Index: gm/labpcsdemo.cpp |
diff --git a/gm/labpcsdemo.cpp b/gm/labpcsdemo.cpp |
new file mode 100644 |
index 0000000000000000000000000000000000000000..4bd9ed8140f43790397637c48843fcacfb2126c1 |
--- /dev/null |
+++ b/gm/labpcsdemo.cpp |
@@ -0,0 +1,272 @@ |
+/* |
+ * Copyright 2016 Google Inc. |
+ * |
+ * Use of this source code is governed by a BSD-style license that can be |
+ * found in the LICENSE file. |
+ */ |
+ |
+#include <cmath> |
+#include "gm.h" |
+#include "Resources.h" |
+#include "SkCodec.h" |
+#include "SkColorSpace_Base.h" |
+#include "SkColorSpace_A2B.h" |
+#include "SkColorSpacePriv.h" |
+#include "SkData.h" |
+#include "SkFloatingPoint.h" |
+#include "SkImageInfo.h" |
+#include "SkScalar.h" |
+#include "SkSRGB.h" |
+#include "SkStream.h" |
+#include "SkSurface.h" |
+#include "SkTypes.h" |
+ |
+static inline void interp_3d_clut(float dst[3], float src[3], const SkColorLookUpTable* colorLUT) { |
+ // Call the src components x, y, and z. |
+ uint8_t maxX = colorLUT->fGridPoints[0] - 1; |
+ uint8_t maxY = colorLUT->fGridPoints[1] - 1; |
+ uint8_t maxZ = colorLUT->fGridPoints[2] - 1; |
+ |
+ // An approximate index into each of the three dimensions of the table. |
+ float x = src[0] * maxX; |
+ float y = src[1] * maxY; |
+ float z = src[2] * maxZ; |
+ |
+ // This gives us the low index for our interpolation. |
+ int ix = sk_float_floor2int(x); |
+ int iy = sk_float_floor2int(y); |
+ int iz = sk_float_floor2int(z); |
+ |
+ // Make sure the low index is not also the max index. |
+ ix = (maxX == ix) ? ix - 1 : ix; |
+ iy = (maxY == iy) ? iy - 1 : iy; |
+ iz = (maxZ == iz) ? iz - 1 : iz; |
+ |
+ // Weighting factors for the interpolation. |
+ float diffX = x - ix; |
+ float diffY = y - iy; |
+ float diffZ = z - iz; |
+ |
+ // Constants to help us navigate the 3D table. |
+ // Ex: Assume x = a, y = b, z = c. |
+ // table[a * n001 + b * n010 + c * n100] logically equals table[a][b][c]. |
+ const int n000 = 0; |
+ const int n001 = 3 * colorLUT->fGridPoints[1] * colorLUT->fGridPoints[2]; |
+ const int n010 = 3 * colorLUT->fGridPoints[2]; |
+ const int n011 = n001 + n010; |
+ const int n100 = 3; |
+ const int n101 = n100 + n001; |
+ const int n110 = n100 + n010; |
+ const int n111 = n110 + n001; |
+ |
+ // Base ptr into the table. |
+ const float* ptr = &(colorLUT->table()[ix*n001 + iy*n010 + iz*n100]); |
+ |
+ // The code below performs a tetrahedral interpolation for each of the three |
+ // dst components. Once the tetrahedron containing the interpolation point is |
+ // identified, the interpolation is a weighted sum of grid values at the |
+ // vertices of the tetrahedron. The claim is that tetrahedral interpolation |
+ // provides a more accurate color conversion. |
+ // blogs.mathworks.com/steve/2006/11/24/tetrahedral-interpolation-for-colorspace-conversion/ |
+ // |
+ // I have one test image, and visually I can't tell the difference between |
+ // tetrahedral and trilinear interpolation. In terms of computation, the |
+ // tetrahedral code requires more branches but less computation. The |
+ // SampleICC library provides an option for the client to choose either |
+ // tetrahedral or trilinear. |
+ for (int i = 0; i < 3; i++) { |
+ if (diffZ < diffY) { |
+ if (diffZ < diffX) { |
