| Index: src/core/SkScan_AAAPath.cpp
|
| diff --git a/src/core/SkScan_AAAPath.cpp b/src/core/SkScan_AAAPath.cpp
|
| deleted file mode 100644
|
| index e5b8c57d5fa9366ef44e7c04d10093a726c6ccc7..0000000000000000000000000000000000000000
|
| --- a/src/core/SkScan_AAAPath.cpp
|
| +++ /dev/null
|
| @@ -1,1279 +0,0 @@
|
| -/*
|
| - * Copyright 2016 The Android Open Source Project
|
| - *
|
| - * Use of this source code is governed by a BSD-style license that can be
|
| - * found in the LICENSE file.
|
| - */
|
| -
|
| -#include "SkAntiRun.h"
|
| -#include "SkBlitter.h"
|
| -#include "SkEdge.h"
|
| -#include "SkAnalyticEdge.h"
|
| -#include "SkEdgeBuilder.h"
|
| -#include "SkGeometry.h"
|
| -#include "SkPath.h"
|
| -#include "SkQuadClipper.h"
|
| -#include "SkRasterClip.h"
|
| -#include "SkRegion.h"
|
| -#include "SkScan.h"
|
| -#include "SkScanPriv.h"
|
| -#include "SkTemplates.h"
|
| -#include "SkTSort.h"
|
| -#include "SkUtils.h"
|
| -
|
| -///////////////////////////////////////////////////////////////////////////////
|
| -
|
| -/*
|
| -
|
| -The following is a high-level overview of our analytic anti-aliasing
|
| -algorithm. We consider a path as a collection of line segments, as
|
| -quadratic/cubic curves are converted to small line segments. Without loss of
|
| -generality, let's assume that the draw region is [0, W] x [0, H].
|
| -
|
| -Our algorithm is based on horizontal scan lines (y = c_i) as the previous
|
| -sampling-based algorithm did. However, our algorithm uses non-equal-spaced
|
| -scan lines, while the previous method always uses equal-spaced scan lines,
|
| -such as (y = 1/2 + 0, 1/2 + 1, 1/2 + 2, ...) in the previous non-AA algorithm,
|
| -and (y = 1/8 + 1/4, 1/8 + 2/4, 1/8 + 3/4, ...) in the previous
|
| -16-supersampling AA algorithm.
|
| -
|
| -Our algorithm contains scan lines y = c_i for c_i that is either:
|
| -
|
| -1. an integer between [0, H]
|
| -
|
| -2. the y value of a line segment endpoint
|
| -
|
| -3. the y value of an intersection of two line segments
|
| -
|
| -For two consecutive scan lines y = c_i, y = c_{i+1}, we analytically computes
|
| -the coverage of this horizontal strip of our path on each pixel. This can be
|
| -done very efficiently because the strip of our path now only consists of
|
| -trapezoids whose top and bottom edges are y = c_i, y = c_{i+1} (this includes
|
| -rectangles and triangles as special cases).
|
| -
|
| -We now describe how the coverage of single pixel is computed against such a
|
| -trapezoid. That coverage is essentially the intersection area of a rectangle
|
| -(e.g., [0, 1] x [c_i, c_{i+1}]) and our trapezoid. However, that intersection
|
| -could be complicated, as shown in the example region A below:
|
| -
|
| -+-----------\----+
|
| -| \ C|
|
| -| \ |
|
| -\ \ |
|
| -|\ A \|
|
| -| \ \
|
| -| \ |
|
| -| B \ |
|
| -+----\-----------+
|
| -
|
| -However, we don't have to compute the area of A directly. Instead, we can
|
| -compute the excluded area, which are B and C, quite easily, because they're
|
| -just triangles. In fact, we can prove that an excluded region (take B as an
|
| -example) is either itself a simple trapezoid (including rectangles, triangles,
|
| -and empty regions), or its opposite (the opposite of B is A + C) is a simple
|
| -trapezoid. In any case, we can compute its area efficiently.
|
| -
|
| -In summary, our algorithm has a higher quality because it generates ground-
|
| -truth coverages analytically. It is also faster because it has much fewer
|
| -unnessasary horizontal scan lines. For example, given a triangle path, the
|
| -number of scan lines in our algorithm is only about 3 + H while the
|
| -16-supersampling algorithm has about 4H scan lines.
|
| -
|
| -*/
|
| -
|
| -///////////////////////////////////////////////////////////////////////////////
|
| -
|
| -inline void addAlpha(SkAlpha& alpha, SkAlpha delta) {
|
| - SkASSERT(alpha + (int)delta <= 0xFF);
|
| - alpha += delta;
|
| -}
|
| -
|
| -class AdditiveBlitter : public SkBlitter {
|
| -public:
|
| - virtual ~AdditiveBlitter() {}
|
| -
|
| - virtual SkBlitter* getRealBlitter(bool forceRealBlitter = false) = 0;
|
| -
|
| - virtual void blitAntiH(int x, int y, const SkAlpha antialias[], int len) = 0;
|
| - virtual void blitAntiH(int x, int y, const SkAlpha alpha) = 0;
|
| - virtual void blitAntiH(int x, int y, int width, const SkAlpha alpha) = 0;
|
| -
|
| - void blitAntiH(int x, int y, const SkAlpha antialias[], const int16_t runs[]) override {
|
| - SkDEBUGFAIL("Please call real blitter's blitAntiH instead.");
|
| - }
|
| -
|
| - void blitV(int x, int y, int height, SkAlpha alpha) override {
|
| - SkDEBUGFAIL("Please call real blitter's blitV instead.");
|
| - }
|
| -
|
| - void blitH(int x, int y, int width) override {
|
| - SkDEBUGFAIL("Please call real blitter's blitH instead.");
|
| - }
|
| -
|
| - void blitRect(int x, int y, int width, int height) override {
|
| - SkDEBUGFAIL("Please call real blitter's blitRect instead.");
|
| - }
|
| -
|
| - void blitAntiRect(int x, int y, int width, int height,
|
| - SkAlpha leftAlpha, SkAlpha rightAlpha) override {
|
| - SkDEBUGFAIL("Please call real blitter's blitAntiRect instead.");
|
| - }
|
| -
|
| - virtual int getWidth() = 0;
|
| -};
|
| -
|
| -// We need this mask blitter because it significantly accelerates small path filling.
|
| -class MaskAdditiveBlitter : public AdditiveBlitter {
|
| -public:
|
| - MaskAdditiveBlitter(SkBlitter* realBlitter, const SkIRect& ir, const SkRegion& clip,
|
| - bool isInverse);
|
| - ~MaskAdditiveBlitter() {
|
| - fRealBlitter->blitMask(fMask, fClipRect);
|
| - }
|
| -
|
| - // Most of the time, we still consider this mask blitter as the real blitter
|
| - // so we can accelerate blitRect and others. But sometimes we want to return
|
| - // the absolute real blitter (e.g., when we fall back to the old code path).
|
| - SkBlitter* getRealBlitter(bool forceRealBlitter) override {
|
| - return forceRealBlitter ? fRealBlitter : this;
|
| - }
|
| -
|
| - // Virtual function is slow. So don't use this. Directly add alpha to the mask instead.
|
| - void blitAntiH(int x, int y, const SkAlpha antialias[], int len) override;
|
| -
|
| - // Allowing following methods are used to blit rectangles during aaa_walk_convex_edges
|
| - // Since there aren't many rectangles, we can still break the slow speed of virtual functions.
