| Index: gm/labpcsdemo.cpp
 | 
| diff --git a/gm/labpcsdemo.cpp b/gm/labpcsdemo.cpp
 | 
| new file mode 100644
 | 
| index 0000000000000000000000000000000000000000..4bd9ed8140f43790397637c48843fcacfb2126c1
 | 
| --- /dev/null
 | 
| +++ b/gm/labpcsdemo.cpp
 | 
| @@ -0,0 +1,272 @@
 | 
| +/*
 | 
| + * Copyright 2016 Google Inc.
 | 
| + *
 | 
| + * Use of this source code is governed by a BSD-style license that can be
 | 
| + * found in the LICENSE file.
 | 
| + */
 | 
| +
 | 
| +#include <cmath>
 | 
| +#include "gm.h"
 | 
| +#include "Resources.h"
 | 
| +#include "SkCodec.h"
 | 
| +#include "SkColorSpace_Base.h"
 | 
| +#include "SkColorSpace_A2B.h"
 | 
| +#include "SkColorSpacePriv.h"
 | 
| +#include "SkData.h"
 | 
| +#include "SkFloatingPoint.h"
 | 
| +#include "SkImageInfo.h"
 | 
| +#include "SkScalar.h"
 | 
| +#include "SkSRGB.h"
 | 
| +#include "SkStream.h"
 | 
| +#include "SkSurface.h"
 | 
| +#include "SkTypes.h"
 | 
| +
 | 
| +static inline void interp_3d_clut(float dst[3], float src[3], const SkColorLookUpTable* colorLUT) {
 | 
| +    // Call the src components x, y, and z.
 | 
| +    uint8_t maxX = colorLUT->fGridPoints[0] - 1;
 | 
| +    uint8_t maxY = colorLUT->fGridPoints[1] - 1;
 | 
| +    uint8_t maxZ = colorLUT->fGridPoints[2] - 1;
 | 
| +
 | 
| +    // An approximate index into each of the three dimensions of the table.
 | 
| +    float x = src[0] * maxX;
 | 
| +    float y = src[1] * maxY;
 | 
| +    float z = src[2] * maxZ;
 | 
| +
 | 
| +    // This gives us the low index for our interpolation.
 | 
| +    int ix = sk_float_floor2int(x);
 | 
| +    int iy = sk_float_floor2int(y);
 | 
| +    int iz = sk_float_floor2int(z);
 | 
| +
 | 
| +    // Make sure the low index is not also the max index.
 | 
| +    ix = (maxX == ix) ? ix - 1 : ix;
 | 
| +    iy = (maxY == iy) ? iy - 1 : iy;
 | 
| +    iz = (maxZ == iz) ? iz - 1 : iz;
 | 
| +
 | 
| +    // Weighting factors for the interpolation.
 | 
| +    float diffX = x - ix;
 | 
| +    float diffY = y - iy;
 | 
| +    float diffZ = z - iz;
 | 
| +
 | 
| +    // Constants to help us navigate the 3D table.
 | 
| +    // Ex: Assume x = a, y = b, z = c.
 | 
| +    //     table[a * n001 + b * n010 + c * n100] logically equals table[a][b][c].
 | 
| +    const int n000 = 0;
 | 
| +    const int n001 = 3 * colorLUT->fGridPoints[1] * colorLUT->fGridPoints[2];
 | 
| +    const int n010 = 3 * colorLUT->fGridPoints[2];
 | 
| +    const int n011 = n001 + n010;
 | 
| +    const int n100 = 3;
 | 
| +    const int n101 = n100 + n001;
 | 
| +    const int n110 = n100 + n010;
 | 
| +    const int n111 = n110 + n001;
 | 
| +
 | 
| +    // Base ptr into the table.
 | 
| +    const float* ptr = &(colorLUT->table()[ix*n001 + iy*n010 + iz*n100]);
 | 
| +
 | 
| +    // The code below performs a tetrahedral interpolation for each of the three
 | 
| +    // dst components.  Once the tetrahedron containing the interpolation point is
 | 
| +    // identified, the interpolation is a weighted sum of grid values at the
 | 
| +    // vertices of the tetrahedron.  The claim is that tetrahedral interpolation
 | 
| +    // provides a more accurate color conversion.