+ dst[i] = (ptr[n000] + diffZ * (ptr[n110] - ptr[n010]) + |
+ diffY * (ptr[n010] - ptr[n000]) + |
+ diffX * (ptr[n111] - ptr[n110])); |
+ } else if (diffY < diffX) { |
+ dst[i] = (ptr[n000] + diffZ * (ptr[n111] - ptr[n011]) + |
+ diffY * (ptr[n011] - ptr[n001]) + |
+ diffX * (ptr[n001] - ptr[n000])); |
+ } else { |
+ dst[i] = (ptr[n000] + diffZ * (ptr[n111] - ptr[n011]) + |
+ diffY * (ptr[n010] - ptr[n000]) + |
+ diffX * (ptr[n011] - ptr[n010])); |
+ } |
+ } else { |
+ if (diffZ < diffX) { |
+ dst[i] = (ptr[n000] + diffZ * (ptr[n101] - ptr[n001]) + |
+ diffY * (ptr[n111] - ptr[n101]) + |
+ diffX * (ptr[n001] - ptr[n000])); |
+ } else if (diffY < diffX) { |
+ dst[i] = (ptr[n000] + diffZ * (ptr[n100] - ptr[n000]) + |
+ diffY * (ptr[n111] - ptr[n101]) + |
+ diffX * (ptr[n101] - ptr[n100])); |
+ } else { |
+ dst[i] = (ptr[n000] + diffZ * (ptr[n100] - ptr[n000]) + |
+ diffY * (ptr[n110] - ptr[n100]) + |
+ diffX * (ptr[n111] - ptr[n110])); |
+ } |
+ } |
+ |
+ // Increment the table ptr in order to handle the next component. |
+ // Note that this is the how table is designed: all of nXXX |
+ // variables are multiples of 3 because there are 3 output |
+ // components. |
+ ptr++; |
+ } |
+} |
+ |
+ |
+/** |
+ * This tests decoding from a Lab source image and displays on the left |
+ * the image as raw RGB values, and on the right a Lab PCS. |
+ * It currently does NOT apply a/b/m-curves, as in the .icc profile |
+ * We are testing it on these are all identity transforms. |
+ */ |
+class LabPCSDemoGM : public skiagm::GM { |
+public: |
+ LabPCSDemoGM() |
+ : fWidth(1080) |
+ , fHeight(480) |
+ {} |
+ |
+protected: |
+ |
+ |
+ SkString onShortName() override { |
+ return SkString("labpcsdemo"); |
+ } |
+ |
+ SkISize onISize() override { |
+ return SkISize::Make(fWidth, fHeight); |
+ } |
+ |
+ void onDraw(SkCanvas* canvas) override { |
+ canvas->drawColor(SK_ColorGREEN); |
+ const char* filename = "brickwork-texture.jpg"; |
+ renderImage(canvas, filename, 0, false); |
+ renderImage(canvas, filename, 1, true); |
+ } |
+ |
+ void renderImage(SkCanvas* canvas, const char* filename, int col, bool convertLabToXYZ) { |
+ SkBitmap bitmap; |
+ SkStream* stream(GetResourceAsStream(filename)); |
+ if (stream == nullptr) { |
+ return; |
+ } |
+ std::unique_ptr<SkCodec> codec(SkCodec::NewFromStream(stream)); |
+ |
+ |
+ // srgb_lab_pcs.icc is an elaborate way to specify sRGB but uses |
+ // Lab as the PCS, so we can take any arbitrary image that should |
+ // be sRGB and this should show a reasonable image |
+ const SkString iccFilename(GetResourcePath("icc_profiles/srgb_lab_pcs.icc")); |
+ sk_sp<SkData> iccData = SkData::MakeFromFileName(iccFilename.c_str()); |
+ if (iccData == nullptr) { |
+ return; |
+ } |
+ sk_sp<SkColorSpace> colorSpace = SkColorSpace::NewICC(iccData->bytes(), iccData->size()); |
+ |
+ const int imageWidth = codec->getInfo().width(); |
+ const int imageHeight = codec->getInfo().height(); |
+ // Using nullptr as the color space instructs the codec to decode in legacy mode, |
+ // meaning that we will get the raw encoded bytes without any color correction. |
+ SkImageInfo imageInfo = SkImageInfo::Make(imageWidth, imageHeight, kN32_SkColorType, |
+ kOpaque_SkAlphaType, nullptr); |
