Chromium Code Reviews| Index: gm/labpcsdemo.cpp |
| diff --git a/gm/labpcsdemo.cpp b/gm/labpcsdemo.cpp |
| new file mode 100644 |
| index 0000000000000000000000000000000000000000..b0dffdecd7794288976de0c5b451e4f77e0d18dd |
| --- /dev/null |
| +++ b/gm/labpcsdemo.cpp |
| @@ -0,0 +1,267 @@ |
| +/* |
| + * Copyright 2016 Google Inc. |
| + * |
| + * Use of this source code is governed by a BSD-style license that can be |
| + * found in the LICENSE file. |
| + */ |
| + |
| +#include <cmath> |
| +#include "gm.h" |
| +#include "Resources.h" |
| +#include "SkCodec.h" |
| +#include "SkColorSpace_Base.h" |
| +#include "SkColorSpace_A2B0.h" |
| +#include "SkColorSpacePriv.h" |
| +#include "SkData.h" |
| +#include "SkFloatingPoint.h" |
| +#include "SkImageInfo.h" |
| +#include "SkScalar.h" |
| +#include "SkSRGB.h" |
| +#include "SkStream.h" |
| +#include "SkSurface.h" |
| +#include "SkTypes.h" |
| + |
| +static inline void interp_3d_clut(float dst[3], float src[3], const SkColorLookUpTable* colorLUT) { |
| + // Call the src components x, y, and z. |
| + uint8_t maxX = colorLUT->fGridPoints[0] - 1; |
| + uint8_t maxY = colorLUT->fGridPoints[1] - 1; |
| + uint8_t maxZ = colorLUT->fGridPoints[2] - 1; |
| + |
| + // An approximate index into each of the three dimensions of the table. |
| + float x = src[0] * maxX; |
| + float y = src[1] * maxY; |
| + float z = src[2] * maxZ; |
| + |
| + // This gives us the low index for our interpolation. |
| + int ix = sk_float_floor2int(x); |
| + int iy = sk_float_floor2int(y); |
| + int iz = sk_float_floor2int(z); |
| + |
| + // Make sure the low index is not also the max index. |
| + ix = (maxX == ix) ? ix - 1 : ix; |
| + iy = (maxY == iy) ? iy - 1 : iy; |
| + iz = (maxZ == iz) ? iz - 1 : iz; |
| + |
| + // Weighting factors for the interpolation. |
| + float diffX = x - ix; |
| + float diffY = y - iy; |
| + float diffZ = z - iz; |
| + |
| + // Constants to help us navigate the 3D table. |
| + // Ex: Assume x = a, y = b, z = c. |
| + // table[a * n001 + b * n010 + c * n100] logically equals table[a][b][c]. |
| + const int n000 = 0; |
| + const int n001 = 3 * colorLUT->fGridPoints[1] * colorLUT->fGridPoints[2]; |
| + const int n010 = 3 * colorLUT->fGridPoints[2]; |
| + const int n011 = n001 + n010; |
| + const int n100 = 3; |
| + const int n101 = n100 + n001; |
| + const int n110 = n100 + n010; |
| + const int n111 = n110 + n001; |
| + |
| + // Base ptr into the table. |
| + const float* ptr = &(colorLUT->table()[ix*n001 + iy*n010 + iz*n100]); |
| + |
| + // The code below performs a tetrahedral interpolation for each of the three |
| + // dst components. Once the tetrahedron containing the interpolation point is |
| + // identified, the interpolation is a weighted sum of grid values at the |
| + // vertices of the tetrahedron. The claim is that tetrahedral interpolation |
| + // provides a more accurate color conversion. |
| + // blogs.mathworks.com/steve/2006/11/24/tetrahedral-interpolation-for-colorspace-conversion/ |
| + // |
| + // I have one test image, and visually I can't tell the difference between |
| + // tetrahedral and trilinear interpolation. In terms of computation, the |
| + // tetrahedral code requires more branches but less computation. The |
| + // SampleICC library provides an option for the client to choose either |
| + // tetrahedral or trilinear. |
| + for (int i = 0; i < 3; i++) { |
| + if (diffZ < diffY) { |
| + if (diffZ < diffX) { |
| + dst[i] = (ptr[n000] + diffZ * (ptr[n110] - ptr[n010]) + |
| + diffY * (ptr[n010] - ptr[n000]) + |
| + diffX * (ptr[n111] - ptr[n110])); |
| + } else if (diffY < diffX) { |
| + dst[i] = (ptr[n000] + diffZ * (ptr[n111] - ptr[n011]) + |
| + diffY * (ptr[n011] - ptr[n001]) + |
| + diffX * (ptr[n001] - ptr[n000])); |
| + } else { |
| + dst[i] = (ptr[n000] + diffZ * (ptr[n111] - ptr[n011]) + |
| + diffY * (ptr[n010] - ptr[n000]) + |
| + diffX * (ptr[n011] - ptr[n010])); |
| + } |
| + } else { |
| + if (diffZ < diffX) { |
