OLD | NEW |
(Empty) | |
| 1 /* |
| 2 * Copyright 2016 Google Inc. |
| 3 * |
| 4 * Use of this source code is governed by a BSD-style license that can be |
| 5 * found in the LICENSE file. |
| 6 */ |
| 7 |
| 8 #include <cmath> |
| 9 #include "gm.h" |
| 10 #include "Resources.h" |
| 11 #include "SkCodec.h" |
| 12 #include "SkColorSpace_Base.h" |
| 13 #include "SkColorSpace_A2B0.h" |
| 14 #include "SkColorSpacePriv.h" |
| 15 #include "SkData.h" |
| 16 #include "SkFloatingPoint.h" |
| 17 #include "SkImageInfo.h" |
| 18 #include "SkScalar.h" |
| 19 #include "SkSRGB.h" |
| 20 #include "SkStream.h" |
| 21 #include "SkSurface.h" |
| 22 #include "SkTypes.h" |
| 23 |
| 24 static inline void interp_3d_clut(float dst[3], float src[3], const SkColorLookU
pTable* colorLUT) { |
| 25 // Call the src components x, y, and z. |
| 26 uint8_t maxX = colorLUT->fGridPoints[0] - 1; |
| 27 uint8_t maxY = colorLUT->fGridPoints[1] - 1; |
| 28 uint8_t maxZ = colorLUT->fGridPoints[2] - 1; |
| 29 |
| 30 // An approximate index into each of the three dimensions of the table. |
| 31 float x = src[0] * maxX; |
| 32 float y = src[1] * maxY; |
| 33 float z = src[2] * maxZ; |
| 34 |
| 35 // This gives us the low index for our interpolation. |
| 36 int ix = sk_float_floor2int(x); |
| 37 int iy = sk_float_floor2int(y); |
| 38 int iz = sk_float_floor2int(z); |
| 39 |
| 40 // Make sure the low index is not also the max index. |
| 41 ix = (maxX == ix) ? ix - 1 : ix; |
| 42 iy = (maxY == iy) ? iy - 1 : iy; |
| 43 iz = (maxZ == iz) ? iz - 1 : iz; |
| 44 |
| 45 // Weighting factors for the interpolation. |
| 46 float diffX = x - ix; |
| 47 float diffY = y - iy; |
| 48 float diffZ = z - iz; |
| 49 |
| 50 // Constants to help us navigate the 3D table. |
| 51 // Ex: Assume x = a, y = b, z = c. |
| 52 // table[a * n001 + b * n010 + c * n100] logically equals table[a][b][c]
. |
| 53 const int n000 = 0; |
| 54 const int n001 = 3 * colorLUT->fGridPoints[1] * colorLUT->fGridPoints[2]; |
| 55 const int n010 = 3 * colorLUT->fGridPoints[2]; |
| 56 const int n011 = n001 + n010; |
| 57 const int n100 = 3; |
| 58 const int n101 = n100 + n001; |
| 59 const int n110 = n100 + n010; |
| 60 const int n111 = n110 + n001; |
| 61 |
| 62 // Base ptr into the table. |
| 63 const float* ptr = &(colorLUT->table()[ix*n001 + iy*n010 + iz*n100]); |
| 64 |
| 65 // The code below performs a tetrahedral interpolation for each of the three |
| 66 // dst components. Once the tetrahedron containing the interpolation point
is |
| 67 // identified, the interpolation is a weighted sum of grid values at the |
| 68 // vertices of the tetrahedron. The claim is that tetrahedral interpolation |
| 69 // provides a more accurate color conversion. |
| 70 // blogs.mathworks.com/steve/2006/11/24/tetrahedral-interpolation-for-colors
pace-conversion/ |
| 71 // |
| 72 // I have one test image, and visually I can't tell the difference between |
| 73 // tetrahedral and trilinear interpolation. In terms of computation, the |
| 74 // tetrahedral code requires more branches but less computation. The |
| 75 // SampleICC library provides an option for the client to choose either |
| 76 // tetrahedral or trilinear. |
| 77 for (int i = 0; i < 3; i++) { |
| 78 if (diffZ < diffY) { |
| 79 if (diffZ < diffX) { |
| 80 dst[i] = (ptr[n000] + diffZ * (ptr[n110] - ptr[n010]) + |
| 81 diffY * (ptr[n010] - ptr[n000]) + |
| 82 diffX * (ptr[n111] - ptr[n110])); |
| 83 } else if (diffY < diffX) { |
| 84 dst[i] = (ptr[n000] + diffZ * (ptr[n111] - ptr[n011]) + |
