| Index: third_party/WebKit/Source/platform/image-decoders/png/PNGImageReader.cpp
|
| diff --git a/third_party/WebKit/Source/platform/image-decoders/png/PNGImageReader.cpp b/third_party/WebKit/Source/platform/image-decoders/png/PNGImageReader.cpp
|
| index 177b58af86dbbebe6f631714da4501214ac11b31..284c7acc9f72e5eecd9402106460688289e9f459 100644
|
| --- a/third_party/WebKit/Source/platform/image-decoders/png/PNGImageReader.cpp
|
| +++ b/third_party/WebKit/Source/platform/image-decoders/png/PNGImageReader.cpp
|
| @@ -38,7 +38,9 @@
|
|
|
| #include "platform/image-decoders/png/PNGImageReader.h"
|
|
|
| +#include "platform/image-decoders/FastSharedBufferReader.h"
|
| #include "platform/image-decoders/SegmentReader.h"
|
| +#include "platform/image-decoders/png/PNGImageDecoder.h"
|
| #include "png.h"
|
| #include "wtf/PtrUtil.h"
|
| #include <memory>
|
| @@ -72,45 +74,606 @@ void PNGAPI pngFailed(png_structp png, png_const_charp) {
|
|
|
| namespace blink {
|
|
|
| -PNGImageReader::PNGImageReader(PNGImageDecoder* decoder, size_t readOffset)
|
| +// This is the callback function for unknown PNG chunks, which is used to
|
| +// extract the animation chunks.
|
| +static int readAnimationChunk(png_structp pngPtr, png_unknown_chunkp chunk) {
|
| + PNGImageReader* reader = (PNGImageReader*)png_get_user_chunk_ptr(pngPtr);
|
| + reader->parseAnimationChunk((const char*)chunk->name, chunk->data,
|
| + chunk->size);
|
| + return 1;
|
| +}
|
| +
|
| +PNGImageReader::PNGImageReader(PNGImageDecoder* decoder, size_t initialOffset)
|
| : m_decoder(decoder),
|
| - m_readOffset(readOffset),
|
| - m_currentBufferSize(0),
|
| - m_decodingSizeOnly(false),
|
| - m_hasAlpha(false) {
|
| + m_initialOffset(initialOffset),
|
| + m_readOffset(initialOffset),
|
| + m_progressiveDecodeOffset(0),
|
| + m_idatOffset(0),
|
| + m_idatIsPartOfAnimation(false),
|
| + m_isAnimated(false),
|
| + m_parsedSignature(false),
|
| + m_parseCompleted(false)
|
| +{
|
| m_png = png_create_read_struct(PNG_LIBPNG_VER_STRING, 0, pngFailed, 0);
|
| m_info = png_create_info_struct(m_png);
|
| png_set_progressive_read_fn(m_png, m_decoder, pngHeaderAvailable,
|
| pngRowAvailable, pngComplete);
|
| +
|
| + // Keep the chunks which are of interest for APNG. We don't need to keep
|
| + // the fdAT chunks, since they are converted to IDAT's by the frame decoder.
|
| + png_byte apngChunks[] = {"acTL\0fcTL\0"};
|
| + png_set_keep_unknown_chunks(m_png, PNG_HANDLE_CHUNK_NEVER, apngChunks, 2);
|
| + png_set_read_user_chunk_fn(m_png, (png_voidp)this, readAnimationChunk);
|
| }
|
|
|
| PNGImageReader::~PNGImageReader() {
|
| png_destroy_read_struct(m_png ? &m_png : 0, m_info ? &m_info : 0, 0);
|
| DCHECK(!m_png && !m_info);
|
| +}
|
| +
|
| +// This method reads from the FastSharedBufferReader, starting at offset,
|
| +// and returns |length| bytes in the form of a pointer to a const png_byte*.
|
| +// This function is used to make it easy to access data from the reader in a
|
| +// png friendly way, and pass it to libpng for decoding.
