message. That cuts numbers of errors | |
| 171 // considerably - if you just call EstimateMemoryUsage(T) but it's not | |
| 172 // available for T, then compiler will helpfully list *all* possible | |
| 173 // variants of it, with an explanation for each. | |
| 174 template <class T, class X = void> | |
| 175 struct EMUCaller { | |
| 176 // std::is_same<> below is only to make static_assert depend on T | |
| 177 // to force compilers to include type of T in the error message. | |
|
dcheng
2016/11/08 19:31:48
clang and msvc will both tell you which template i
| |
| 178 static_assert(std::is_same<T, X>::value, | |
| 179 "Neither global function 'size_t EstimateMemoryUsage(T)' " | |
| 180 "nor member function 'size_t T::EstimateMemoryUsage() const' " | |
| 181 "is defined for the type."); | |
| 182 | |
| 183 static size_t Call(const T&) { return 0; } | |
| 184 }; | |
| 185 | |
| 186 template <class T> | |
| 187 struct EMUCaller<T, typename std::enable_if<HasEMU<T>::value>::type> { | |
| 188 static size_t Call(const T& value) { return EstimateMemoryUsage(value); } | |
| 189 }; | |
| 190 | |
| 191 template <class T> | |
| 192 struct EMUCaller< | |
| 193 T, | |
| 194 typename std::enable_if<!HasEMU<T>::value && | |
| 195 is_trivially_destructible<T>::value>::type> { | |
| 196 static size_t Call(const T& value) { return 0; } | |
| 197 }; | |
| 198 | |
| 199 } // namespace internal | |
| 200 | |
| 201 // Proxy that deducts T and calls EMUCaller<T>. | |
| 202 // To be used by EstimateMemoryUsage() implementations for containers. | |
| 203 template <class T> | |
| 204 size_t EstimateItemMemoryUsage(const T& value) { | |
| 205 return internal::EMUCaller<T>::Call(value); | |
| 206 } | |
| 207 | |
| 208 template <class I> | |
| 209 size_t EstimateIterableMemoryUsage(const I& iterable) { | |
| 210 size_t memory_usage = 0; | |
| 211 for (const auto& item : iterable) { | |
| 212 memory_usage += EstimateItemMemoryUsage(item); | |
| 213 } | |
| 214 return memory_usage; | |
| 215 } | |
| 216 | |
| 217 // Global EstimateMemoryUsage(T) that just calls T::EstimateMemoryUsage(). | |
| 218 template <class T> | |
| 219 auto EstimateMemoryUsage(const T& object) | |
| 220 -> decltype(object.EstimateMemoryUsage()) { | |
| 221 static_assert( | |
| 222 std::is_same<decltype(object.EstimateMemoryUsage()), size_t>::value, | |
| 223 "'T::EstimateMemoryUsage() const' must return size_t."); | |
| 224 return object.EstimateMemoryUsage(); | |
| 225 } | |
| 226 | |
| 227 // String | |
| 228 | |
| 229 template <class C, class T, class A> | |
| 230 size_t EstimateMemoryUsage(const std::basic_string<C, T, A>& string) { | |
| 231 using string_type = std::basic_string<C, T, A>; | |
| 232 using value_type = typename string_type::value_type; | |
| 233 // C++11 doesn't leave much room for implementors - std::string can | |
| 234 // use short string optimization, but that's about it. We detect SSO | |
| 235 // by checking that c_str() points inside |string|. | |
| 236 const char* cstr = reinterpret_cast<const char*>(string.c_str()); | |
| 237 const char* inline_cstr = reinterpret_cast<const char*>(&string); | |
