Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(149)

Unified Diff: src/core/SkScan_AAAPath.cpp

Issue 2388213003: Revert of Analytic AntiAlias for Convex Shapes (Closed) Base URL: https://skia.googlesource.com/skia.git@master
Patch Set: Created 4 years, 2 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « src/core/SkScan.h ('k') | src/core/SkScan_AntiPath.cpp » ('j') | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: src/core/SkScan_AAAPath.cpp
diff --git a/src/core/SkScan_AAAPath.cpp b/src/core/SkScan_AAAPath.cpp
deleted file mode 100644
index e5b8c57d5fa9366ef44e7c04d10093a726c6ccc7..0000000000000000000000000000000000000000
--- a/src/core/SkScan_AAAPath.cpp
+++ /dev/null
@@ -1,1279 +0,0 @@
-/*
- * Copyright 2016 The Android Open Source Project
- *
- * Use of this source code is governed by a BSD-style license that can be
- * found in the LICENSE file.
- */
-
-#include "SkAntiRun.h"
-#include "SkBlitter.h"
-#include "SkEdge.h"
-#include "SkAnalyticEdge.h"
-#include "SkEdgeBuilder.h"
-#include "SkGeometry.h"
-#include "SkPath.h"
-#include "SkQuadClipper.h"
-#include "SkRasterClip.h"
-#include "SkRegion.h"
-#include "SkScan.h"
-#include "SkScanPriv.h"
-#include "SkTemplates.h"
-#include "SkTSort.h"
-#include "SkUtils.h"
-
-///////////////////////////////////////////////////////////////////////////////
-
-/*
-
-The following is a high-level overview of our analytic anti-aliasing
-algorithm. We consider a path as a collection of line segments, as
-quadratic/cubic curves are converted to small line segments. Without loss of
-generality, let's assume that the draw region is [0, W] x [0, H].
-
-Our algorithm is based on horizontal scan lines (y = c_i) as the previous
-sampling-based algorithm did. However, our algorithm uses non-equal-spaced
-scan lines, while the previous method always uses equal-spaced scan lines,
-such as (y = 1/2 + 0, 1/2 + 1, 1/2 + 2, ...) in the previous non-AA algorithm,
-and (y = 1/8 + 1/4, 1/8 + 2/4, 1/8 + 3/4, ...) in the previous
-16-supersampling AA algorithm.
-
-Our algorithm contains scan lines y = c_i for c_i that is either:
-
-1. an integer between [0, H]
-
-2. the y value of a line segment endpoint
-
-3. the y value of an intersection of two line segments
-
-For two consecutive scan lines y = c_i, y = c_{i+1}, we analytically computes
-the coverage of this horizontal strip of our path on each pixel. This can be
-done very efficiently because the strip of our path now only consists of
-trapezoids whose top and bottom edges are y = c_i, y = c_{i+1} (this includes
-rectangles and triangles as special cases).
-
-We now describe how the coverage of single pixel is computed against such a
-trapezoid. That coverage is essentially the intersection area of a rectangle
-(e.g., [0, 1] x [c_i, c_{i+1}]) and our trapezoid. However, that intersection
-could be complicated, as shown in the example region A below:
-
-+-----------\----+
-| \ C|
-| \ |
-\ \ |
-|\ A \|
-| \ \
-| \ |
-| B \ |
-+----\-----------+
-
-However, we don't have to compute the area of A directly. Instead, we can
-compute the excluded area, which are B and C, quite easily, because they're
-just triangles. In fact, we can prove that an excluded region (take B as an
-example) is either itself a simple trapezoid (including rectangles, triangles,
-and empty regions), or its opposite (the opposite of B is A + C) is a simple
-trapezoid. In any case, we can compute its area efficiently.
-
-In summary, our algorithm has a higher quality because it generates ground-
-truth coverages analytically. It is also faster because it has much fewer
-unnessasary horizontal scan lines. For example, given a triangle path, the
-number of scan lines in our algorithm is only about 3 + H while the
-16-supersampling algorithm has about 4H scan lines.
-
-*/
-
-///////////////////////////////////////////////////////////////////////////////
-
-inline void addAlpha(SkAlpha& alpha, SkAlpha delta) {
- SkASSERT(alpha + (int)delta <= 0xFF);
- alpha += delta;
-}
-
-class AdditiveBlitter : public SkBlitter {
-public:
- virtual ~AdditiveBlitter() {}
-
- virtual SkBlitter* getRealBlitter(bool forceRealBlitter = false) = 0;
-
- virtual void blitAntiH(int x, int y, const SkAlpha antialias[], int len) = 0;
- virtual void blitAntiH(int x, int y, const SkAlpha alpha) = 0;
- virtual void blitAntiH(int x, int y, int width, const SkAlpha alpha) = 0;
-
- void blitAntiH(int x, int y, const SkAlpha antialias[], const int16_t runs[]) override {
- SkDEBUGFAIL("Please call real blitter's blitAntiH instead.");
- }
-
- void blitV(int x, int y, int height, SkAlpha alpha) override {
- SkDEBUGFAIL("Please call real blitter's blitV instead.");
- }
-
- void blitH(int x, int y, int width) override {
- SkDEBUGFAIL("Please call real blitter's blitH instead.");
- }
-
- void blitRect(int x, int y, int width, int height) override {
- SkDEBUGFAIL("Please call real blitter's blitRect instead.");
- }
-
- void blitAntiRect(int x, int y, int width, int height,
- SkAlpha leftAlpha, SkAlpha rightAlpha) override {
- SkDEBUGFAIL("Please call real blitter's blitAntiRect instead.");
- }
-
- virtual int getWidth() = 0;
-};
-
-// We need this mask blitter because it significantly accelerates small path filling.
-class MaskAdditiveBlitter : public AdditiveBlitter {
-public:
- MaskAdditiveBlitter(SkBlitter* realBlitter, const SkIRect& ir, const SkRegion& clip,
- bool isInverse);
- ~MaskAdditiveBlitter() {
- fRealBlitter->blitMask(fMask, fClipRect);
- }
-
- // Most of the time, we still consider this mask blitter as the real blitter
- // so we can accelerate blitRect and others. But sometimes we want to return
- // the absolute real blitter (e.g., when we fall back to the old code path).
- SkBlitter* getRealBlitter(bool forceRealBlitter) override {
- return forceRealBlitter ? fRealBlitter : this;
- }
-
- // Virtual function is slow. So don't use this. Directly add alpha to the mask instead.
- void blitAntiH(int x, int y, const SkAlpha antialias[], int len) override;
-
- // Allowing following methods are used to blit rectangles during aaa_walk_convex_edges
- // Since there aren't many rectangles, we can still break the slow speed of virtual functions.