|
| +//
|
| +// Pre-conditions before using this:
|
| +// - |reader|.size() >= |readOffset| + |length|
|
| +// - |buffer|.size() >= |length|
|
| +// - |length| <= |kBufferSize|
|
| +//
|
| +// The reason for the last two precondition is that currently the png signature
|
| +// plus IHDR chunk (8B + 25B = 33B) is the largest chunk that is read using this
|
| +// method. If the data is not consecutive, it is stored in |buffer|, which must
|
| +// have the size of (at least) |length|, but there's no need for it to be larger
|
| +// than |kBufferSize|.
|
| +static constexpr size_t kBufferSize = 33;
|
| +const png_byte* readAsConstPngBytep(const FastSharedBufferReader& reader,
|
| + size_t readOffset,
|
| + size_t length,
|
| + char* buffer) {
|
| + DCHECK(length <= kBufferSize);
|
| + return reinterpret_cast<const png_byte*>(
|
| + reader.getConsecutiveData(readOffset, length, buffer));
|
| +}
|
| +
|
| +// This is used as a value for the byteLength of a frameInfo struct to
|
| +// indicate that it is the first frame, and we still need to set byteLength
|
| +// to the correct value as soon as the parser knows it. 1 is a safe value
|
| +// since the byteLength field of a frame is at least 12, in the case of an
|
| +// empty fdAT or IDAT chunk.
|
| +static constexpr size_t kFirstFrameIndicator = 1;
|
| +
|
| +void PNGImageReader::decode(SegmentReader& data, size_t index) {
|
| + if (index >= m_frameInfo.size())
|
| + return;
|
| +
|
| + // For non animated PNGs, resume decoding where we left off in parse(), at
|
| + // the beginning of the IDAT chunk. Recreating a png struct would either
|
| + // result in wasted work, by reprocessing all header bytes, or decoding the
|
| + // wrong data.
|
| + if (!m_isAnimated) {
|
| + if (setjmp(JMPBUF(m_png))) {
|
| + m_decoder->setFailed();
|
| + return;
|
| + }
|
| + m_progressiveDecodeOffset += processData(
|
| + data, m_frameInfo[0].startOffset + m_progressiveDecodeOffset, 0);
|
| + return;
|
| + }
|
| +
|
| + // When a non-first frame is decoded, and the previous decode call was a
|
| + // progressive decode of frame 0 which did not completely finish, set
|
| + // |m_progressiveDecodeOffset| to 0. This ensures that when a later call to
|
| + // decode frame 0 comes in, it will correctly decode the frame from the
|
| + // beginning. It is better to re-decode from the start than to try continuing
|
| + // where we left off, because:
|
| + // - A row may have been partially decoded, but it is hard to find where
|
| + // that row starts in the data. But we need to continue decoding from the
|
| + // beginning of the row, otherwise the pixels will be shifted and the final
|
| + // row won't be complete.
|
| + // - The |m_png| struct will be reset for this decode call, so it needs to
|
| + // be recreated when decoding for frame 0 continues. Since the header chunks
|
| + // need to be re-processed anyway, the added benefit of continuing
|
| + // progressive decoding may be very slim. Especially since this is already
|
| + // an edge case.
|
| + if (index > 0 && m_progressiveDecodeOffset > 0)
|
| + m_progressiveDecodeOffset = 0;
|
| +
|
| + // Progressive decoding is only done if both of the following are true:
|
| + // - It is the first frame, thus |index| == 0, AND
|
| + // - The byteLength of the first frame is not yet known, *or* it is known
|
| + // but we're only partway in a progressive decode, started earlier.
|
| + bool firstFrameLengthKnown = firstFrameFullyReceived();
|
| + bool progressiveDecodingAlreadyStarted = m_progressiveDecodeOffset > 0;
|
| + bool progressiveDecode = (index == 0 && (!firstFrameLengthKnown ||
|
| + progressiveDecodingAlreadyStarted));
|
| + bool decodeAsNewPNG =
|
| + !progressiveDecode || !progressiveDecodingAlreadyStarted;
|
| +
|
| + // Initialize a new png struct for this frame. For a progressive decode of
|
| + // the first frame, we only need to do this once.
|
| + // @FIXME(joostouwerling) check if the existing png struct can be reused.
|
| + if (decodeAsNewPNG)
|
| + resetPNGStruct();
|
| +
|
| + // Before processing any PNG bytes, set setjmp with the current |m_png|
|
| + // struct. This has to be done after resetPNGStruct(), which will have
|
| + // replaced |m_png|.
