Index: src/core/SkScan_AAAPath.cpp |
diff --git a/src/core/SkScan_AAAPath.cpp b/src/core/SkScan_AAAPath.cpp |
deleted file mode 100644 |
index e5b8c57d5fa9366ef44e7c04d10093a726c6ccc7..0000000000000000000000000000000000000000 |
--- a/src/core/SkScan_AAAPath.cpp |
+++ /dev/null |
@@ -1,1279 +0,0 @@ |
-/* |
- * Copyright 2016 The Android Open Source Project |
- * |
- * Use of this source code is governed by a BSD-style license that can be |
- * found in the LICENSE file. |
- */ |
- |
-#include "SkAntiRun.h" |
-#include "SkBlitter.h" |
-#include "SkEdge.h" |
-#include "SkAnalyticEdge.h" |
-#include "SkEdgeBuilder.h" |
-#include "SkGeometry.h" |
-#include "SkPath.h" |
-#include "SkQuadClipper.h" |
-#include "SkRasterClip.h" |
-#include "SkRegion.h" |
-#include "SkScan.h" |
-#include "SkScanPriv.h" |
-#include "SkTemplates.h" |
-#include "SkTSort.h" |
-#include "SkUtils.h" |
- |
-/////////////////////////////////////////////////////////////////////////////// |
- |
-/* |
- |
-The following is a high-level overview of our analytic anti-aliasing |
-algorithm. We consider a path as a collection of line segments, as |
-quadratic/cubic curves are converted to small line segments. Without loss of |
-generality, let's assume that the draw region is [0, W] x [0, H]. |
- |
-Our algorithm is based on horizontal scan lines (y = c_i) as the previous |
-sampling-based algorithm did. However, our algorithm uses non-equal-spaced |
-scan lines, while the previous method always uses equal-spaced scan lines, |
-such as (y = 1/2 + 0, 1/2 + 1, 1/2 + 2, ...) in the previous non-AA algorithm, |
-and (y = 1/8 + 1/4, 1/8 + 2/4, 1/8 + 3/4, ...) in the previous |
-16-supersampling AA algorithm. |
- |
-Our algorithm contains scan lines y = c_i for c_i that is either: |
- |
-1. an integer between [0, H] |
- |
-2. the y value of a line segment endpoint |
- |
-3. the y value of an intersection of two line segments |
- |
-For two consecutive scan lines y = c_i, y = c_{i+1}, we analytically computes |
-the coverage of this horizontal strip of our path on each pixel. This can be |
-done very efficiently because the strip of our path now only consists of |
-trapezoids whose top and bottom edges are y = c_i, y = c_{i+1} (this includes |
-rectangles and triangles as special cases). |
- |
-We now describe how the coverage of single pixel is computed against such a |
-trapezoid. That coverage is essentially the intersection area of a rectangle |
-(e.g., [0, 1] x [c_i, c_{i+1}]) and our trapezoid. However, that intersection |
-could be complicated, as shown in the example region A below: |
- |
-+-----------\----+ |
-| \ C| |
-| \ | |
-\ \ | |
-|\ A \| |
-| \ \ |
-| \ | |
-| B \ | |
-+----\-----------+ |
- |
-However, we don't have to compute the area of A directly. Instead, we can |
-compute the excluded area, which are B and C, quite easily, because they're |
-just triangles. In fact, we can prove that an excluded region (take B as an |
-example) is either itself a simple trapezoid (including rectangles, triangles, |
-and empty regions), or its opposite (the opposite of B is A + C) is a simple |
-trapezoid. In any case, we can compute its area efficiently. |
- |
-In summary, our algorithm has a higher quality because it generates ground- |
-truth coverages analytically. It is also faster because it has much fewer |
-unnessasary horizontal scan lines. For example, given a triangle path, the |
-number of scan lines in our algorithm is only about 3 + H while the |
-16-supersampling algorithm has about 4H scan lines. |
- |
-*/ |
- |
-/////////////////////////////////////////////////////////////////////////////// |
- |
-inline void addAlpha(SkAlpha& alpha, SkAlpha delta) { |
- SkASSERT(alpha + (int)delta <= 0xFF); |
- alpha += delta; |
-} |
- |
-class AdditiveBlitter : public SkBlitter { |
-public: |
- virtual ~AdditiveBlitter() {} |
- |
- virtual SkBlitter* getRealBlitter(bool forceRealBlitter = false) = 0; |
- |
- virtual void blitAntiH(int x, int y, const SkAlpha antialias[], int len) = 0; |
- virtual void blitAntiH(int x, int y, const SkAlpha alpha) = 0; |
- virtual void blitAntiH(int x, int y, int width, const SkAlpha alpha) = 0; |
- |
- void blitAntiH(int x, int y, const SkAlpha antialias[], const int16_t runs[]) override { |
- SkDEBUGFAIL("Please call real blitter's blitAntiH instead."); |
- } |
- |
- void blitV(int x, int y, int height, SkAlpha alpha) override { |
- SkDEBUGFAIL("Please call real blitter's blitV instead."); |
- } |
- |
- void blitH(int x, int y, int width) override { |
- SkDEBUGFAIL("Please call real blitter's blitH instead."); |
- } |
- |
- void blitRect(int x, int y, int width, int height) override { |
- SkDEBUGFAIL("Please call real blitter's blitRect instead."); |
- } |
- |
- void blitAntiRect(int x, int y, int width, int height, |
- SkAlpha leftAlpha, SkAlpha rightAlpha) override { |
- SkDEBUGFAIL("Please call real blitter's blitAntiRect instead."); |
- } |
- |
- virtual int getWidth() = 0; |
-}; |
- |
-// We need this mask blitter because it significantly accelerates small path filling. |
-class MaskAdditiveBlitter : public AdditiveBlitter { |
-public: |
- MaskAdditiveBlitter(SkBlitter* realBlitter, const SkIRect& ir, const SkRegion& clip, |
- bool isInverse); |
- ~MaskAdditiveBlitter() { |
- fRealBlitter->blitMask(fMask, fClipRect); |
- } |
- |
- // Most of the time, we still consider this mask blitter as the real blitter |
- // so we can accelerate blitRect and others. But sometimes we want to return |
- // the absolute real blitter (e.g., when we fall back to the old code path). |