+ bitmap.allocPixels(imageInfo); |
+ codec->getPixels(imageInfo, bitmap.getPixels(), bitmap.rowBytes()); |
+ if (convertLabToXYZ) { |
+ SkASSERT(SkColorSpace_Base::Type::kA2B == as_CSB(colorSpace)->type()); |
+ SkColorSpace_A2B& cs = *static_cast<SkColorSpace_A2B*>(colorSpace.get()); |
+ bool printConversions = false; |
+ SkASSERT(cs.colorLUT()); |
+ // We're skipping evaluating the TRCs and the matrix here since they aren't |
+ // in the ICC profile initially used here. |
+ SkASSERT(kLinear_SkGammaNamed == cs.aCurveNamed()); |
+ SkASSERT(kLinear_SkGammaNamed == cs.mCurveNamed()); |
+ SkASSERT(kLinear_SkGammaNamed == cs.bCurveNamed()); |
+ SkASSERT(cs.matrix().isIdentity()); |
+ for (int y = 0; y < imageHeight; ++y) { |
+ for (int x = 0; x < imageWidth; ++x) { |
+ uint32_t& p = *bitmap.getAddr32(x, y); |
+ const int r = SkColorGetR(p); |
+ const int g = SkColorGetG(p); |
+ const int b = SkColorGetB(p); |
+ if (printConversions) { |
+ SkColorSpacePrintf("\nraw = (%d, %d, %d)\t", r, g, b); |
+ } |
+ |
+ float lab[4] = { r * (1.f/255.f), g * (1.f/255.f), b * (1.f/255.f), 1.f }; |
+ |
+ interp_3d_clut(lab, lab, cs.colorLUT()); |
+ |
+ // Lab has ranges [0,100] for L and [-128,127] for a and b |
+ // but the ICC profile loader stores as [0,1]. The ICC |
+ // specifies an offset of -128 to convert. |
+ // note: formula could be adjusted to remove this conversion, |
+ // but for now let's keep it like this for clarity until |
+ // an optimized version is added. |
+ lab[0] *= 100.f; |
+ lab[1] = 255.f * lab[1] - 128.f; |
+ lab[2] = 255.f * lab[2] - 128.f; |
+ if (printConversions) { |
+ SkColorSpacePrintf("Lab = < %f, %f, %f >\n", lab[0], lab[1], lab[2]); |
+ } |
+ |
+ // convert from Lab to XYZ |
+ float Y = (lab[0] + 16.f) * (1.f/116.f); |
+ float X = lab[1] * (1.f/500.f) + Y; |
+ float Z = Y - (lab[2] * (1.f/200.f)); |
+ float cubed; |
+ cubed = X*X*X; |
+ if (cubed > 0.008856f) |
+ X = cubed; |
+ else |
+ X = (X - (16.f/116.f)) * (1.f/7.787f); |
+ cubed = Y*Y*Y; |
+ if (cubed > 0.008856f) |
+ Y = cubed; |
+ else |
+ Y = (Y - (16.f/116.f)) * (1.f/7.787f); |
+ cubed = Z*Z*Z; |
+ if (cubed > 0.008856f) |
+ Z = cubed; |
+ else |
+ Z = (Z - (16.f/116.f)) * (1.f/7.787f); |
+ |
+ // adjust to D50 illuminant |
+ X *= 0.96422f; |
+ Y *= 1.00000f; |
+ Z *= 0.82521f; |
+ |
+ if (printConversions) { |
+ SkColorSpacePrintf("XYZ = (%4f, %4f, %4f)\t", X, Y, Z); |
+ } |
+ |
+ // convert XYZ -> linear sRGB |
+ Sk4f lRGB( 3.1338561f*X - 1.6168667f*Y - 0.4906146f*Z, |
+ -0.9787684f*X + 1.9161415f*Y + 0.0334540f*Z, |
+ 0.0719453f*X - 0.2289914f*Y + 1.4052427f*Z, |
+ 1.f); |
+ // and apply sRGB gamma |
+ Sk4i sRGB = sk_linear_to_srgb(lRGB); |
+ if (printConversions) { |
+ SkColorSpacePrintf("sRGB = (%d, %d, %d)\n", sRGB[0], sRGB[1], sRGB[2]); |
+ } |
+ p = SkColorSetRGB(sRGB[0], sRGB[1], sRGB[2]); |
+ } |
+ } |
+ } |
+ const int freeWidth = fWidth - 2*imageWidth; |
+ const int freeHeight = fHeight - imageHeight; |
+ canvas->drawBitmap(bitmap, |
+ static_cast<SkScalar>((col+1) * (freeWidth / 3) + col*imageWidth), |
+ static_cast<SkScalar>(freeHeight / 2)); |
+ ++col; |
+ } |
+ |
+private: |
+ const int fWidth; |
+ const int fHeight; |
+ |
+ typedef skiagm::GM INHERITED; |
+}; |
+ |
+DEF_GM( return new LabPCSDemoGM; ) |