|
| + if (setjmp(JMPBUF(m_png))) {
|
| + m_decoder->setFailed();
|
| + return;
|
| + }
|
| +
|
| + // Process the png header chunks with a modified size, reflecting the size of
|
| + // this frame. This only needs to be done once for a progressive decode of
|
| + // the first frame.
|
| + if (decodeAsNewPNG)
|
| + startFrameDecoding(data, index);
|
| +
|
| + bool decodedFrameCompletely;
|
| + if (progressiveDecode) {
|
| + decodedFrameCompletely = progressivelyDecodeFirstFrame(data);
|
| + // If progressive decoding processed all data for this frame, reset
|
| + // |m_progressiveDecodeOffset|, so |progressiveDecodingAlreadyStarted|
|
| + // will be false for later calls to decode frame 0.
|
| + if (decodedFrameCompletely)
|
| + m_progressiveDecodeOffset = 0;
|
| + } else {
|
| + decodeFrame(data, index);
|
| + // For a non-progressive decode, we already have all the data we are
|
| + // going to get, so consider the frame complete.
|
| + decodedFrameCompletely = true;
|
| + }
|
| +
|
| + // Send the IEND chunk if the frame is completely decoded, so the complete
|
| + // callback in |m_decoder| will be called.
|
| + if (decodedFrameCompletely)
|
| + endFrameDecoding();
|
| +}
|
| +
|
| +void PNGImageReader::resetPNGStruct() {
|
| + // Each frame is processed as if it were a complete, single frame png image.
|
| + // To accomplish this, destroy the current |m_png| and |m_info| structs and
|
| + // create new ones. CRC errors are ignored, so fdAT chunks can be processed
|
| + // as IDATs without recalculating the CRC value.
|
| + png_destroy_read_struct(m_png ? &m_png : 0, m_info ? &m_info : 0, 0);
|
| + m_png = png_create_read_struct(PNG_LIBPNG_VER_STRING, 0, pngFailed, 0);
|
| + m_info = png_create_info_struct(m_png);
|
| + png_set_crc_action(m_png, PNG_CRC_QUIET_USE, PNG_CRC_QUIET_USE);
|
| + png_set_progressive_read_fn(m_png, m_decoder, pngHeaderAvailable,
|
| + pngRowAvailable, pngComplete);
|
| +}
|
| +
|
| +void PNGImageReader::startFrameDecoding(SegmentReader& data, size_t index) {
|
| + // If the frame is the size of the whole image, we don't need to modify any
|
| + // data in the IHDR chunk. This means it suffices to re-process all header
|
| + // data up to the first frame, for mimicking a png image.
|
| + const IntRect& frameRect = m_frameInfo[index].frameRect;
|
| + if (frameRect.location() == IntPoint() &&
|
| + frameRect.size() == m_decoder->size()) {
|
| + processData(data, m_initialOffset, m_idatOffset);
|
| + return;
|
| + }
|
| +
|
| + // Process the IHDR chunk, but change the width and height so it reflects
|
| + // the frame's width and height. Image Decoder will apply the x,y offset.
|
| + // This step is omitted if the width and height are equal to the image size,
|
| + // which is done in the block above.
|
| + FastSharedBufferReader reader(&data);
|
| + char readBuffer[kBufferSize];
|
| +
|
| + // |headerSize| is equal to |kBufferSize|, but adds more semantic insight.
|
| + constexpr size_t headerSize = 33;
|
| + png_byte header[headerSize];
|
| + const png_byte* chunk =
|
| + readAsConstPngBytep(reader, m_initialOffset, headerSize, readBuffer);
|
| + memcpy(header, chunk, headerSize);
|
| +
|
| + // Write the unclipped width and height. Clipping happens in the decoder.
|
| + png_save_uint_32(header + 16, frameRect.width());
|
| + png_save_uint_32(header + 20, frameRect.height());
|
| + png_process_data(m_png, m_info, header, headerSize);
|
| +
|
| + // Process the rest of the header chunks. Start after the PNG signature and
|
| + // IHDR chunk, 33B, and process up to the first data chunk. The number of
|
| + // bytes up to the first data chunk is stored in |m_idatOffset|.