- SkBlitter* getRealBlitter(bool forceRealBlitter) override { |
- return forceRealBlitter ? fRealBlitter : this; |
- } |
- |
- // Virtual function is slow. So don't use this. Directly add alpha to the mask instead. |
- void blitAntiH(int x, int y, const SkAlpha antialias[], int len) override; |
- |
- // Allowing following methods are used to blit rectangles during aaa_walk_convex_edges |
- // Since there aren't many rectangles, we can still break the slow speed of virtual functions. |
- void blitAntiH(int x, int y, const SkAlpha alpha) override; |
- void blitAntiH(int x, int y, int width, const SkAlpha alpha) override; |
- void blitV(int x, int y, int height, SkAlpha alpha) override; |
- void blitRect(int x, int y, int width, int height) override; |
- void blitAntiRect(int x, int y, int width, int height, |
- SkAlpha leftAlpha, SkAlpha rightAlpha) override; |
- |
- int getWidth() override { return fClipRect.width(); } |
- |
- static bool canHandleRect(const SkIRect& bounds) { |
- int width = bounds.width(); |
- int64_t rb = SkAlign4(width); |
- // use 64bits to detect overflow |
- int64_t storage = rb * bounds.height(); |
- |
- return (width <= MaskAdditiveBlitter::kMAX_WIDTH) && |
- (storage <= MaskAdditiveBlitter::kMAX_STORAGE); |
- } |
- |
- // Return a pointer where pointer[x] corresonds to the alpha of (x, y) |
- inline uint8_t* getRow(int y) { |
- if (y != fY) { |
- fY = y; |
- fRow = fMask.fImage + (y - fMask.fBounds.fTop) * fMask.fRowBytes - fMask.fBounds.fLeft; |
- } |
- return fRow; |
- } |
- |
-private: |
- // so we don't try to do very wide things, where the RLE blitter would be faster |
- static const int kMAX_WIDTH = 32; |
- static const int kMAX_STORAGE = 1024; |
- |
- SkBlitter* fRealBlitter; |
- SkMask fMask; |
- SkIRect fClipRect; |
- // we add 2 because we can write 1 extra byte at either end due to precision error |
- uint32_t fStorage[(kMAX_STORAGE >> 2) + 2]; |
- |
- uint8_t* fRow; |
- int fY; |
-}; |
- |
-MaskAdditiveBlitter::MaskAdditiveBlitter(SkBlitter* realBlitter, const SkIRect& ir, const SkRegion& clip, |
- bool isInverse) { |
- SkASSERT(canHandleRect(ir)); |
- SkASSERT(!isInverse); |
- |
- fRealBlitter = realBlitter; |
- |
- fMask.fImage = (uint8_t*)fStorage + 1; // There's 1 extra byte at either end of fStorage |
- fMask.fBounds = ir; |
- fMask.fRowBytes = ir.width(); |
- fMask.fFormat = SkMask::kA8_Format; |
- |
- fY = ir.fTop - 1; |
- fRow = nullptr; |
- |
- fClipRect = ir; |
- if (!fClipRect.intersect(clip.getBounds())) { |
- SkASSERT(0); |
- fClipRect.setEmpty(); |
- } |
- |
- memset(fStorage, 0, fMask.fBounds.height() * fMask.fRowBytes + 2); |
-} |
- |
-void MaskAdditiveBlitter::blitAntiH(int x, int y, const SkAlpha antialias[], int len) { |
- SkFAIL("Don't use this; directly add alphas to the mask."); |
-} |
- |
-void MaskAdditiveBlitter::blitAntiH(int x, int y, const SkAlpha alpha) { |
- SkASSERT(x >= fMask.fBounds.fLeft -1); |
- addAlpha(this->getRow(y)[x], alpha); |
-} |
- |
-void MaskAdditiveBlitter::blitAntiH(int x, int y, int width, const SkAlpha alpha) { |
- SkASSERT(x >= fMask.fBounds.fLeft -1); |
- uint8_t* row = this->getRow(y); |
- for (int i=0; i<width; i++) { |
- addAlpha(row[x + i], alpha); |
- } |
-} |
- |
-void MaskAdditiveBlitter::blitV(int x, int y, int height, SkAlpha alpha) { |
- if (alpha == 0) { |
- return; |
- } |
- SkASSERT(x >= fMask.fBounds.fLeft -1); |
- // This must be called as if this is a real blitter. |
- // So we directly set alpha rather than adding it. |
- uint8_t* row = this->getRow(y); |
- for (int i=0; i<height; i++) { |
- row[x] = alpha; |
- row += fMask.fRowBytes; |
- } |
-} |
- |
-void MaskAdditiveBlitter::blitRect(int x, int y, int width, int height) { |
- SkASSERT(x >= fMask.fBounds.fLeft -1); |
- // This must be called as if this is a real blitter. |
- // So we directly set alpha rather than adding it. |
- uint8_t* row = this->getRow(y); |
- for (int i=0; i<height; i++) { |
- memset(row + x, 0xFF, width); |
- row += fMask.fRowBytes; |
- } |
-} |
- |
-void MaskAdditiveBlitter::blitAntiRect(int x, int y, int width, int height, |
- SkAlpha leftAlpha, SkAlpha rightAlpha) { |
- blitV(x, y, height, leftAlpha); |
- blitV(x + 1 + width, y, height, rightAlpha); |
- blitRect(x + 1, y, width, height); |
-} |
- |
-class RunBasedAdditiveBlitter : public AdditiveBlitter { |
-public: |
- RunBasedAdditiveBlitter(SkBlitter* realBlitter, const SkIRect& ir, const SkRegion& clip, |
- bool isInverse); |
- ~RunBasedAdditiveBlitter(); |
- |
- SkBlitter* getRealBlitter(bool forceRealBlitter) override; |
- |
- void blitAntiH(int x, int y, const SkAlpha antialias[], int len) override; |
- void blitAntiH(int x, int y, const SkAlpha alpha) override; |
- void blitAntiH(int x, int y, int width, const SkAlpha alpha) override; |
- |
- int getWidth() override; |
- |
-private: |
- SkBlitter* fRealBlitter; |
- |
- /// Current y coordinate |
- int fCurrY; |
- /// Widest row of region to be blitted |
- int fWidth; |
- /// Leftmost x coordinate in any row |
- int fLeft; |
- /// Initial y coordinate (top of bounds). |
- int fTop; |
- |
- // The next three variables are used to track a circular buffer that |
- // contains the values used in SkAlphaRuns. These variables should only |
- // ever be updated in advanceRuns(), and fRuns should always point to |
- // a valid SkAlphaRuns... |
- int fRunsToBuffer; |
- void* fRunsBuffer; |
- int fCurrentRun; |
- SkAlphaRuns fRuns; |
- |
- int fOffsetX; |
- |
- inline bool check(int x, int width) { |
- #ifdef SK_DEBUG |
- if (x < 0 || x + width > fWidth) { |
- SkDebugf("Ignore x = %d, width = %d\n", x, width); |