|
| - void blitAntiH(int x, int y, const SkAlpha alpha) override;
|
| - void blitAntiH(int x, int y, int width, const SkAlpha alpha) override;
|
| - void blitV(int x, int y, int height, SkAlpha alpha) override;
|
| - void blitRect(int x, int y, int width, int height) override;
|
| - void blitAntiRect(int x, int y, int width, int height,
|
| - SkAlpha leftAlpha, SkAlpha rightAlpha) override;
|
| -
|
| - int getWidth() override { return fClipRect.width(); }
|
| -
|
| - static bool canHandleRect(const SkIRect& bounds) {
|
| - int width = bounds.width();
|
| - int64_t rb = SkAlign4(width);
|
| - // use 64bits to detect overflow
|
| - int64_t storage = rb * bounds.height();
|
| -
|
| - return (width <= MaskAdditiveBlitter::kMAX_WIDTH) &&
|
| - (storage <= MaskAdditiveBlitter::kMAX_STORAGE);
|
| - }
|
| -
|
| - // Return a pointer where pointer[x] corresonds to the alpha of (x, y)
|
| - inline uint8_t* getRow(int y) {
|
| - if (y != fY) {
|
| - fY = y;
|
| - fRow = fMask.fImage + (y - fMask.fBounds.fTop) * fMask.fRowBytes - fMask.fBounds.fLeft;
|
| - }
|
| - return fRow;
|
| - }
|
| -
|
| -private:
|
| - // so we don't try to do very wide things, where the RLE blitter would be faster
|
| - static const int kMAX_WIDTH = 32;
|
| - static const int kMAX_STORAGE = 1024;
|
| -
|
| - SkBlitter* fRealBlitter;
|
| - SkMask fMask;
|
| - SkIRect fClipRect;
|
| - // we add 2 because we can write 1 extra byte at either end due to precision error
|
| - uint32_t fStorage[(kMAX_STORAGE >> 2) + 2];
|
| -
|
| - uint8_t* fRow;
|
| - int fY;
|
| -};
|
| -
|
| -MaskAdditiveBlitter::MaskAdditiveBlitter(SkBlitter* realBlitter, const SkIRect& ir, const SkRegion& clip,
|
| - bool isInverse) {
|
| - SkASSERT(canHandleRect(ir));
|
| - SkASSERT(!isInverse);
|
| -
|
| - fRealBlitter = realBlitter;
|
| -
|
| - fMask.fImage = (uint8_t*)fStorage + 1; // There's 1 extra byte at either end of fStorage
|
| - fMask.fBounds = ir;
|
| - fMask.fRowBytes = ir.width();
|
| - fMask.fFormat = SkMask::kA8_Format;
|
| -
|
| - fY = ir.fTop - 1;
|
| - fRow = nullptr;
|
| -
|
| - fClipRect = ir;
|
| - if (!fClipRect.intersect(clip.getBounds())) {
|
| - SkASSERT(0);
|
| - fClipRect.setEmpty();
|
| - }
|
| -
|
| - memset(fStorage, 0, fMask.fBounds.height() * fMask.fRowBytes + 2);
|
| -}
|
| -
|
| -void MaskAdditiveBlitter::blitAntiH(int x, int y, const SkAlpha antialias[], int len) {
|
| - SkFAIL("Don't use this; directly add alphas to the mask.");
|
| -}
|
| -
|
| -void MaskAdditiveBlitter::blitAntiH(int x, int y, const SkAlpha alpha) {
|
| - SkASSERT(x >= fMask.fBounds.fLeft -1);
|
| - addAlpha(this->getRow(y)[x], alpha);
|
| -}
|
| -
|
| -void MaskAdditiveBlitter::blitAntiH(int x, int y, int width, const SkAlpha alpha) {
|
| - SkASSERT(x >= fMask.fBounds.fLeft -1);
|
| - uint8_t* row = this->getRow(y);
|
| - for (int i=0; i<width; i++) {
|
| - addAlpha(row[x + i], alpha);
|
| - }
|
| -}
|
| -
|
| -void MaskAdditiveBlitter::blitV(int x, int y, int height, SkAlpha alpha) {
|
| - if (alpha == 0) {
|
| - return;
|
| - }
|
| - SkASSERT(x >= fMask.fBounds.fLeft -1);
|
| - // This must be called as if this is a real blitter.
|
| - // So we directly set alpha rather than adding it.
|
| - uint8_t* row = this->getRow(y);
|
| - for (int i=0; i<height; i++) {
|
| - row[x] = alpha;
|
| - row += fMask.fRowBytes;
|
| - }
|
| -}
|
| -
|
| -void MaskAdditiveBlitter::blitRect(int x, int y, int width, int height) {
|
| - SkASSERT(x >= fMask.fBounds.fLeft -1);
|
| - // This must be called as if this is a real blitter.
|
| - // So we directly set alpha rather than adding it.
|
| - uint8_t* row = this->getRow(y);
|
| - for (int i=0; i<height; i++) {
|
| - memset(row + x, 0xFF, width);
|
| - row += fMask.fRowBytes;
|
| - }
|
| -}
|
| -
|
| -void MaskAdditiveBlitter::blitAntiRect(int x, int y, int width, int height,
|
| - SkAlpha leftAlpha, SkAlpha rightAlpha) {
|
| - blitV(x, y, height, leftAlpha);
|
| - blitV(x + 1 + width, y, height, rightAlpha);
|
| - blitRect(x + 1, y, width, height);
|
| -}
|
| -
|
| -class RunBasedAdditiveBlitter : public AdditiveBlitter {
|
| -public:
|
| - RunBasedAdditiveBlitter(SkBlitter* realBlitter, const SkIRect& ir, const SkRegion& clip,
|
| - bool isInverse);
|
| - ~RunBasedAdditiveBlitter();
|
| -
|
| - SkBlitter* getRealBlitter(bool forceRealBlitter) override;
|
| -
|
| - void blitAntiH(int x, int y, const SkAlpha antialias[], int len) override;
|
| - void blitAntiH(int x, int y, const SkAlpha alpha) override;
|
| - void blitAntiH(int x, int y, int width, const SkAlpha alpha) override;
|
| -
|
| - int getWidth() override;
|
| -
|
| -private:
|
| - SkBlitter* fRealBlitter;
|
| -
|
| - /// Current y coordinate
|
| - int fCurrY;
|
| - /// Widest row of region to be blitted
|
| - int fWidth;
|
| - /// Leftmost x coordinate in any row
|
| - int fLeft;
|
| - /// Initial y coordinate (top of bounds).
|
| - int fTop;
|
| -
|
| - // The next three variables are used to track a circular buffer that
|
| - // contains the values used in SkAlphaRuns. These variables should only
|
| - // ever be updated in advanceRuns(), and fRuns should always point to
|
| - // a valid SkAlphaRuns...
|
| - int fRunsToBuffer;
|
| - void* fRunsBuffer;
|
| - int fCurrentRun;
|
| - SkAlphaRuns fRuns;
|
| -
|
| - int fOffsetX;
|
| -
|
| - inline bool check(int x, int width) {
|
| - #ifdef SK_DEBUG
|
| - if (x < 0 || x + width > fWidth) {
|
| - SkDebugf("Ignore x = %d, width = %d\n", x, width);
|
| - }
|
| - #endif
|
| - return (x >= 0 && x + width <= fWidth);
|
| - }
|
| -
|
| - // extra one to store the zero at the end
|
| - inline int getRunsSz() const { return (fWidth + 1 + (fWidth + 2)/2) * sizeof(int16_t); }
|
| -
|
| - // This function updates the fRuns variable to point to the next buffer space
|
| - // with adequate storage for a SkAlphaRuns. It mostly just advances fCurrentRun
|
| - // and resets fRuns to point to an empty scanline.