|
| + processData(data, m_initialOffset + headerSize, m_idatOffset - headerSize);
|
| +}
|
| +
|
| +// Determine if the bytes 4 to 7 of |chunk| indicate that it is a |tag| chunk.
|
| +// - The length of |chunk| must be >= 8
|
| +// - The length of |tag| must be = 4
|
| +static inline bool isChunk(const png_byte* chunk, const char* tag) {
|
| + return memcmp(chunk + 4, tag, 4) == 0;
|
| +}
|
| +
|
| +bool PNGImageReader::progressivelyDecodeFirstFrame(SegmentReader& data) {
|
| + FastSharedBufferReader reader(&data);
|
| + char readBuffer[8]; // large enough to identify a chunk.
|
| + size_t offset = m_frameInfo[0].startOffset;
|
| +
|
| + // Loop while there is enough data to do progressive decoding.
|
| + while (data.size() >= offset + 8) {
|
| + // At the beginning of each loop, the offset is at the start of a chunk.
|
| + const png_byte* chunk = readAsConstPngBytep(reader, offset, 8, readBuffer);
|
| + const png_uint_32 length = png_get_uint_32(chunk);
|
| +
|
| + // When an fcTL or IEND chunk is encountered, the frame data has ended.
|
| + // Return true, since all frame data is decoded.
|
| + if (isChunk(chunk, "fcTL") || isChunk(chunk, "IEND"))
|
| + return true;
|
| +
|
| + // If this chunk was already decoded, move on to the next.
|
| + if (m_progressiveDecodeOffset >= offset + length + 12) {
|
| + offset += length + 12;
|
| + continue;
|
| + }
|
| +
|
| + // At this point, three scenarios are possible:
|
| + // 1) Some bytes of this chunk were already decoded in a previous call,
|
| + // so we need to continue from there.
|
| + // 2) This is an fdAT chunk, so we need to convert it to an IDAT chunk
|
| + // before we can decode it.
|
| + // 3) This is any other chunk, most likely an IDAT chunk.
|
| + //
|
| + // In each scenario, we want to decode as much data as possible. In each
|
| + // one, do the scenario specific work and set |offset| to where decoding
|
| + // needs to continue. From there, decode until the end of the chunk, if
|
| + // possible. If the whole chunk is decoded, continue to the next loop.
|
| + // Otherwise, store how far we've come in |m_progressiveDecodeOffset| and
|
| + // return false to indicate to the caller that the frame is partially
|
| + // decoded.
|
| +
|
| + size_t endOffsetChunk = offset + length + 12;
|
| +
|
| + // Scenario 1: |m_progressiveDecodeOffset| is ahead of the chunk tag.
|
| + if (m_progressiveDecodeOffset >= offset + 8) {
|
| + offset = m_progressiveDecodeOffset;
|
| +
|
| + // Scenario 2: we need to convert the fdAT to an IDAT chunk. For an
|
| + // explanation of the numbers, see the comments in decodeFrame().
|
| + } else if (isChunk(chunk, "fdAT")) {
|
| + png_byte chunkIDAT[] = {0, 0, 0, 0, 'I', 'D', 'A', 'T'};
|
| + png_save_uint_32(chunkIDAT, length - 4);
|
| + png_process_data(m_png, m_info, chunkIDAT, 8);
|
| + // Skip the sequence number
|
| + offset += 12;
|
| +
|
| + // Scenario 3: for any other chunk type, process the first 8 bytes.
|
| + } else {
|
| + png_process_data(m_png, m_info, const_cast<png_byte*>(chunk), 8);
|
| + offset += 8;
|
| + }
|
| +
|
| + size_t bytesLeftInChunk = endOffsetChunk - offset;
|
| + size_t bytesDecoded = processData(data, offset, bytesLeftInChunk);
|
| + m_progressiveDecodeOffset = offset + bytesDecoded;
|
| + if (bytesDecoded < bytesLeftInChunk)
|
| + return false;
|
| + offset += bytesDecoded;
|
| + }
|
| +
|
| + return false;
|
| +}
|
|
|
| - m_readOffset = 0;
|
| +void PNGImageReader::decodeFrame(SegmentReader& data, size_t index) {
|
| + // From the frame info that was gathered during parsing, it is known at
|
| + // what offset the frame data starts and how many bytes are in the stream
|
| + // before the frame ends. Using this, we process all chunks that fall in
|
| + // this interval. We catch every fdAT chunk and transform it to an IDAT
|
| + // chunk, so libpng will decode it like a non-animated PNG image.