- } |
- #endif |
- return (x >= 0 && x + width <= fWidth); |
- } |
- |
- // extra one to store the zero at the end |
- inline int getRunsSz() const { return (fWidth + 1 + (fWidth + 2)/2) * sizeof(int16_t); } |
- |
- // This function updates the fRuns variable to point to the next buffer space |
- // with adequate storage for a SkAlphaRuns. It mostly just advances fCurrentRun |
- // and resets fRuns to point to an empty scanline. |
- inline void advanceRuns() { |
- const size_t kRunsSz = this->getRunsSz(); |
- fCurrentRun = (fCurrentRun + 1) % fRunsToBuffer; |
- fRuns.fRuns = reinterpret_cast<int16_t*>( |
- reinterpret_cast<uint8_t*>(fRunsBuffer) + fCurrentRun * kRunsSz); |
- fRuns.fAlpha = reinterpret_cast<SkAlpha*>(fRuns.fRuns + fWidth + 1); |
- fRuns.reset(fWidth); |
- } |
- |
- // Blitting 0xFF and 0 is much faster so we snap alphas close to them |
- inline SkAlpha snapAlpha(SkAlpha alpha) { |
- return alpha > 247 ? 0xFF : alpha < 8 ? 0 : alpha; |
- } |
- |
- inline void flush() { |
- if (fCurrY >= fTop) { |
- SkASSERT(fCurrentRun < fRunsToBuffer); |
- for (int x = 0; fRuns.fRuns[x]; x += fRuns.fRuns[x]) { |
- // It seems that blitting 255 or 0 is much faster than blitting 254 or 1 |
- fRuns.fAlpha[x] = snapAlpha(fRuns.fAlpha[x]); |
- } |
- if (!fRuns.empty()) { |
- // SkDEBUGCODE(fRuns.dump();) |
- fRealBlitter->blitAntiH(fLeft, fCurrY, fRuns.fAlpha, fRuns.fRuns); |
- this->advanceRuns(); |
- fOffsetX = 0; |
- } |
- fCurrY = fTop - 1; |
- } |
- } |
- |
- inline void checkY(int y) { |
- if (y != fCurrY) { |
- this->flush(); |
- fCurrY = y; |
- } |
- } |
-}; |
- |
-RunBasedAdditiveBlitter::RunBasedAdditiveBlitter(SkBlitter* realBlitter, const SkIRect& ir, const SkRegion& clip, |
- bool isInverse) { |
- fRealBlitter = realBlitter; |
- |
- SkIRect sectBounds; |
- if (isInverse) { |
- // We use the clip bounds instead of the ir, since we may be asked to |
- //draw outside of the rect when we're a inverse filltype |
- sectBounds = clip.getBounds(); |
- } else { |
- if (!sectBounds.intersect(ir, clip.getBounds())) { |
- sectBounds.setEmpty(); |
- } |
- } |
- |
- const int left = sectBounds.left(); |
- const int right = sectBounds.right(); |
- |
- fLeft = left; |
- fWidth = right - left; |
- fTop = sectBounds.top(); |
- fCurrY = fTop - 1; |
- |
- fRunsToBuffer = realBlitter->requestRowsPreserved(); |
- fRunsBuffer = realBlitter->allocBlitMemory(fRunsToBuffer * this->getRunsSz()); |
- fCurrentRun = -1; |
- |
- this->advanceRuns(); |
- |
- fOffsetX = 0; |
-} |
- |
-RunBasedAdditiveBlitter::~RunBasedAdditiveBlitter() { |
- this->flush(); |
-} |
- |
-SkBlitter* RunBasedAdditiveBlitter::getRealBlitter(bool forceRealBlitter) { |
- return fRealBlitter; |
-} |
- |
-void RunBasedAdditiveBlitter::blitAntiH(int x, int y, const SkAlpha antialias[], int len) { |
- checkY(y); |
- x -= fLeft; |
- |
- if (x < 0) { |
- len += x; |
- antialias -= x; |
- x = 0; |
- } |
- len = SkTMin(len, fWidth - x); |
- SkASSERT(check(x, len)); |
- |
- if (x < fOffsetX) { |
- fOffsetX = 0; |
- } |
- |
- fOffsetX = fRuns.add(x, 0, len, 0, 0, fOffsetX); // Break the run |
- for (int i = 0; i < len; i += fRuns.fRuns[x + i]) { |
- for (int j = 1; j < fRuns.fRuns[x + i]; j++) { |
- fRuns.fRuns[x + i + j] = 1; |
- fRuns.fAlpha[x + i + j] = fRuns.fAlpha[x + i]; |
- } |
- fRuns.fRuns[x + i] = 1; |
- } |
- for (int i=0; i<len; i++) { |
- addAlpha(fRuns.fAlpha[x + i], antialias[i]); |
- } |
-} |
-void RunBasedAdditiveBlitter::blitAntiH(int x, int y, const SkAlpha alpha) { |
- checkY(y); |
- x -= fLeft; |
- |
- if (x < fOffsetX) { |
- fOffsetX = 0; |
- } |
- |
- if (this->check(x, 1)) { |
- fOffsetX = fRuns.add(x, 0, 1, 0, alpha, fOffsetX); |
- } |
-} |
- |
-void RunBasedAdditiveBlitter::blitAntiH(int x, int y, int width, const SkAlpha alpha) { |
- checkY(y); |
- x -= fLeft; |
- |
- if (x < fOffsetX) { |
- fOffsetX = 0; |
- } |
- |
- if (this->check(x, width)) { |
- fOffsetX = fRuns.add(x, 0, width, 0, alpha, fOffsetX); |
- } |
-} |
- |
-int RunBasedAdditiveBlitter::getWidth() { return fWidth; } |
- |
-/////////////////////////////////////////////////////////////////////////////// |
- |
-// Return the alpha of a trapezoid whose height is 1 |
-static inline SkAlpha trapezoidToAlpha(SkFixed l1, SkFixed l2) { |
- SkASSERT(l1 >= 0 && l2 >= 0); |
- return ((l1 + l2) >> 9); |
-} |
- |
-// The alpha of right-triangle (a, a*b), in 16 bits |
-static inline SkFixed partialTriangleToAlpha16(SkFixed a, SkFixed b) { |
- SkASSERT(a <= SK_Fixed1); |
- // SkFixedMul_lowprec(SkFixedMul_lowprec(a, a), b) >> 1 |
- // return ((((a >> 8) * (a >> 8)) >> 8) * (b >> 8)) >> 1; |
- return (a >> 11) * (a >> 11) * (b >> 11); |
-} |
- |
-// The alpha of right-triangle (a, a*b) |
-static inline SkAlpha partialTriangleToAlpha(SkFixed a, SkFixed b) { |
- return partialTriangleToAlpha16(a, b) >> 8; |
-} |
- |
-static inline SkAlpha getPartialAlpha(SkAlpha alpha, SkFixed partialHeight) { |
- return (alpha * partialHeight) >> 16; |
-} |
- |
-static inline SkAlpha getPartialAlpha(SkAlpha alpha, SkAlpha fullAlpha) { |
- return ((uint16_t)alpha * fullAlpha) >> 8; |
-} |
- |
-// For SkFixed that's close to SK_Fixed1, we can't convert it to alpha by just shifting right. |
-// For example, when f = SK_Fixed1, right shifting 8 will get 256, but we need 255. |
-// This is rarely the problem so we'll only use this for blitting rectangles. |
-static inline SkAlpha f2a(SkFixed f) { |
- SkASSERT(f <= SK_Fixed1); |
- return getPartialAlpha(0xFF, f); |
-} |
- |
-// Suppose that line (l1, y)-(r1, y+1) intersects with (l2, y)-(r2, y+1), |