- void blitAntiH(int x, int y, const SkAlpha alpha) override;
- void blitAntiH(int x, int y, int width, const SkAlpha alpha) override;
- void blitV(int x, int y, int height, SkAlpha alpha) override;
- void blitRect(int x, int y, int width, int height) override;
- void blitAntiRect(int x, int y, int width, int height,
- SkAlpha leftAlpha, SkAlpha rightAlpha) override;
-
- int getWidth() override { return fClipRect.width(); }
-
- static bool canHandleRect(const SkIRect& bounds) {
- int width = bounds.width();
- int64_t rb = SkAlign4(width);
- // use 64bits to detect overflow
- int64_t storage = rb * bounds.height();
-
- return (width <= MaskAdditiveBlitter::kMAX_WIDTH) &&
- (storage <= MaskAdditiveBlitter::kMAX_STORAGE);
- }
-
- // Return a pointer where pointer[x] corresonds to the alpha of (x, y)
- inline uint8_t* getRow(int y) {
- if (y != fY) {
- fY = y;
- fRow = fMask.fImage + (y - fMask.fBounds.fTop) * fMask.fRowBytes - fMask.fBounds.fLeft;
- }
- return fRow;
- }
-
-private:
- // so we don't try to do very wide things, where the RLE blitter would be faster
- static const int kMAX_WIDTH = 32;
- static const int kMAX_STORAGE = 1024;
-
- SkBlitter* fRealBlitter;
- SkMask fMask;
- SkIRect fClipRect;
- // we add 2 because we can write 1 extra byte at either end due to precision error
- uint32_t fStorage[(kMAX_STORAGE >> 2) + 2];
-
- uint8_t* fRow;
- int fY;
-};
-
-MaskAdditiveBlitter::MaskAdditiveBlitter(SkBlitter* realBlitter, const SkIRect& ir, const SkRegion& clip,
- bool isInverse) {
- SkASSERT(canHandleRect(ir));
- SkASSERT(!isInverse);
-
- fRealBlitter = realBlitter;
-
- fMask.fImage = (uint8_t*)fStorage + 1; // There's 1 extra byte at either end of fStorage
- fMask.fBounds = ir;
- fMask.fRowBytes = ir.width();
- fMask.fFormat = SkMask::kA8_Format;
-
- fY = ir.fTop - 1;
- fRow = nullptr;
-
- fClipRect = ir;
- if (!fClipRect.intersect(clip.getBounds())) {
- SkASSERT(0);
- fClipRect.setEmpty();
- }
-
- memset(fStorage, 0, fMask.fBounds.height() * fMask.fRowBytes + 2);
-}
-
-void MaskAdditiveBlitter::blitAntiH(int x, int y, const SkAlpha antialias[], int len) {
- SkFAIL("Don't use this; directly add alphas to the mask.");
-}
-
-void MaskAdditiveBlitter::blitAntiH(int x, int y, const SkAlpha alpha) {
- SkASSERT(x >= fMask.fBounds.fLeft -1);
- addAlpha(this->getRow(y)[x], alpha);
-}
-
-void MaskAdditiveBlitter::blitAntiH(int x, int y, int width, const SkAlpha alpha) {
- SkASSERT(x >= fMask.fBounds.fLeft -1);
- uint8_t* row = this->getRow(y);
- for (int i=0; i<width; i++) {
- addAlpha(row[x + i], alpha);
- }
-}
-
-void MaskAdditiveBlitter::blitV(int x, int y, int height, SkAlpha alpha) {
- if (alpha == 0) {
- return;
- }
- SkASSERT(x >= fMask.fBounds.fLeft -1);
- // This must be called as if this is a real blitter.
- // So we directly set alpha rather than adding it.
- uint8_t* row = this->getRow(y);
- for (int i=0; i<height; i++) {
- row[x] = alpha;
- row += fMask.fRowBytes;
- }
-}
-
-void MaskAdditiveBlitter::blitRect(int x, int y, int width, int height) {
- SkASSERT(x >= fMask.fBounds.fLeft -1);
- // This must be called as if this is a real blitter.
- // So we directly set alpha rather than adding it.
- uint8_t* row = this->getRow(y);
- for (int i=0; i<height; i++) {
- memset(row + x, 0xFF, width);
- row += fMask.fRowBytes;
- }
-}
-
-void MaskAdditiveBlitter::blitAntiRect(int x, int y, int width, int height,
- SkAlpha leftAlpha, SkAlpha rightAlpha) {
- blitV(x, y, height, leftAlpha);
- blitV(x + 1 + width, y, height, rightAlpha);
- blitRect(x + 1, y, width, height);
-}
-
-class RunBasedAdditiveBlitter : public AdditiveBlitter {
-public:
- RunBasedAdditiveBlitter(SkBlitter* realBlitter, const SkIRect& ir, const SkRegion& clip,
- bool isInverse);
- ~RunBasedAdditiveBlitter();
-
- SkBlitter* getRealBlitter(bool forceRealBlitter) override;
-
- void blitAntiH(int x, int y, const SkAlpha antialias[], int len) override;
- void blitAntiH(int x, int y, const SkAlpha alpha) override;
- void blitAntiH(int x, int y, int width, const SkAlpha alpha) override;
-
- int getWidth() override;
-
-private:
- SkBlitter* fRealBlitter;
-
- /// Current y coordinate
- int fCurrY;
- /// Widest row of region to be blitted
- int fWidth;
- /// Leftmost x coordinate in any row
- int fLeft;
- /// Initial y coordinate (top of bounds).
- int fTop;
-
- // The next three variables are used to track a circular buffer that
- // contains the values used in SkAlphaRuns. These variables should only
- // ever be updated in advanceRuns(), and fRuns should always point to
- // a valid SkAlphaRuns...
- int fRunsToBuffer;
- void* fRunsBuffer;
- int fCurrentRun;
- SkAlphaRuns fRuns;
-
- int fOffsetX;
-
- inline bool check(int x, int width) {
- #ifdef SK_DEBUG
- if (x < 0 || x + width > fWidth) {
- SkDebugf("Ignore x = %d, width = %d\n", x, width);
- }
- #endif
- return (x >= 0 && x + width <= fWidth);
- }
-
- // extra one to store the zero at the end
- inline int getRunsSz() const { return (fWidth + 1 + (fWidth + 2)/2) * sizeof(int16_t); }
-
- // This function updates the fRuns variable to point to the next buffer space
- // with adequate storage for a SkAlphaRuns. It mostly just advances fCurrentRun
- // and resets fRuns to point to an empty scanline.