 | 
| +    // blogs.mathworks.com/steve/2006/11/24/tetrahedral-interpolation-for-colorspace-conversion/
 | 
| +    //
 | 
| +    // I have one test image, and visually I can't tell the difference between
 | 
| +    // tetrahedral and trilinear interpolation.  In terms of computation, the
 | 
| +    // tetrahedral code requires more branches but less computation.  The
 | 
| +    // SampleICC library provides an option for the client to choose either
 | 
| +    // tetrahedral or trilinear.
 | 
| +    for (int i = 0; i < 3; i++) {
 | 
| +        if (diffZ < diffY) {
 | 
| +            if (diffZ < diffX) {
 | 
| +                dst[i] = (ptr[n000] + diffZ * (ptr[n110] - ptr[n010]) +
 | 
| +                                      diffY * (ptr[n010] - ptr[n000]) +
 | 
| +                                      diffX * (ptr[n111] - ptr[n110]));
 | 
| +            } else if (diffY < diffX) {
 | 
| +                dst[i] = (ptr[n000] + diffZ * (ptr[n111] - ptr[n011]) +
 | 
| +                                      diffY * (ptr[n011] - ptr[n001]) +
 | 
| +                                      diffX * (ptr[n001] - ptr[n000]));
 | 
| +            } else {
 | 
| +                dst[i] = (ptr[n000] + diffZ * (ptr[n111] - ptr[n011]) +
 | 
| +                                      diffY * (ptr[n010] - ptr[n000]) +
 | 
| +                                      diffX * (ptr[n011] - ptr[n010]));
 | 
| +            }
 | 
| +        } else {
 | 
| +            if (diffZ < diffX) {
 | 
| +                dst[i] = (ptr[n000] + diffZ * (ptr[n101] - ptr[n001]) +
 | 
| +                                      diffY * (ptr[n111] - ptr[n101]) +
 | 
| +                                      diffX * (ptr[n001] - ptr[n000]));
 | 
| +            } else if (diffY < diffX) {
 | 
| +                dst[i] = (ptr[n000] + diffZ * (ptr[n100] - ptr[n000]) +
 | 
| +                                      diffY * (ptr[n111] - ptr[n101]) +
 | 
| +                                      diffX * (ptr[n101] - ptr[n100]));
 | 
| +            } else {
 | 
| +                dst[i] = (ptr[n000] + diffZ * (ptr[n100] - ptr[n000]) +
 | 
| +                                      diffY * (ptr[n110] - ptr[n100]) +
 | 
| +                                      diffX * (ptr[n111] - ptr[n110]));
 | 
| +            }
 | 
| +        }
 | 
| +
 | 
| +        // Increment the table ptr in order to handle the next component.
 | 
| +        // Note that this is the how table is designed: all of nXXX
 | 
| +        // variables are multiples of 3 because there are 3 output
 | 
| +        // components.
 | 
| +        ptr++;
 | 
| +    }
 | 
| +}
 | 
| +
 | 
| +
 | 
| +/**
 | 
| + *  This tests decoding from a Lab source image and displays on the left
 | 
| + *  the image as raw RGB values, and on the right a Lab PCS.
 | 
| + *  It currently does NOT apply a/b/m-curves, as in the .icc profile
 | 
| + *  We are testing it on these are all identity transforms.