-// approximate (very coarsely) the x coordinate of the intersection. |
-static inline SkFixed approximateIntersection(SkFixed l1, SkFixed r1, SkFixed l2, SkFixed r2) { |
- if (l1 > r1) { SkTSwap(l1, r1); } |
- if (l2 > r2) { SkTSwap(l2, r2); } |
- return (SkTMax(l1, l2) + SkTMin(r1, r2)) >> 1; |
-} |
- |
-// Here we always send in l < SK_Fixed1, and the first alpha we want to compute is alphas[0] |
-static inline void computeAlphaAboveLine(SkAlpha* alphas, SkFixed l, SkFixed r, |
- SkFixed dY, SkAlpha fullAlpha) { |
- SkASSERT(l <= r); |
- SkASSERT(l >> 16 == 0); |
- int R = SkFixedCeilToInt(r); |
- if (R == 0) { |
- return; |
- } else if (R == 1) { |
- alphas[0] = getPartialAlpha(((R << 17) - l - r) >> 9, fullAlpha); |
- } else { |
- SkFixed first = SK_Fixed1 - l; // horizontal edge length of the left-most triangle |
- SkFixed last = r - ((R - 1) << 16); // horizontal edge length of the right-most triangle |
- SkFixed firstH = SkFixedMul_lowprec(first, dY); // vertical edge of the left-most triangle |
- alphas[0] = SkFixedMul_lowprec(first, firstH) >> 9; // triangle alpha |
- SkFixed alpha16 = firstH + (dY >> 1); // rectangle plus triangle |
- for (int i = 1; i < R - 1; i++) { |
- alphas[i] = alpha16 >> 8; |
- alpha16 += dY; |
- } |
- alphas[R - 1] = fullAlpha - partialTriangleToAlpha(last, dY); |
- } |
-} |
- |
-// Here we always send in l < SK_Fixed1, and the first alpha we want to compute is alphas[0] |
-static inline void computeAlphaBelowLine(SkAlpha* alphas, SkFixed l, SkFixed r, SkFixed dY, SkAlpha fullAlpha) { |
- SkASSERT(l <= r); |
- SkASSERT(l >> 16 == 0); |
- int R = SkFixedCeilToInt(r); |
- if (R == 0) { |
- return; |
- } else if (R == 1) { |
- alphas[0] = getPartialAlpha(trapezoidToAlpha(l, r), fullAlpha); |
- } else { |
- SkFixed first = SK_Fixed1 - l; // horizontal edge length of the left-most triangle |
- SkFixed last = r - ((R - 1) << 16); // horizontal edge length of the right-most triangle |
- SkFixed lastH = SkFixedMul_lowprec(last, dY); // vertical edge of the right-most triangle |
- alphas[R-1] = SkFixedMul_lowprec(last, lastH) >> 9; // triangle alpha |
- SkFixed alpha16 = lastH + (dY >> 1); // rectangle plus triangle |
- for (int i = R - 2; i > 0; i--) { |
- alphas[i] = alpha16 >> 8; |
- alpha16 += dY; |
- } |
- alphas[0] = fullAlpha - partialTriangleToAlpha(first, dY); |
- } |
-} |
- |
-// Note that if fullAlpha != 0xFF, we'll multiply alpha by fullAlpha |
-static inline void blit_single_alpha(AdditiveBlitter* blitter, int y, int x, |
- SkAlpha alpha, SkAlpha fullAlpha, SkAlpha* maskRow, |
- bool isUsingMask) { |
- if (isUsingMask) { |
- if (fullAlpha == 0xFF) { |
- maskRow[x] = alpha; |
- } else { |
- addAlpha(maskRow[x], getPartialAlpha(alpha, fullAlpha)); |
- } |
- } else { |
- if (fullAlpha == 0xFF) { |
- blitter->getRealBlitter()->blitV(x, y, 1, alpha); |
- } else { |
- blitter->blitAntiH(x, y, getPartialAlpha(alpha, fullAlpha)); |
- } |
- } |
-} |
- |
-static inline void blit_two_alphas(AdditiveBlitter* blitter, int y, int x, |
- SkAlpha a1, SkAlpha a2, SkAlpha fullAlpha, SkAlpha* maskRow, |
- bool isUsingMask) { |
- if (isUsingMask) { |
- addAlpha(maskRow[x], a1); |
- addAlpha(maskRow[x + 1], a2); |
- } else { |
- if (fullAlpha == 0xFF) { |
- blitter->getRealBlitter()->blitV(x, y, 1, a1); |
- blitter->getRealBlitter()->blitV(x + 1, y, 1, a2); |
- } else { |
- blitter->blitAntiH(x, y, a1); |
- blitter->blitAntiH(x + 1, y, a2); |
- } |
- } |
-} |
- |
-// It's important that this is inline. Otherwise it'll be much slower. |
-static SK_ALWAYS_INLINE void blit_full_alpha(AdditiveBlitter* blitter, int y, int x, int len, |
- SkAlpha fullAlpha, SkAlpha* maskRow, bool isUsingMask) { |
- if (isUsingMask) { |
- for (int i=0; i<len; i++) { |
- addAlpha(maskRow[x + i], fullAlpha); |
- } |
- } else { |
- if (fullAlpha == 0xFF) { |
- blitter->getRealBlitter()->blitH(x, y, len); |
- } else { |
- blitter->blitAntiH(x, y, len, fullAlpha); |
- } |
- } |
-} |
- |
-static void blit_aaa_trapezoid_row(AdditiveBlitter* blitter, int y, |
- SkFixed ul, SkFixed ur, SkFixed ll, SkFixed lr, |
- SkFixed lDY, SkFixed rDY, SkAlpha fullAlpha, SkAlpha* maskRow, |
- bool isUsingMask) { |
- int L = SkFixedFloorToInt(ul), R = SkFixedCeilToInt(lr); |
- int len = R - L; |
- |
- if (len == 1) { |
- SkAlpha alpha = trapezoidToAlpha(ur - ul, lr - ll); |
- blit_single_alpha(blitter, y, L, alpha, fullAlpha, maskRow, isUsingMask); |
- return; |
- } |
- |
- // SkDebugf("y = %d, len = %d, ul = %f, ur = %f, ll = %f, lr = %f\n", y, len, |
- // SkFixedToFloat(ul), SkFixedToFloat(ur), SkFixedToFloat(ll), SkFixedToFloat(lr)); |
- |
- const int kQuickLen = 31; |
- // This is faster than SkAutoSMalloc<1024> |
- char quickMemory[(sizeof(SkAlpha) * 2 + sizeof(int16_t)) * (kQuickLen + 1)]; |
- SkAlpha* alphas; |
- |
- if (len <= kQuickLen) { |
- alphas = (SkAlpha*)quickMemory; |
- } else { |
- alphas = new SkAlpha[(len + 1) * (sizeof(SkAlpha) * 2 + sizeof(int16_t))]; |
- } |
- |
- SkAlpha* tempAlphas = alphas + len + 1; |
- int16_t* runs = (int16_t*)(alphas + (len + 1) * 2); |
- |
- for (int i = 0; i < len; i++) { |
- runs[i] = 1; |
- alphas[i] = fullAlpha; |
- } |
- runs[len] = 0; |
- |
- int uL = SkFixedFloorToInt(ul); |
- int lL = SkFixedCeilToInt(ll); |
- if (uL + 2 == lL) { // We only need to compute two triangles, accelerate this special case |
- SkFixed first = (uL << 16) + SK_Fixed1 - ul; |
- SkFixed second = ll - ul - first; |
- SkAlpha a1 = fullAlpha - partialTriangleToAlpha(first, lDY); |
- SkAlpha a2 = partialTriangleToAlpha(second, lDY); |
- alphas[0] = alphas[0] > a1 ? alphas[0] - a1 : 0; |