| 85 diffY * (ptr[n011] - ptr[n001]) + |
| 86 diffX * (ptr[n001] - ptr[n000])); |
| 87 } else { |
| 88 dst[i] = (ptr[n000] + diffZ * (ptr[n111] - ptr[n011]) + |
| 89 diffY * (ptr[n010] - ptr[n000]) + |
| 90 diffX * (ptr[n011] - ptr[n010])); |
| 91 } |
| 92 } else { |
| 93 if (diffZ < diffX) { |
| 94 dst[i] = (ptr[n000] + diffZ * (ptr[n101] - ptr[n001]) + |
| 95 diffY * (ptr[n111] - ptr[n101]) + |
| 96 diffX * (ptr[n001] - ptr[n000])); |
| 97 } else if (diffY < diffX) { |
| 98 dst[i] = (ptr[n000] + diffZ * (ptr[n100] - ptr[n000]) + |
| 99 diffY * (ptr[n111] - ptr[n101]) + |
| 100 diffX * (ptr[n101] - ptr[n100])); |
| 101 } else { |
| 102 dst[i] = (ptr[n000] + diffZ * (ptr[n100] - ptr[n000]) + |
| 103 diffY * (ptr[n110] - ptr[n100]) + |
| 104 diffX * (ptr[n111] - ptr[n110])); |
| 105 } |
| 106 } |
| 107 |
| 108 // Increment the table ptr in order to handle the next component. |
| 109 // Note that this is the how table is designed: all of nXXX |
| 110 // variables are multiples of 3 because there are 3 output |
| 111 // components. |
| 112 ptr++; |
| 113 } |
| 114 } |
| 115 |
| 116 |
| 117 /** |
| 118 * This tests decoding from a Lab source image and displays on the left |
| 119 * the image as raw RGB values, and on the right a Lab PCS. |
| 120 * It currently does NOT apply a/b/m-curves, as in the .icc profile |
| 121 * We are testing it on these are all identity transforms. |
| 122 */ |
| 123 class LabPCSDemoGM : public skiagm::GM { |
| 124 public: |
| 125 LabPCSDemoGM() |
| 126 : fWidth(1080) |
| 127 , fHeight(480) |
| 128 {} |
| 129 |
| 130 protected: |
| 131 |
| 132 |
| 133 SkString onShortName() override { |
| 134 return SkString("labpcsdemo"); |
| 135 } |
| 136 |
| 137 SkISize onISize() override { |
| 138 return SkISize::Make(fWidth, fHeight); |
| 139 } |
| 140 |
| 141 void onDraw(SkCanvas* canvas) override { |
| 142 canvas->drawColor(SK_ColorGREEN); |
| 143 const char* filename = "brickwork-texture.jpg"; |
| 144 renderImage(canvas, filename, 0, false); |
| 145 renderImage(canvas, filename, 1, true); |
| 146 } |
| 147 |
| 148 void renderImage(SkCanvas* canvas, const char* filename, int col, bool conve
rtLabToXYZ) { |
| 149 SkBitmap bitmap; |
| 150 SkStream* stream(GetResourceAsStream(filename)); |
| 151 if (stream == nullptr) { |
| 152 return; |
| 153 } |
| 154 std::unique_ptr<SkCodec> codec(SkCodec::NewFromStream(stream)); |
| 155 |
| 156 |
| 157 // srgb_lab_pcs.icc is an elaborate way to specify sRGB but uses |
| 158 // Lab as the PCS, so we can take any arbitrary image that should |
| 159 // be sRGB and this should show a reasonable image |
| 160 const SkString iccFilename(GetResourcePath("icc_profiles/srgb_lab_pcs.ic
c")); |
| 161 sk_sp<SkData> iccData = SkData::MakeFromFileName(iccFilename.c_str()); |
| 162 if (iccData == nullptr) { |
| 163 return; |
| 164 } |
| 165 sk_sp<SkColorSpace> colorSpace = SkColorSpace::NewICC(iccData->bytes(),
iccData->size()); |
| 166 |
| 167 const int imageWidth = codec->getInfo().width(); |
| 168 const int imageHeight = codec->getInfo().height(); |
| 169 // Using nullptr as the color space instructs the codec to decode in leg
acy mode, |
| 170 // meaning that we will get the raw encoded bytes without any color corr
ection. |
| 171 SkImageInfo imageInfo = SkImageInfo::Make(imageWidth, imageHeight, kN32_
SkColorType, |
| 172 kOpaque_SkAlphaType, nullptr); |
| 173 bitmap.allocPixels(imageInfo); |
| 174 codec->getPixels(imageInfo, bitmap.getPixels(), bitmap.rowBytes()); |
| 175 if (convertLabToXYZ) { |