|
| - inline void advanceRuns() {
|
| - const size_t kRunsSz = this->getRunsSz();
|
| - fCurrentRun = (fCurrentRun + 1) % fRunsToBuffer;
|
| - fRuns.fRuns = reinterpret_cast<int16_t*>(
|
| - reinterpret_cast<uint8_t*>(fRunsBuffer) + fCurrentRun * kRunsSz);
|
| - fRuns.fAlpha = reinterpret_cast<SkAlpha*>(fRuns.fRuns + fWidth + 1);
|
| - fRuns.reset(fWidth);
|
| - }
|
| -
|
| - // Blitting 0xFF and 0 is much faster so we snap alphas close to them
|
| - inline SkAlpha snapAlpha(SkAlpha alpha) {
|
| - return alpha > 247 ? 0xFF : alpha < 8 ? 0 : alpha;
|
| - }
|
| -
|
| - inline void flush() {
|
| - if (fCurrY >= fTop) {
|
| - SkASSERT(fCurrentRun < fRunsToBuffer);
|
| - for (int x = 0; fRuns.fRuns[x]; x += fRuns.fRuns[x]) {
|
| - // It seems that blitting 255 or 0 is much faster than blitting 254 or 1
|
| - fRuns.fAlpha[x] = snapAlpha(fRuns.fAlpha[x]);
|
| - }
|
| - if (!fRuns.empty()) {
|
| - // SkDEBUGCODE(fRuns.dump();)
|
| - fRealBlitter->blitAntiH(fLeft, fCurrY, fRuns.fAlpha, fRuns.fRuns);
|
| - this->advanceRuns();
|
| - fOffsetX = 0;
|
| - }
|
| - fCurrY = fTop - 1;
|
| - }
|
| - }
|
| -
|
| - inline void checkY(int y) {
|
| - if (y != fCurrY) {
|
| - this->flush();
|
| - fCurrY = y;
|
| - }
|
| - }
|
| -};
|
| -
|
| -RunBasedAdditiveBlitter::RunBasedAdditiveBlitter(SkBlitter* realBlitter, const SkIRect& ir, const SkRegion& clip,
|
| - bool isInverse) {
|
| - fRealBlitter = realBlitter;
|
| -
|
| - SkIRect sectBounds;
|
| - if (isInverse) {
|
| - // We use the clip bounds instead of the ir, since we may be asked to
|
| - //draw outside of the rect when we're a inverse filltype
|
| - sectBounds = clip.getBounds();
|
| - } else {
|
| - if (!sectBounds.intersect(ir, clip.getBounds())) {
|
| - sectBounds.setEmpty();
|
| - }
|
| - }
|
| -
|
| - const int left = sectBounds.left();
|
| - const int right = sectBounds.right();
|
| -
|
| - fLeft = left;
|
| - fWidth = right - left;
|
| - fTop = sectBounds.top();
|
| - fCurrY = fTop - 1;
|
| -
|
| - fRunsToBuffer = realBlitter->requestRowsPreserved();
|
| - fRunsBuffer = realBlitter->allocBlitMemory(fRunsToBuffer * this->getRunsSz());
|
| - fCurrentRun = -1;
|
| -
|
| - this->advanceRuns();
|
| -
|
| - fOffsetX = 0;
|
| -}
|
| -
|
| -RunBasedAdditiveBlitter::~RunBasedAdditiveBlitter() {
|
| - this->flush();
|
| -}
|
| -
|
| -SkBlitter* RunBasedAdditiveBlitter::getRealBlitter(bool forceRealBlitter) {
|
| - return fRealBlitter;
|
| -}
|
| -
|
| -void RunBasedAdditiveBlitter::blitAntiH(int x, int y, const SkAlpha antialias[], int len) {
|
| - checkY(y);
|
| - x -= fLeft;
|
| -
|
| - if (x < 0) {
|
| - len += x;
|
| - antialias -= x;
|
| - x = 0;
|
| - }
|
| - len = SkTMin(len, fWidth - x);
|
| - SkASSERT(check(x, len));
|
| -
|
| - if (x < fOffsetX) {
|
| - fOffsetX = 0;
|
| - }
|
| -
|
| - fOffsetX = fRuns.add(x, 0, len, 0, 0, fOffsetX); // Break the run
|
| - for (int i = 0; i < len; i += fRuns.fRuns[x + i]) {
|
| - for (int j = 1; j < fRuns.fRuns[x + i]; j++) {
|
| - fRuns.fRuns[x + i + j] = 1;
|
| - fRuns.fAlpha[x + i + j] = fRuns.fAlpha[x + i];
|
| - }
|
| - fRuns.fRuns[x + i] = 1;
|
| - }
|
| - for (int i=0; i<len; i++) {
|
| - addAlpha(fRuns.fAlpha[x + i], antialias[i]);
|
| - }
|
| -}
|
| -void RunBasedAdditiveBlitter::blitAntiH(int x, int y, const SkAlpha alpha) {
|
| - checkY(y);
|
| - x -= fLeft;
|
| -
|
| - if (x < fOffsetX) {
|
| - fOffsetX = 0;
|
| - }
|
| -
|
| - if (this->check(x, 1)) {
|
| - fOffsetX = fRuns.add(x, 0, 1, 0, alpha, fOffsetX);
|
| - }
|
| -}
|
| -
|
| -void RunBasedAdditiveBlitter::blitAntiH(int x, int y, int width, const SkAlpha alpha) {
|
| - checkY(y);
|
| - x -= fLeft;
|
| -
|
| - if (x < fOffsetX) {
|
| - fOffsetX = 0;
|
| - }
|
| -
|
| - if (this->check(x, width)) {
|
| - fOffsetX = fRuns.add(x, 0, width, 0, alpha, fOffsetX);
|
| - }
|
| -}
|
| -
|
| -int RunBasedAdditiveBlitter::getWidth() { return fWidth; }
|
| -
|
| -///////////////////////////////////////////////////////////////////////////////
|
| -
|
| -// Return the alpha of a trapezoid whose height is 1
|
| -static inline SkAlpha trapezoidToAlpha(SkFixed l1, SkFixed l2) {
|
| - SkASSERT(l1 >= 0 && l2 >= 0);
|
| - return ((l1 + l2) >> 9);
|
| -}
|
| -
|
| -// The alpha of right-triangle (a, a*b), in 16 bits
|
| -static inline SkFixed partialTriangleToAlpha16(SkFixed a, SkFixed b) {
|
| - SkASSERT(a <= SK_Fixed1);
|
| - // SkFixedMul_lowprec(SkFixedMul_lowprec(a, a), b) >> 1
|
| - // return ((((a >> 8) * (a >> 8)) >> 8) * (b >> 8)) >> 1;
|
| - return (a >> 11) * (a >> 11) * (b >> 11);
|
| -}
|
| -
|
| -// The alpha of right-triangle (a, a*b)
|
| -static inline SkAlpha partialTriangleToAlpha(SkFixed a, SkFixed b) {
|
| - return partialTriangleToAlpha16(a, b) >> 8;
|
| -}
|
| -
|
| -static inline SkAlpha getPartialAlpha(SkAlpha alpha, SkFixed partialHeight) {
|
| - return (alpha * partialHeight) >> 16;
|
| -}
|
| -
|
| -static inline SkAlpha getPartialAlpha(SkAlpha alpha, SkAlpha fullAlpha) {
|
| - return ((uint16_t)alpha * fullAlpha) >> 8;
|
| -}
|
| -
|
| -// For SkFixed that's close to SK_Fixed1, we can't convert it to alpha by just shifting right.
|
| -// For example, when f = SK_Fixed1, right shifting 8 will get 256, but we need 255.
|
| -// This is rarely the problem so we'll only use this for blitting rectangles.
|
| -static inline SkAlpha f2a(SkFixed f) {
|
| - SkASSERT(f <= SK_Fixed1);
|
| - return getPartialAlpha(0xFF, f);
|
| -}
|
| -
|
| -// Suppose that line (l1, y)-(r1, y+1) intersects with (l2, y)-(r2, y+1),
|
| -// approximate (very coarsely) the x coordinate of the intersection.
