| Index: include/core/SkPathRef.h
|
| ===================================================================
|
| --- include/core/SkPathRef.h (revision 11438)
|
| +++ include/core/SkPathRef.h (working copy)
|
| @@ -9,9 +9,18 @@
|
| #ifndef SkPathRef_DEFINED
|
| #define SkPathRef_DEFINED
|
|
|
| +#include "SkMatrix.h"
|
| +#include "SkPoint.h"
|
| +#include "SkRect.h"
|
| #include "SkRefCnt.h"
|
| +#include "SkTDArray.h"
|
| #include <stddef.h> // ptrdiff_t
|
|
|
| +class SkRBuffer;
|
| +class SkWBuffer;
|
| +
|
| +// TODO: refactor this header to move more of the implementation into the .cpp
|
| +
|
| /**
|
| * Holds the path verbs and points. It is versioned by a generation ID. None of its public methods
|
| * modify the contents. To modify or append to the verbs/points wrap the SkPathRef in an
|
| @@ -27,8 +36,6 @@
|
| * logical verb or the last verb in memory).
|
| */
|
|
|
| -class SkPathRef;
|
| -
|
| class SkPathRef : public ::SkRefCnt {
|
| public:
|
| SK_DECLARE_INST_COUNT(SkPathRef);
|
| @@ -70,17 +77,9 @@
|
| * Adds the verb and allocates space for the number of points indicated by the verb. The
|
| * return value is a pointer to where the points for the verb should be written.
|
| */
|
| - SkPoint* growForVerb(SkPath::Verb verb) {
|
| - fPathRef->validate();
|
| - return fPathRef->growForVerb(verb);
|
| - }
|
| + SkPoint* growForVerb(int /*SkPath::Verb*/ verb);
|
|
|
| - SkPoint* growForConic(SkScalar w) {
|
| - fPathRef->validate();
|
| - SkPoint* pts = fPathRef->growForVerb(SkPath::kConic_Verb);
|
| - *fPathRef->fConicWeights.append() = w;
|
| - return pts;
|
| - }
|
| + SkPoint* growForConic(SkScalar w);
|
|
|
| /**
|
| * Allocates space for additional verbs and points and returns pointers to the new verbs and
|
| @@ -129,6 +128,40 @@
|
| }
|
|
|
| /**
|
| + * Returns true if all of the points in this path are finite, meaning there
|
| + * are no infinities and no NaNs.
|
| + */
|
| + bool isFinite() const {
|
| + if (fBoundsIsDirty) {
|
| + this->computeBounds();
|
| + }
|
| + return SkToBool(fIsFinite);
|
| + }
|
| +
|
| + bool hasComputedBounds() const {
|
| + return !fBoundsIsDirty;
|
| + }
|
| +
|
| + /** Returns the bounds of the path's points. If the path contains 0 or 1
|
| + points, the bounds is set to (0,0,0,0), and isEmpty() will return true.
|
| + Note: this bounds may be larger than the actual shape, since curves
|
| + do not extend as far as their control points.
|
| + */
|
| + const SkRect& getBounds() const {
|
| + if (fBoundsIsDirty) {
|
| + this->computeBounds();
|
| + }
|
| + return fBounds;
|
| + }
|
| +
|
| + void setBounds(const SkRect& rect) {
|
| + SkASSERT(rect.fLeft <= rect.fRight && rect.fTop <= rect.fBottom);
|
| + fBounds = rect;
|
| + fBoundsIsDirty = false;
|
| + fIsFinite = fBounds.isFinite();
|
| + }
|
| +
|
| + /**
|
| * Transforms a path ref by a matrix, allocating a new one only if necessary.