| 176 SkASSERT(as_CSB(colorSpace)->type() == SkColorSpace_Base::Type::kA2B
0); |
| 177 const SkColorSpace_A2B0& cs = *static_cast<const SkColorSpace_A2B0*>
(colorSpace.get()); |
| 178 bool printConversions = false; |
| 179 SkASSERT(cs.colorLUT()); |
| 180 // We're skipping evaluating the TRCs and the matrix here since they
aren't |
| 181 // in the ICC profile initially used here. |
| 182 SkASSERT(kLinear_SkGammaNamed == cs.aCurveNamed()); |
| 183 SkASSERT(kLinear_SkGammaNamed == cs.mCurveNamed()); |
| 184 SkASSERT(kLinear_SkGammaNamed == cs.bCurveNamed()); |
| 185 SkASSERT(cs.matrix().isIdentity()); |
| 186 for (int y = 0; y < imageHeight; ++y) { |
| 187 for (int x = 0; x < imageWidth; ++x) { |
| 188 uint32_t& p = *bitmap.getAddr32(x, y); |
| 189 const int r = SkColorGetR(p); |
| 190 const int g = SkColorGetG(p); |
| 191 const int b = SkColorGetB(p); |
| 192 if (printConversions) { |
| 193 SkColorSpacePrintf("\nraw = (%d, %d, %d)\t", r, g, b); |
| 194 } |
| 195 |
| 196 float lab[4] = { r * (1.f/255.f), g * (1.f/255.f), b * (1.f/
255.f), 1.f }; |
| 197 |
| 198 interp_3d_clut(lab, lab, cs.colorLUT()); |
| 199 |
| 200 // Lab has ranges [0,100] for L and [-128,127] for a and b |
| 201 // but the ICC profile loader stores as [0,1]. The ICC |
| 202 // specifies an offset of -128 to convert. |
| 203 // note: formula could be adjusted to remove this conversion
, |
| 204 // but for now let's keep it like this for clarity unt
il |
| 205 // an optimized version is added. |
| 206 lab[0] *= 100.f; |
| 207 lab[1] = 255.f * lab[1] - 128.f; |
| 208 lab[2] = 255.f * lab[2] - 128.f; |
| 209 if (printConversions) { |
| 210 SkColorSpacePrintf("Lab = < %f, %f, %f >\n", lab[0], lab
[1], lab[2]); |
| 211 } |
| 212 |
| 213 // convert from Lab to XYZ |
| 214 float Y = (lab[0] + 16.f) * (1.f/116.f); |
| 215 float X = lab[1] * (1.f/500.f) + Y; |
| 216 float Z = Y - (lab[2] * (1.f/200.f)); |
| 217 float cubed; |
| 218 cubed = X*X*X; |
| 219 if (cubed > 0.008856f) |
| 220 X = cubed; |
| 221 else |
| 222 X = (X - (16.f/116.f)) * (1.f/7.787f); |
| 223 cubed = Y*Y*Y; |
| 224 if (cubed > 0.008856f) |
| 225 Y = cubed; |
| 226 else |
| 227 Y = (Y - (16.f/116.f)) * (1.f/7.787f); |
| 228 cubed = Z*Z*Z; |
| 229 if (cubed > 0.008856f) |
| 230 Z = cubed; |
| 231 else |
| 232 Z = (Z - (16.f/116.f)) * (1.f/7.787f); |
| 233 |
| 234 // adjust to D50 illuminant |
| 235 X *= 0.96422f; |
| 236 Y *= 1.00000f; |
| 237 Z *= 0.82521f; |
| 238 |
| 239 if (printConversions) { |
| 240 SkColorSpacePrintf("XYZ = (%4f, %4f, %4f)\t", X, Y, Z); |
| 241 } |
| 242 |
| 243 // convert XYZ -> linear sRGB |
| 244 Sk4f lRGB( 3.1338561f*X - 1.6168667f*Y - 0.4906146f*Z, |
| 245 -0.9787684f*X + 1.9161415f*Y + 0.0334540f*Z, |
| 246 0.0719453f*X - 0.2289914f*Y + 1.4052427f*Z, |
| 247 1.f); |
| 248 // and apply sRGB gamma |
| 249 Sk4i sRGB = sk_linear_to_srgb(lRGB); |
| 250 if (printConversions) { |
| 251 SkColorSpacePrintf("sRGB = (%d, %d, %d)\n", sRGB[0], sRG
B[1], sRGB[2]); |
| 252 } |
| 253 p = SkColorSetRGB(sRGB[0], sRGB[1], sRGB[2]); |
| 254 } |
| 255 } |
| 256 } |
| 257 const int freeWidth = fWidth - 2*imageWidth; |
| 258 const int freeHeight = fHeight - imageHeight; |
| 259 canvas->drawBitmap(bitmap, |
| 260 static_cast<SkScalar>((col+1) * (freeWidth / 3) + col
*imageWidth), |
| 261 static_cast<SkScalar>(freeHeight / 2)); |
| 262 ++col; |
| 263 } |
| 264 |
| 265 private: |
| 266 const int fWidth; |
| 267 const int fHeight; |
| 268 |
| 269 typedef skiagm::GM INHERITED; |
| 270 }; |
| 271 |
| 272 DEF_GM( return new LabPCSDemoGM; ) |
OLD | NEW |