|
| -static inline SkFixed approximateIntersection(SkFixed l1, SkFixed r1, SkFixed l2, SkFixed r2) {
|
| - if (l1 > r1) { SkTSwap(l1, r1); }
|
| - if (l2 > r2) { SkTSwap(l2, r2); }
|
| - return (SkTMax(l1, l2) + SkTMin(r1, r2)) >> 1;
|
| -}
|
| -
|
| -// Here we always send in l < SK_Fixed1, and the first alpha we want to compute is alphas[0]
|
| -static inline void computeAlphaAboveLine(SkAlpha* alphas, SkFixed l, SkFixed r,
|
| - SkFixed dY, SkAlpha fullAlpha) {
|
| - SkASSERT(l <= r);
|
| - SkASSERT(l >> 16 == 0);
|
| - int R = SkFixedCeilToInt(r);
|
| - if (R == 0) {
|
| - return;
|
| - } else if (R == 1) {
|
| - alphas[0] = getPartialAlpha(((R << 17) - l - r) >> 9, fullAlpha);
|
| - } else {
|
| - SkFixed first = SK_Fixed1 - l; // horizontal edge length of the left-most triangle
|
| - SkFixed last = r - ((R - 1) << 16); // horizontal edge length of the right-most triangle
|
| - SkFixed firstH = SkFixedMul_lowprec(first, dY); // vertical edge of the left-most triangle
|
| - alphas[0] = SkFixedMul_lowprec(first, firstH) >> 9; // triangle alpha
|
| - SkFixed alpha16 = firstH + (dY >> 1); // rectangle plus triangle
|
| - for (int i = 1; i < R - 1; i++) {
|
| - alphas[i] = alpha16 >> 8;
|
| - alpha16 += dY;
|
| - }
|
| - alphas[R - 1] = fullAlpha - partialTriangleToAlpha(last, dY);
|
| - }
|
| -}
|
| -
|
| -// Here we always send in l < SK_Fixed1, and the first alpha we want to compute is alphas[0]
|
| -static inline void computeAlphaBelowLine(SkAlpha* alphas, SkFixed l, SkFixed r, SkFixed dY, SkAlpha fullAlpha) {
|
| - SkASSERT(l <= r);
|
| - SkASSERT(l >> 16 == 0);
|
| - int R = SkFixedCeilToInt(r);
|
| - if (R == 0) {
|
| - return;
|
| - } else if (R == 1) {
|
| - alphas[0] = getPartialAlpha(trapezoidToAlpha(l, r), fullAlpha);
|
| - } else {
|
| - SkFixed first = SK_Fixed1 - l; // horizontal edge length of the left-most triangle
|
| - SkFixed last = r - ((R - 1) << 16); // horizontal edge length of the right-most triangle
|
| - SkFixed lastH = SkFixedMul_lowprec(last, dY); // vertical edge of the right-most triangle
|
| - alphas[R-1] = SkFixedMul_lowprec(last, lastH) >> 9; // triangle alpha
|
| - SkFixed alpha16 = lastH + (dY >> 1); // rectangle plus triangle
|
| - for (int i = R - 2; i > 0; i--) {
|
| - alphas[i] = alpha16 >> 8;
|
| - alpha16 += dY;
|
| - }
|
| - alphas[0] = fullAlpha - partialTriangleToAlpha(first, dY);
|
| - }
|
| -}
|
| -
|
| -// Note that if fullAlpha != 0xFF, we'll multiply alpha by fullAlpha
|
| -static inline void blit_single_alpha(AdditiveBlitter* blitter, int y, int x,
|
| - SkAlpha alpha, SkAlpha fullAlpha, SkAlpha* maskRow,
|
| - bool isUsingMask) {
|
| - if (isUsingMask) {
|
| - if (fullAlpha == 0xFF) {
|
| - maskRow[x] = alpha;
|
| - } else {
|
| - addAlpha(maskRow[x], getPartialAlpha(alpha, fullAlpha));
|
| - }
|
| - } else {
|
| - if (fullAlpha == 0xFF) {
|
| - blitter->getRealBlitter()->blitV(x, y, 1, alpha);
|
| - } else {
|
| - blitter->blitAntiH(x, y, getPartialAlpha(alpha, fullAlpha));
|
| - }
|
| - }
|
| -}
|
| -
|
| -static inline void blit_two_alphas(AdditiveBlitter* blitter, int y, int x,
|
| - SkAlpha a1, SkAlpha a2, SkAlpha fullAlpha, SkAlpha* maskRow,
|
| - bool isUsingMask) {
|
| - if (isUsingMask) {
|
| - addAlpha(maskRow[x], a1);
|
| - addAlpha(maskRow[x + 1], a2);
|
| - } else {
|
| - if (fullAlpha == 0xFF) {
|
| - blitter->getRealBlitter()->blitV(x, y, 1, a1);
|
| - blitter->getRealBlitter()->blitV(x + 1, y, 1, a2);
|
| - } else {
|
| - blitter->blitAntiH(x, y, a1);
|
| - blitter->blitAntiH(x + 1, y, a2);
|
| - }
|
| - }
|
| -}
|
| -
|
| -// It's important that this is inline. Otherwise it'll be much slower.
|
| -static SK_ALWAYS_INLINE void blit_full_alpha(AdditiveBlitter* blitter, int y, int x, int len,
|
| - SkAlpha fullAlpha, SkAlpha* maskRow, bool isUsingMask) {
|
| - if (isUsingMask) {
|
| - for (int i=0; i<len; i++) {
|
| - addAlpha(maskRow[x + i], fullAlpha);
|
| - }
|
| - } else {
|
| - if (fullAlpha == 0xFF) {
|
| - blitter->getRealBlitter()->blitH(x, y, len);
|
| - } else {
|
| - blitter->blitAntiH(x, y, len, fullAlpha);
|
| - }
|
| - }
|
| -}
|
| -
|
| -static void blit_aaa_trapezoid_row(AdditiveBlitter* blitter, int y,
|
| - SkFixed ul, SkFixed ur, SkFixed ll, SkFixed lr,
|
| - SkFixed lDY, SkFixed rDY, SkAlpha fullAlpha, SkAlpha* maskRow,
|
| - bool isUsingMask) {
|
| - int L = SkFixedFloorToInt(ul), R = SkFixedCeilToInt(lr);
|
| - int len = R - L;
|
| -
|
| - if (len == 1) {
|
| - SkAlpha alpha = trapezoidToAlpha(ur - ul, lr - ll);
|
| - blit_single_alpha(blitter, y, L, alpha, fullAlpha, maskRow, isUsingMask);
|
| - return;
|
| - }
|
| -
|
| - // SkDebugf("y = %d, len = %d, ul = %f, ur = %f, ll = %f, lr = %f\n", y, len,
|
| - // SkFixedToFloat(ul), SkFixedToFloat(ur), SkFixedToFloat(ll), SkFixedToFloat(lr));
|
| -
|
| - const int kQuickLen = 31;
|
| - // This is faster than SkAutoSMalloc<1024>
|
| - char quickMemory[(sizeof(SkAlpha) * 2 + sizeof(int16_t)) * (kQuickLen + 1)];
|
| - SkAlpha* alphas;
|
| -
|
| - if (len <= kQuickLen) {
|
| - alphas = (SkAlpha*)quickMemory;
|
| - } else {
|
| - alphas = new SkAlpha[(len + 1) * (sizeof(SkAlpha) * 2 + sizeof(int16_t))];
|
| - }
|
| -
|
| - SkAlpha* tempAlphas = alphas + len + 1;
|
| - int16_t* runs = (int16_t*)(alphas + (len + 1) * 2);
|
| -
|
| - for (int i = 0; i < len; i++) {
|
| - runs[i] = 1;
|
| - alphas[i] = fullAlpha;
|
| - }
|
| - runs[len] = 0;
|
| -
|
| - int uL = SkFixedFloorToInt(ul);
|
| - int lL = SkFixedCeilToInt(ll);
|
| - if (uL + 2 == lL) { // We only need to compute two triangles, accelerate this special case
|
| - SkFixed first = (uL << 16) + SK_Fixed1 - ul;
|
| - SkFixed second = ll - ul - first;
|
| - SkAlpha a1 = fullAlpha - partialTriangleToAlpha(first, lDY);
|
| - SkAlpha a2 = partialTriangleToAlpha(second, lDY);
|
| - alphas[0] = alphas[0] > a1 ? alphas[0] - a1 : 0;
|
| - alphas[1] = alphas[1] > a2 ? alphas[1] - a2 : 0;
|
| - } else {
|
| - computeAlphaBelowLine(tempAlphas + uL - L, ul - (uL << 16), ll - (uL << 16),