|
| */
|
| static void CreateTransformedCopy(SkAutoTUnref<SkPathRef>* dst,
|
| @@ -143,37 +176,54 @@
|
| }
|
| return;
|
| }
|
| +
|
| bool dstUnique = (*dst)->unique();
|
| - if (&src == *dst && dstUnique) {
|
| - matrix.mapPoints((*dst)->fPoints, (*dst)->fPointCnt);
|
| - return;
|
| - } else if (!dstUnique) {
|
| + if (!dstUnique) {
|
| dst->reset(SkNEW(SkPathRef));
|
| + (*dst)->resetToSize(src.fVerbCnt, src.fPointCnt, src.fConicWeights.count());
|
| + memcpy((*dst)->verbsMemWritable(), src.verbsMemBegin(), src.fVerbCnt * sizeof(uint8_t));
|
| + (*dst)->fConicWeights = src.fConicWeights;
|
| }
|
| - (*dst)->resetToSize(src.fVerbCnt, src.fPointCnt, src.fConicWeights.count());
|
| - memcpy((*dst)->verbsMemWritable(), src.verbsMemBegin(), src.fVerbCnt * sizeof(uint8_t));
|
| +
|
| + // Need to check this here in case (&src == dst)
|
| + bool canXformBounds = !src.fBoundsIsDirty && matrix.rectStaysRect() && src.countPoints() > 1;
|
| +
|
| matrix.mapPoints((*dst)->fPoints, src.points(), src.fPointCnt);
|
| - (*dst)->fConicWeights = src.fConicWeights;
|
| +
|
| + /*
|
| + * Here we optimize the bounds computation, by noting if the bounds are
|
| + * already known, and if so, we just transform those as well and mark
|
| + * them as "known", rather than force the transformed path to have to
|
| + * recompute them.
|
| + *
|
| + * Special gotchas if the path is effectively empty (<= 1 point) or
|
| + * if it is non-finite. In those cases bounds need to stay empty,
|
| + * regardless of the matrix.
|
| + */
|
| + if (canXformBounds) {
|
| + (*dst)->fBoundsIsDirty = false;
|
| + if (src.fIsFinite) {
|
| + matrix.mapRect(&(*dst)->fBounds, src.fBounds);
|
| + if (!((*dst)->fIsFinite = (*dst)->fBounds.isFinite())) {
|
| + (*dst)->fBounds.setEmpty();
|
| + }
|
| + } else {
|
| + (*dst)->fIsFinite = false;
|
| + (*dst)->fBounds.setEmpty();
|
| + }
|
| + } else {
|
| + (*dst)->fBoundsIsDirty = true;
|
| + }
|
| +
|
| (*dst)->validate();
|
| }
|
|
|
| - static SkPathRef* CreateFromBuffer(SkRBuffer* buffer) {
|
| - SkPathRef* ref = SkNEW(SkPathRef);
|
| - ref->fGenerationID = buffer->readU32();
|
| - int32_t verbCount = buffer->readS32();
|
| - int32_t pointCount = buffer->readS32();
|
| - int32_t conicCount = buffer->readS32();
|
| - ref->resetToSize(verbCount, pointCount, conicCount);
|
| + static SkPathRef* CreateFromBuffer(SkRBuffer* buffer
|
| +#ifndef DELETE_THIS_CODE_WHEN_SKPS_ARE_REBUILT_AT_V14_AND_ALL_OTHER_INSTANCES_TOO
|
| + , bool newFormat, int32_t oldPacked
|
| +#endif
|
| + );
|
|
|
| - SkASSERT(verbCount == ref->countVerbs());
|
| - SkASSERT(pointCount == ref->countPoints());
|
| - SkASSERT(conicCount == ref->fConicWeights.count());
|
| - buffer->read(ref->verbsMemWritable(), verbCount * sizeof(uint8_t));
|
| - buffer->read(ref->fPoints, pointCount * sizeof(SkPoint));
|
| - buffer->read(ref->fConicWeights.begin(), conicCount * sizeof(SkScalar));
|
| - return ref;
|
| - }
|
| -
|
| /**
|
| * Rollsback a path ref to zero verbs and points with the assumption that the path ref will be
|
| * repopulated with approximately the same number of verbs and points. A new path ref is created
|
| @@ -182,6 +232,7 @@
|
| static void Rewind(SkAutoTUnref<SkPathRef>* pathRef) {
|
| if ((*pathRef)->unique()) {
|
| (*pathRef)->validate();
|
| + (*pathRef)->fBoundsIsDirty = true; // this also invalidates fIsFinite
|
| (*pathRef)->fVerbCnt = 0;
|
| (*pathRef)->fPointCnt = 0;
|
| (*pathRef)->fFreeSpace = (*pathRef)->currSize();
|
| @@ -290,35 +341,26 @@
|
| /**
|
| * Writes the path points and verbs to a buffer.
