Chromium Code Reviews| Index: runtime/lib/collection_patch.dart |
| diff --git a/runtime/lib/collection_patch.dart b/runtime/lib/collection_patch.dart |
| index 3716cca786927354b2ce06b4ab104f620a5dcb9e..33f6ac5b61d0ea47fd1355d9f9f4bbe763fdb1bc 100644 |
| --- a/runtime/lib/collection_patch.dart |
| +++ b/runtime/lib/collection_patch.dart |
| @@ -38,7 +38,7 @@ class _HashMap<K, V> implements HashMap<K, V> { |
| Type get runtimeType => HashMap; |
| int _elementCount = 0; |
| - List<_HashMapEntry> _buckets = new List(_INITIAL_CAPACITY); |
| + List<_HashMapEntry> _buckets = new List<_HashMapEntry>(_INITIAL_CAPACITY); |
|
Ivan Posva
2013/09/11 17:47:48
Have you had anybody from the VM team review these
Lasse Reichstein Nielsen
2013/09/12 05:09:36
No.
I assume you would want to avoid the type par
Ivan Posva
2013/09/24 21:16:47
Yes. And it seems that they have been remove by no
|
| int _modificationCount = 0; |
| int get length => _elementCount; |
| @@ -170,7 +170,7 @@ class _HashMap<K, V> implements HashMap<K, V> { |
| void clear() { |
| _elementCount = 0; |
| - _buckets = new List(_INITIAL_CAPACITY); |
| + _buckets = new List<_HashMapEntry>(_INITIAL_CAPACITY); |
| _modificationCount = (_modificationCount + 1) & _MODIFICATION_COUNT_MASK; |
| } |
| @@ -201,7 +201,7 @@ class _HashMap<K, V> implements HashMap<K, V> { |
| List oldBuckets = _buckets; |
| int oldLength = oldBuckets.length; |
| int newLength = oldLength << 1; |
| - List newBuckets = new List(newLength); |
| + List newBuckets = new List<_HashMapEntry>(newLength); |
| for (int i = 0; i < oldLength; i++) { |
| _HashMapEntry entry = oldBuckets[i]; |
| while (entry != null) { |
| @@ -504,86 +504,276 @@ class _HashMapValueIterator<V> extends _HashMapIterator<V> { |
| } |
| patch class HashSet<E> { |
| + /* patch */ factory HashSet({ bool equals(E e1, E e2), |
| + int hashCode(E e), |
| + bool isValidKey(potentialKey) }) { |
| + if (isValidKey == null) { |
| + if (hashCode == null) { |
| + if (equals == null) { |
| + return new _HashSet<E>(); |
| + } |
| + if (identical(identical, equals)) { |
| + return new _IdentityHashSet<E>(); |
| + } |
| + _hashCode = _defaultHashCode; |
| + } else if (equals == null) { |
| + _equals = _defaultEquals; |
| + } |
| + isValidKey = new _TypeTest<E>().test; |
| + } else { |
| + if (hashCode == null) hashCode = _defaultHashCode; |
| + if (equals == null) equals = _defaultEquals; |
| + } |
| + return new _CustomHashSet<E>(equals, hashCode, isValidKey); |
| + } |
| +} |
| + |
| +class _HashSet<E> extends _HashSetBase<E> implements HashSet<E> { |
| static const int _INITIAL_CAPACITY = 8; |
| - final _HashTable<E> _table; |
| - /* patch */ HashSet() : _table = new _HashTable(_INITIAL_CAPACITY) { |
| - _table._container = this; |
| - } |
| + List<_HashSetEntry> _buckets = new List<_HashSetEntry>(_INITIAL_CAPACITY); |
| + int _elementCount = 0; |
| + int _modificationCount = 0; |
| - factory HashSet.from(Iterable<E> iterable) { |
| - return new HashSet<E>()..addAll(iterable); |
| - } |
| + bool _equals(e1, e2) => e1 == e2; |
| + int _hashCode(e) => e.hashCode; |
| // Iterable. |
| - /* patch */ Iterator<E> get iterator => new _HashTableKeyIterator<E>(_table); |
| + Iterator<E> get iterator => new _HashSetIterator<E>(this); |
| + |
| + int get length => _elementCount; |
| - /* patch */ int get length => _table._elementCount; |
| + bool get isEmpty => _elementCount == 0; |
| + |
| + bool get isNotEmpty => _elementCount != 0; |
| - /* patch */ bool get isEmpty => _table._elementCount == 0; |
| + bool contains(Object object) { |
| + int index = _hashCode(object) & (_buckets.length - 1); |
| + HashSetEntry entry = _buckets[index]; |
| + while (entry != null) { |
| + if (_equals(entry.key, object)) return true; |
| + entry = entry.next; |
| + } |
| + return false; |
| + } |
| - /* patch */ bool get isNotEmpty => !isEmpty; |