 | 
| + */
 | 
| +class LabPCSDemoGM : public skiagm::GM {
 | 
| +public:
 | 
| +    LabPCSDemoGM()
 | 
| +        : fWidth(1080)
 | 
| +        , fHeight(480)
 | 
| +        {}
 | 
| +
 | 
| +protected:
 | 
| +
 | 
| +
 | 
| +    SkString onShortName() override {
 | 
| +        return SkString("labpcsdemo");
 | 
| +    }
 | 
| +
 | 
| +    SkISize onISize() override {
 | 
| +        return SkISize::Make(fWidth, fHeight);
 | 
| +    }
 | 
| +
 | 
| +    void onDraw(SkCanvas* canvas) override {
 | 
| +        canvas->drawColor(SK_ColorGREEN);
 | 
| +        const char* filename = "brickwork-texture.jpg";
 | 
| +        renderImage(canvas, filename, 0, false);
 | 
| +        renderImage(canvas, filename, 1, true);
 | 
| +    }
 | 
| +
 | 
| +    void renderImage(SkCanvas* canvas, const char* filename, int col, bool convertLabToXYZ) {
 | 
| +        SkBitmap bitmap;
 | 
| +        SkStream* stream(GetResourceAsStream(filename));
 | 
| +        if (stream == nullptr) {
 | 
| +            return;
 | 
| +        }
 | 
| +        std::unique_ptr<SkCodec> codec(SkCodec::NewFromStream(stream));
 | 
| +        
 | 
| +
 | 
| +        // srgb_lab_pcs.icc is an elaborate way to specify sRGB but uses
 | 
| +        // Lab as the PCS, so we can take any arbitrary image that should
 | 
| +        // be sRGB and this should show a reasonable image
 | 
| +        const SkString iccFilename(GetResourcePath("icc_profiles/srgb_lab_pcs.icc"));
 | 
| +        sk_sp<SkData> iccData = SkData::MakeFromFileName(iccFilename.c_str());
 | 
| +        if (iccData == nullptr) {
 | 
| +            return;
 | 
| +        }
 | 
| +        sk_sp<SkColorSpace> colorSpace = SkColorSpace::NewICC(iccData->bytes(), iccData->size());
 | 
| +
 | 
| +        const int imageWidth = codec->getInfo().width();
 | 
| +        const int imageHeight = codec->getInfo().height();
 | 
| +        // Using nullptr as the color space instructs the codec to decode in legacy mode,
 | 
| +        // meaning that we will get the raw encoded bytes without any color correction.
 | 
| +        SkImageInfo imageInfo = SkImageInfo::Make(imageWidth, imageHeight, kN32_SkColorType,  
 | 
| +                                                  kOpaque_SkAlphaType, nullptr);
 | 
| +        bitmap.allocPixels(imageInfo);
 | 
| +        codec->getPixels(imageInfo, bitmap.getPixels(), bitmap.rowBytes());
 | 
| +        if (convertLabToXYZ) {
 | 
| +            SkASSERT(SkColorSpace_Base::Type::kA2B == as_CSB(colorSpace)->type());
 | 
| +            SkColorSpace_A2B& cs = *static_cast<SkColorSpace_A2B*>(colorSpace.get());
 | 
| +            bool printConversions = false;
 | 
| +            SkASSERT(cs.colorLUT());
 | 
| +            // We're skipping evaluating the TRCs and the matrix here since they aren't
 | 
| +            // in the ICC profile initially used here.
 | 
| +            SkASSERT(kLinear_SkGammaNamed == cs.aCurveNamed());
 | 
| +            SkASSERT(kLinear_SkGammaNamed == cs.mCurveNamed());
 | 
| +            SkASSERT(kLinear_SkGammaNamed == cs.bCurveNamed());
 | 
| +            SkASSERT(cs.matrix().isIdentity());
 | 
| +            for (int y = 0; y < imageHeight; ++y) {
 | 
| +                for (int x = 0; x < imageWidth; ++x) {
 | 
| +                    uint32_t& p = *bitmap.getAddr32(x, y);
 | 
| +                    const int r = SkColorGetR(p);
 | 
| +                    const int g = SkColorGetG(p);
 | 
| +                    const int b = SkColorGetB(p);
 | 
| +                    if (printConversions) {
 | 
| +                        SkColorSpacePrintf("\nraw = (%d, %d, %d)\t", r, g, b);
 | 
| +                    }
 | 
| +
 | 
| +                    float lab[4] = { r * (1.f/255.f), g * (1.f/255.f), b * (1.f/255.f), 1.f };
 | 
| +                    
 | 
| +                    interp_3d_clut(lab, lab, cs.colorLUT());
 | 
| +                    
 | 
| +                    // Lab has ranges [0,100] for L and [-128,127] for a and b
 | 
| +                    // but the ICC profile loader stores as [0,1]. The ICC
 | 
| +                    // specifies an offset of -128 to convert.