|
| - lDY, fullAlpha);
|
| - for (int i = uL; i < lL; i++) {
|
| - if (alphas[i - L] > tempAlphas[i - L]) {
|
| - alphas[i - L] -= tempAlphas[i - L];
|
| - } else {
|
| - alphas[i - L] = 0;
|
| - }
|
| - }
|
| - }
|
| -
|
| - int uR = SkFixedFloorToInt(ur);
|
| - int lR = SkFixedCeilToInt(lr);
|
| - if (uR + 2 == lR) { // We only need to compute two triangles, accelerate this special case
|
| - SkFixed first = (uR << 16) + SK_Fixed1 - ur;
|
| - SkFixed second = lr - ur - first;
|
| - SkAlpha a1 = partialTriangleToAlpha(first, rDY);
|
| - SkAlpha a2 = fullAlpha - partialTriangleToAlpha(second, rDY);
|
| - alphas[len-2] = alphas[len-2] > a1 ? alphas[len-2] - a1 : 0;
|
| - alphas[len-1] = alphas[len-1] > a2 ? alphas[len-1] - a2 : 0;
|
| - } else {
|
| - computeAlphaAboveLine(tempAlphas + uR - L, ur - (uR << 16), lr - (uR << 16),
|
| - rDY, fullAlpha);
|
| - for (int i = uR; i < lR; i++) {
|
| - if (alphas[i - L] > tempAlphas[i - L]) {
|
| - alphas[i - L] -= tempAlphas[i - L];
|
| - } else {
|
| - alphas[i - L] = 0;
|
| - }
|
| - }
|
| - }
|
| -
|
| - if (isUsingMask) {
|
| - for (int i=0; i<len; i++) {
|
| - addAlpha(maskRow[L + i], alphas[i]);
|
| - }
|
| - } else {
|
| - if (fullAlpha == 0xFF) { // Real blitter is faster than RunBasedAdditiveBlitter
|
| - blitter->getRealBlitter()->blitAntiH(L, y, alphas, runs);
|
| - } else {
|
| - blitter->blitAntiH(L, y, alphas, len);
|
| - }
|
| - }
|
| -
|
| - if (len > kQuickLen) {
|
| - delete [] alphas;
|
| - }
|
| -}
|
| -
|
| -static inline void blit_trapezoid_row(AdditiveBlitter* blitter, int y,
|
| - SkFixed ul, SkFixed ur, SkFixed ll, SkFixed lr,
|
| - SkFixed lDY, SkFixed rDY, SkAlpha fullAlpha,
|
| - SkAlpha* maskRow, bool isUsingMask) {
|
| - SkASSERT(lDY >= 0 && rDY >= 0); // We should only send in the absolte value
|
| -
|
| - if (ul > ur) {
|
| -#ifdef SK_DEBUG
|
| - SkDebugf("ul = %f > ur = %f!\n", SkFixedToFloat(ul), SkFixedToFloat(ur));
|
| -#endif
|
| - return;
|
| - }
|
| -
|
| - // Edge crosses. Approximate it. This should only happend due to precision limit,
|
| - // so the approximation could be very coarse.
|
| - if (ll > lr) {
|
| -#ifdef SK_DEBUG
|
| - SkDebugf("approximate intersection: %d %f %f\n", y,
|
| - SkFixedToFloat(ll), SkFixedToFloat(lr));
|
| -#endif
|
| - ll = lr = approximateIntersection(ul, ll, ur, lr);
|
| - }
|
| -
|
| - if (ul == ur && ll == lr) {
|
| - return; // empty trapzoid
|
| - }
|
| -
|
| - // We're going to use the left line ul-ll and the rite line ur-lr
|
| - // to exclude the area that's not covered by the path.
|
| - // Swapping (ul, ll) or (ur, lr) won't affect that exclusion
|
| - // so we'll do that for simplicity.
|
| - if (ul > ll) { SkTSwap(ul, ll); }
|
| - if (ur > lr) { SkTSwap(ur, lr); }
|
| -
|
| - SkFixed joinLeft = SkFixedCeilToFixed(ll);
|
| - SkFixed joinRite = SkFixedFloorToFixed(ur);
|
| - if (joinLeft <= joinRite) { // There's a rect from joinLeft to joinRite that we can blit
|
| - if (joinLeft < joinRite) {
|
| - blit_full_alpha(blitter, y, joinLeft >> 16, (joinRite - joinLeft) >> 16, fullAlpha,
|
| - maskRow, isUsingMask);
|
| - }
|
| - if (ul < joinLeft) {
|
| - int len = SkFixedCeilToInt(joinLeft - ul);
|
| - if (len == 1) {
|
| - SkAlpha alpha = trapezoidToAlpha(joinLeft - ul, joinLeft - ll);
|
| - blit_single_alpha(blitter, y, ul >> 16, alpha, fullAlpha, maskRow, isUsingMask);
|
| - } else if (len == 2) {
|
| - SkFixed first = joinLeft - SK_Fixed1 - ul;
|
| - SkFixed second = ll - ul - first;
|
| - SkAlpha a1 = partialTriangleToAlpha(first, lDY);
|
| - SkAlpha a2 = fullAlpha - partialTriangleToAlpha(second, lDY);
|
| - blit_two_alphas(blitter, y, ul >> 16, a1, a2, fullAlpha, maskRow, isUsingMask);
|
| - } else {
|
| - blit_aaa_trapezoid_row(blitter, y, ul, joinLeft, ll, joinLeft, lDY, SK_MaxS32,
|
| - fullAlpha, maskRow, isUsingMask);
|
| - }
|
| - }
|
| - if (lr > joinRite) {
|
| - int len = SkFixedCeilToInt(lr - joinRite);
|
| - if (len == 1) {
|
| - SkAlpha alpha = trapezoidToAlpha(ur - joinRite, lr - joinRite);
|
| - blit_single_alpha(blitter, y, joinRite >> 16, alpha, fullAlpha, maskRow,
|
| - isUsingMask);
|
| - } else if (len == 2) {
|
| - SkFixed first = joinRite + SK_Fixed1 - ur;
|
| - SkFixed second = lr - ur - first;
|
| - SkAlpha a1 = fullAlpha - partialTriangleToAlpha(first, rDY);
|
| - SkAlpha a2 = partialTriangleToAlpha(second, rDY);
|
| - blit_two_alphas(blitter, y, joinRite >> 16, a1, a2, fullAlpha, maskRow,
|
| - isUsingMask);
|
| - } else {
|
| - blit_aaa_trapezoid_row(blitter, y, joinRite, ur, joinRite, lr, SK_MaxS32, rDY,
|
| - fullAlpha, maskRow, isUsingMask);
|
| - }
|
| - }
|
| - } else {
|
| - blit_aaa_trapezoid_row(blitter, y, ul, ur, ll, lr, lDY, rDY, fullAlpha, maskRow,
|
| - isUsingMask);
|
| - }
|
| -}
|
| -
|
| -///////////////////////////////////////////////////////////////////////////////
|
| -
|
| -static bool operator<(const SkAnalyticEdge& a, const SkAnalyticEdge& b) {
|
| - int valuea = a.fUpperY;
|
| - int valueb = b.fUpperY;
|
| -
|
| - if (valuea == valueb) {
|
| - valuea = a.fX;
|
| - valueb = b.fX;
|
| - }
|
| -
|
| - if (valuea == valueb) {
|
| - valuea = a.fDX;
|
| - valueb = b.fDX;
|
| - }
|
| -
|
| - return valuea < valueb;
|
| -}
|
| -
|
| -static SkAnalyticEdge* sort_edges(SkAnalyticEdge* list[], int count, SkAnalyticEdge** last) {
|
| - SkTQSort(list, list + count - 1);
|
| -
|
| - // now make the edges linked in sorted order
|
| - for (int i = 1; i < count; i++) {
|
| - list[i - 1]->fNext = list[i];
|
| - list[i]->fPrev = list[i - 1];
|
| - }
|
| -
|
| - *last = list[count - 1];
|
| - return list[0];
|
| -}
|
| -
|
| -#ifdef SK_DEBUG
|
| - static void validate_sort(const SkAnalyticEdge* edge) {
|
| - SkFixed y = SkIntToFixed(-32768);
|
| -
|
| - while (edge->fUpperY != SK_MaxS32) {
|
| - edge->validate();
|
| - SkASSERT(y <= edge->fUpperY);
|
| -
|
| - y = edge->fUpperY;
|
| - edge = (SkAnalyticEdge*)edge->fNext;
|
| - }
|
| - }
|
| -#else
|