| + dst[i] = (ptr[n000] + diffZ * (ptr[n101] - ptr[n001]) + |
| + diffY * (ptr[n111] - ptr[n101]) + |
| + diffX * (ptr[n001] - ptr[n000])); |
| + } else if (diffY < diffX) { |
| + dst[i] = (ptr[n000] + diffZ * (ptr[n100] - ptr[n000]) + |
| + diffY * (ptr[n111] - ptr[n101]) + |
| + diffX * (ptr[n101] - ptr[n100])); |
| + } else { |
| + dst[i] = (ptr[n000] + diffZ * (ptr[n100] - ptr[n000]) + |
| + diffY * (ptr[n110] - ptr[n100]) + |
| + diffX * (ptr[n111] - ptr[n110])); |
| + } |
| + } |
| + |
| + // Increment the table ptr in order to handle the next component. |
| + // Note that this is the how table is designed: all of nXXX |
| + // variables are multiples of 3 because there are 3 output |
| + // components. |
| + ptr++; |
| + } |
| +} |
| + |
| + |
| +/** |
| + * This tests decoding from a Lab source image and displays on the left |
| + * the image as raw RGB values, and on the right a Lab PCS. |
| + * It currently does NOT apply a/b/m-curves, as in the .icc profile |
| + * We are testing it on these are all identity transforms. |
| + */ |
| +class LabPCSDemoGM : public skiagm::GM { |
| +public: |
| + LabPCSDemoGM() |
| + : fWidth(1080) |
| + , fHeight(480) |
| + {} |
| + |
| +protected: |
| + |
| + |
| + SkString onShortName() override { |
| + return SkString("labpcsdemo"); |
| + } |
| + |
| + SkISize onISize() override { |
| + return SkISize::Make(fWidth, fHeight); |
| + } |
| + |
| + void onDraw(SkCanvas* canvas) override { |
| + canvas->drawColor(SK_ColorGREEN); |
| + const char* filename = "brickwork-texture.jpg"; |
| + renderImage(canvas, filename, 0, false); |
| + renderImage(canvas, filename, 1, true); |
| + } |
| + |
| + void renderImage(SkCanvas* canvas, const char* filename, int col, bool convertLabToXYZ) { |
| + SkBitmap bitmap; |
| + SkStream* stream(GetResourceAsStream(filename)); |
| + if (stream == nullptr) { |
| + return; |
| + } |
| + std::unique_ptr<SkCodec> codec(SkCodec::NewFromStream(stream)); |
| + |
| + |
| + // srgb_lab_pcs.icc is an elaborate way to specify sRGB but uses |
| + // Lab as the PCS, so we can take any arbitrary image that should |
| + // be sRGB and this should show a reasonable image |
| + const SkString iccFilename(GetResourcePath("icc_profiles/srgb_lab_pcs.icc")); |
| + sk_sp<SkData> iccData = SkData::MakeFromFileName(iccFilename.c_str()); |
| + if (iccData == nullptr) { |
| + return; |
| + } |
| + sk_sp<SkColorSpace> colorSpace = SkColorSpace::NewICC(iccData->bytes(), iccData->size()); |
| + |
| + const int imageWidth = codec->getInfo().width(); |
| + const int imageHeight = codec->getInfo().height(); |
| + // Using nullptr as the color space instructs the codec to decode in legacy mode, |
| + // meaning that we will get the raw encoded bytes without any color correction. |
| + SkImageInfo imageInfo = SkImageInfo::Make(imageWidth, imageHeight, kN32_SkColorType, |
| + kOpaque_SkAlphaType, nullptr); |
| + bitmap.allocPixels(imageInfo); |
| + codec->getPixels(imageInfo, bitmap.getPixels(), bitmap.rowBytes()); |
| + if (convertLabToXYZ) { |
| + SkASSERT(as_CSB(colorSpace)->type() == SkColorSpace_Base::Type::kA2B0); |
| + const SkColorSpace_A2B0& cs = *static_cast<const SkColorSpace_A2B0*>(colorSpace.get()); |
| + bool printConversions = false; |
| + SkASSERT(cs.colorLUT()); |
| + for (int y = 0; y < imageHeight; ++y) { |
| + for (int x = 0; x < imageWidth; ++x) { |
| + uint32_t& p = *bitmap.getAddr32(x, y); |
| + const int r = SkColorGetR(p); |
| + const int g = SkColorGetG(p); |
| + const int b = SkColorGetB(p); |
| + if (printConversions) { |
| + SkColorSpacePrintf("\nraw = (%d, %d, %d)\t", r, g, b); |
| + } |
| + |
| + float lab[4] = { r * (1.f/255.f), g * (1.f/255.f), b * (1.f/255.f), 1.f }; |
| + |
| + interp_3d_clut(lab, lab, cs.colorLUT()); |
| + |
| + cs.matrix().mapScalars(lab, lab); |
| + |
| + // Lab has ranges [0,100] for L and [-128,128] for a and b |
|
msarett
2016/10/11 13:40:30
I'm sure what you're dong here is appropriate.
