OLD | NEW |
1 // Copyright 2014 the V8 project authors. All rights reserved. | 1 // Copyright 2014 the V8 project authors. All rights reserved. |
2 // Use of this source code is governed by a BSD-style license that can be | 2 // Use of this source code is governed by a BSD-style license that can be |
3 // found in the LICENSE file. | 3 // found in the LICENSE file. |
4 | 4 |
5 #include "src/runtime/runtime-utils.h" | 5 #include "src/runtime/runtime-utils.h" |
6 | 6 |
7 #include "src/arguments.h" | 7 #include "src/arguments.h" |
8 #include "src/assembler.h" | 8 #include "src/assembler.h" |
9 #include "src/base/utils/random-number-generator.h" | 9 #include "src/base/utils/random-number-generator.h" |
10 #include "src/bootstrapper.h" | 10 #include "src/bootstrapper.h" |
11 #include "src/codegen.h" | 11 #include "src/codegen.h" |
12 | 12 |
13 namespace v8 { | 13 namespace v8 { |
14 namespace internal { | 14 namespace internal { |
15 | 15 |
16 RUNTIME_FUNCTION(Runtime_GenerateRandomNumbers) { | 16 RUNTIME_FUNCTION(Runtime_GenerateRandomNumbers) { |
17 HandleScope scope(isolate); | 17 HandleScope scope(isolate); |
18 DCHECK(args.length() == 1); | 18 DCHECK(args.length() == 0); |
19 if (isolate->serializer_enabled()) { | |
20 // Random numbers in the snapshot are not really that random. And we cannot | |
21 // return a typed array as it cannot be serialized. To make calling | |
22 // Math.random possible when creating a custom startup snapshot, we simply | |
23 // return a normal array with a single random number. | |
24 Handle<HeapNumber> random_number = isolate->factory()->NewHeapNumber( | |
25 isolate->random_number_generator()->NextDouble()); | |
26 Handle<FixedArray> array_backing = isolate->factory()->NewFixedArray(1); | |
27 array_backing->set(0, *random_number); | |
28 return *isolate->factory()->NewJSArrayWithElements(array_backing); | |
29 } | |
30 | 19 |
31 static const int kState0Offset = 0; | 20 Handle<Context> native_context = isolate->native_context(); |
32 static const int kState1Offset = 1; | 21 DCHECK_EQ(0, native_context->math_random_index()->value()); |
33 static const int kRandomBatchSize = 64; | 22 |
34 CONVERT_ARG_HANDLE_CHECKED(Object, maybe_typed_array, 0); | 23 static const int kCacheSize = 64; |
35 Handle<JSTypedArray> typed_array; | 24 static const int kState0Offset = kCacheSize - 1; |
36 // Allocate typed array if it does not yet exist. | 25 static const int kState1Offset = kState0Offset - 1; |
37 if (maybe_typed_array->IsJSTypedArray()) { | 26 // The index is decremented before used to access the cache. |
38 typed_array = Handle<JSTypedArray>::cast(maybe_typed_array); | 27 static const int kInitialIndex = kState1Offset; |
| 28 |
| 29 Handle<FixedDoubleArray> cache; |
| 30 uint64_t state0 = 0; |
| 31 uint64_t state1 = 0; |
| 32 if (native_context->math_random_cache()->IsFixedDoubleArray()) { |
| 33 cache = Handle<FixedDoubleArray>( |
| 34 FixedDoubleArray::cast(native_context->math_random_cache()), isolate); |
| 35 state0 = double_to_uint64(cache->get_scalar(kState0Offset)); |
| 36 state1 = double_to_uint64(cache->get_scalar(kState1Offset)); |
39 } else { | 37 } else { |
40 static const int kByteLength = kRandomBatchSize * kDoubleSize; | 38 cache = Handle<FixedDoubleArray>::cast( |
41 Handle<JSArrayBuffer> buffer = | 39 isolate->factory()->NewFixedDoubleArray(kCacheSize, TENURED)); |
42 isolate->factory()->NewJSArrayBuffer(SharedFlag::kNotShared, TENURED); | 40 native_context->set_math_random_cache(*cache); |
43 JSArrayBuffer::SetupAllocatingData(buffer, isolate, kByteLength, true, | 41 // Initialize state if not yet initialized. |
44 SharedFlag::kNotShared); | 42 while (state0 == 0 || state1 == 0) { |
45 typed_array = isolate->factory()->NewJSTypedArray( | 43 isolate->random_number_generator()->NextBytes(&state0, sizeof(state0)); |
46 kExternalFloat64Array, buffer, 0, kRandomBatchSize); | 44 isolate->random_number_generator()->NextBytes(&state1, sizeof(state1)); |
| 45 } |
47 } | 46 } |
48 | 47 |
49 DisallowHeapAllocation no_gc; | 48 DisallowHeapAllocation no_gc; |
50 double* array = | 49 FixedDoubleArray* raw_cache = *cache; |
51 reinterpret_cast<double*>(typed_array->GetBuffer()->backing_store()); | |
52 // Fetch existing state. | |
53 uint64_t state0 = double_to_uint64(array[kState0Offset]); | |
54 uint64_t state1 = double_to_uint64(array[kState1Offset]); | |
55 // Initialize state if not yet initialized. | |
56 while (state0 == 0 || state1 == 0) { | |
57 isolate->random_number_generator()->NextBytes(&state0, sizeof(state0)); | |
58 isolate->random_number_generator()->NextBytes(&state1, sizeof(state1)); | |
59 } | |
60 // Create random numbers. | 50 // Create random numbers. |
61 for (int i = kState1Offset + 1; i < kRandomBatchSize; i++) { | 51 for (int i = 0; i < kInitialIndex; i++) { |
62 // Generate random numbers using xorshift128+. | 52 // Generate random numbers using xorshift128+. |
63 base::RandomNumberGenerator::XorShift128(&state0, &state1); | 53 base::RandomNumberGenerator::XorShift128(&state0, &state1); |
64 array[i] = base::RandomNumberGenerator::ToDouble(state0, state1); | 54 raw_cache->set(i, base::RandomNumberGenerator::ToDouble(state0, state1)); |
65 } | 55 } |
| 56 |
66 // Persist current state. | 57 // Persist current state. |
67 array[kState0Offset] = uint64_to_double(state0); | 58 raw_cache->set(kState0Offset, uint64_to_double(state0)); |
68 array[kState1Offset] = uint64_to_double(state1); | 59 raw_cache->set(kState1Offset, uint64_to_double(state1)); |
69 return *typed_array; | 60 return Smi::FromInt(kInitialIndex); |
70 } | 61 } |
71 } // namespace internal | 62 } // namespace internal |
72 } // namespace v8 | 63 } // namespace v8 |
OLD | NEW |