|
| + size_t offset = m_frameInfo[index].startOffset;
|
| + size_t endOffset = offset + m_frameInfo[index].byteLength;
|
| + char readBuffer[8];
|
| + FastSharedBufferReader reader(&data);
|
| +
|
| + while (offset < endOffset) {
|
| + const png_byte* chunk = readAsConstPngBytep(reader, offset, 8, readBuffer);
|
| + const png_uint_32 length = png_get_uint_32(chunk);
|
| + if (isChunk(chunk, "fdAT")) {
|
| + // An fdAT chunk is build up as follows:
|
| + // - |length| (4B)
|
| + // - fdAT tag (4B)
|
| + // - sequence number (4B)
|
| + // - frame data (|length| - 4B)
|
| + // - CRC (4B)
|
| + // Thus, to reformat this into an IDAT chunk, we need to:
|
| + // - write |length| - 4 as the new length, since the sequence number
|
| + // must be removed.
|
| + // - change the tag to IDAT.
|
| + // - omit the sequence number from the data part of the chunk.
|
| + png_byte chunkIDAT[] = {0, 0, 0, 0, 'I', 'D', 'A', 'T'};
|
| + png_save_uint_32(chunkIDAT, length - 4);
|
| + png_process_data(m_png, m_info, chunkIDAT, 8);
|
| + // The frame data and the CRC span |length| bytes, so skip the
|
| + // sequence number and process |length| bytes to decode the frame.
|
| + processData(data, offset + 12, length);
|
| + } else {
|
| + png_process_data(m_png, m_info, const_cast<png_byte*>(chunk), 8);
|
| + processData(data, offset + 8, length + 4);
|
| + }
|
| + offset += 12 + length;
|
| + }
|
| +}
|
| +
|
| +void PNGImageReader::endFrameDecoding() {
|
| + png_byte IEND[12] = {0, 0, 0, 0, 'I', 'E', 'N', 'D', 174, 66, 96, 130};
|
| + png_process_data(m_png, m_info, IEND, 12);
|
| }
|
|
|
| -bool PNGImageReader::decode(const SegmentReader& data, bool sizeOnly) {
|
| - m_decodingSizeOnly = sizeOnly;
|
| +bool PNGImageReader::parse(SegmentReader& data,
|
| + PNGImageDecoder::PNGParseQuery query) {
|
| + if (m_parseCompleted)
|
| + return true;
|
|
|
| - // We need to do the setjmp here. Otherwise bad things will happen.
|
| if (setjmp(JMPBUF(m_png)))
|
| return m_decoder->setFailed();
|
|
|
| + // If the size has not been parsed, do that first, since it's necessary
|
| + // for both the Size and MetaData query. If parseSize returns false,
|
| + // it failed because of a lack of data so we can return false at this point.
|
| + if (!m_decoder->isDecodedSizeAvailable() && !parseSize(data))
|
| + return false;
|
| +
|
| + if (query == PNGImageDecoder::PNGParseQuery::PNGSizeQuery)
|
| + return m_decoder->isDecodedSizeAvailable();
|
| +
|
| + // For non animated images (identified by no acTL chunk before the IDAT),
|
| + // we create one frame. This saves some processing time since we don't need
|
| + // to go over the stream to find chunks.
|
| + if (!m_isAnimated) {
|
| + if (m_frameInfo.isEmpty()) {
|
| + FrameInfo frame;
|
| + // This needs to be plus 8 since the first 8 bytes of the IDAT chunk
|
| + // are already processed in parseSize().
|
| + frame.startOffset = m_readOffset + 8;
|
| + frame.frameRect = IntRect(IntPoint(), m_decoder->size());
|
| + frame.duration = 0;
|
| + frame.alphaBlend = ImageFrame::AlphaBlendSource::BlendAtopBgcolor;
|
| + frame.disposalMethod = ImageFrame::DisposalMethod::DisposeNotSpecified;
|
| + m_frameInfo.append(frame);
|
| + // When the png is not animated, no extra parsing is necessary.