| 238 if (cstr >= inline_cstr && cstr < inline_cstr + sizeof(string)) { | |
| 239 // SSO string | |
| 240 return 0; | |
| 241 } | |
| 242 return (string.capacity() + 1) * sizeof(value_type); | |
| 243 } | |
| 244 | |
| 245 // Arrays | |
| 246 | |
| 247 template <class T, size_t N> | |
| 248 size_t EstimateMemoryUsage(const std::array<T, N>& array) { | |
| 249 return EstimateIterableMemoryUsage(array); | |
| 250 } | |
| 251 | |
| 252 template <class T, size_t N> | |
| 253 size_t EstimateMemoryUsage(T (&array)[N]) { | |
| 254 return EstimateIterableMemoryUsage(array); | |
| 255 } | |
| 256 | |
| 257 template <class T> | |
| 258 size_t EstimateMemoryUsage(const T* array, size_t array_length) { | |
| 259 size_t memory_usage = sizeof(T) * array_length; | |
| 260 for (size_t i = 0; i != array_length; ++i) { | |
| 261 memory_usage += EstimateItemMemoryUsage(array[i]); | |
| 262 } | |
| 263 return memory_usage; | |
| 264 } | |
| 265 | |
| 266 // std::unique_ptr | |
| 267 | |
| 268 template <class T> | |
| 269 size_t EstimateMemoryUsage(const std::unique_ptr<T>& ptr) { | |
| 270 return ptr ? (sizeof(T) + EstimateItemMemoryUsage(*ptr)) : 0; | |
| 271 } | |
| 272 | |
| 273 template <class T> | |
| 274 size_t EstimateMemoryUsage(const std::unique_ptr<T[]>& array, | |
| 275 size_t array_length) { | |
| 276 return EstimateMemoryUsage(array.get(), array_length); | |
| 277 } | |
| 278 | |
| 279 // std::pair | |
| 280 | |
| 281 template <class F, class S> | |
| 282 size_t EstimateMemoryUsage(const std::pair<F, S>& pair) { | |
| 283 return EstimateItemMemoryUsage(pair.first) + | |
| 284 EstimateItemMemoryUsage(pair.second); | |
| 285 } | |
| 286 | |
| 287 // std::vector | |
| 288 | |
| 289 template <class T, class A> | |
| 290 size_t EstimateMemoryUsage(const std::vector<T, A>& vector) { | |
| 291 return sizeof(T) * vector.capacity() + EstimateIterableMemoryUsage(vector); | |
| 292 } | |
| 293 | |
| 294 // std::list | |
| 295 | |
| 296 template <class T, class A> | |
| 297 size_t EstimateMemoryUsage(const std::list<T, A>& list) { | |
| 298 using value_type = typename std::list<T, A>::value_type; | |
| 299 struct Node { | |
| 300 Node* prev; | |
| 301 Node* next; | |
| 302 value_type value; | |
| 303 }; | |
| 304 return sizeof(Node) * list.size() + | |
| 305 EstimateIterableMemoryUsage(list); | |
| 306 } | |
| 307 | |
| 308 // Tree containers | |
| 309 | |
| 310 template <class V> | |
| 311 size_t EstimateTreeMemoryUsage(size_t size) { | |
| 312 // Tree containers are modeled after libc++ | |
| 313 // (__tree_node from include/__tree) | |
| 314 struct Node { | |
| 315 Node* left; | |
| 316 Node* right; | |
| 317 Node* parent; | |
| 318 bool is_black; | |
| 319 V value; | |
| 320 }; | |
| 321 return sizeof(Node) * size; | |
| 322 } | |
| 323 | |
| 324 template <class T, class C, class A> | |
| 325 size_t EstimateMemoryUsage(const std::set<T, C, A>& set) { | |
| 326 using value_type = typename std::set<T, C, A>::value_type; | |
| 327 return EstimateTreeMemoryUsage<value_type>(set.size()) + | |
| 328 EstimateIterableMemoryUsage(set); | |
| 329 } | |
| 330 | |
| 331 template <class T, class C, class A> | |
| 332 size_t EstimateMemoryUsage(const std::multiset<T, C, A>& set) { | |