- inline void advanceRuns() {
- const size_t kRunsSz = this->getRunsSz();
- fCurrentRun = (fCurrentRun + 1) % fRunsToBuffer;
- fRuns.fRuns = reinterpret_cast<int16_t*>(
- reinterpret_cast<uint8_t*>(fRunsBuffer) + fCurrentRun * kRunsSz);
- fRuns.fAlpha = reinterpret_cast<SkAlpha*>(fRuns.fRuns + fWidth + 1);
- fRuns.reset(fWidth);
- }
-
- // Blitting 0xFF and 0 is much faster so we snap alphas close to them
- inline SkAlpha snapAlpha(SkAlpha alpha) {
- return alpha > 247 ? 0xFF : alpha < 8 ? 0 : alpha;
- }
-
- inline void flush() {
- if (fCurrY >= fTop) {
- SkASSERT(fCurrentRun < fRunsToBuffer);
- for (int x = 0; fRuns.fRuns[x]; x += fRuns.fRuns[x]) {
- // It seems that blitting 255 or 0 is much faster than blitting 254 or 1
- fRuns.fAlpha[x] = snapAlpha(fRuns.fAlpha[x]);
- }
- if (!fRuns.empty()) {
- // SkDEBUGCODE(fRuns.dump();)
- fRealBlitter->blitAntiH(fLeft, fCurrY, fRuns.fAlpha, fRuns.fRuns);
- this->advanceRuns();
- fOffsetX = 0;
- }
- fCurrY = fTop - 1;
- }
- }
-
- inline void checkY(int y) {
- if (y != fCurrY) {
- this->flush();
- fCurrY = y;
- }
- }
-};
-
-RunBasedAdditiveBlitter::RunBasedAdditiveBlitter(SkBlitter* realBlitter, const SkIRect& ir, const SkRegion& clip,
- bool isInverse) {
- fRealBlitter = realBlitter;
-
- SkIRect sectBounds;
- if (isInverse) {
- // We use the clip bounds instead of the ir, since we may be asked to
- //draw outside of the rect when we're a inverse filltype
- sectBounds = clip.getBounds();
- } else {
- if (!sectBounds.intersect(ir, clip.getBounds())) {
- sectBounds.setEmpty();
- }
- }
-
- const int left = sectBounds.left();
- const int right = sectBounds.right();
-
- fLeft = left;
- fWidth = right - left;
- fTop = sectBounds.top();
- fCurrY = fTop - 1;
-
- fRunsToBuffer = realBlitter->requestRowsPreserved();
- fRunsBuffer = realBlitter->allocBlitMemory(fRunsToBuffer * this->getRunsSz());
- fCurrentRun = -1;
-
- this->advanceRuns();
-
- fOffsetX = 0;
-}
-
-RunBasedAdditiveBlitter::~RunBasedAdditiveBlitter() {
- this->flush();
-}
-
-SkBlitter* RunBasedAdditiveBlitter::getRealBlitter(bool forceRealBlitter) {
- return fRealBlitter;
-}
-
-void RunBasedAdditiveBlitter::blitAntiH(int x, int y, const SkAlpha antialias[], int len) {
- checkY(y);
- x -= fLeft;
-
- if (x < 0) {
- len += x;
- antialias -= x;
- x = 0;
- }
- len = SkTMin(len, fWidth - x);
- SkASSERT(check(x, len));
-
- if (x < fOffsetX) {
- fOffsetX = 0;
- }
-
- fOffsetX = fRuns.add(x, 0, len, 0, 0, fOffsetX); // Break the run
- for (int i = 0; i < len; i += fRuns.fRuns[x + i]) {
- for (int j = 1; j < fRuns.fRuns[x + i]; j++) {
- fRuns.fRuns[x + i + j] = 1;
- fRuns.fAlpha[x + i + j] = fRuns.fAlpha[x + i];
- }
- fRuns.fRuns[x + i] = 1;
- }
- for (int i=0; i<len; i++) {
- addAlpha(fRuns.fAlpha[x + i], antialias[i]);
- }
-}
-void RunBasedAdditiveBlitter::blitAntiH(int x, int y, const SkAlpha alpha) {
- checkY(y);
- x -= fLeft;
-
- if (x < fOffsetX) {
- fOffsetX = 0;
- }
-
- if (this->check(x, 1)) {
- fOffsetX = fRuns.add(x, 0, 1, 0, alpha, fOffsetX);
- }
-}
-
-void RunBasedAdditiveBlitter::blitAntiH(int x, int y, int width, const SkAlpha alpha) {
- checkY(y);
- x -= fLeft;
-
- if (x < fOffsetX) {
- fOffsetX = 0;
- }
-
- if (this->check(x, width)) {
- fOffsetX = fRuns.add(x, 0, width, 0, alpha, fOffsetX);
- }
-}
-
-int RunBasedAdditiveBlitter::getWidth() { return fWidth; }
-
-///////////////////////////////////////////////////////////////////////////////
-
-// Return the alpha of a trapezoid whose height is 1
-static inline SkAlpha trapezoidToAlpha(SkFixed l1, SkFixed l2) {
- SkASSERT(l1 >= 0 && l2 >= 0);
- return ((l1 + l2) >> 9);
-}
-
-// The alpha of right-triangle (a, a*b), in 16 bits
-static inline SkFixed partialTriangleToAlpha16(SkFixed a, SkFixed b) {
- SkASSERT(a <= SK_Fixed1);
- // SkFixedMul_lowprec(SkFixedMul_lowprec(a, a), b) >> 1
- // return ((((a >> 8) * (a >> 8)) >> 8) * (b >> 8)) >> 1;
- return (a >> 11) * (a >> 11) * (b >> 11);
-}
-
-// The alpha of right-triangle (a, a*b)
-static inline SkAlpha partialTriangleToAlpha(SkFixed a, SkFixed b) {
- return partialTriangleToAlpha16(a, b) >> 8;
-}
-
-static inline SkAlpha getPartialAlpha(SkAlpha alpha, SkFixed partialHeight) {
- return (alpha * partialHeight) >> 16;
-}
-
-static inline SkAlpha getPartialAlpha(SkAlpha alpha, SkAlpha fullAlpha) {
- return ((uint16_t)alpha * fullAlpha) >> 8;
-}
-
-// For SkFixed that's close to SK_Fixed1, we can't convert it to alpha by just shifting right.
-// For example, when f = SK_Fixed1, right shifting 8 will get 256, but we need 255.
-// This is rarely the problem so we'll only use this for blitting rectangles.
-static inline SkAlpha f2a(SkFixed f) {
- SkASSERT(f <= SK_Fixed1);
- return getPartialAlpha(0xFF, f);
-}
-
-// Suppose that line (l1, y)-(r1, y+1) intersects with (l2, y)-(r2, y+1),
-// approximate (very coarsely) the x coordinate of the intersection.