| + // Set |
| - /* patch */ bool contains(Object object) => _table._get(object) >= 0; |
| + void _add(E element) { |
| + int hashCode = _hashCode(element); |
| + int index = hashCode & (_buckets.length - 1); |
| + HashSetEntry entry = _buckets[index]; |
| + while (entry != null) { |
| + if (_equals(entry.key, element)) return; |
| + entry = entry.next; |
| + } |
| + _addEntry(element, hashCode, index); |
| + } |
| - // Collection. |
| - /* patch */ void add(E element) { |
| - _table._put(element); |
| - _table._checkCapacity(); |
| + void add(E element) { |
| + _add(element); |
| } |
| - /* patch */ void addAll(Iterable<E> objects) { |
| + void addAll(Iterable<E> objects) { |
| + int ctr = 0; |
| for (E object in objects) { |
| - _table._put(object); |
| - _table._checkCapacity(); |
| + ctr++; |
| + _add(object); |
| } |
| } |
| - /* patch */ bool remove(Object object) { |
| - int offset = _table._remove(object); |
| - _table._checkCapacity(); |
| - return offset >= 0; |
| + bool _remove(Object object, int hashCode) { |
| + int index = hashCode & (_buckets.length - 1); |
| + _HashSetEntry entry = _buckets[index]; |
| + _HashSetEntry previous = null; |
| + while (entry != null) { |
| + if (_equals(entry.key, object)) { |
| + _HashSetEntry next = entry.remove(); |
| + if (previous == null) { |
| + _buckets[index] = next; |
| + } else { |
| + previous.next = next; |
| + } |
| + _elementCount--; |
| + _modificationCount = |
| + (_modificationCount + 1) & _MODIFICATION_COUNT_MASK; |
| + return true; |
| + } |
| + previous = entry; |
| + entry = entry.next; |
| + } |
| + return false; |
| } |
| - /* patch */ void removeAll(Iterable<Object> objectsToRemove) { |
| + bool remove(Object object) => _remove(object, _hashCode(object)); |
| + |
| + void removeAll(Iterable<Object> objectsToRemove) { |
| for (Object object in objectsToRemove) { |
| - _table._remove(object); |
| - _table._checkCapacity(); |
| + _remove(object, _hashCode(object)); |
| } |
| } |
| void _filterWhere(bool test(E element), bool removeMatching) { |
| - int entrySize = _table._entrySize; |
| - int length = _table._table.length; |
| - for (int offset = 0; offset < length; offset += entrySize) { |
| - Object entry = _table._table[offset]; |
| - if (!_table._isFree(entry)) { |
| - E key = identical(entry, _NULL) ? null : entry; |
| - int modificationCount = _table._modificationCount; |
| - bool shouldRemove = (removeMatching == test(key)); |
| - _table._checkModification(modificationCount); |
| - if (shouldRemove) { |
| - _table._deleteEntry(offset); |
| + int length = _buckets.length; |
| + for (int index = 0; index < length; index++) { |
| + HashSetEntry entry = _buckets[index]; |
| + HashSetEntry previous = null; |
| + while (entry != null) { |
| + int modificationCount = _modificationCount; |
| + bool testResult = test(entry.key); |
| + if (modificationCount != _modificationCount) { |
| + throw new ConcurrentModificationError(this); |
| + } |
| + if (testResult == removeMatching) { |
| + HashSetEntry next = entry.remove(); |
| + if (previous == null) { |
| + _buckets[index] = next; |
| + } else { |
| + previous.next = next; |
| + } |
| + _elementCount--; |
| + _modificationCount = |
| + (_modificationCount + 1) & _MODIFICATION_COUNT_MASK; |
| + entry = next; |
| + } else { |
| + previous = entry; |
| + entry = entry.next; |
| } |
| } |
| } |
| - _table._checkCapacity(); |
| } |
| - /* patch */ void removeWhere(bool test(E element)) { |
| + void removeWhere(bool test(E element)) { |
| _filterWhere(test, true); |
| } |
| - /* patch */ void retainWhere(bool test(E element)) { |
| + void retainWhere(bool test(E element)) { |
| _filterWhere(test, false); |
| } |
| - /* patch */ void clear() { |
| - _table._clear(); |
| + void clear() { |
| + _elementCount = 0; |
| + _buckets = new List<HashSetEntry>(_INITIAL_CAPACITY); |