|
| + m_parseCompleted = true;
|
| + }
|
| + return true;
|
| + }
|
| +
|
| + FastSharedBufferReader reader(&data);
|
| + char readBuffer[kBufferSize];
|
| +
|
| + // At this point, the query is FrameMetaDataQuery. Loop over the data and
|
| + // register all frames we can find. A frame is registered on the next fcTL
|
| + // chunk or when the IEND chunk is found. This ensures that only complete
|
| + // frames are reported, unless there is an error in the stream.
|
| + while (reader.size() >= m_readOffset + 8) {
|
| + const png_byte* chunk =
|
| + readAsConstPngBytep(reader, m_readOffset, 8, readBuffer);
|
| + const size_t length = png_get_uint_32(chunk);
|
| +
|
| + // When we find an IDAT chunk (when the IDAT is part of the animation),
|
| + // or an fdAT chunk, and the readOffset field of the newFrame is 0,
|
| + // we have found the beginning of a new block of frame data.
|
| + const bool isFrameData =
|
| + isChunk(chunk, "fdAT") ||
|
| + (isChunk(chunk, "IDAT") && m_idatIsPartOfAnimation);
|
| + if (m_newFrame.startOffset == 0 && isFrameData) {
|
| + m_newFrame.startOffset = m_readOffset;
|
| +
|
| + // When the |frameInfo| vector is empty, the first frame needs to be
|
| + // reported as soon as possible, even before all frame data is in
|
| + // |data|, so the first frame can be decoded progressively.
|
| + if (m_frameInfo.isEmpty()) {
|
| + m_newFrame.byteLength = kFirstFrameIndicator;
|
| + m_frameInfo.append(m_newFrame);
|
| + }
|
| +
|
| + // An fcTL or IEND marks the end of the previous frame. Thus, the
|
| + // FrameInfo data in m_newFrame is submitted to the m_frameInfo vector.
|
| + //
|
| + // Furthermore, an fcTL chunk indicates a new frame is coming,
|
| + // so the m_newFrame variable is prepared accordingly by setting the
|
| + // readOffset field to 0, which indicates that the frame control info
|
| + // is available but that we haven't seen any frame data yet.
|
| + } else if (isChunk(chunk, "fcTL") || isChunk(chunk, "IEND")) {
|
| + if (m_newFrame.startOffset != 0) {
|
| + m_newFrame.byteLength = m_readOffset - m_newFrame.startOffset;
|
| + if (m_frameInfo[0].byteLength == kFirstFrameIndicator)
|
| + m_frameInfo[0].byteLength = m_newFrame.byteLength;
|
| + else
|
| + m_frameInfo.append(m_newFrame);
|
| +
|
| + m_newFrame.startOffset = 0;
|
| + }
|
| +
|
| + if (reader.size() < m_readOffset + 12 + length)
|
| + return false;
|
| +
|
| + if (isChunk(chunk, "IEND")) {
|
| + // The PNG image ends at the IEND chunk, so all parsing is completed.
|
| + m_parseCompleted = true;
|
| + return true;
|
| + }
|
| +
|
| + // At this point, we're dealing with an fcTL chunk, since the above
|
| + // statement already returns on IEND chunks.
|
| +
|
| + // If the fcTL chunk is not 26 bytes long, we can't process it.
|
| + if (length != 26)
|
| + return m_decoder->setFailed();
|
| +
|
| + chunk = readAsConstPngBytep(reader, m_readOffset + 8, length, readBuffer);
|
| + parseFrameInfo(chunk);
|
| + }
|
| + m_readOffset += 12 + length;
|
| + }
|
| + return false;
|
| +}
|
| +
|
| +// If |length| == 0, read until the stream ends.
|
| +// @return: number of bytes processed.