-static inline SkFixed approximateIntersection(SkFixed l1, SkFixed r1, SkFixed l2, SkFixed r2) {
- if (l1 > r1) { SkTSwap(l1, r1); }
- if (l2 > r2) { SkTSwap(l2, r2); }
- return (SkTMax(l1, l2) + SkTMin(r1, r2)) >> 1;
-}
-
-// Here we always send in l < SK_Fixed1, and the first alpha we want to compute is alphas[0]
-static inline void computeAlphaAboveLine(SkAlpha* alphas, SkFixed l, SkFixed r,
- SkFixed dY, SkAlpha fullAlpha) {
- SkASSERT(l <= r);
- SkASSERT(l >> 16 == 0);
- int R = SkFixedCeilToInt(r);
- if (R == 0) {
- return;
- } else if (R == 1) {
- alphas[0] = getPartialAlpha(((R << 17) - l - r) >> 9, fullAlpha);
- } else {
- SkFixed first = SK_Fixed1 - l; // horizontal edge length of the left-most triangle
- SkFixed last = r - ((R - 1) << 16); // horizontal edge length of the right-most triangle
- SkFixed firstH = SkFixedMul_lowprec(first, dY); // vertical edge of the left-most triangle
- alphas[0] = SkFixedMul_lowprec(first, firstH) >> 9; // triangle alpha
- SkFixed alpha16 = firstH + (dY >> 1); // rectangle plus triangle
- for (int i = 1; i < R - 1; i++) {
- alphas[i] = alpha16 >> 8;
- alpha16 += dY;
- }
- alphas[R - 1] = fullAlpha - partialTriangleToAlpha(last, dY);
- }
-}
-
-// Here we always send in l < SK_Fixed1, and the first alpha we want to compute is alphas[0]
-static inline void computeAlphaBelowLine(SkAlpha* alphas, SkFixed l, SkFixed r, SkFixed dY, SkAlpha fullAlpha) {
- SkASSERT(l <= r);
- SkASSERT(l >> 16 == 0);
- int R = SkFixedCeilToInt(r);
- if (R == 0) {
- return;
- } else if (R == 1) {
- alphas[0] = getPartialAlpha(trapezoidToAlpha(l, r), fullAlpha);
- } else {
- SkFixed first = SK_Fixed1 - l; // horizontal edge length of the left-most triangle
- SkFixed last = r - ((R - 1) << 16); // horizontal edge length of the right-most triangle
- SkFixed lastH = SkFixedMul_lowprec(last, dY); // vertical edge of the right-most triangle
- alphas[R-1] = SkFixedMul_lowprec(last, lastH) >> 9; // triangle alpha
- SkFixed alpha16 = lastH + (dY >> 1); // rectangle plus triangle
- for (int i = R - 2; i > 0; i--) {
- alphas[i] = alpha16 >> 8;
- alpha16 += dY;
- }
- alphas[0] = fullAlpha - partialTriangleToAlpha(first, dY);
- }
-}
-
-// Note that if fullAlpha != 0xFF, we'll multiply alpha by fullAlpha
-static inline void blit_single_alpha(AdditiveBlitter* blitter, int y, int x,
- SkAlpha alpha, SkAlpha fullAlpha, SkAlpha* maskRow,
- bool isUsingMask) {
- if (isUsingMask) {
- if (fullAlpha == 0xFF) {
- maskRow[x] = alpha;
- } else {
- addAlpha(maskRow[x], getPartialAlpha(alpha, fullAlpha));
- }
- } else {
- if (fullAlpha == 0xFF) {
- blitter->getRealBlitter()->blitV(x, y, 1, alpha);
- } else {
- blitter->blitAntiH(x, y, getPartialAlpha(alpha, fullAlpha));
- }
- }
-}
-
-static inline void blit_two_alphas(AdditiveBlitter* blitter, int y, int x,
- SkAlpha a1, SkAlpha a2, SkAlpha fullAlpha, SkAlpha* maskRow,
- bool isUsingMask) {
- if (isUsingMask) {
- addAlpha(maskRow[x], a1);
- addAlpha(maskRow[x + 1], a2);
- } else {
- if (fullAlpha == 0xFF) {
- blitter->getRealBlitter()->blitV(x, y, 1, a1);
- blitter->getRealBlitter()->blitV(x + 1, y, 1, a2);
- } else {
- blitter->blitAntiH(x, y, a1);
- blitter->blitAntiH(x + 1, y, a2);
- }
- }
-}
-
-// It's important that this is inline. Otherwise it'll be much slower.
-static SK_ALWAYS_INLINE void blit_full_alpha(AdditiveBlitter* blitter, int y, int x, int len,
- SkAlpha fullAlpha, SkAlpha* maskRow, bool isUsingMask) {
- if (isUsingMask) {
- for (int i=0; i<len; i++) {
- addAlpha(maskRow[x + i], fullAlpha);
- }
- } else {
- if (fullAlpha == 0xFF) {
- blitter->getRealBlitter()->blitH(x, y, len);
- } else {
- blitter->blitAntiH(x, y, len, fullAlpha);
- }
- }
-}
-
-static void blit_aaa_trapezoid_row(AdditiveBlitter* blitter, int y,
- SkFixed ul, SkFixed ur, SkFixed ll, SkFixed lr,
- SkFixed lDY, SkFixed rDY, SkAlpha fullAlpha, SkAlpha* maskRow,
- bool isUsingMask) {
- int L = SkFixedFloorToInt(ul), R = SkFixedCeilToInt(lr);
- int len = R - L;
-
- if (len == 1) {
- SkAlpha alpha = trapezoidToAlpha(ur - ul, lr - ll);
- blit_single_alpha(blitter, y, L, alpha, fullAlpha, maskRow, isUsingMask);
- return;
- }
-
- // SkDebugf("y = %d, len = %d, ul = %f, ur = %f, ll = %f, lr = %f\n", y, len,
- // SkFixedToFloat(ul), SkFixedToFloat(ur), SkFixedToFloat(ll), SkFixedToFloat(lr));
-
- const int kQuickLen = 31;
- // This is faster than SkAutoSMalloc<1024>
- char quickMemory[(sizeof(SkAlpha) * 2 + sizeof(int16_t)) * (kQuickLen + 1)];
- SkAlpha* alphas;
-
- if (len <= kQuickLen) {
- alphas = (SkAlpha*)quickMemory;
- } else {
- alphas = new SkAlpha[(len + 1) * (sizeof(SkAlpha) * 2 + sizeof(int16_t))];
- }
-
- SkAlpha* tempAlphas = alphas + len + 1;
- int16_t* runs = (int16_t*)(alphas + (len + 1) * 2);
-
- for (int i = 0; i < len; i++) {
- runs[i] = 1;
- alphas[i] = fullAlpha;
- }
- runs[len] = 0;
-
- int uL = SkFixedFloorToInt(ul);
- int lL = SkFixedCeilToInt(ll);
- if (uL + 2 == lL) { // We only need to compute two triangles, accelerate this special case
- SkFixed first = (uL << 16) + SK_Fixed1 - ul;
- SkFixed second = ll - ul - first;
- SkAlpha a1 = fullAlpha - partialTriangleToAlpha(first, lDY);
- SkAlpha a2 = partialTriangleToAlpha(second, lDY);
- alphas[0] = alphas[0] > a1 ? alphas[0] - a1 : 0;
- alphas[1] = alphas[1] > a2 ? alphas[1] - a2 : 0;
- } else {