- alphas[1] = alphas[1] > a2 ? alphas[1] - a2 : 0; |
- } else { |
- computeAlphaBelowLine(tempAlphas + uL - L, ul - (uL << 16), ll - (uL << 16), |
- lDY, fullAlpha); |
- for (int i = uL; i < lL; i++) { |
- if (alphas[i - L] > tempAlphas[i - L]) { |
- alphas[i - L] -= tempAlphas[i - L]; |
- } else { |
- alphas[i - L] = 0; |
- } |
- } |
- } |
- |
- int uR = SkFixedFloorToInt(ur); |
- int lR = SkFixedCeilToInt(lr); |
- if (uR + 2 == lR) { // We only need to compute two triangles, accelerate this special case |
- SkFixed first = (uR << 16) + SK_Fixed1 - ur; |
- SkFixed second = lr - ur - first; |
- SkAlpha a1 = partialTriangleToAlpha(first, rDY); |
- SkAlpha a2 = fullAlpha - partialTriangleToAlpha(second, rDY); |
- alphas[len-2] = alphas[len-2] > a1 ? alphas[len-2] - a1 : 0; |
- alphas[len-1] = alphas[len-1] > a2 ? alphas[len-1] - a2 : 0; |
- } else { |
- computeAlphaAboveLine(tempAlphas + uR - L, ur - (uR << 16), lr - (uR << 16), |
- rDY, fullAlpha); |
- for (int i = uR; i < lR; i++) { |
- if (alphas[i - L] > tempAlphas[i - L]) { |
- alphas[i - L] -= tempAlphas[i - L]; |
- } else { |
- alphas[i - L] = 0; |
- } |
- } |
- } |
- |
- if (isUsingMask) { |
- for (int i=0; i<len; i++) { |
- addAlpha(maskRow[L + i], alphas[i]); |
- } |
- } else { |
- if (fullAlpha == 0xFF) { // Real blitter is faster than RunBasedAdditiveBlitter |
- blitter->getRealBlitter()->blitAntiH(L, y, alphas, runs); |
- } else { |
- blitter->blitAntiH(L, y, alphas, len); |
- } |
- } |
- |
- if (len > kQuickLen) { |
- delete [] alphas; |
- } |
-} |
- |
-static inline void blit_trapezoid_row(AdditiveBlitter* blitter, int y, |
- SkFixed ul, SkFixed ur, SkFixed ll, SkFixed lr, |
- SkFixed lDY, SkFixed rDY, SkAlpha fullAlpha, |
- SkAlpha* maskRow, bool isUsingMask) { |
- SkASSERT(lDY >= 0 && rDY >= 0); // We should only send in the absolte value |
- |
- if (ul > ur) { |
-#ifdef SK_DEBUG |
- SkDebugf("ul = %f > ur = %f!\n", SkFixedToFloat(ul), SkFixedToFloat(ur)); |
-#endif |
- return; |
- } |
- |
- // Edge crosses. Approximate it. This should only happend due to precision limit, |
- // so the approximation could be very coarse. |
- if (ll > lr) { |
-#ifdef SK_DEBUG |
- SkDebugf("approximate intersection: %d %f %f\n", y, |
- SkFixedToFloat(ll), SkFixedToFloat(lr)); |
-#endif |
- ll = lr = approximateIntersection(ul, ll, ur, lr); |
- } |
- |
- if (ul == ur && ll == lr) { |
- return; // empty trapzoid |
- } |
- |
- // We're going to use the left line ul-ll and the rite line ur-lr |
- // to exclude the area that's not covered by the path. |
- // Swapping (ul, ll) or (ur, lr) won't affect that exclusion |
- // so we'll do that for simplicity. |
- if (ul > ll) { SkTSwap(ul, ll); } |
- if (ur > lr) { SkTSwap(ur, lr); } |
- |
- SkFixed joinLeft = SkFixedCeilToFixed(ll); |
- SkFixed joinRite = SkFixedFloorToFixed(ur); |
- if (joinLeft <= joinRite) { // There's a rect from joinLeft to joinRite that we can blit |
- if (joinLeft < joinRite) { |
- blit_full_alpha(blitter, y, joinLeft >> 16, (joinRite - joinLeft) >> 16, fullAlpha, |
- maskRow, isUsingMask); |
- } |
- if (ul < joinLeft) { |
- int len = SkFixedCeilToInt(joinLeft - ul); |
- if (len == 1) { |
- SkAlpha alpha = trapezoidToAlpha(joinLeft - ul, joinLeft - ll); |
- blit_single_alpha(blitter, y, ul >> 16, alpha, fullAlpha, maskRow, isUsingMask); |
- } else if (len == 2) { |
- SkFixed first = joinLeft - SK_Fixed1 - ul; |
- SkFixed second = ll - ul - first; |
- SkAlpha a1 = partialTriangleToAlpha(first, lDY); |
- SkAlpha a2 = fullAlpha - partialTriangleToAlpha(second, lDY); |
- blit_two_alphas(blitter, y, ul >> 16, a1, a2, fullAlpha, maskRow, isUsingMask); |
- } else { |
- blit_aaa_trapezoid_row(blitter, y, ul, joinLeft, ll, joinLeft, lDY, SK_MaxS32, |
- fullAlpha, maskRow, isUsingMask); |
- } |
- } |
- if (lr > joinRite) { |
- int len = SkFixedCeilToInt(lr - joinRite); |
- if (len == 1) { |
- SkAlpha alpha = trapezoidToAlpha(ur - joinRite, lr - joinRite); |
- blit_single_alpha(blitter, y, joinRite >> 16, alpha, fullAlpha, maskRow, |
- isUsingMask); |
- } else if (len == 2) { |
- SkFixed first = joinRite + SK_Fixed1 - ur; |
- SkFixed second = lr - ur - first; |
- SkAlpha a1 = fullAlpha - partialTriangleToAlpha(first, rDY); |
- SkAlpha a2 = partialTriangleToAlpha(second, rDY); |
- blit_two_alphas(blitter, y, joinRite >> 16, a1, a2, fullAlpha, maskRow, |
- isUsingMask); |
- } else { |
- blit_aaa_trapezoid_row(blitter, y, joinRite, ur, joinRite, lr, SK_MaxS32, rDY, |
- fullAlpha, maskRow, isUsingMask); |
- } |
- } |
- } else { |
- blit_aaa_trapezoid_row(blitter, y, ul, ur, ll, lr, lDY, rDY, fullAlpha, maskRow, |
- isUsingMask); |
- } |
-} |
- |
-/////////////////////////////////////////////////////////////////////////////// |
- |
-static bool operator<(const SkAnalyticEdge& a, const SkAnalyticEdge& b) { |
- int valuea = a.fUpperY; |
- int valueb = b.fUpperY; |
- |
- if (valuea == valueb) { |
- valuea = a.fX; |
- valueb = b.fX; |
- } |
- |
- if (valuea == valueb) { |
- valuea = a.fDX; |
- valueb = b.fDX; |
- } |
- |
- return valuea < valueb; |
-} |
- |
-static SkAnalyticEdge* sort_edges(SkAnalyticEdge* list[], int count, SkAnalyticEdge** last) { |
- SkTQSort(list, list + count - 1); |
- |
- // now make the edges linked in sorted order |
- for (int i = 1; i < count; i++) { |
- list[i - 1]->fNext = list[i]; |
- list[i]->fPrev = list[i - 1]; |
- } |
- |
- *last = list[count - 1]; |
- return list[0]; |
-} |
- |
-#ifdef SK_DEBUG |
- static void validate_sort(const SkAnalyticEdge* edge) { |
- SkFixed y = SkIntToFixed(-32768); |
- |
- while (edge->fUpperY != SK_MaxS32) { |
- edge->validate(); |
- SkASSERT(y <= edge->fUpperY); |