Wa
|
| + // but the ICC profile loader stores as [0,1] |
| + // note: formula could be adjusted to remove this conversion, |
| + // but for now let's keep it like this for clarity until |
| + // an optimized version is added. |
| + lab[0] *= 100.f; |
| + lab[1] = 128.f*2.f * (lab[1] - 0.5f); |
| + lab[2] = 128.f*2.f * (lab[2] - 0.5f); |
| + if (printConversions) { |
| + SkColorSpacePrintf("Lab = < %f, %f, %f >\n", lab[0], lab[1], lab[2]); |
| + } |
| + |
| + // convert from Lab to XYZ |
| + float Y = (lab[0] + 16.f) * (1.f/116.f); |
| + float X = lab[1] * (1.f/500.f) + Y; |
| + float Z = Y - (lab[2] * (1.f/200.f)); |
| + float cubed; |
| + cubed = X*X*X; |
| + if (cubed > 0.008856f) |
| + X = cubed; |
| + else |
| + X = (X - (16.f/116.f)) * (1.f/7.787f); |
| + cubed = Y*Y*Y; |
| + if (cubed > 0.008856f) |
| + Y = cubed; |
| + else |
| + Y = (Y - (16.f/116.f)) * (1.f/7.787f); |
| + cubed = Z*Z*Z; |
| + if (cubed > 0.008856f) |
| + Z = cubed; |
| + else |
| + Z = (Z - (16.f/116.f)) * (1.f/7.787f); |
| + |
| + // adjust to D50 illuminant |
| + X *= 0.96422f; |
| + Y *= 1.00000f; |
| + Z *= 0.82521f; |
| + |
| + if (printConversions) { |
| + SkColorSpacePrintf("XYZ = (%4f, %4f, %4f)\t", X, Y, Z); |
| + } |
| + |
| + // convert XYZ -> linear sRGB |
| + Sk4f lRGB( 3.1338561f*X - 1.6168667f*Y - 0.4906146f*Z, |
| + -0.9787684f*X + 1.9161415f*Y + 0.0334540f*Z, |
| + 0.0719453f*X - 0.2289914f*Y + 1.4052427f*Z, |
| + 1.f); |
| + // and apply sRGB gamma |
| + Sk4i sRGB = sk_linear_to_srgb(lRGB); |
| + if (printConversions) { |
| + SkColorSpacePrintf("sRGB = (%d, %d, %d)\n", sRGB[0], sRGB[1], sRGB[2]); |
| + } |
| + p = SkColorSetRGB(sRGB[0], sRGB[1], sRGB[2]); |
| + } |
| + } |
| + } |
| + const int freeWidth = fWidth - 2*imageWidth; |
| + const int freeHeight = fHeight - imageHeight; |
| + canvas->drawBitmap(bitmap, |
| + static_cast<SkScalar>((col+1) * (freeWidth / 3) + col*imageWidth), |
| + static_cast<SkScalar>(freeHeight / 2)); |
| + ++col; |
| + } |
| + |
| +private: |
| + const int fWidth; |
| + const int fHeight; |
| + |
| + typedef skiagm::GM INHERITED; |
| +}; |
| + |
| +DEF_GM( return new LabPCSDemoGM; ) |