- computeAlphaBelowLine(tempAlphas + uL - L, ul - (uL << 16), ll - (uL << 16),
- lDY, fullAlpha);
- for (int i = uL; i < lL; i++) {
- if (alphas[i - L] > tempAlphas[i - L]) {
- alphas[i - L] -= tempAlphas[i - L];
- } else {
- alphas[i - L] = 0;
- }
- }
- }
-
- int uR = SkFixedFloorToInt(ur);
- int lR = SkFixedCeilToInt(lr);
- if (uR + 2 == lR) { // We only need to compute two triangles, accelerate this special case
- SkFixed first = (uR << 16) + SK_Fixed1 - ur;
- SkFixed second = lr - ur - first;
- SkAlpha a1 = partialTriangleToAlpha(first, rDY);
- SkAlpha a2 = fullAlpha - partialTriangleToAlpha(second, rDY);
- alphas[len-2] = alphas[len-2] > a1 ? alphas[len-2] - a1 : 0;
- alphas[len-1] = alphas[len-1] > a2 ? alphas[len-1] - a2 : 0;
- } else {
- computeAlphaAboveLine(tempAlphas + uR - L, ur - (uR << 16), lr - (uR << 16),
- rDY, fullAlpha);
- for (int i = uR; i < lR; i++) {
- if (alphas[i - L] > tempAlphas[i - L]) {
- alphas[i - L] -= tempAlphas[i - L];
- } else {
- alphas[i - L] = 0;
- }
- }
- }
-
- if (isUsingMask) {
- for (int i=0; i<len; i++) {
- addAlpha(maskRow[L + i], alphas[i]);
- }
- } else {
- if (fullAlpha == 0xFF) { // Real blitter is faster than RunBasedAdditiveBlitter
- blitter->getRealBlitter()->blitAntiH(L, y, alphas, runs);
- } else {
- blitter->blitAntiH(L, y, alphas, len);
- }
- }
-
- if (len > kQuickLen) {
- delete [] alphas;
- }
-}
-
-static inline void blit_trapezoid_row(AdditiveBlitter* blitter, int y,
- SkFixed ul, SkFixed ur, SkFixed ll, SkFixed lr,
- SkFixed lDY, SkFixed rDY, SkAlpha fullAlpha,
- SkAlpha* maskRow, bool isUsingMask) {
- SkASSERT(lDY >= 0 && rDY >= 0); // We should only send in the absolte value
-
- if (ul > ur) {
-#ifdef SK_DEBUG
- SkDebugf("ul = %f > ur = %f!\n", SkFixedToFloat(ul), SkFixedToFloat(ur));
-#endif
- return;
- }
-
- // Edge crosses. Approximate it. This should only happend due to precision limit,
- // so the approximation could be very coarse.
- if (ll > lr) {
-#ifdef SK_DEBUG
- SkDebugf("approximate intersection: %d %f %f\n", y,
- SkFixedToFloat(ll), SkFixedToFloat(lr));
-#endif
- ll = lr = approximateIntersection(ul, ll, ur, lr);
- }
-
- if (ul == ur && ll == lr) {
- return; // empty trapzoid
- }
-
- // We're going to use the left line ul-ll and the rite line ur-lr
- // to exclude the area that's not covered by the path.
- // Swapping (ul, ll) or (ur, lr) won't affect that exclusion
- // so we'll do that for simplicity.
- if (ul > ll) { SkTSwap(ul, ll); }
- if (ur > lr) { SkTSwap(ur, lr); }
-
- SkFixed joinLeft = SkFixedCeilToFixed(ll);
- SkFixed joinRite = SkFixedFloorToFixed(ur);
- if (joinLeft <= joinRite) { // There's a rect from joinLeft to joinRite that we can blit
- if (joinLeft < joinRite) {
- blit_full_alpha(blitter, y, joinLeft >> 16, (joinRite - joinLeft) >> 16, fullAlpha,
- maskRow, isUsingMask);
- }
- if (ul < joinLeft) {
- int len = SkFixedCeilToInt(joinLeft - ul);
- if (len == 1) {
- SkAlpha alpha = trapezoidToAlpha(joinLeft - ul, joinLeft - ll);
- blit_single_alpha(blitter, y, ul >> 16, alpha, fullAlpha, maskRow, isUsingMask);
- } else if (len == 2) {
- SkFixed first = joinLeft - SK_Fixed1 - ul;
- SkFixed second = ll - ul - first;
- SkAlpha a1 = partialTriangleToAlpha(first, lDY);
- SkAlpha a2 = fullAlpha - partialTriangleToAlpha(second, lDY);
- blit_two_alphas(blitter, y, ul >> 16, a1, a2, fullAlpha, maskRow, isUsingMask);
- } else {
- blit_aaa_trapezoid_row(blitter, y, ul, joinLeft, ll, joinLeft, lDY, SK_MaxS32,
- fullAlpha, maskRow, isUsingMask);
- }
- }
- if (lr > joinRite) {
- int len = SkFixedCeilToInt(lr - joinRite);
- if (len == 1) {
- SkAlpha alpha = trapezoidToAlpha(ur - joinRite, lr - joinRite);
- blit_single_alpha(blitter, y, joinRite >> 16, alpha, fullAlpha, maskRow,
- isUsingMask);
- } else if (len == 2) {
- SkFixed first = joinRite + SK_Fixed1 - ur;
- SkFixed second = lr - ur - first;
- SkAlpha a1 = fullAlpha - partialTriangleToAlpha(first, rDY);
- SkAlpha a2 = partialTriangleToAlpha(second, rDY);
- blit_two_alphas(blitter, y, joinRite >> 16, a1, a2, fullAlpha, maskRow,
- isUsingMask);
- } else {
- blit_aaa_trapezoid_row(blitter, y, joinRite, ur, joinRite, lr, SK_MaxS32, rDY,
- fullAlpha, maskRow, isUsingMask);
- }
- }
- } else {
- blit_aaa_trapezoid_row(blitter, y, ul, ur, ll, lr, lDY, rDY, fullAlpha, maskRow,
- isUsingMask);
- }
-}
-
-///////////////////////////////////////////////////////////////////////////////
-
-static bool operator<(const SkAnalyticEdge& a, const SkAnalyticEdge& b) {
- int valuea = a.fUpperY;
- int valueb = b.fUpperY;
-
- if (valuea == valueb) {
- valuea = a.fX;
- valueb = b.fX;
- }
-
- if (valuea == valueb) {
- valuea = a.fDX;
- valueb = b.fDX;
- }
-
- return valuea < valueb;
-}
-
-static SkAnalyticEdge* sort_edges(SkAnalyticEdge* list[], int count, SkAnalyticEdge** last) {
- SkTQSort(list, list + count - 1);
-
- // now make the edges linked in sorted order
- for (int i = 1; i < count; i++) {
- list[i - 1]->fNext = list[i];
- list[i]->fPrev = list[i - 1];
- }
-
- *last = list[count - 1];
- return list[0];
-}
-
-#ifdef SK_DEBUG
- static void validate_sort(const SkAnalyticEdge* edge) {
- SkFixed y = SkIntToFixed(-32768);
-
- while (edge->fUpperY != SK_MaxS32) {
- edge->validate();
- SkASSERT(y <= edge->fUpperY);
-
- y = edge->fUpperY;
- edge = (SkAnalyticEdge*)edge->fNext;
- }
- }
-#else
- #define validate_sort(edge)
-#endif
-