| + _modificationCount++; |
| + } |
| + |
| + void _addEntry(E key, int hashCode, int index) { |
| + _buckets[index] = new _HashSetEntry(key, hashCode, _buckets[index]); |
| + int newElements = _elementCount + 1; |
| + _elementCount = newElements; |
| + int length = _buckets.length; |
| + // If we end up with more than 75% non-empty entries, we |
| + // resize the backing store. |
| + if ((newElements << 2) > ((length << 1) + length)) _resize(); |
| + _modificationCount = (_modificationCount + 1) & _MODIFICATION_COUNT_MASK; |
| } |
| + |
| + void _resize() { |
| + int oldLength = _buckets.length; |
| + int newLength = oldLength << 1; |
| + List oldBuckets = _buckets; |
| + List newBuckets = new List<_HashSetEntry>(newLength); |
| + for (int i = 0; i < oldLength; i++) { |
| + _HashSetEntry entry = oldBuckets[i]; |
| + while (entry != null) { |
| + _HashSetEntry next = entry.next; |
| + int newIndex = entry.hashCode & (newLength - 1); |
| + entry.next = newBuckets[newIndex]; |
| + newBuckets[newIndex] = entry; |
| + entry = next; |
| + } |
| + } |
| + _buckets = newBuckets; |
| + } |
| + |
| + HashSet<E> _newSet() => new _HashSet<E>(); |
| +} |
| + |
| +class _IdentityHashSet<E> extends _HashSet<E> { |
| + bool _equals(e1, e2) => identical(e1, e2); |
| + HashSet<E> _newSet() => new _IdentityHashSet<E>(); |
| +} |
| + |
| +class _CustomHashSet<E> extends _HashSet<E> { |
| + final _Equality<E> _equality; |
| + final _Hasher<E> _hasher; |
| + final _Predicate _validKey; |
| + _CustomHashSet(this._equality, this._hasher, this._validKey); |
| + |
| + E operator[](Object key) { |
| + if (!_validKey(key)) return null; |
| + return super[key]; |
| + } |
| + |
| + bool remove(Object key) { |
| + if (!_validKey(key)) return false; |
| + return super.remove(key); |
| + } |
| + |
| + bool containsKey(Object key) { |
| + if (!_validKey(key)) return false; |
| + return super.containsKey(key); |
| + } |
| + |
| + bool _equals(e1, e2) => _equality(e1, e2); |
| + int _hashCode(e) => _hasher(e); |
| + |
| + HashSet<E> _newSet() => new _CustomHashSet<E>(_equality, _hasher, _validKey); |
| +} |
| + |
| +class _HashSetEntry { |
| + final key; |
| + final int hashCode; |
| + _HashSetEntry next; |
| + _HashSetEntry(this.key, this.hashCode, this.next); |
| + |
| + _HashSetEntry remove() { |
| + _HashSetEntry result = next; |
| + next = null; |
| + return result; |
| + } |
| +} |
| + |
| +class _HashSetIterator<E> implements Iterator<E> { |
| + final _HashSet _set; |
| + final int _modificationCount; |
| + int _index = 0; |
| + _HashSetEntry _next = null; |
| + E _current = null; |
| + |
| + _HashSetIterator(_HashSet hashSet) |
| + : _set = hashSet, _modificationCount = hashSet._modificationCount; |
| + |
| + bool moveNext() { |
| + if (_modificationCount != _set._modificationCount) { |
| + throw new ConcurrentModificationError(_set); |
| + } |
| + if (_next != null) { |
| + _current = _next.key; |
| + _next = _next.next; |
| + return true; |
| + } |
| + List<_HashSetEntry> buckets = _set._buckets; |
| + while (_index < buckets.length) { |
| + _next = buckets[_index]; |
| + _index = _index + 1; |
| + if (_next != null) { |
| + _current = _next.key; |
| + _next = _next.next; |
| + return true; |
| + } |
| + } |
| + _current = null; |
| + return false; |
| + } |
| + |
| + E get current => _current; |
| } |
| class _LinkedHashMapEntry extends _HashMapEntry { |
| + /// Double-linked list of entries of a linked hash map. |
| + /// The _LinkedHashMap itself is the head of the list, so the type is "var". |
| + /// Both are initialized to `this` when initialized. |
| var _nextEntry; |
| var _previousEntry; |
| _LinkedHashMapEntry(key, value, int hashCode, _LinkedHashMapEntry next, |
| @@ -659,6 +849,11 @@ class _LinkedHashMapValueIterator<V> extends _LinkedHashMapIterator<V> { |