- |
- y = edge->fUpperY; |
- edge = (SkAnalyticEdge*)edge->fNext; |
- } |
- } |
-#else |
- #define validate_sort(edge) |
-#endif |
- |
-// return true if we're done with this edge |
-static bool update_edge(SkAnalyticEdge* edge, SkFixed last_y) { |
- if (last_y >= edge->fLowerY) { |
- if (edge->fCurveCount < 0) { |
- if (static_cast<SkAnalyticCubicEdge*>(edge)->updateCubic()) { |
- return false; |
- } |
- } else if (edge->fCurveCount > 0) { |
- if (static_cast<SkAnalyticQuadraticEdge*>(edge)->updateQuadratic()) { |
- return false; |
- } |
- } |
- return true; |
- } |
- SkASSERT(false); |
- return false; |
-} |
- |
-// For an edge, we consider it smooth if the Dx doesn't change much, and Dy is large enough |
-// For curves that are updating, the Dx is not changing much if fQDx/fCDx and fQDy/fCDy are |
-// relatively large compared to fQDDx/QCDDx and fQDDy/fCDDy |
-static inline bool isSmoothEnough(SkAnalyticEdge* thisEdge, SkAnalyticEdge* nextEdge, int stop_y) { |
- if (thisEdge->fCurveCount < 0) { |
- const SkCubicEdge& cEdge = static_cast<SkAnalyticCubicEdge*>(thisEdge)->fCEdge; |
- int ddshift = cEdge.fCurveShift; |
- return SkAbs32(cEdge.fCDx) >> 1 >= SkAbs32(cEdge.fCDDx) >> ddshift && |
- SkAbs32(cEdge.fCDy) >> 1 >= SkAbs32(cEdge.fCDDy) >> ddshift && |
- // current Dy is (fCDy - (fCDDy >> ddshift)) >> dshift |
- (cEdge.fCDy - (cEdge.fCDDy >> ddshift)) >> cEdge.fCubicDShift >= SK_Fixed1; |
- } else if (thisEdge->fCurveCount > 0) { |
- const SkQuadraticEdge& qEdge = static_cast<SkAnalyticQuadraticEdge*>(thisEdge)->fQEdge; |
- return SkAbs32(qEdge.fQDx) >> 1 >= SkAbs32(qEdge.fQDDx) && |
- SkAbs32(qEdge.fQDy) >> 1 >= SkAbs32(qEdge.fQDDy) && |
- // current Dy is (fQDy - fQDDy) >> shift |
- (qEdge.fQDy - qEdge.fQDDy) >> qEdge.fCurveShift |
- >= SK_Fixed1; |
- } |
- return SkAbs32(nextEdge->fDX - thisEdge->fDX) <= SK_Fixed1 && // DDx should be small |
- nextEdge->fLowerY - nextEdge->fUpperY >= SK_Fixed1; // Dy should be large |
-} |
- |
-// Check if the leftE and riteE are changing smoothly in terms of fDX. |
-// If yes, we can later skip the fractional y and directly jump to integer y. |
-static inline bool isSmoothEnough(SkAnalyticEdge* leftE, SkAnalyticEdge* riteE, |
- SkAnalyticEdge* currE, int stop_y) { |
- if (currE->fUpperY >= stop_y << 16) { |
- return false; // We're at the end so we won't skip anything |
- } |
- if (leftE->fLowerY + SK_Fixed1 < riteE->fLowerY) { |
- return isSmoothEnough(leftE, currE, stop_y); // Only leftE is changing |
- } else if (leftE->fLowerY > riteE->fLowerY + SK_Fixed1) { |
- return isSmoothEnough(riteE, currE, stop_y); // Only riteE is changing |
- } |
- |
- // Now both edges are changing, find the second next edge |
- SkAnalyticEdge* nextCurrE = currE->fNext; |
- if (nextCurrE->fUpperY >= stop_y << 16) { // Check if we're at the end |
- return false; |
- } |
- if (*nextCurrE < *currE) { |
- SkTSwap(currE, nextCurrE); |
- } |
- return isSmoothEnough(leftE, currE, stop_y) && isSmoothEnough(riteE, nextCurrE, stop_y); |
-} |
- |
-static inline void aaa_walk_convex_edges(SkAnalyticEdge* prevHead, AdditiveBlitter* blitter, |
- int start_y, int stop_y, SkFixed leftBound, SkFixed riteBound, |
- bool isUsingMask) { |
- validate_sort((SkAnalyticEdge*)prevHead->fNext); |
- |
- SkAnalyticEdge* leftE = (SkAnalyticEdge*) prevHead->fNext; |
- SkAnalyticEdge* riteE = (SkAnalyticEdge*) leftE->fNext; |
- SkAnalyticEdge* currE = (SkAnalyticEdge*) riteE->fNext; |
- |
- SkFixed y = SkTMax(leftE->fUpperY, riteE->fUpperY); |
- |
- #ifdef SK_DEBUG |
- int frac_y_cnt = 0; |
- int total_y_cnt = 0; |
- #endif |
- |
- for (;;) { |
- // We have to check fLowerY first because some edges might be alone (e.g., there's only |
- // a left edge but no right edge in a given y scan line) due to precision limit. |
- while (leftE->fLowerY <= y) { // Due to smooth jump, we may pass multiple short edges |
- if (update_edge(leftE, y)) { |
- if (SkFixedFloorToInt(currE->fUpperY) >= stop_y) { |
- goto END_WALK; |
- } |
- leftE = currE; |
- currE = (SkAnalyticEdge*)currE->fNext; |
- } |
- } |
- while (riteE->fLowerY <= y) { // Due to smooth jump, we may pass multiple short edges |
- if (update_edge(riteE, y)) { |
- if (SkFixedFloorToInt(currE->fUpperY) >= stop_y) { |
- goto END_WALK; |
- } |
- riteE = currE; |
- currE = (SkAnalyticEdge*)currE->fNext; |
- } |
- } |
- |
- SkASSERT(leftE); |
- SkASSERT(riteE); |
- |
- // check our bottom clip |
- if (SkFixedFloorToInt(y) >= stop_y) { |
- break; |
- } |
- |
- SkASSERT(SkFixedFloorToInt(leftE->fUpperY) <= stop_y); |
- SkASSERT(SkFixedFloorToInt(riteE->fUpperY) <= stop_y); |
- |
- leftE->goY(y); |
- riteE->goY(y); |
- |
- if (leftE->fX > riteE->fX || (leftE->fX == riteE->fX && |
- leftE->fDX > riteE->fDX)) { |
- SkTSwap(leftE, riteE); |
- } |
- |
- SkFixed local_bot_fixed = SkMin32(leftE->fLowerY, riteE->fLowerY); |
- // Skip the fractional y if edges are changing smoothly |
- if (isSmoothEnough(leftE, riteE, currE, stop_y)) { |
- local_bot_fixed = SkFixedCeilToFixed(local_bot_fixed); |
- } |
- local_bot_fixed = SkMin32(local_bot_fixed, SkIntToFixed(stop_y + 1)); |
- |
- SkFixed left = leftE->fX; |
- SkFixed dLeft = leftE->fDX; |
- SkFixed rite = riteE->fX; |
- SkFixed dRite = riteE->fDX; |
- if (0 == (dLeft | dRite)) { |
- int fullLeft = SkFixedCeilToInt(left); |
- int fullRite = SkFixedFloorToInt(rite); |
- SkFixed partialLeft = SkIntToFixed(fullLeft) - left; |
- SkFixed partialRite = rite - SkIntToFixed(fullRite); |
- int fullTop = SkFixedCeilToInt(y); |
- int fullBot = SkFixedFloorToInt(local_bot_fixed); |