| 333 using value_type = typename std::multiset<T, C, A>::value_type; | |
| 334 return EstimateTreeMemoryUsage<value_type>(set.size()) + | |
| 335 EstimateIterableMemoryUsage(set); | |
| 336 } | |
| 337 | |
| 338 template <class K, class V, class C, class A> | |
| 339 size_t EstimateMemoryUsage(const std::map<K, V, C, A>& map) { | |
| 340 using value_type = typename std::map<K, V, C, A>::value_type; | |
| 341 return EstimateTreeMemoryUsage<value_type>(map.size()) + | |
| 342 EstimateIterableMemoryUsage(map); | |
| 343 } | |
| 344 | |
| 345 template <class K, class V, class C, class A> | |
| 346 size_t EstimateMemoryUsage(const std::multimap<K, V, C, A>& map) { | |
| 347 using value_type = typename std::multimap<K, V, C, A>::value_type; | |
| 348 return EstimateTreeMemoryUsage<value_type>(map.size()) + | |
| 349 EstimateIterableMemoryUsage(map); | |
| 350 } | |
| 351 | |
| 352 // HashMap containers | |
| 353 | |
| 354 template <class V> | |
| 355 size_t EstimateHashMapMemoryUsage(size_t bucket_count, size_t size) { | |
| 356 // Hashtable containers are modeled after libc++ | |
| 357 // (__hash_node from include/__hash_table) | |
| 358 struct Node { | |
| 359 void* next; | |
| 360 size_t hash; | |
| 361 V value; | |
| 362 }; | |
| 363 using Bucket = void*; | |
| 364 return sizeof(Bucket) * bucket_count + sizeof(Node) * size; | |
| 365 } | |
| 366 | |
| 367 template <class K, class H, class KE, class A> | |
| 368 size_t EstimateMemoryUsage(const std::unordered_set<K, H, KE, A>& set) { | |
| 369 using value_type = typename std::unordered_set<K, H, KE, A>::value_type; | |
| 370 return EstimateHashMapMemoryUsage<value_type>(set.bucket_count(), | |
| 371 set.size()) + | |
| 372 EstimateIterableMemoryUsage(set); | |
| 373 } | |
| 374 | |
| 375 template <class K, class H, class KE, class A> | |
| 376 size_t EstimateMemoryUsage(const std::unordered_multiset<K, H, KE, A>& set) { | |
| 377 using value_type = typename std::unordered_multiset<K, H, KE, A>::value_type; | |
| 378 return EstimateHashMapMemoryUsage<value_type>(set.bucket_count(), | |
| 379 set.size()) + | |
| 380 EstimateIterableMemoryUsage(set); | |
| 381 } | |
| 382 | |
| 383 template <class K, class V, class H, class KE, class A> | |
| 384 size_t EstimateMemoryUsage(const std::unordered_map<K, V, H, KE, A>& map) { | |
| 385 using value_type = typename std::unordered_map<K, V, H, KE, A>::value_type; | |
| 386 return EstimateHashMapMemoryUsage<value_type>(map.bucket_count(), | |
| 387 map.size()) + | |
| 388 EstimateIterableMemoryUsage(map); | |
| 389 } | |
| 390 | |
| 391 template <class K, class V, class H, class KE, class A> | |
| 392 size_t EstimateMemoryUsage(const std::unordered_multimap<K, V, H, KE, A>& map) { | |
| 393 using value_type = | |
| 394 typename std::unordered_multimap<K, V, H, KE, A>::value_type; | |
| 395 return EstimateHashMapMemoryUsage<value_type>(map.bucket_count(), | |
| 396 map.size()) + | |
| 397 EstimateIterableMemoryUsage(map); | |
| 398 } | |
| 399 | |
| 400 } // namespace trace_event | |
| 401 } // namespace base | |
| 402 | |
| 403 #endif // BASE_TRACE_EVENT_ESTIMATE_MEMORY_USAGE_H_ | |
| OLD | NEW |