 | 
| +                    // note: formula could be adjusted to remove this conversion,
 | 
| +                    //       but for now let's keep it like this for clarity until
 | 
| +                    //       an optimized version is added.
 | 
| +                    lab[0] *= 100.f;
 | 
| +                    lab[1] = 255.f * lab[1] - 128.f;
 | 
| +                    lab[2] = 255.f * lab[2] - 128.f;
 | 
| +                    if (printConversions) {
 | 
| +                        SkColorSpacePrintf("Lab = < %f, %f, %f >\n", lab[0], lab[1], lab[2]);
 | 
| +                    }
 | 
| +
 | 
| +                    // convert from Lab to XYZ
 | 
| +                    float Y = (lab[0] + 16.f) * (1.f/116.f);
 | 
| +                    float X = lab[1] * (1.f/500.f) + Y;
 | 
| +                    float Z = Y - (lab[2] * (1.f/200.f));
 | 
| +                    float cubed;
 | 
| +                    cubed = X*X*X;
 | 
| +                    if (cubed > 0.008856f)
 | 
| +                        X = cubed;
 | 
| +                    else
 | 
| +                        X = (X - (16.f/116.f)) * (1.f/7.787f);
 | 
| +                    cubed = Y*Y*Y;
 | 
| +                    if (cubed > 0.008856f)
 | 
| +                        Y = cubed;
 | 
| +                    else
 | 
| +                        Y = (Y - (16.f/116.f)) * (1.f/7.787f);
 | 
| +                    cubed = Z*Z*Z;
 | 
| +                    if (cubed > 0.008856f)
 | 
| +                        Z = cubed;
 | 
| +                    else
 | 
| +                        Z = (Z - (16.f/116.f)) * (1.f/7.787f);
 | 
| +
 | 
| +                    // adjust to D50 illuminant
 | 
| +                    X *= 0.96422f;
 | 
| +                    Y *= 1.00000f;
 | 
| +                    Z *= 0.82521f;
 | 
| +
 | 
| +                    if (printConversions) {
 | 
| +                        SkColorSpacePrintf("XYZ = (%4f, %4f, %4f)\t", X, Y, Z);
 | 
| +                    }
 | 
| +
 | 
| +                    // convert XYZ -> linear sRGB
 | 
| +                    Sk4f lRGB( 3.1338561f*X - 1.6168667f*Y - 0.4906146f*Z,
 | 
| +                              -0.9787684f*X + 1.9161415f*Y + 0.0334540f*Z,
 | 
| +                               0.0719453f*X - 0.2289914f*Y + 1.4052427f*Z,
 | 
| +                              1.f);
 | 
| +                    // and apply sRGB gamma
 | 
| +                    Sk4i sRGB = sk_linear_to_srgb(lRGB);
 | 
| +                    if (printConversions) {
 | 
| +                        SkColorSpacePrintf("sRGB = (%d, %d, %d)\n", sRGB[0], sRGB[1], sRGB[2]);
 | 
| +                    }
 | 
| +                    p = SkColorSetRGB(sRGB[0], sRGB[1], sRGB[2]);
 | 
| +                }
 | 
| +            }
 | 
| +        }
 | 
| +        const int freeWidth = fWidth - 2*imageWidth;
 | 
| +        const int freeHeight = fHeight - imageHeight;
 | 
| +        canvas->drawBitmap(bitmap,
 | 
| +                           static_cast<SkScalar>((col+1) * (freeWidth / 3) + col*imageWidth),
 | 
| +                           static_cast<SkScalar>(freeHeight / 2));
 | 
| +        ++col;
 | 
| +    }
 | 
| +
 | 
| +private:
 | 
| +    const int fWidth;
 | 
| +    const int fHeight;
 | 
| +
 | 
| +    typedef skiagm::GM INHERITED;
 | 
| +};
 | 
| +
 | 
| +DEF_GM( return new LabPCSDemoGM; )
 | 
| 
 |