-// return true if we're done with this edge
-static bool update_edge(SkAnalyticEdge* edge, SkFixed last_y) {
- if (last_y >= edge->fLowerY) {
- if (edge->fCurveCount < 0) {
- if (static_cast<SkAnalyticCubicEdge*>(edge)->updateCubic()) {
- return false;
- }
- } else if (edge->fCurveCount > 0) {
- if (static_cast<SkAnalyticQuadraticEdge*>(edge)->updateQuadratic()) {
- return false;
- }
- }
- return true;
- }
- SkASSERT(false);
- return false;
-}
-
-// For an edge, we consider it smooth if the Dx doesn't change much, and Dy is large enough
-// For curves that are updating, the Dx is not changing much if fQDx/fCDx and fQDy/fCDy are
-// relatively large compared to fQDDx/QCDDx and fQDDy/fCDDy
-static inline bool isSmoothEnough(SkAnalyticEdge* thisEdge, SkAnalyticEdge* nextEdge, int stop_y) {
- if (thisEdge->fCurveCount < 0) {
- const SkCubicEdge& cEdge = static_cast<SkAnalyticCubicEdge*>(thisEdge)->fCEdge;
- int ddshift = cEdge.fCurveShift;
- return SkAbs32(cEdge.fCDx) >> 1 >= SkAbs32(cEdge.fCDDx) >> ddshift &&
- SkAbs32(cEdge.fCDy) >> 1 >= SkAbs32(cEdge.fCDDy) >> ddshift &&
- // current Dy is (fCDy - (fCDDy >> ddshift)) >> dshift
- (cEdge.fCDy - (cEdge.fCDDy >> ddshift)) >> cEdge.fCubicDShift >= SK_Fixed1;
- } else if (thisEdge->fCurveCount > 0) {
- const SkQuadraticEdge& qEdge = static_cast<SkAnalyticQuadraticEdge*>(thisEdge)->fQEdge;
- return SkAbs32(qEdge.fQDx) >> 1 >= SkAbs32(qEdge.fQDDx) &&
- SkAbs32(qEdge.fQDy) >> 1 >= SkAbs32(qEdge.fQDDy) &&
- // current Dy is (fQDy - fQDDy) >> shift
- (qEdge.fQDy - qEdge.fQDDy) >> qEdge.fCurveShift
- >= SK_Fixed1;
- }
- return SkAbs32(nextEdge->fDX - thisEdge->fDX) <= SK_Fixed1 && // DDx should be small
- nextEdge->fLowerY - nextEdge->fUpperY >= SK_Fixed1; // Dy should be large
-}
-
-// Check if the leftE and riteE are changing smoothly in terms of fDX.
-// If yes, we can later skip the fractional y and directly jump to integer y.
-static inline bool isSmoothEnough(SkAnalyticEdge* leftE, SkAnalyticEdge* riteE,
- SkAnalyticEdge* currE, int stop_y) {
- if (currE->fUpperY >= stop_y << 16) {
- return false; // We're at the end so we won't skip anything
- }
- if (leftE->fLowerY + SK_Fixed1 < riteE->fLowerY) {
- return isSmoothEnough(leftE, currE, stop_y); // Only leftE is changing
- } else if (leftE->fLowerY > riteE->fLowerY + SK_Fixed1) {
- return isSmoothEnough(riteE, currE, stop_y); // Only riteE is changing
- }
-
- // Now both edges are changing, find the second next edge
- SkAnalyticEdge* nextCurrE = currE->fNext;
- if (nextCurrE->fUpperY >= stop_y << 16) { // Check if we're at the end
- return false;
- }
- if (*nextCurrE < *currE) {
- SkTSwap(currE, nextCurrE);
- }
- return isSmoothEnough(leftE, currE, stop_y) && isSmoothEnough(riteE, nextCurrE, stop_y);
-}
-
-static inline void aaa_walk_convex_edges(SkAnalyticEdge* prevHead, AdditiveBlitter* blitter,
- int start_y, int stop_y, SkFixed leftBound, SkFixed riteBound,
- bool isUsingMask) {
- validate_sort((SkAnalyticEdge*)prevHead->fNext);
-
- SkAnalyticEdge* leftE = (SkAnalyticEdge*) prevHead->fNext;
- SkAnalyticEdge* riteE = (SkAnalyticEdge*) leftE->fNext;
- SkAnalyticEdge* currE = (SkAnalyticEdge*) riteE->fNext;
-
- SkFixed y = SkTMax(leftE->fUpperY, riteE->fUpperY);
-
- #ifdef SK_DEBUG
- int frac_y_cnt = 0;
- int total_y_cnt = 0;
- #endif
-
- for (;;) {
- // We have to check fLowerY first because some edges might be alone (e.g., there's only
- // a left edge but no right edge in a given y scan line) due to precision limit.
- while (leftE->fLowerY <= y) { // Due to smooth jump, we may pass multiple short edges
- if (update_edge(leftE, y)) {
- if (SkFixedFloorToInt(currE->fUpperY) >= stop_y) {
- goto END_WALK;
- }
- leftE = currE;
- currE = (SkAnalyticEdge*)currE->fNext;
- }
- }
- while (riteE->fLowerY <= y) { // Due to smooth jump, we may pass multiple short edges
- if (update_edge(riteE, y)) {
- if (SkFixedFloorToInt(currE->fUpperY) >= stop_y) {
- goto END_WALK;
- }
- riteE = currE;
- currE = (SkAnalyticEdge*)currE->fNext;
- }
- }
-
- SkASSERT(leftE);
- SkASSERT(riteE);
-
- // check our bottom clip
- if (SkFixedFloorToInt(y) >= stop_y) {
- break;
- }
-
- SkASSERT(SkFixedFloorToInt(leftE->fUpperY) <= stop_y);
- SkASSERT(SkFixedFloorToInt(riteE->fUpperY) <= stop_y);
-
- leftE->goY(y);
- riteE->goY(y);
-
- if (leftE->fX > riteE->fX || (leftE->fX == riteE->fX &&
- leftE->fDX > riteE->fDX)) {
- SkTSwap(leftE, riteE);
- }
-
- SkFixed local_bot_fixed = SkMin32(leftE->fLowerY, riteE->fLowerY);
- // Skip the fractional y if edges are changing smoothly
- if (isSmoothEnough(leftE, riteE, currE, stop_y)) {
- local_bot_fixed = SkFixedCeilToFixed(local_bot_fixed);
- }
- local_bot_fixed = SkMin32(local_bot_fixed, SkIntToFixed(stop_y + 1));
-
- SkFixed left = leftE->fX;
- SkFixed dLeft = leftE->fDX;
- SkFixed rite = riteE->fX;
- SkFixed dRite = riteE->fDX;
- if (0 == (dLeft | dRite)) {
- int fullLeft = SkFixedCeilToInt(left);
- int fullRite = SkFixedFloorToInt(rite);
- SkFixed partialLeft = SkIntToFixed(fullLeft) - left;
- SkFixed partialRite = rite - SkIntToFixed(fullRite);
- int fullTop = SkFixedCeilToInt(y);
- int fullBot = SkFixedFloorToInt(local_bot_fixed);
- SkFixed partialTop = SkIntToFixed(fullTop) - y;
- SkFixed partialBot = local_bot_fixed - SkIntToFixed(fullBot);
- if (fullTop > fullBot) { // The rectangle is within one pixel height...