- SkFixed partialTop = SkIntToFixed(fullTop) - y; |
- SkFixed partialBot = local_bot_fixed - SkIntToFixed(fullBot); |
- if (fullTop > fullBot) { // The rectangle is within one pixel height... |
- partialTop -= (SK_Fixed1 - partialBot); |
- partialBot = 0; |
- } |
- |
- if (fullRite >= fullLeft) { |
- // Blit all full-height rows from fullTop to fullBot |
- if (fullBot > fullTop) { |
- blitter->getRealBlitter()->blitAntiRect(fullLeft - 1, fullTop, |
- fullRite - fullLeft, fullBot - fullTop, |
- f2a(partialLeft), f2a(partialRite)); |
- } |
- |
- if (partialTop > 0) { // blit first partial row |
- if (partialLeft > 0) { |
- blitter->blitAntiH(fullLeft - 1, fullTop - 1, |
- f2a(SkFixedMul_lowprec(partialTop, partialLeft))); |
- } |
- if (partialRite > 0) { |
- blitter->blitAntiH(fullRite, fullTop - 1, |
- f2a(SkFixedMul_lowprec(partialTop, partialRite))); |
- } |
- blitter->blitAntiH(fullLeft, fullTop - 1, fullRite - fullLeft, |
- f2a(partialTop)); |
- } |
- |
- if (partialBot > 0) { // blit last partial row |
- if (partialLeft > 0) { |
- blitter->blitAntiH(fullLeft - 1, fullBot, |
- f2a(SkFixedMul_lowprec(partialBot, partialLeft))); |
- } |
- if (partialRite > 0) { |
- blitter->blitAntiH(fullRite, fullBot, |
- f2a(SkFixedMul_lowprec(partialBot, partialRite))); |
- } |
- blitter->blitAntiH(fullLeft, fullBot, fullRite - fullLeft, f2a(partialBot)); |
- } |
- } else { // left and rite are within the same pixel |
- if (partialTop > 0) { |
- blitter->getRealBlitter()->blitV(fullLeft - 1, fullTop - 1, 1, |
- f2a(SkFixedMul_lowprec(partialTop, rite - left))); |
- } |
- if (partialBot > 0) { |
- blitter->getRealBlitter()->blitV(fullLeft - 1, fullBot, 1, |
- f2a(SkFixedMul_lowprec(partialBot, rite - left))); |
- } |
- if (fullBot >= fullTop) { |
- blitter->getRealBlitter()->blitV(fullLeft - 1, fullTop, fullBot - fullTop, |
- f2a(rite - left)); |
- } |
- } |
- |
- y = local_bot_fixed; |
- } else { |
- // The following constant are used to snap X |
- // We snap X mainly for speedup (no tiny triangle) and |
- // avoiding edge cases caused by precision errors |
- const SkFixed kSnapDigit = SK_Fixed1 >> 4; |
- const SkFixed kSnapHalf = kSnapDigit >> 1; |
- const SkFixed kSnapMask = (-1 ^ (kSnapDigit - 1)); |
- left += kSnapHalf; rite += kSnapHalf; // For fast rounding |
- |
- // Number of blit_trapezoid_row calls we'll have |
- int count = SkFixedCeilToInt(local_bot_fixed) - SkFixedFloorToInt(y); |
- #ifdef SK_DEBUG |
- total_y_cnt += count; |
- frac_y_cnt += ((int)(y & 0xFFFF0000) != y); |
- if ((int)(y & 0xFFFF0000) != y) { |
- SkDebugf("frac_y = %f\n", SkFixedToFloat(y)); |
- } |
- #endif |
- |
- // If we're using mask blitter, we advance the mask row in this function |
- // to save some "if" condition checks. |
- SkAlpha* maskRow = nullptr; |
- if (isUsingMask) { |
- maskRow = static_cast<MaskAdditiveBlitter*>(blitter)->getRow(y >> 16); |
- } |
- |
- // Instead of writing one loop that handles both partial-row blit_trapezoid_row |
- // and full-row trapezoid_row together, we use the following 3-stage flow to |
- // handle partial-row blit and full-row blit separately. It will save us much time |
- // on changing y, left, and rite. |
- if (count > 1) { |
- if ((int)(y & 0xFFFF0000) != y) { // There's a partial-row on the top |
- count--; |
- SkFixed nextY = SkFixedCeilToFixed(y + 1); |
- SkFixed dY = nextY - y; |
- SkFixed nextLeft = left + SkFixedMul_lowprec(dLeft, dY); |
- SkFixed nextRite = rite + SkFixedMul_lowprec(dRite, dY); |
- blit_trapezoid_row(blitter, y >> 16, left & kSnapMask, rite & kSnapMask, |
- nextLeft & kSnapMask, nextRite & kSnapMask, leftE->fDY, riteE->fDY, |
- getPartialAlpha(0xFF, dY), maskRow, isUsingMask); |
- left = nextLeft; rite = nextRite; y = nextY; |
- } |
- |
- while (count > 1) { // Full rows in the middle |
- count--; |
- if (isUsingMask) { |
- maskRow = static_cast<MaskAdditiveBlitter*>(blitter)->getRow(y >> 16); |
- } |
- SkFixed nextY = y + SK_Fixed1, nextLeft = left + dLeft, nextRite = rite + dRite; |
- blit_trapezoid_row(blitter, y >> 16, left & kSnapMask, rite & kSnapMask, |
- nextLeft & kSnapMask, nextRite & kSnapMask, |
- leftE->fDY, riteE->fDY, 0xFF, maskRow, isUsingMask); |
- left = nextLeft; rite = nextRite; y = nextY; |
- } |
- } |
- |
- if (isUsingMask) { |
- maskRow = static_cast<MaskAdditiveBlitter*>(blitter)->getRow(y >> 16); |
- } |
- |
- SkFixed dY = local_bot_fixed - y; // partial-row on the bottom |
- SkASSERT(dY <= SK_Fixed1); |
- // Smooth jumping to integer y may make the last nextLeft/nextRite out of bound. |
- // Take them back into the bound here. |
- SkFixed nextLeft = SkTMax(left + SkFixedMul_lowprec(dLeft, dY), leftBound); |
- SkFixed nextRite = SkTMin(rite + SkFixedMul_lowprec(dRite, dY), riteBound); |
- blit_trapezoid_row(blitter, y >> 16, left & kSnapMask, rite & kSnapMask, |
- nextLeft & kSnapMask, nextRite & kSnapMask, leftE->fDY, riteE->fDY, |
- getPartialAlpha(0xFF, dY), maskRow, isUsingMask); |
- left = nextLeft; rite = nextRite; y = local_bot_fixed; |
- left -= kSnapHalf; rite -= kSnapHalf; |
- } |
- |
- leftE->fX = left; |
- riteE->fX = rite; |
- leftE->fY = riteE->fY = y; |
- } |
- |
-END_WALK: |
- ; |
- #ifdef SK_DEBUG |
- SkDebugf("frac_y_cnt = %d, total_y_cnt = %d\n", frac_y_cnt, total_y_cnt); |
- #endif |
-} |
- |
-void SkScan::aaa_fill_path(const SkPath& path, const SkIRect* clipRect, AdditiveBlitter* blitter, |
- int start_y, int stop_y, const SkRegion& clipRgn, bool isUsingMask) { |
- SkASSERT(blitter); |
- |
- if (path.isInverseFillType() || !path.isConvex()) { |
- // fall back to supersampling AA |