|
| +size_t PNGImageReader::processData(SegmentReader& data,
|
| + size_t offset,
|
| + size_t length) {
|
| const char* segment;
|
| - while (size_t segmentLength = data.getSomeData(segment, m_readOffset)) {
|
| - m_readOffset += segmentLength;
|
| - m_currentBufferSize = m_readOffset;
|
| + size_t totalProcessedBytes = 0;
|
| + while (size_t segmentLength = data.getSomeData(segment, offset)) {
|
| + if (length > 0 && segmentLength + totalProcessedBytes > length)
|
| + segmentLength = length - totalProcessedBytes;
|
| +
|
| png_process_data(m_png, m_info,
|
| - reinterpret_cast<png_bytep>(const_cast<char*>(segment)),
|
| + reinterpret_cast<png_byte*>(const_cast<char*>(segment)),
|
| segmentLength);
|
| - if (sizeOnly ? m_decoder->isDecodedSizeAvailable()
|
| - : m_decoder->frameIsCompleteAtIndex(0))
|
| + offset += segmentLength;
|
| + totalProcessedBytes += segmentLength;
|
| + if (totalProcessedBytes == length)
|
| + return length;
|
| + }
|
| + return totalProcessedBytes;
|
| +}
|
| +
|
| +// This methods reads through the stream until it has parsed the image size.
|
| +// @return true when it succeeds in parsing the size.
|
| +// false when:
|
| +// A) not enough data is provided
|
| +// B) decoding by libpng fails. In the this case, it will also call
|
| +// setFailed on m_decoder.
|
| +bool PNGImageReader::parseSize(SegmentReader& data) {
|
| + FastSharedBufferReader reader(&data);
|
| + char readBuffer[kBufferSize];
|
| +
|
| + // Process the PNG signature and the IHDR with libpng, such that this code
|
| + // does not need to parse the contents. This also enables the reader to use
|
| + // the existing headerAvailable callback in the decoder.
|
| + //
|
| + // When we already have decoded the signature, we don't need to do it again.
|
| + // By setting a flag for this we allow for byte by byte parsing.
|
| + if (!m_parsedSignature) {
|
| + if (reader.size() < m_readOffset + 8)
|
| + return false;
|
| +
|
| + const png_byte* chunk =
|
| + readAsConstPngBytep(reader, m_readOffset, 8, readBuffer);
|
| + png_process_data(m_png, m_info, const_cast<png_byte*>(chunk), 8);
|
| + m_readOffset += 8;
|
| + m_parsedSignature = true;
|
| + // Initialize the newFrame by setting the readOffset to 0.
|
| + m_newFrame.startOffset = 0;
|
| + }
|
| +
|
| + // This loop peeks at the chunk tag until the IDAT chunk is found. When
|
| + // a different tag is encountered, pass it on to libpng for general parsing.
|
| + // We can peek at chunks by looking at the first 8 bytes, which contain the
|
| + // length and the chunk tag.
|
| + //
|
| + // When an fcTL (frame control) is encountered before the IDAT, the frame
|
| + // data in the IDAT chunk is part of the animation. This case is flagged
|
| + // and the frame info is stored by parsing the fcTL chunk.
|
| + while (reader.size() >= m_readOffset + 8) {
|
| + const png_byte* chunk =
|
| + readAsConstPngBytep(reader, m_readOffset, 8, readBuffer);
|
| + const png_uint_32 length = png_get_uint_32(chunk);
|
| +
|
| + // If we encounter the IDAT chunk, we're done with the png header
|
| + // chunks. Indicate this to libpng by sending the beginning of the IDAT
|
| + // chunk, which will trigger libpng to call the headerAvailable
|
| + // callback on m_decoder. This provides the size to the decoder.
|
| + if (isChunk(chunk, "IDAT")) {
|
| + m_idatOffset = m_readOffset;
|
| + png_process_data(m_png, m_info, const_cast<png_byte*>(chunk), 8);
|
| return true;
|
| + }
|
| +
|
| + // Consider the PNG image animated if an acTL chunk of the correct
|
| + // length is present. Parsing the acTL content is done by
|
| + // parseAnimationControl, called by libpng's png_process_data.
|
| + if (isChunk(chunk, "acTL") && length == 8)
|
| + m_isAnimated = true;
|
| +
|
| + // We don't need to check for |length| here, because the decoder will
|
| + // fail later on for invalid fcTL chunks.