| * A hash-based map that iterates keys and values in key insertion order. |
| */ |
| patch class LinkedHashMap<K, V> { |
| + /// Holds a double-linked list of entries in insertion order. |
| + /// The fields have the same name as the ones in [_LinkedHashMapEntry], |
| + /// and this map is itself used as the head entry of the list. |
| + /// Set to `this` when initialized, representing the empty list (containing |
| + /// only the head entry itself). |
| var _nextEntry; |
| var _previousEntry; |
| @@ -738,6 +933,7 @@ abstract class _LinkedHashMapMixin<K, V> implements LinkedHashMap<K, V> { |
| buckets[index] = entry; |
| int newElements = _elementCount + 1; |
| _elementCount = newElements; |
| + |
| // If we end up with more than 75% non-empty entries, we |
| // resize the backing store. |
| if ((newElements << 2) > ((length << 1) + length)) _resize(); |
| @@ -788,703 +984,192 @@ class _LinkedCustomHashMap<K, V> extends _CustomHashMap<K, V> |
| } |
| -patch class LinkedHashSet<E> extends _HashSetBase<E> { |
| - static const int _INITIAL_CAPACITY = 8; |
| - _LinkedHashTable<E> _table; |
| - |
| - /* patch */ LinkedHashSet() { |
| - _table = new _LinkedHashTable(_INITIAL_CAPACITY); |
| - _table._container = this; |
| - } |
| - |
| - // Iterable. |
| - /* patch */ Iterator<E> get iterator { |
| - return new _LinkedHashTableKeyIterator<E>(_table); |
| - } |
| - |
| - /* patch */ int get length => _table._elementCount; |
| - |
| - /* patch */ bool get isEmpty => _table._elementCount == 0; |
| - |
| - /* patch */ bool get isNotEmpty => !isEmpty; |
| - |
| - /* patch */ bool contains(Object object) => _table._get(object) >= 0; |
| - |
| - /* patch */ void forEach(void action(E element)) { |
| - int offset = _table._next(_LinkedHashTable._HEAD_OFFSET); |
| - int modificationCount = _table._modificationCount; |
| - while (offset != _LinkedHashTable._HEAD_OFFSET) { |
| - E key = _table._key(offset); |
| - action(key); |
| - _table._checkModification(modificationCount); |
| - offset = _table._next(offset); |
| - } |
| - } |
| - |
| - /* patch */ E get first { |
| - int firstOffset = _table._next(_LinkedHashTable._HEAD_OFFSET); |
| - if (firstOffset == _LinkedHashTable._HEAD_OFFSET) { |
| - throw new StateError("No elements"); |
| - } |
| - return _table._key(firstOffset); |
| - } |
| - |
| - /* patch */ E get last { |
| - int lastOffset = _table._prev(_LinkedHashTable._HEAD_OFFSET); |
| - if (lastOffset == _LinkedHashTable._HEAD_OFFSET) { |
| - throw new StateError("No elements"); |
| - } |
| - return _table._key(lastOffset); |
| - } |
| - |
| - // Collection. |
| - void _filterWhere(bool test(E element), bool removeMatching) { |
| - int entrySize = _table._entrySize; |
| - int length = _table._table.length; |
| - int offset = _table._next(_LinkedHashTable._HEAD_OFFSET); |
| - while (offset != _LinkedHashTable._HEAD_OFFSET) { |
| - E key = _table._key(offset); |
| - int nextOffset = _table._next(offset); |
| - int modificationCount = _table._modificationCount; |
| - bool shouldRemove = (removeMatching == test(key)); |
| - _table._checkModification(modificationCount); |
| - if (shouldRemove) { |
| - _table._deleteEntry(offset); |
| - } |
| - offset = nextOffset; |
| - } |
| - _table._checkCapacity(); |
| - } |
| - |
| - /* patch */ void add(E element) { |
| - _table._put(element); |
| - _table._checkCapacity(); |
| - } |
| - |
| - /* patch */ void addAll(Iterable<E> objects) { |
| - for (E object in objects) { |
| - _table._put(object); |
| - _table._checkCapacity(); |
| - } |
| - } |
| - |
| - /* patch */ bool remove(Object object) { |
| - int offset = _table._remove(object); |
| - if (offset >= 0) { |
| - _table._checkCapacity(); |
| - return true; |
| - } |
| - return false; |
| - } |
| - |
| - /* patch */ void removeAll(Iterable objectsToRemove) { |
| - for (Object object in objectsToRemove) { |