| - #define validate_sort(edge)
|
| -#endif
|
| -
|
| -// return true if we're done with this edge
|
| -static bool update_edge(SkAnalyticEdge* edge, SkFixed last_y) {
|
| - if (last_y >= edge->fLowerY) {
|
| - if (edge->fCurveCount < 0) {
|
| - if (static_cast<SkAnalyticCubicEdge*>(edge)->updateCubic()) {
|
| - return false;
|
| - }
|
| - } else if (edge->fCurveCount > 0) {
|
| - if (static_cast<SkAnalyticQuadraticEdge*>(edge)->updateQuadratic()) {
|
| - return false;
|
| - }
|
| - }
|
| - return true;
|
| - }
|
| - SkASSERT(false);
|
| - return false;
|
| -}
|
| -
|
| -// For an edge, we consider it smooth if the Dx doesn't change much, and Dy is large enough
|
| -// For curves that are updating, the Dx is not changing much if fQDx/fCDx and fQDy/fCDy are
|
| -// relatively large compared to fQDDx/QCDDx and fQDDy/fCDDy
|
| -static inline bool isSmoothEnough(SkAnalyticEdge* thisEdge, SkAnalyticEdge* nextEdge, int stop_y) {
|
| - if (thisEdge->fCurveCount < 0) {
|
| - const SkCubicEdge& cEdge = static_cast<SkAnalyticCubicEdge*>(thisEdge)->fCEdge;
|
| - int ddshift = cEdge.fCurveShift;
|
| - return SkAbs32(cEdge.fCDx) >> 1 >= SkAbs32(cEdge.fCDDx) >> ddshift &&
|
| - SkAbs32(cEdge.fCDy) >> 1 >= SkAbs32(cEdge.fCDDy) >> ddshift &&
|
| - // current Dy is (fCDy - (fCDDy >> ddshift)) >> dshift
|
| - (cEdge.fCDy - (cEdge.fCDDy >> ddshift)) >> cEdge.fCubicDShift >= SK_Fixed1;
|
| - } else if (thisEdge->fCurveCount > 0) {
|
| - const SkQuadraticEdge& qEdge = static_cast<SkAnalyticQuadraticEdge*>(thisEdge)->fQEdge;
|
| - return SkAbs32(qEdge.fQDx) >> 1 >= SkAbs32(qEdge.fQDDx) &&
|
| - SkAbs32(qEdge.fQDy) >> 1 >= SkAbs32(qEdge.fQDDy) &&
|
| - // current Dy is (fQDy - fQDDy) >> shift
|
| - (qEdge.fQDy - qEdge.fQDDy) >> qEdge.fCurveShift
|
| - >= SK_Fixed1;
|
| - }
|
| - return SkAbs32(nextEdge->fDX - thisEdge->fDX) <= SK_Fixed1 && // DDx should be small
|
| - nextEdge->fLowerY - nextEdge->fUpperY >= SK_Fixed1; // Dy should be large
|
| -}
|
| -
|
| -// Check if the leftE and riteE are changing smoothly in terms of fDX.
|
| -// If yes, we can later skip the fractional y and directly jump to integer y.
|
| -static inline bool isSmoothEnough(SkAnalyticEdge* leftE, SkAnalyticEdge* riteE,
|
| - SkAnalyticEdge* currE, int stop_y) {
|
| - if (currE->fUpperY >= stop_y << 16) {
|
| - return false; // We're at the end so we won't skip anything
|
| - }
|
| - if (leftE->fLowerY + SK_Fixed1 < riteE->fLowerY) {
|
| - return isSmoothEnough(leftE, currE, stop_y); // Only leftE is changing
|
| - } else if (leftE->fLowerY > riteE->fLowerY + SK_Fixed1) {
|
| - return isSmoothEnough(riteE, currE, stop_y); // Only riteE is changing
|
| - }
|
| -
|
| - // Now both edges are changing, find the second next edge
|
| - SkAnalyticEdge* nextCurrE = currE->fNext;
|
| - if (nextCurrE->fUpperY >= stop_y << 16) { // Check if we're at the end
|
| - return false;
|
| - }
|
| - if (*nextCurrE < *currE) {
|
| - SkTSwap(currE, nextCurrE);
|
| - }
|
| - return isSmoothEnough(leftE, currE, stop_y) && isSmoothEnough(riteE, nextCurrE, stop_y);
|
| -}
|
| -
|
| -static inline void aaa_walk_convex_edges(SkAnalyticEdge* prevHead, AdditiveBlitter* blitter,
|
| - int start_y, int stop_y, SkFixed leftBound, SkFixed riteBound,
|
| - bool isUsingMask) {
|
| - validate_sort((SkAnalyticEdge*)prevHead->fNext);
|
| -
|
| - SkAnalyticEdge* leftE = (SkAnalyticEdge*) prevHead->fNext;
|
| - SkAnalyticEdge* riteE = (SkAnalyticEdge*) leftE->fNext;
|
| - SkAnalyticEdge* currE = (SkAnalyticEdge*) riteE->fNext;
|
| -
|
| - SkFixed y = SkTMax(leftE->fUpperY, riteE->fUpperY);
|
| -
|
| - #ifdef SK_DEBUG
|
| - int frac_y_cnt = 0;
|
| - int total_y_cnt = 0;
|
| - #endif
|
| -
|
| - for (;;) {
|
| - // We have to check fLowerY first because some edges might be alone (e.g., there's only
|
| - // a left edge but no right edge in a given y scan line) due to precision limit.
|
| - while (leftE->fLowerY <= y) { // Due to smooth jump, we may pass multiple short edges
|
| - if (update_edge(leftE, y)) {
|
| - if (SkFixedFloorToInt(currE->fUpperY) >= stop_y) {
|
| - goto END_WALK;
|
| - }
|
| - leftE = currE;
|
| - currE = (SkAnalyticEdge*)currE->fNext;
|
| - }
|
| - }
|
| - while (riteE->fLowerY <= y) { // Due to smooth jump, we may pass multiple short edges
|
| - if (update_edge(riteE, y)) {
|
| - if (SkFixedFloorToInt(currE->fUpperY) >= stop_y) {
|
| - goto END_WALK;
|
| - }
|
| - riteE = currE;
|
| - currE = (SkAnalyticEdge*)currE->fNext;
|
| - }
|
| - }
|
| -
|
| - SkASSERT(leftE);
|
| - SkASSERT(riteE);
|
| -
|
| - // check our bottom clip
|
| - if (SkFixedFloorToInt(y) >= stop_y) {
|
| - break;
|
| - }
|
| -
|
| - SkASSERT(SkFixedFloorToInt(leftE->fUpperY) <= stop_y);
|
| - SkASSERT(SkFixedFloorToInt(riteE->fUpperY) <= stop_y);
|
| -
|
| - leftE->goY(y);
|
| - riteE->goY(y);
|
| -
|
| - if (leftE->fX > riteE->fX || (leftE->fX == riteE->fX &&
|
| - leftE->fDX > riteE->fDX)) {
|
| - SkTSwap(leftE, riteE);
|
| - }
|
| -
|
| - SkFixed local_bot_fixed = SkMin32(leftE->fLowerY, riteE->fLowerY);
|
| - // Skip the fractional y if edges are changing smoothly
|
| - if (isSmoothEnough(leftE, riteE, currE, stop_y)) {
|
| - local_bot_fixed = SkFixedCeilToFixed(local_bot_fixed);
|
| - }
|
| - local_bot_fixed = SkMin32(local_bot_fixed, SkIntToFixed(stop_y + 1));
|
| -
|
| - SkFixed left = leftE->fX;
|
| - SkFixed dLeft = leftE->fDX;
|
| - SkFixed rite = riteE->fX;
|
| - SkFixed dRite = riteE->fDX;
|
| - if (0 == (dLeft | dRite)) {
|
| - int fullLeft = SkFixedCeilToInt(left);
|
| - int fullRite = SkFixedFloorToInt(rite);
|
| - SkFixed partialLeft = SkIntToFixed(fullLeft) - left;
|
| - SkFixed partialRite = rite - SkIntToFixed(fullRite);
|
| - int fullTop = SkFixedCeilToInt(y);
|
| - int fullBot = SkFixedFloorToInt(local_bot_fixed);
|
| - SkFixed partialTop = SkIntToFixed(fullTop) - y;
|
| - SkFixed partialBot = local_bot_fixed - SkIntToFixed(fullBot);
|
| - if (fullTop > fullBot) { // The rectangle is within one pixel height...