- partialTop -= (SK_Fixed1 - partialBot);
- partialBot = 0;
- }
-
- if (fullRite >= fullLeft) {
- // Blit all full-height rows from fullTop to fullBot
- if (fullBot > fullTop) {
- blitter->getRealBlitter()->blitAntiRect(fullLeft - 1, fullTop,
- fullRite - fullLeft, fullBot - fullTop,
- f2a(partialLeft), f2a(partialRite));
- }
-
- if (partialTop > 0) { // blit first partial row
- if (partialLeft > 0) {
- blitter->blitAntiH(fullLeft - 1, fullTop - 1,
- f2a(SkFixedMul_lowprec(partialTop, partialLeft)));
- }
- if (partialRite > 0) {
- blitter->blitAntiH(fullRite, fullTop - 1,
- f2a(SkFixedMul_lowprec(partialTop, partialRite)));
- }
- blitter->blitAntiH(fullLeft, fullTop - 1, fullRite - fullLeft,
- f2a(partialTop));
- }
-
- if (partialBot > 0) { // blit last partial row
- if (partialLeft > 0) {
- blitter->blitAntiH(fullLeft - 1, fullBot,
- f2a(SkFixedMul_lowprec(partialBot, partialLeft)));
- }
- if (partialRite > 0) {
- blitter->blitAntiH(fullRite, fullBot,
- f2a(SkFixedMul_lowprec(partialBot, partialRite)));
- }
- blitter->blitAntiH(fullLeft, fullBot, fullRite - fullLeft, f2a(partialBot));
- }
- } else { // left and rite are within the same pixel
- if (partialTop > 0) {
- blitter->getRealBlitter()->blitV(fullLeft - 1, fullTop - 1, 1,
- f2a(SkFixedMul_lowprec(partialTop, rite - left)));
- }
- if (partialBot > 0) {
- blitter->getRealBlitter()->blitV(fullLeft - 1, fullBot, 1,
- f2a(SkFixedMul_lowprec(partialBot, rite - left)));
- }
- if (fullBot >= fullTop) {
- blitter->getRealBlitter()->blitV(fullLeft - 1, fullTop, fullBot - fullTop,
- f2a(rite - left));
- }
- }
-
- y = local_bot_fixed;
- } else {
- // The following constant are used to snap X
- // We snap X mainly for speedup (no tiny triangle) and
- // avoiding edge cases caused by precision errors
- const SkFixed kSnapDigit = SK_Fixed1 >> 4;
- const SkFixed kSnapHalf = kSnapDigit >> 1;
- const SkFixed kSnapMask = (-1 ^ (kSnapDigit - 1));
- left += kSnapHalf; rite += kSnapHalf; // For fast rounding
-
- // Number of blit_trapezoid_row calls we'll have
- int count = SkFixedCeilToInt(local_bot_fixed) - SkFixedFloorToInt(y);
- #ifdef SK_DEBUG
- total_y_cnt += count;
- frac_y_cnt += ((int)(y & 0xFFFF0000) != y);
- if ((int)(y & 0xFFFF0000) != y) {
- SkDebugf("frac_y = %f\n", SkFixedToFloat(y));
- }
- #endif
-
- // If we're using mask blitter, we advance the mask row in this function
- // to save some "if" condition checks.
- SkAlpha* maskRow = nullptr;
- if (isUsingMask) {
- maskRow = static_cast<MaskAdditiveBlitter*>(blitter)->getRow(y >> 16);
- }
-
- // Instead of writing one loop that handles both partial-row blit_trapezoid_row
- // and full-row trapezoid_row together, we use the following 3-stage flow to
- // handle partial-row blit and full-row blit separately. It will save us much time
- // on changing y, left, and rite.
- if (count > 1) {
- if ((int)(y & 0xFFFF0000) != y) { // There's a partial-row on the top
- count--;
- SkFixed nextY = SkFixedCeilToFixed(y + 1);
- SkFixed dY = nextY - y;
- SkFixed nextLeft = left + SkFixedMul_lowprec(dLeft, dY);
- SkFixed nextRite = rite + SkFixedMul_lowprec(dRite, dY);
- blit_trapezoid_row(blitter, y >> 16, left & kSnapMask, rite & kSnapMask,
- nextLeft & kSnapMask, nextRite & kSnapMask, leftE->fDY, riteE->fDY,
- getPartialAlpha(0xFF, dY), maskRow, isUsingMask);
- left = nextLeft; rite = nextRite; y = nextY;
- }
-
- while (count > 1) { // Full rows in the middle
- count--;
- if (isUsingMask) {
- maskRow = static_cast<MaskAdditiveBlitter*>(blitter)->getRow(y >> 16);
- }
- SkFixed nextY = y + SK_Fixed1, nextLeft = left + dLeft, nextRite = rite + dRite;
- blit_trapezoid_row(blitter, y >> 16, left & kSnapMask, rite & kSnapMask,
- nextLeft & kSnapMask, nextRite & kSnapMask,
- leftE->fDY, riteE->fDY, 0xFF, maskRow, isUsingMask);
- left = nextLeft; rite = nextRite; y = nextY;
- }
- }
-
- if (isUsingMask) {
- maskRow = static_cast<MaskAdditiveBlitter*>(blitter)->getRow(y >> 16);
- }
-
- SkFixed dY = local_bot_fixed - y; // partial-row on the bottom
- SkASSERT(dY <= SK_Fixed1);
- // Smooth jumping to integer y may make the last nextLeft/nextRite out of bound.
- // Take them back into the bound here.