|
| */
|
| - void writeToBuffer(SkWBuffer* buffer) {
|
| - this->validate();
|
| - SkDEBUGCODE(size_t beforePos = buffer->pos();)
|
| + void writeToBuffer(SkWBuffer* buffer);
|
|
|
| - // TODO: write gen ID here. Problem: We don't know if we're cross process or not from
|
| - // SkWBuffer. Until this is fixed we write 0.
|
| - buffer->write32(0);
|
| - buffer->write32(fVerbCnt);
|
| - buffer->write32(fPointCnt);
|
| - buffer->write32(fConicWeights.count());
|
| - buffer->write(verbsMemBegin(), fVerbCnt * sizeof(uint8_t));
|
| - buffer->write(fPoints, fPointCnt * sizeof(SkPoint));
|
| - buffer->write(fConicWeights.begin(), fConicWeights.bytes());
|
| -
|
| - SkASSERT(buffer->pos() - beforePos == (size_t) this->writeSize());
|
| - }
|
| -
|
| /**
|
| * Gets the number of bytes that would be written in writeBuffer()
|
| */
|
| uint32_t writeSize() {
|
| - return 4 * sizeof(uint32_t) +
|
| + return 5 * sizeof(uint32_t) +
|
| fVerbCnt * sizeof(uint8_t) +
|
| fPointCnt * sizeof(SkPoint) +
|
| - fConicWeights.bytes();
|
| + fConicWeights.bytes() +
|
| + sizeof(SkRect);
|
| }
|
|
|
| private:
|
| + enum SerializationOffsets {
|
| + kIsFinite_SerializationShift = 25, // requires 1 bit
|
| + };
|
| +
|
| SkPathRef() {
|
| + fBoundsIsDirty = true; // this also invalidates fIsFinite
|
| fPointCnt = 0;
|
| fVerbCnt = 0;
|
| fVerbs = NULL;
|
| @@ -339,9 +381,34 @@
|
| // We could call genID() here to force a real ID (instead of 0). However, if we're making
|
| // a copy then presumably we intend to make a modification immediately afterwards.
|
| fGenerationID = ref.fGenerationID;
|
| + fBoundsIsDirty = ref.fBoundsIsDirty;
|
| + if (!fBoundsIsDirty) {
|
| + fBounds = ref.fBounds;
|
| + fIsFinite = ref.fIsFinite;
|
| + }
|
| this->validate();
|
| }
|
|
|
| + // Return true if the computed bounds are finite.
|
| + static bool ComputePtBounds(SkRect* bounds, const SkPathRef& ref) {
|
| + int count = ref.countPoints();
|
| + if (count <= 1) { // we ignore just 1 point (moveto)
|
| + bounds->setEmpty();
|
| + return count ? ref.points()->isFinite() : true;
|
| + } else {
|
| + return bounds->setBoundsCheck(ref.points(), count);
|
| + }
|
| + }
|
| +
|
| + // called, if dirty, by getBounds()
|
| + void computeBounds() const {
|
| + SkDEBUGCODE(this->validate();)
|
| + SkASSERT(fBoundsIsDirty);
|
| +
|
| + fIsFinite = ComputePtBounds(&fBounds, *this);
|
| + fBoundsIsDirty = false;
|
| + }
|
| +
|
| /** Makes additional room but does not change the counts or change the genID */
|
| void incReserve(int additionalVerbs, int additionalPoints) {
|
| this->validate();
|
| @@ -350,11 +417,12 @@
|
| this->validate();
|
| }
|
|
|
| - /** Resets the path ref with verbCount verbs and pointCount points, all unitialized. Also
|
| + /** Resets the path ref with verbCount verbs and pointCount points, all uninitialized. Also
|
| * allocates space for reserveVerb additional verbs and reservePoints additional points.*/
|
| void resetToSize(int verbCount, int pointCount, int conicCount,
|
| int reserveVerbs = 0, int reservePoints = 0) {
|
| this->validate();
|
| + fBoundsIsDirty = true; // this also invalidates fIsFinite
|
| fGenerationID = 0;
|
|
|
| size_t newSize = sizeof(uint8_t) * verbCount + sizeof(SkPoint) * pointCount;
|
| @@ -394,6 +462,7 @@
|
| fVerbCnt += newVerbs;
|
| fPointCnt += newPoints;
|
| fFreeSpace -= space;
|
| + fBoundsIsDirty = true; // this also invalidates fIsFinite
|
| this->validate();
|
| }
|
|
|
| @@ -402,44 +471,7 @@
|
| * of additional points. A pointer to the first point is returned. Any new points are
|
| * uninitialized.