| - if (_table._remove(object) >= 0) { |
| - _table._checkCapacity(); |
| +patch class LinkedHashSet<E> { |
| + /* patch */ factory LinkedHashSet({ bool equals(E e1, E e2), |
| + int hashCode(E e), |
| + bool isValidKey(potentialKey) }) { |
| + if (isValidKey == null) { |
| + if (hashCode == null) { |
| + if (equals == null) { |
| + return new _LinkedHashSet<E>(); |
| + } |
| + if (identical(identical, equals)) { |
| + return new _LinkedIdentityHashSet<E>(); |
| + } |
| + _hashCode = _defaultHashCode; |
| + } else if (equals == null) { |
| + _equals = _defaultEquals; |
| } |
| + isValidKey = new _TypeTest<E>().test; |
| + } else { |
| + if (hashCode == null) hashCode = _defaultHashCode; |
| + if (equals == null) equals = _defaultEquals; |
| } |
| + return new _LinkedCustomHashSet<E>(equals, hashCode, isValidKey); |
| } |
| - |
| - /* patch */ void removeWhere(bool test(E element)) { |
| - _filterWhere(test, true); |
| - } |
| - |
| - /* patch */ void retainWhere(bool test(E element)) { |
| - _filterWhere(test, false); |
| - } |
| - |
| - /* patch */ void clear() { |
| - _table._clear(); |
| - } |
| -} |
| - |
| -class _DeadEntry { |
| - const _DeadEntry(); |
| } |
| -class _NullKey { |
| - const _NullKey(); |
| - int get hashCode => null.hashCode; |
| -} |
| - |
| -const _TOMBSTONE = const _DeadEntry(); |
| -const _NULL = const _NullKey(); |
| - |
| -class _HashTable<K> { |
| - /** |
| - * Table of entries with [_entrySize] slots per entry. |
| - * |
| - * Capacity in entries must be factor of two. |
| - */ |
| - List _table; |
| - /** Current capacity. Always equal to [:_table.length ~/ _entrySize:]. */ |
| - int _capacity; |
| - /** Count of occupied entries, including deleted ones. */ |
| - int _entryCount = 0; |
| - /** Count of deleted entries. */ |
| - int _deletedCount = 0; |
| - /** Counter incremented when table is modified. */ |
| - int _modificationCount = 0; |
| - /** If set, used as the source object for [ConcurrentModificationError]s. */ |
| - Object _container; |
| - |
| - _HashTable(int initialCapacity) : _capacity = initialCapacity { |
| - _table = _createTable(initialCapacity); |
| - } |
| - |
| - /** Reads key from table. Converts _NULL marker to null. */ |
| - Object _key(offset) { |
| - assert(!_isFree(_table[offset])); |
| - Object key = _table[offset]; |
| - if (!identical(key, _NULL)) return key; |
| - return null; |
| - } |
| - |
| - /** Writes key to table. Converts null to _NULL marker. */ |
| - void _setKey(int offset, Object key) { |
| - if (key == null) key = _NULL; |
| - _table[offset] = key; |
| +class _LinkedHashSetEntry extends _HashSetEntry { |
| + /// Links this element into a double-linked list of elements of a hash set. |
| + /// The hash set object itself is used as the head entry of the list, so |
| + /// the field is typed as "var". |
| + /// Both links are initialized to `this` when the object is created. |
| + var _nextEntry; |
| + var _previousEntry; |
| + _LinkedHashSetEntry(var key, int hashCode, _LinkedHashSetEntry next, |
| + this._previousEntry, this._nextEntry) |
| + : super(key, hashCode, next) { |
| + _previousEntry._nextEntry = _nextEntry._previousEntry = this; |
| } |
| - int get _elementCount => _entryCount - _deletedCount; |
| - |
| - /** Size of each entry. */ |
| - int get _entrySize => 1; |
| - |
| - void _checkModification(int expectedModificationCount) { |
| - if (_modificationCount != expectedModificationCount) { |
| - throw new ConcurrentModificationError(_container); |
| - } |
| + _LinkedHashSetEntry remove() { |
| + _previousEntry._nextEntry = _nextEntry; |
| + _nextEntry._previousEntry = _previousEntry; |
| + _nextEntry = _previousEntry = this; |
| + return super.remove(); |
| } |
| +} |
| - void _recordModification() { |
| - // Value cycles after 2^30 modifications. If you keep hold of an |