|
| - partialTop -= (SK_Fixed1 - partialBot);
|
| - partialBot = 0;
|
| - }
|
| -
|
| - if (fullRite >= fullLeft) {
|
| - // Blit all full-height rows from fullTop to fullBot
|
| - if (fullBot > fullTop) {
|
| - blitter->getRealBlitter()->blitAntiRect(fullLeft - 1, fullTop,
|
| - fullRite - fullLeft, fullBot - fullTop,
|
| - f2a(partialLeft), f2a(partialRite));
|
| - }
|
| -
|
| - if (partialTop > 0) { // blit first partial row
|
| - if (partialLeft > 0) {
|
| - blitter->blitAntiH(fullLeft - 1, fullTop - 1,
|
| - f2a(SkFixedMul_lowprec(partialTop, partialLeft)));
|
| - }
|
| - if (partialRite > 0) {
|
| - blitter->blitAntiH(fullRite, fullTop - 1,
|
| - f2a(SkFixedMul_lowprec(partialTop, partialRite)));
|
| - }
|
| - blitter->blitAntiH(fullLeft, fullTop - 1, fullRite - fullLeft,
|
| - f2a(partialTop));
|
| - }
|
| -
|
| - if (partialBot > 0) { // blit last partial row
|
| - if (partialLeft > 0) {
|
| - blitter->blitAntiH(fullLeft - 1, fullBot,
|
| - f2a(SkFixedMul_lowprec(partialBot, partialLeft)));
|
| - }
|
| - if (partialRite > 0) {
|
| - blitter->blitAntiH(fullRite, fullBot,
|
| - f2a(SkFixedMul_lowprec(partialBot, partialRite)));
|
| - }
|
| - blitter->blitAntiH(fullLeft, fullBot, fullRite - fullLeft, f2a(partialBot));
|
| - }
|
| - } else { // left and rite are within the same pixel
|
| - if (partialTop > 0) {
|
| - blitter->getRealBlitter()->blitV(fullLeft - 1, fullTop - 1, 1,
|
| - f2a(SkFixedMul_lowprec(partialTop, rite - left)));
|
| - }
|
| - if (partialBot > 0) {
|
| - blitter->getRealBlitter()->blitV(fullLeft - 1, fullBot, 1,
|
| - f2a(SkFixedMul_lowprec(partialBot, rite - left)));
|
| - }
|
| - if (fullBot >= fullTop) {
|
| - blitter->getRealBlitter()->blitV(fullLeft - 1, fullTop, fullBot - fullTop,
|
| - f2a(rite - left));
|
| - }
|
| - }
|
| -
|
| - y = local_bot_fixed;
|
| - } else {
|
| - // The following constant are used to snap X
|
| - // We snap X mainly for speedup (no tiny triangle) and
|
| - // avoiding edge cases caused by precision errors
|
| - const SkFixed kSnapDigit = SK_Fixed1 >> 4;
|
| - const SkFixed kSnapHalf = kSnapDigit >> 1;
|
| - const SkFixed kSnapMask = (-1 ^ (kSnapDigit - 1));
|
| - left += kSnapHalf; rite += kSnapHalf; // For fast rounding
|
| -
|
| - // Number of blit_trapezoid_row calls we'll have
|
| - int count = SkFixedCeilToInt(local_bot_fixed) - SkFixedFloorToInt(y);
|
| - #ifdef SK_DEBUG
|
| - total_y_cnt += count;
|
| - frac_y_cnt += ((int)(y & 0xFFFF0000) != y);
|
| - if ((int)(y & 0xFFFF0000) != y) {
|
| - SkDebugf("frac_y = %f\n", SkFixedToFloat(y));
|
| - }
|
| - #endif
|
| -
|
| - // If we're using mask blitter, we advance the mask row in this function
|
| - // to save some "if" condition checks.
|
| - SkAlpha* maskRow = nullptr;
|
| - if (isUsingMask) {
|
| - maskRow = static_cast<MaskAdditiveBlitter*>(blitter)->getRow(y >> 16);
|
| - }
|
| -
|
| - // Instead of writing one loop that handles both partial-row blit_trapezoid_row
|
| - // and full-row trapezoid_row together, we use the following 3-stage flow to
|
| - // handle partial-row blit and full-row blit separately. It will save us much time
|
| - // on changing y, left, and rite.
|
| - if (count > 1) {
|
| - if ((int)(y & 0xFFFF0000) != y) { // There's a partial-row on the top
|
| - count--;
|
| - SkFixed nextY = SkFixedCeilToFixed(y + 1);
|
| - SkFixed dY = nextY - y;
|
| - SkFixed nextLeft = left + SkFixedMul_lowprec(dLeft, dY);
|
| - SkFixed nextRite = rite + SkFixedMul_lowprec(dRite, dY);
|
| - blit_trapezoid_row(blitter, y >> 16, left & kSnapMask, rite & kSnapMask,
|
| - nextLeft & kSnapMask, nextRite & kSnapMask, leftE->fDY, riteE->fDY,
|
| - getPartialAlpha(0xFF, dY), maskRow, isUsingMask);
|
| - left = nextLeft; rite = nextRite; y = nextY;
|
| - }
|
| -
|
| - while (count > 1) { // Full rows in the middle
|
| - count--;
|
| - if (isUsingMask) {
|
| - maskRow = static_cast<MaskAdditiveBlitter*>(blitter)->getRow(y >> 16);
|
| - }
|
| - SkFixed nextY = y + SK_Fixed1, nextLeft = left + dLeft, nextRite = rite + dRite;
|
| - blit_trapezoid_row(blitter, y >> 16, left & kSnapMask, rite & kSnapMask,
|
| - nextLeft & kSnapMask, nextRite & kSnapMask,
|
| - leftE->fDY, riteE->fDY, 0xFF, maskRow, isUsingMask);
|
| - left = nextLeft; rite = nextRite; y = nextY;
|
| - }
|
| - }
|
| -
|
| - if (isUsingMask) {
|
| - maskRow = static_cast<MaskAdditiveBlitter*>(blitter)->getRow(y >> 16);
|
| - }
|
| -
|
| - SkFixed dY = local_bot_fixed - y; // partial-row on the bottom
|
| - SkASSERT(dY <= SK_Fixed1);
|
| - // Smooth jumping to integer y may make the last nextLeft/nextRite out of bound.
|
| - // Take them back into the bound here.
|
| - SkFixed nextLeft = SkTMax(left + SkFixedMul_lowprec(dLeft, dY), leftBound);
|
| - SkFixed nextRite = SkTMin(rite + SkFixedMul_lowprec(dRite, dY), riteBound);
|
| - blit_trapezoid_row(blitter, y >> 16, left & kSnapMask, rite & kSnapMask,
|
| - nextLeft & kSnapMask, nextRite & kSnapMask, leftE->fDY, riteE->fDY,
|
| - getPartialAlpha(0xFF, dY), maskRow, isUsingMask);
|
| - left = nextLeft; rite = nextRite; y = local_bot_fixed;
|
| - left -= kSnapHalf; rite -= kSnapHalf;
|
| - }
|
| -
|
| - leftE->fX = left;
|
| - riteE->fX = rite;
|
| - leftE->fY = riteE->fY = y;
|
| - }
|
| -
|
| -END_WALK:
|
| - ;
|
| - #ifdef SK_DEBUG
|
| - SkDebugf("frac_y_cnt = %d, total_y_cnt = %d\n", frac_y_cnt, total_y_cnt);
|
| - #endif
|
| -}
|
| -
|
| -void SkScan::aaa_fill_path(const SkPath& path, const SkIRect* clipRect, AdditiveBlitter* blitter,
|
| - int start_y, int stop_y, const SkRegion& clipRgn, bool isUsingMask) {
|
| - SkASSERT(blitter);
|
| -
|
| - if (path.isInverseFillType() || !path.isConvex()) {
|
| - // fall back to supersampling AA
|
| - SkScan::AntiFillPath(path, clipRgn, blitter->getRealBlitter(true), false);
|
| - return;
|
| - }
|
| -
|
| - SkEdgeBuilder builder;
|
| -
|
| - // If we're convex, then we need both edges, even the right edge is past the clip
|
| - const bool canCullToTheRight = !path.isConvex();
|
| -
|
| - SkASSERT(GlobalAAConfig::getInstance().fUseAnalyticAA);
|
| - int count = builder.build(path, clipRect, 0, canCullToTheRight, true);
|
| - SkASSERT(count >= 0);
|
| -
|
| - SkAnalyticEdge** list = (SkAnalyticEdge**)builder.analyticEdgeList();
|
| -
|
| - SkIRect rect = clipRgn.getBounds();
|
| - if (0 == count) {
|
| - if (path.isInverseFillType()) {
|
| - /*
|
| - * Since we are in inverse-fill, our caller has already drawn above
|
| - * our top (start_y) and will draw below our bottom (stop_y). Thus
|
| - * we need to restrict our drawing to the intersection of the clip
|
| - * and those two limits.