|
| */
|
| - SkPoint* growForVerb(SkPath::Verb verb) {
|
| - this->validate();
|
| - int pCnt;
|
| - switch (verb) {
|
| - case SkPath::kMove_Verb:
|
| - pCnt = 1;
|
| - break;
|
| - case SkPath::kLine_Verb:
|
| - pCnt = 1;
|
| - break;
|
| - case SkPath::kQuad_Verb:
|
| - // fall through
|
| - case SkPath::kConic_Verb:
|
| - pCnt = 2;
|
| - break;
|
| - case SkPath::kCubic_Verb:
|
| - pCnt = 3;
|
| - break;
|
| - case SkPath::kClose_Verb:
|
| - pCnt = 0;
|
| - break;
|
| - case SkPath::kDone_Verb:
|
| - SkDEBUGFAIL("growForVerb called for kDone");
|
| - // fall through
|
| - default:
|
| - SkDEBUGFAIL("default is not reached");
|
| - pCnt = 0;
|
| - }
|
| - size_t space = sizeof(uint8_t) + pCnt * sizeof (SkPoint);
|
| - this->makeSpace(space);
|
| - this->fVerbs[~fVerbCnt] = verb;
|
| - SkPoint* ret = fPoints + fPointCnt;
|
| - fVerbCnt += 1;
|
| - fPointCnt += pCnt;
|
| - fFreeSpace -= space;
|
| - this->validate();
|
| - return ret;
|
| - }
|
| + SkPoint* growForVerb(int /*SkPath::Verb*/ verb);
|
|
|
| /**
|
| * Ensures that the free space available in the path ref is >= size. The verb and point counts
|
| @@ -524,12 +556,30 @@
|
| SkASSERT(!(NULL == fVerbs && fVerbCnt));
|
| SkASSERT(this->currSize() ==
|
| fFreeSpace + sizeof(SkPoint) * fPointCnt + sizeof(uint8_t) * fVerbCnt);
|
| +
|
| +#ifdef SK_DEBUG
|
| + if (!fBoundsIsDirty && !fBounds.isEmpty()) {
|
| + bool isFinite = true;
|
| + for (int i = 0; i < fPointCnt; ++i) {
|
| + SkASSERT(fPoints[i].fX >= fBounds.fLeft && fPoints[i].fX <= fBounds.fRight &&
|
| + fPoints[i].fY >= fBounds.fTop && fPoints[i].fY <= fBounds.fBottom);
|
| + if (!fPoints[i].isFinite()) {
|
| + isFinite = false;
|
| + }
|
| + }
|
| + SkASSERT(SkToBool(fIsFinite) == isFinite);
|
| + }
|
| +#endif
|
| }
|
|
|
| enum {
|
| kMinSize = 256,
|
| };
|
|
|
| + mutable SkRect fBounds;
|
| + mutable uint8_t fBoundsIsDirty;
|
| + mutable SkBool8 fIsFinite; // only meaningful if bounds are valid
|
| +
|
| SkPoint* fPoints; // points to begining of the allocation
|
| uint8_t* fVerbs; // points just past the end of the allocation (verbs grow backwards)
|
| int fVerbCnt;
|
| @@ -546,6 +596,4 @@
|
| typedef SkRefCnt INHERITED;
|
| };
|
|
|
| -SK_DEFINE_INST_COUNT(SkPathRef);
|
| -
|
| #endif
|
|
|