| - // iterator for that long, you might miss a modification detection, |
| - // and iteration can go sour. Don't do that. |
| - _modificationCount = (_modificationCount + 1) & (0x3FFFFFFF); |
| - } |
| - |
| - /** |
| - * Create an empty table. |
| - */ |
| - List _createTable(int capacity) { |
| - List table = new List(capacity * _entrySize); |
| - return table; |
| - } |
| - |
| - /** First table probe. */ |
| - int _firstProbe(int hashCode, int capacity) { |
| - return hashCode & (capacity - 1); |
| - } |
| - |
| - /** Following table probes. */ |
| - int _nextProbe(int previousIndex, int probeCount, int capacity) { |
| - // When capacity is a power of 2, this probing algorithm (the triangular |
| - // number sequence modulo capacity) is guaranteed to hit all indices exactly |
| - // once before repeating. |
| - return (previousIndex + probeCount) & (capacity - 1); |
| - } |
| - |
| - /** Whether an object is a free-marker (either tombstone or free). */ |
| - bool _isFree(Object marker) => |
| - marker == null || identical(marker, _TOMBSTONE); |
| - |
| - /** |
| - * Look up the offset for an object in the table. |
| - * |
| - * Finds the offset of the object in the table, if it is there, |
| - * or the first free offset for its hashCode. |
| - */ |
| - int _probeForAdd(int hashCode, Object object) { |
| - int entrySize = _entrySize; |
| - int index = _firstProbe(hashCode, _capacity); |
| - int firstTombstone = -1; |
| - int probeCount = 0; |
| - while (true) { |
| - int offset = index * entrySize; |
| - Object entry = _table[offset]; |
| - if (identical(entry, _TOMBSTONE)) { |
| - if (firstTombstone < 0) firstTombstone = offset; |
| - } else if (entry == null) { |
| - if (firstTombstone < 0) return offset; |
| - return firstTombstone; |
| - } else if (identical(_NULL, entry) ? _equals(null, object) |
| - : _equals(entry, object)) { |
| - return offset; |
| - } |
| - // The _nextProbe is designed so that it hits |
| - // every index eventually. |
| - index = _nextProbe(index, ++probeCount, _capacity); |
| - } |
| - } |
| +class _LinkedHashSet<E> extends _HashSet<E> |
| + implements LinkedHashSet<E> { |
| + /// Holds a double linked list of the element entries of the set in |
| + /// insertion order. |
| + /// The fields have the same names as the ones in [_LinkedHashSetEntry], |
| + /// allowing this object to be used as the head entry of the list. |
| + /// The fields are initialized to `this` when created, representing the |
| + /// empty list that only contains the head entry. |
| + var _nextEntry; |
| + var _previousEntry; |
| - /** |
| - * Look up the offset for an object in the table. |
| - * |
| - * If the object is in the table, its offset is returned. |
| - * |
| - * If the object is not in the table, Otherwise a negative value is returned. |
| - */ |
| - int _probeForLookup(int hashCode, Object object) { |
| - int entrySize = _entrySize; |
| - int index = _firstProbe(hashCode, _capacity); |
| - int probeCount = 0; |
| - while (true) { |
| - int offset = index * entrySize; |
| - Object entry = _table[offset]; |
| - if (entry == null) { |
| - return -1; |
| - } else if (!identical(_TOMBSTONE, entry)) { |
| - if (identical(_NULL, entry) ? _equals(null, object) |
| - : _equals(entry, object)) { |
| - return offset; |
| - } |
| - } |
| - // The _nextProbe is designed so that it hits |
| - // every index eventually. |
| - index = _nextProbe(index, ++probeCount, _capacity); |
| - } |
| + _LinkedHashSet() { |
| + _nextEntry = _previousEntry = this; |
| } |
| - // Override the following two to change equality/hashCode computations |
| - |
| - /** |
| - * Compare two object for equality. |
| - * |
| - * The first object is the one already in the table, |
| - * and the second is the one being searched for. |
| - */ |
| - bool _equals(Object element, Object other) { |