- SkFixed nextLeft = SkTMax(left + SkFixedMul_lowprec(dLeft, dY), leftBound);
- SkFixed nextRite = SkTMin(rite + SkFixedMul_lowprec(dRite, dY), riteBound);
- blit_trapezoid_row(blitter, y >> 16, left & kSnapMask, rite & kSnapMask,
- nextLeft & kSnapMask, nextRite & kSnapMask, leftE->fDY, riteE->fDY,
- getPartialAlpha(0xFF, dY), maskRow, isUsingMask);
- left = nextLeft; rite = nextRite; y = local_bot_fixed;
- left -= kSnapHalf; rite -= kSnapHalf;
- }
-
- leftE->fX = left;
- riteE->fX = rite;
- leftE->fY = riteE->fY = y;
- }
-
-END_WALK:
- ;
- #ifdef SK_DEBUG
- SkDebugf("frac_y_cnt = %d, total_y_cnt = %d\n", frac_y_cnt, total_y_cnt);
- #endif
-}
-
-void SkScan::aaa_fill_path(const SkPath& path, const SkIRect* clipRect, AdditiveBlitter* blitter,
- int start_y, int stop_y, const SkRegion& clipRgn, bool isUsingMask) {
- SkASSERT(blitter);
-
- if (path.isInverseFillType() || !path.isConvex()) {
- // fall back to supersampling AA
- SkScan::AntiFillPath(path, clipRgn, blitter->getRealBlitter(true), false);
- return;
- }
-
- SkEdgeBuilder builder;
-
- // If we're convex, then we need both edges, even the right edge is past the clip
- const bool canCullToTheRight = !path.isConvex();
-
- SkASSERT(GlobalAAConfig::getInstance().fUseAnalyticAA);
- int count = builder.build(path, clipRect, 0, canCullToTheRight, true);
- SkASSERT(count >= 0);
-
- SkAnalyticEdge** list = (SkAnalyticEdge**)builder.analyticEdgeList();
-
- SkIRect rect = clipRgn.getBounds();
- if (0 == count) {
- if (path.isInverseFillType()) {
- /*
- * Since we are in inverse-fill, our caller has already drawn above
- * our top (start_y) and will draw below our bottom (stop_y). Thus
- * we need to restrict our drawing to the intersection of the clip
- * and those two limits.
- */
- if (rect.fTop < start_y) {
- rect.fTop = start_y;
- }
- if (rect.fBottom > stop_y) {
- rect.fBottom = stop_y;
- }
- if (!rect.isEmpty()) {
- blitter->blitRect(rect.fLeft, rect.fTop, rect.width(), rect.height());
- }
- }
- return;
- }
-
- SkAnalyticEdge headEdge, tailEdge, *last;
- // this returns the first and last edge after they're sorted into a dlink list
- SkAnalyticEdge* edge = sort_edges(list, count, &last);
-
- headEdge.fPrev = nullptr;
- headEdge.fNext = edge;
- headEdge.fUpperY = headEdge.fLowerY = SK_MinS32;
- headEdge.fX = SK_MinS32;
- headEdge.fDX = 0;
- headEdge.fDY = SK_MaxS32;
- headEdge.fUpperX = SK_MinS32;
- edge->fPrev = &headEdge;
-
- tailEdge.fPrev = last;
- tailEdge.fNext = nullptr;
- tailEdge.fUpperY = tailEdge.fLowerY = SK_MaxS32;
- headEdge.fX = SK_MaxS32;
- headEdge.fDX = 0;
- headEdge.fDY = SK_MaxS32;
- headEdge.fUpperX = SK_MaxS32;
- last->fNext = &tailEdge;
-
- // now edge is the head of the sorted linklist
-
- if (clipRect && start_y < clipRect->fTop) {
- start_y = clipRect->fTop;
- }
- if (clipRect && stop_y > clipRect->fBottom) {
- stop_y = clipRect->fBottom;
- }
-
- if (!path.isInverseFillType() && path.isConvex()) {
- SkASSERT(count >= 2); // convex walker does not handle missing right edges
- aaa_walk_convex_edges(&headEdge, blitter, start_y, stop_y,
- rect.fLeft << 16, rect.fRight << 16, isUsingMask);
- } else {
- SkFAIL("Concave AAA is not yet implemented!");
- }
-}
-
-///////////////////////////////////////////////////////////////////////////////
-
-void SkScan::AAAFillPath(const SkPath& path, const SkRegion& origClip, SkBlitter* blitter) {
- if (origClip.isEmpty()) {
- return;
- }
-
- const bool isInverse = path.isInverseFillType();
- SkIRect ir;
- path.getBounds().roundOut(&ir);
- if (ir.isEmpty()) {
- if (isInverse) {
- blitter->blitRegion(origClip);
- }
- return;
- }
-
- SkIRect clippedIR;
- if (isInverse) {
- // If the path is an inverse fill, it's going to fill the entire
- // clip, and we care whether the entire clip exceeds our limits.
- clippedIR = origClip.getBounds();
- } else {
- if (!clippedIR.intersect(ir, origClip.getBounds())) {
- return;
- }
- }
-
- // Our antialiasing can't handle a clip larger than 32767, so we restrict
- // the clip to that limit here. (the runs[] uses int16_t for its index).
- //
- // A more general solution (one that could also eliminate the need to
- // disable aa based on ir bounds (see overflows_short_shift) would be
- // to tile the clip/target...
- SkRegion tmpClipStorage;
- const SkRegion* clipRgn = &origClip;
- {
- static const int32_t kMaxClipCoord = 32767;
- const SkIRect& bounds = origClip.getBounds();
- if (bounds.fRight > kMaxClipCoord || bounds.fBottom > kMaxClipCoord) {
- SkIRect limit = { 0, 0, kMaxClipCoord, kMaxClipCoord };
- tmpClipStorage.op(origClip, limit, SkRegion::kIntersect_Op);
- clipRgn = &tmpClipStorage;
- }
- }
- // for here down, use clipRgn, not origClip
-
- SkScanClipper clipper(blitter, clipRgn, ir);
- const SkIRect* clipRect = clipper.getClipRect();
-
- if (clipper.getBlitter() == nullptr) { // clipped out
- if (isInverse) {
- blitter->blitRegion(*clipRgn);
- }
- return;
- }
-
- // now use the (possibly wrapped) blitter
- blitter = clipper.getBlitter();
-
- if (isInverse) {
- // Currently, we use the old path to render the inverse path,
- // so we don't need this.
- // sk_blit_above(blitter, ir, *clipRgn);
- }
-
- SkASSERT(SkIntToScalar(ir.fTop) <= path.getBounds().fTop);
-
- if (MaskAdditiveBlitter::canHandleRect(ir) && !isInverse) {
- MaskAdditiveBlitter additiveBlitter(blitter, ir, *clipRgn, isInverse);
- aaa_fill_path(path, clipRect, &additiveBlitter, ir.fTop, ir.fBottom, *clipRgn, true);
- } else {
- RunBasedAdditiveBlitter additiveBlitter(blitter, ir, *clipRgn, isInverse);
- aaa_fill_path(path, clipRect, &additiveBlitter, ir.fTop, ir.fBottom, *clipRgn, false);
- }
-
- if (isInverse) {
- // Currently, we use the old path to render the inverse path,
- // so we don't need this.
- // sk_blit_below(blitter, ir, *clipRgn);
- }
-}
-
-// This almost copies SkScan::AntiFillPath
-void SkScan::AAAFillPath(const SkPath& path, const SkRasterClip& clip, SkBlitter* blitter) {
- if (clip.isEmpty()) {
- return;
- }
-
- if (clip.isBW()) {
- AAAFillPath(path, clip.bwRgn(), blitter);
- } else {
- SkRegion tmp;
- SkAAClipBlitter aaBlitter;
-
- tmp.setRect(clip.getBounds());
- aaBlitter.init(blitter, &clip.aaRgn());
- AAAFillPath(path, tmp, &aaBlitter);
- }
-}
« no previous file with comments | « src/core/SkScan.h ('k') | src/core/SkScan_AntiPath.cpp » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698