|
| + else if (isChunk(chunk, "fcTL"))
|
| + m_idatIsPartOfAnimation = true;
|
| +
|
| + // 12 is the length, tag and crc part of the chunk, which are all 4B.
|
| + if (reader.size() < m_readOffset + length + 12)
|
| + break;
|
| +
|
| + png_process_data(m_png, m_info, const_cast<png_byte*>(chunk), 8);
|
| + processData(data, m_readOffset + 8, length + 4);
|
| + m_readOffset += length + 12;
|
| }
|
|
|
| + // If we end up here, not enough data was available for the IDAT chunk
|
| + // So libpng would not have called headerAvailable yet.
|
| return false;
|
| }
|
|
|
| -} // namespace blink
|
| +void PNGImageReader::parseAnimationChunk(const char tag[],
|
| + const void* dataChunk,
|
| + size_t length) {
|
| + const png_byte* data = static_cast<const png_byte*>(dataChunk);
|
| +
|
| + // The number of frames as indicated in the animation control chunk (acTL)
|
| + // is ignored, and the number of frames that are actually present is used.
|
| + // For now, when the number of indicated frames is different from the
|
| + // number of supplied frames, the number of supplied frames is what is
|
| + // provided to the decoder. Therefore, it does not add any benefit of
|
| + // looking at the value of the indicated framecount. A note here is that
|
| + // there may be optimisations available, for example, prescaling vectors.
|
| + if (strcmp(tag, "acTL") == 0 && length == 8) {
|
| + png_uint_32 repetitionCount = png_get_uint_32(data + 4);
|
| + m_decoder->setRepetitionCount(repetitionCount);
|
| +
|
| + // For fcTL, decoding fails if it does not have the correct length. It is
|
| + // impossible to make a guess about the frame if not all data is available.
|
| + // Use longjmp to get back to parse(), which is necessary since this method
|
| + // is called by a libpng callback.
|
| + } else if (strcmp(tag, "fcTL") == 0) {
|
| + if (length != 26)
|
| + longjmp(JMPBUF(m_png), 1);
|
| + parseFrameInfo(data);
|
| + }
|
| +}
|
| +
|
| +bool PNGImageReader::firstFrameFullyReceived() const {
|
| + DCHECK_GT(m_frameInfo.size(), 0u);
|
| + return m_frameInfo[0].byteLength != kFirstFrameIndicator;
|
| +}
|
| +
|
| +void PNGImageReader::clearDecodeState(size_t frameIndex) {
|
| + if (frameIndex == 0)
|
| + m_progressiveDecodeOffset = 0;
|
| +}
|
| +
|
| +size_t PNGImageReader::frameCount() const {
|
| + return m_frameInfo.size();
|
| +}
|
| +
|
| +const PNGImageReader::FrameInfo& PNGImageReader::frameInfo(size_t index) const {
|
| + DCHECK(index < m_frameInfo.size());
|
| + return m_frameInfo[index];
|
| +}
|
| +
|
| +// Extract the frame control info and store it in m_newFrame. The length check
|
| +// on the data chunk has been done in parseAnimationChunk.
|
| +// The fcTL specification used can be found at:
|
| +// https://wiki.mozilla.org/APNG_Specification#.60fcTL.60:_The_Frame_Control_Chunk
|
| +void PNGImageReader::parseFrameInfo(const png_byte* data) {
|
| + png_uint_32 width, height, xOffset, yOffset;
|
| + png_uint_16 delayNumerator, delayDenominator;
|
| + width = png_get_uint_32(data + 4);
|
| + height = png_get_uint_32(data + 8);
|
| + xOffset = png_get_uint_32(data + 12);
|
| + yOffset = png_get_uint_32(data + 16);
|
| + delayNumerator = png_get_uint_16(data + 20);
|
| + delayDenominator = png_get_uint_16(data + 22);
|
| +
|
| + m_newFrame.duration = (delayDenominator == 0)
|
| + ? delayNumerator * 10
|
| + : delayNumerator * 1000 / delayDenominator;
|
| + m_newFrame.frameRect = IntRect(xOffset, yOffset, width, height);
|
| + m_newFrame.disposalMethod = data[24];
|
| + m_newFrame.alphaBlend = data[25];
|
| +}
|
| +
|
| +}; // namespace blink
|
|
|