- SkScan::AntiFillPath(path, clipRgn, blitter->getRealBlitter(true), false); |
- return; |
- } |
- |
- SkEdgeBuilder builder; |
- |
- // If we're convex, then we need both edges, even the right edge is past the clip |
- const bool canCullToTheRight = !path.isConvex(); |
- |
- SkASSERT(GlobalAAConfig::getInstance().fUseAnalyticAA); |
- int count = builder.build(path, clipRect, 0, canCullToTheRight, true); |
- SkASSERT(count >= 0); |
- |
- SkAnalyticEdge** list = (SkAnalyticEdge**)builder.analyticEdgeList(); |
- |
- SkIRect rect = clipRgn.getBounds(); |
- if (0 == count) { |
- if (path.isInverseFillType()) { |
- /* |
- * Since we are in inverse-fill, our caller has already drawn above |
- * our top (start_y) and will draw below our bottom (stop_y). Thus |
- * we need to restrict our drawing to the intersection of the clip |
- * and those two limits. |
- */ |
- if (rect.fTop < start_y) { |
- rect.fTop = start_y; |
- } |
- if (rect.fBottom > stop_y) { |
- rect.fBottom = stop_y; |
- } |
- if (!rect.isEmpty()) { |
- blitter->blitRect(rect.fLeft, rect.fTop, rect.width(), rect.height()); |
- } |
- } |
- return; |
- } |
- |
- SkAnalyticEdge headEdge, tailEdge, *last; |
- // this returns the first and last edge after they're sorted into a dlink list |
- SkAnalyticEdge* edge = sort_edges(list, count, &last); |
- |
- headEdge.fPrev = nullptr; |
- headEdge.fNext = edge; |
- headEdge.fUpperY = headEdge.fLowerY = SK_MinS32; |
- headEdge.fX = SK_MinS32; |
- headEdge.fDX = 0; |
- headEdge.fDY = SK_MaxS32; |
- headEdge.fUpperX = SK_MinS32; |
- edge->fPrev = &headEdge; |
- |
- tailEdge.fPrev = last; |
- tailEdge.fNext = nullptr; |
- tailEdge.fUpperY = tailEdge.fLowerY = SK_MaxS32; |
- headEdge.fX = SK_MaxS32; |
- headEdge.fDX = 0; |
- headEdge.fDY = SK_MaxS32; |
- headEdge.fUpperX = SK_MaxS32; |
- last->fNext = &tailEdge; |
- |
- // now edge is the head of the sorted linklist |
- |
- if (clipRect && start_y < clipRect->fTop) { |
- start_y = clipRect->fTop; |
- } |
- if (clipRect && stop_y > clipRect->fBottom) { |
- stop_y = clipRect->fBottom; |
- } |
- |
- if (!path.isInverseFillType() && path.isConvex()) { |
- SkASSERT(count >= 2); // convex walker does not handle missing right edges |
- aaa_walk_convex_edges(&headEdge, blitter, start_y, stop_y, |
- rect.fLeft << 16, rect.fRight << 16, isUsingMask); |
- } else { |
- SkFAIL("Concave AAA is not yet implemented!"); |
- } |
-} |
- |
-/////////////////////////////////////////////////////////////////////////////// |
- |
-void SkScan::AAAFillPath(const SkPath& path, const SkRegion& origClip, SkBlitter* blitter) { |
- if (origClip.isEmpty()) { |
- return; |
- } |
- |
- const bool isInverse = path.isInverseFillType(); |
- SkIRect ir; |
- path.getBounds().roundOut(&ir); |
- if (ir.isEmpty()) { |
- if (isInverse) { |
- blitter->blitRegion(origClip); |
- } |
- return; |
- } |
- |
- SkIRect clippedIR; |
- if (isInverse) { |
- // If the path is an inverse fill, it's going to fill the entire |
- // clip, and we care whether the entire clip exceeds our limits. |
- clippedIR = origClip.getBounds(); |
- } else { |
- if (!clippedIR.intersect(ir, origClip.getBounds())) { |
- return; |
- } |
- } |
- |
- // Our antialiasing can't handle a clip larger than 32767, so we restrict |
- // the clip to that limit here. (the runs[] uses int16_t for its index). |
- // |
- // A more general solution (one that could also eliminate the need to |
- // disable aa based on ir bounds (see overflows_short_shift) would be |
- // to tile the clip/target... |
- SkRegion tmpClipStorage; |
- const SkRegion* clipRgn = &origClip; |
- { |
- static const int32_t kMaxClipCoord = 32767; |
- const SkIRect& bounds = origClip.getBounds(); |
- if (bounds.fRight > kMaxClipCoord || bounds.fBottom > kMaxClipCoord) { |
- SkIRect limit = { 0, 0, kMaxClipCoord, kMaxClipCoord }; |
- tmpClipStorage.op(origClip, limit, SkRegion::kIntersect_Op); |
- clipRgn = &tmpClipStorage; |
- } |
- } |
- // for here down, use clipRgn, not origClip |
- |
- SkScanClipper clipper(blitter, clipRgn, ir); |
- const SkIRect* clipRect = clipper.getClipRect(); |
- |
- if (clipper.getBlitter() == nullptr) { // clipped out |
- if (isInverse) { |
- blitter->blitRegion(*clipRgn); |
- } |
- return; |
- } |
- |
- // now use the (possibly wrapped) blitter |
- blitter = clipper.getBlitter(); |
- |
- if (isInverse) { |
- // Currently, we use the old path to render the inverse path, |
- // so we don't need this. |
- // sk_blit_above(blitter, ir, *clipRgn); |
- } |
- |
- SkASSERT(SkIntToScalar(ir.fTop) <= path.getBounds().fTop); |
- |
- if (MaskAdditiveBlitter::canHandleRect(ir) && !isInverse) { |
- MaskAdditiveBlitter additiveBlitter(blitter, ir, *clipRgn, isInverse); |
- aaa_fill_path(path, clipRect, &additiveBlitter, ir.fTop, ir.fBottom, *clipRgn, true); |
- } else { |
- RunBasedAdditiveBlitter additiveBlitter(blitter, ir, *clipRgn, isInverse); |
- aaa_fill_path(path, clipRect, &additiveBlitter, ir.fTop, ir.fBottom, *clipRgn, false); |
- } |
- |
- if (isInverse) { |
- // Currently, we use the old path to render the inverse path, |
- // so we don't need this. |
- // sk_blit_below(blitter, ir, *clipRgn); |
- } |
-} |
- |
-// This almost copies SkScan::AntiFillPath |
-void SkScan::AAAFillPath(const SkPath& path, const SkRasterClip& clip, SkBlitter* blitter) { |
- if (clip.isEmpty()) { |
- return; |
- } |
- |
- if (clip.isBW()) { |
- AAAFillPath(path, clip.bwRgn(), blitter); |
- } else { |
- SkRegion tmp; |
- SkAAClipBlitter aaBlitter; |
- |
- tmp.setRect(clip.getBounds()); |
- aaBlitter.init(blitter, &clip.aaRgn()); |
- AAAFillPath(path, tmp, &aaBlitter); |
- } |
-} |