OLD | NEW |
1 // Copyright 2012 the V8 project authors. All rights reserved. | 1 // Copyright 2012 the V8 project authors. All rights reserved. |
2 // Redistribution and use in source and binary forms, with or without | 2 // Redistribution and use in source and binary forms, with or without |
3 // modification, are permitted provided that the following conditions are | 3 // modification, are permitted provided that the following conditions are |
4 // met: | 4 // met: |
5 // | 5 // |
6 // * Redistributions of source code must retain the above copyright | 6 // * Redistributions of source code must retain the above copyright |
7 // notice, this list of conditions and the following disclaimer. | 7 // notice, this list of conditions and the following disclaimer. |
8 // * Redistributions in binary form must reproduce the above | 8 // * Redistributions in binary form must reproduce the above |
9 // copyright notice, this list of conditions and the following | 9 // copyright notice, this list of conditions and the following |
10 // disclaimer in the documentation and/or other materials provided | 10 // disclaimer in the documentation and/or other materials provided |
(...skipping 45 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
56 | 56 |
57 #include "platform-posix.h" | 57 #include "platform-posix.h" |
58 #include "platform.h" | 58 #include "platform.h" |
59 #include "vm-state-inl.h" | 59 #include "vm-state-inl.h" |
60 | 60 |
61 | 61 |
62 namespace v8 { | 62 namespace v8 { |
63 namespace internal { | 63 namespace internal { |
64 | 64 |
65 | 65 |
66 static Mutex* limit_mutex = NULL; | |
67 | |
68 | |
69 const char* OS::LocalTimezone(double time) { | 66 const char* OS::LocalTimezone(double time) { |
70 if (std::isnan(time)) return ""; | 67 if (std::isnan(time)) return ""; |
71 time_t tv = static_cast<time_t>(floor(time/msPerSecond)); | 68 time_t tv = static_cast<time_t>(floor(time/msPerSecond)); |
72 struct tm* t = localtime(&tv); | 69 struct tm* t = localtime(&tv); |
73 if (NULL == t) return ""; | 70 if (NULL == t) return ""; |
74 return t->tm_zone; | 71 return t->tm_zone; |
75 } | 72 } |
76 | 73 |
77 | 74 |
78 double OS::LocalTimeOffset() { | 75 double OS::LocalTimeOffset() { |
79 time_t tv = time(NULL); | 76 time_t tv = time(NULL); |
80 struct tm* t = localtime(&tv); | 77 struct tm* t = localtime(&tv); |
81 // tm_gmtoff includes any daylight savings offset, so subtract it. | 78 // tm_gmtoff includes any daylight savings offset, so subtract it. |
82 return static_cast<double>(t->tm_gmtoff * msPerSecond - | 79 return static_cast<double>(t->tm_gmtoff * msPerSecond - |
83 (t->tm_isdst > 0 ? 3600 * msPerSecond : 0)); | 80 (t->tm_isdst > 0 ? 3600 * msPerSecond : 0)); |
84 } | 81 } |
85 | 82 |
86 | 83 |
87 // We keep the lowest and highest addresses mapped as a quick way of | |
88 // determining that pointers are outside the heap (used mostly in assertions | |
89 // and verification). The estimate is conservative, i.e., not all addresses in | |
90 // 'allocated' space are actually allocated to our heap. The range is | |
91 // [lowest, highest), inclusive on the low and and exclusive on the high end. | |
92 static void* lowest_ever_allocated = reinterpret_cast<void*>(-1); | |
93 static void* highest_ever_allocated = reinterpret_cast<void*>(0); | |
94 | |
95 | |
96 static void UpdateAllocatedSpaceLimits(void* address, int size) { | |
97 ASSERT(limit_mutex != NULL); | |
98 LockGuard<Mutex> lock_guard(limit_mutex); | |
99 | |
100 lowest_ever_allocated = Min(lowest_ever_allocated, address); | |
101 highest_ever_allocated = | |
102 Max(highest_ever_allocated, | |
103 reinterpret_cast<void*>(reinterpret_cast<char*>(address) + size)); | |
104 } | |
105 | |
106 | |
107 bool OS::IsOutsideAllocatedSpace(void* address) { | |
108 return address < lowest_ever_allocated || address >= highest_ever_allocated; | |
109 } | |
110 | |
111 | |
112 void* OS::Allocate(const size_t requested, | 84 void* OS::Allocate(const size_t requested, |