| - return element == other; |
| - } |
| - |
| - /** |
| - * Compute hash-code for an object. |
| - */ |
| - int _hashCodeOf(Object object) => object.hashCode; |
| - |
| - /** |
| - * Ensure that the table isn't too full for its own good. |
| - * |
| - * Call this after adding an element. |
| - */ |
| - int _checkCapacity() { |
| - // Compute everything in multiples of entrySize to avoid division. |
| - int freeCount = _capacity - _entryCount; |
| - if (freeCount * 4 < _capacity || |
| - freeCount < _deletedCount) { |
| - // Less than 25% free or more deleted entries than free entries. |
| - _grow(_entryCount - _deletedCount); |
| - } |
| - } |
| + // Iterable. |
| + Iterator<E> get iterator => new _LinkedHashSetIterator<E>(this); |
| - void _grow(int contentCount) { |
| - int capacity = _capacity; |
| - // Don't grow to less than twice the needed capacity. |
| - int minCapacity = contentCount * 2; |
| - while (capacity < minCapacity) { |
| - capacity *= 2; |
| - } |
| - // Reset to another table and add all existing elements. |
| - List oldTable = _table; |
| - _table = _createTable(capacity); |
| - _capacity = capacity; |
| - _entryCount = 0; |
| - _deletedCount = 0; |
| - _addAllEntries(oldTable); |
| - _recordModification(); |
| - } |
| - |
| - /** |
| - * Copies all non-free entries from the old table to the new empty table. |
| - */ |
| - void _addAllEntries(List oldTable) { |
| - for (int i = 0; i < oldTable.length; i += _entrySize) { |
| - Object object = oldTable[i]; |
| - if (!_isFree(object)) { |
| - int toOffset = _put(object); |
| - _copyEntry(oldTable, i, toOffset); |
| + void forEach(void action(E element)) { |
| + var cursor = _nextEntry; |
| + int modificationCount = _modificationCount; |
| + while (!identical(cursor, this)) { |
| + _LinkedHashSetEntry entry = cursor; |
| + action(entry.key); |
| + if (_modificationCount != modificationCount) { |
| + throw new ConcurrentModificationError(this); |
| } |
| + cursor = entry._nextEntry; |
| } |
| } |
| - /** |
| - * Copies everything but the key element from one entry to another. |
| - * |
| - * Called while growing the base array. |
| - * |
| - * Override this if any non-key fields need copying. |
| - */ |
| - void _copyEntry(List fromTable, int fromOffset, int toOffset) {} |
| - |
| - // The following three methods are for simple get/set/remove operations. |
| - // They only affect the key of an entry. The remaining fields must be |
| - // filled by the caller. |
| - |
| - /** |
| - * Returns the offset of a key in [_table], or negative if it's not there. |
| - */ |
| - int _get(Object key) { |
| - return _probeForLookup(_hashCodeOf(key), key); |
| - } |
| - |
| - /** |
| - * Puts the key into the table and returns its offset into [_table]. |
| - * |
| - * If [_entrySize] is greater than 1, the caller should fill the |
| - * remaining fields. |
| - * |
| - * Remember to call [_checkCapacity] after using this method. |
| - */ |
| - int _put(K key) { |
| - int offset = _probeForAdd(_hashCodeOf(key), key); |
| - Object oldEntry = _table[offset]; |
| - if (oldEntry == null) { |
| - _entryCount++; |
| - } else if (identical(oldEntry, _TOMBSTONE)) { |
| - _deletedCount--; |
| - } else { |
| - return offset; |
| - } |
| - _setKey(offset, key); |
| - _recordModification(); |
| - return offset; |
| - } |
| - |
| - /** |
| - * Removes a key from the table and returns its offset into [_table]. |
| - * |
| - * Returns null if the key was not in the table. |
| - * If [_entrySize] is greater than 1, the caller should clean up the |
| - * remaining fields. |
| - */ |
| - int _remove(Object key) { |
| - int offset = _probeForLookup(_hashCodeOf(key), key); |
| - if (offset >= 0) { |
| - _deleteEntry(offset); |
| + E get first { |
| + if (identical(_nextEntry, this)) { |
| + throw new StateError("No elements"); |
| } |