|
| - */
|
| - if (rect.fTop < start_y) {
|
| - rect.fTop = start_y;
|
| - }
|
| - if (rect.fBottom > stop_y) {
|
| - rect.fBottom = stop_y;
|
| - }
|
| - if (!rect.isEmpty()) {
|
| - blitter->blitRect(rect.fLeft, rect.fTop, rect.width(), rect.height());
|
| - }
|
| - }
|
| - return;
|
| - }
|
| -
|
| - SkAnalyticEdge headEdge, tailEdge, *last;
|
| - // this returns the first and last edge after they're sorted into a dlink list
|
| - SkAnalyticEdge* edge = sort_edges(list, count, &last);
|
| -
|
| - headEdge.fPrev = nullptr;
|
| - headEdge.fNext = edge;
|
| - headEdge.fUpperY = headEdge.fLowerY = SK_MinS32;
|
| - headEdge.fX = SK_MinS32;
|
| - headEdge.fDX = 0;
|
| - headEdge.fDY = SK_MaxS32;
|
| - headEdge.fUpperX = SK_MinS32;
|
| - edge->fPrev = &headEdge;
|
| -
|
| - tailEdge.fPrev = last;
|
| - tailEdge.fNext = nullptr;
|
| - tailEdge.fUpperY = tailEdge.fLowerY = SK_MaxS32;
|
| - headEdge.fX = SK_MaxS32;
|
| - headEdge.fDX = 0;
|
| - headEdge.fDY = SK_MaxS32;
|
| - headEdge.fUpperX = SK_MaxS32;
|
| - last->fNext = &tailEdge;
|
| -
|
| - // now edge is the head of the sorted linklist
|
| -
|
| - if (clipRect && start_y < clipRect->fTop) {
|
| - start_y = clipRect->fTop;
|
| - }
|
| - if (clipRect && stop_y > clipRect->fBottom) {
|
| - stop_y = clipRect->fBottom;
|
| - }
|
| -
|
| - if (!path.isInverseFillType() && path.isConvex()) {
|
| - SkASSERT(count >= 2); // convex walker does not handle missing right edges
|
| - aaa_walk_convex_edges(&headEdge, blitter, start_y, stop_y,
|
| - rect.fLeft << 16, rect.fRight << 16, isUsingMask);
|
| - } else {
|
| - SkFAIL("Concave AAA is not yet implemented!");
|
| - }
|
| -}
|
| -
|
| -///////////////////////////////////////////////////////////////////////////////
|
| -
|
| -void SkScan::AAAFillPath(const SkPath& path, const SkRegion& origClip, SkBlitter* blitter) {
|
| - if (origClip.isEmpty()) {
|
| - return;
|
| - }
|
| -
|
| - const bool isInverse = path.isInverseFillType();
|
| - SkIRect ir;
|
| - path.getBounds().roundOut(&ir);
|
| - if (ir.isEmpty()) {
|
| - if (isInverse) {
|
| - blitter->blitRegion(origClip);
|
| - }
|
| - return;
|
| - }
|
| -
|
| - SkIRect clippedIR;
|
| - if (isInverse) {
|
| - // If the path is an inverse fill, it's going to fill the entire
|
| - // clip, and we care whether the entire clip exceeds our limits.
|
| - clippedIR = origClip.getBounds();
|
| - } else {
|
| - if (!clippedIR.intersect(ir, origClip.getBounds())) {
|
| - return;
|
| - }
|
| - }
|
| -
|
| - // Our antialiasing can't handle a clip larger than 32767, so we restrict
|
| - // the clip to that limit here. (the runs[] uses int16_t for its index).
|
| - //
|
| - // A more general solution (one that could also eliminate the need to
|
| - // disable aa based on ir bounds (see overflows_short_shift) would be
|
| - // to tile the clip/target...
|
| - SkRegion tmpClipStorage;
|
| - const SkRegion* clipRgn = &origClip;
|
| - {
|
| - static const int32_t kMaxClipCoord = 32767;
|
| - const SkIRect& bounds = origClip.getBounds();
|
| - if (bounds.fRight > kMaxClipCoord || bounds.fBottom > kMaxClipCoord) {
|
| - SkIRect limit = { 0, 0, kMaxClipCoord, kMaxClipCoord };
|
| - tmpClipStorage.op(origClip, limit, SkRegion::kIntersect_Op);
|
| - clipRgn = &tmpClipStorage;
|
| - }
|
| - }
|
| - // for here down, use clipRgn, not origClip
|
| -
|
| - SkScanClipper clipper(blitter, clipRgn, ir);
|
| - const SkIRect* clipRect = clipper.getClipRect();
|
| -
|
| - if (clipper.getBlitter() == nullptr) { // clipped out
|
| - if (isInverse) {
|
| - blitter->blitRegion(*clipRgn);
|
| - }
|
| - return;
|
| - }
|
| -
|
| - // now use the (possibly wrapped) blitter
|
| - blitter = clipper.getBlitter();
|
| -
|
| - if (isInverse) {
|
| - // Currently, we use the old path to render the inverse path,
|
| - // so we don't need this.
|
| - // sk_blit_above(blitter, ir, *clipRgn);
|
| - }
|
| -
|
| - SkASSERT(SkIntToScalar(ir.fTop) <= path.getBounds().fTop);
|
| -
|
| - if (MaskAdditiveBlitter::canHandleRect(ir) && !isInverse) {
|
| - MaskAdditiveBlitter additiveBlitter(blitter, ir, *clipRgn, isInverse);
|
| - aaa_fill_path(path, clipRect, &additiveBlitter, ir.fTop, ir.fBottom, *clipRgn, true);
|
| - } else {
|
| - RunBasedAdditiveBlitter additiveBlitter(blitter, ir, *clipRgn, isInverse);
|
| - aaa_fill_path(path, clipRect, &additiveBlitter, ir.fTop, ir.fBottom, *clipRgn, false);
|
| - }
|
| -
|
| - if (isInverse) {
|
| - // Currently, we use the old path to render the inverse path,
|
| - // so we don't need this.
|
| - // sk_blit_below(blitter, ir, *clipRgn);
|
| - }
|
| -}
|
| -
|
| -// This almost copies SkScan::AntiFillPath
|
| -void SkScan::AAAFillPath(const SkPath& path, const SkRasterClip& clip, SkBlitter* blitter) {
|
| - if (clip.isEmpty()) {
|
| - return;
|
| - }
|
| -
|
| - if (clip.isBW()) {
|
| - AAAFillPath(path, clip.bwRgn(), blitter);
|
| - } else {
|
| - SkRegion tmp;
|
| - SkAAClipBlitter aaBlitter;
|
| -
|
| - tmp.setRect(clip.getBounds());
|
| - aaBlitter.init(blitter, &clip.aaRgn());
|
| - AAAFillPath(path, tmp, &aaBlitter);
|
| - }
|
| -}
|
|
|