113 size_t* allocated, | 85 size_t* allocated, |
114 bool executable) { | 86 bool executable) { |
115 const size_t msize = RoundUp(requested, getpagesize()); | 87 const size_t msize = RoundUp(requested, getpagesize()); |
116 int prot = PROT_READ | PROT_WRITE | (executable ? PROT_EXEC : 0); | 88 int prot = PROT_READ | PROT_WRITE | (executable ? PROT_EXEC : 0); |
117 void* mbase = mmap(NULL, msize, prot, MAP_PRIVATE | MAP_ANON, -1, 0); | 89 void* mbase = mmap(NULL, msize, prot, MAP_PRIVATE | MAP_ANON, -1, 0); |
118 | 90 |
119 if (mbase == MAP_FAILED) { | 91 if (mbase == MAP_FAILED) { |
120 LOG(ISOLATE, StringEvent("OS::Allocate", "mmap failed")); | 92 LOG(ISOLATE, StringEvent("OS::Allocate", "mmap failed")); |
121 return NULL; | 93 return NULL; |
122 } | 94 } |
123 *allocated = msize; | 95 *allocated = msize; |
124 UpdateAllocatedSpaceLimits(mbase, msize); | |
125 return mbase; | 96 return mbase; |
126 } | 97 } |
127 | 98 |
128 | 99 |
129 void OS::DumpBacktrace() { | 100 void OS::DumpBacktrace() { |
130 POSIXBacktraceHelper<backtrace, backtrace_symbols>::DumpBacktrace(); | 101 POSIXBacktraceHelper<backtrace, backtrace_symbols>::DumpBacktrace(); |
131 } | 102 } |
132 | 103 |
133 | 104 |
134 class PosixMemoryMappedFile : public OS::MemoryMappedFile { | 105 class PosixMemoryMappedFile : public OS::MemoryMappedFile { |
(...skipping 203 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
338 bool VirtualMemory::CommitRegion(void* base, size_t size, bool is_executable) { | 309 bool VirtualMemory::CommitRegion(void* base, size_t size, bool is_executable) { |
339 int prot = PROT_READ | PROT_WRITE | (is_executable ? PROT_EXEC : 0); | 310 int prot = PROT_READ | PROT_WRITE | (is_executable ? PROT_EXEC : 0); |
340 if (MAP_FAILED == mmap(base, | 311 if (MAP_FAILED == mmap(base, |
341 size, | 312 size, |
342 prot, | 313 prot, |
343 MAP_PRIVATE | MAP_ANON | MAP_FIXED, | 314 MAP_PRIVATE | MAP_ANON | MAP_FIXED, |
344 kMmapFd, | 315 kMmapFd, |
345 kMmapFdOffset)) { | 316 kMmapFdOffset)) { |
346 return false; | 317 return false; |
347 } | 318 } |
348 | |
349 UpdateAllocatedSpaceLimits(base, size); | |
350 return true; | 319 return true; |
351 } | 320 } |
352 | 321 |
353 | 322 |
354 bool VirtualMemory::UncommitRegion(void* base, size_t size) { | 323 bool VirtualMemory::UncommitRegion(void* base, size_t size) { |
355 return mmap(base, | 324 return mmap(base, |
356 size, | 325 size, |
357 PROT_NONE, | 326 PROT_NONE, |
358 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE | MAP_FIXED, | 327 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE | MAP_FIXED, |
359 kMmapFd, | 328 kMmapFd, |
(...skipping 13 matching lines...) Expand all Loading... |
373 | 342 |
374 | 343 |
375 void OS::SetUp() { | 344 void OS::SetUp() { |
376 // Seed the random number generator. | 345 // Seed the random number generator. |
377 // Convert the current time to a 64-bit integer first, before converting it | 346 // Convert the current time to a 64-bit integer first, before converting it |
378 // to an unsigned. Going directly can cause an overflow and the seed to be | 347 // to an unsigned. Going directly can cause an overflow and the seed to be |
379 // set to all ones. The seed will be identical for different instances that | 348 // set to all ones. The seed will be identical for different instances that |
380 // call this setup code within the same millisecond. | 349 // call this setup code within the same millisecond. |
381 uint64_t seed = static_cast<uint64_t>(TimeCurrentMillis()); | 350 uint64_t seed = static_cast<uint64_t>(TimeCurrentMillis()); |
382 srandom(static_cast<unsigned int>(seed)); | 351 srandom(static_cast<unsigned int>(seed)); |
383 limit_mutex = new Mutex(); | |
384 } | 352 } |
385 | 353 |
386 | 354 |
387 void OS::TearDown() { | 355 void OS::TearDown() { |
388 delete limit_mutex; | |
389 } | 356 } |
390 | 357 |
391 | 358 |
392 } } // namespace v8::internal | 359 } } // namespace v8::internal |
OLD | NEW |