| - return offset; |
| + _LinkedHashSetEntry entry = _nextEntry; |
| + return entry.key; |
| } |
| - /** Clears the table completely, leaving it empty. */ |
| - void _clear() { |
| - if (_elementCount == 0) return; |
| - for (int i = 0; i < _table.length; i++) { |
| - _table[i] = null; |
| + E get last { |
| + if (identical(_previousEntry, this)) { |
| + throw new StateError("No elements"); |
| } |
| - _entryCount = _deletedCount = 0; |
| - _recordModification(); |
| + _LinkedHashSetEntry entry = _previousEntry; |
| + return entry.key; |
| } |
| - /** Clears an entry in the table. */ |
| - void _deleteEntry(int offset) { |
| - assert(!_isFree(_table[offset])); |
| - _setKey(offset, _TOMBSTONE); |
| - _deletedCount++; |
| - _recordModification(); |
| - } |
| -} |
| - |
| -/** |
| - * Generic iterable based on a [_HashTable]. |
| - */ |
| -abstract class _HashTableIterable<E> extends IterableBase<E> { |
| - final _HashTable _hashTable; |
| - _HashTableIterable(this._hashTable); |
| - |
| - Iterator<E> get iterator; |
| - |
| - /** |
| - * Return the iterated value for a given entry. |
| - */ |
| - E _valueAt(int offset, Object key); |
| - |
| - int get length => _hashTable._elementCount; |
| - |
| - bool get isEmpty => _hashTable._elementCount == 0; |
| - |
| - void forEach(void action(E element)) { |
| - int entrySize = _hashTable._entrySize; |
| - List table = _hashTable._table; |
| - int modificationCount = _hashTable._modificationCount; |
| - for (int offset = 0; offset < table.length; offset += entrySize) { |
| - Object entry = table[offset]; |
| - if (!_hashTable._isFree(entry)) { |
| - E value = _valueAt(offset, entry); |
| - action(value); |
| + // Set. |
| + void _filterWhere(bool test(E element), bool removeMatching) { |
| + var cursor = _nextEntry; |
| + while (!identical(cursor, this)) { |
| + _LinkedHashSetEntry entry = cursor; |
| + int modificationCount = _modificationCount; |
| + bool testResult = test(entry.key); |
| + if (modificationCount != _modificationCount) { |
| + throw new ConcurrentModificationError(this); |
| } |
| - _hashTable._checkModification(modificationCount); |
| - } |
| - } |
| -} |
| - |
| -abstract class _HashTableIterator<E> implements Iterator<E> { |
| - final _HashTable _hashTable; |
| - final int _modificationCount; |
| - /** Location right after last found element. */ |
| - int _offset = 0; |
| - E _current = null; |
| - |
| - _HashTableIterator(_HashTable hashTable) |
| - : _hashTable = hashTable, |
| - _modificationCount = hashTable._modificationCount; |
| - |
| - bool moveNext() { |
| - _hashTable._checkModification(_modificationCount); |
| - |
| - List table = _hashTable._table; |
| - int entrySize = _hashTable._entrySize; |
| - |
| - while (_offset < table.length) { |
| - int currentOffset = _offset; |
| - Object entry = table[currentOffset]; |
| - _offset = currentOffset + entrySize; |
| - if (!_hashTable._isFree(entry)) { |
| - _current = _valueAt(currentOffset, entry); |
| - return true; |
| + cursor = entry._nextEntry; |
| + if (testResult == removeMatching) { |
| + _remove(entry.key, entry.hashCode); |
| } |
| } |
| - _current = null; |
| - return false; |
| - } |
| - |
| - E get current => _current; |
| - |
| - E _valueAt(int offset, Object key); |
| -} |
| - |
| -class _HashTableKeyIterable<K> extends _HashTableIterable<K> { |
| - _HashTableKeyIterable(_HashTable<K> hashTable) : super(hashTable); |
| - |
| - Iterator<K> get iterator => new _HashTableKeyIterator<K>(_hashTable); |
| - |
| - K _valueAt(int offset, Object key) { |
| - if (identical(key, _NULL)) return null; |
| - return key; |
| - } |
| - |
| - bool contains(Object value) => _hashTable._get(value) >= 0; |
| -} |
| - |
| -class _HashTableKeyIterator<K> extends _HashTableIterator<K> { |
| - _HashTableKeyIterator(_HashTable hashTable) : super(hashTable); |
| - |
| - K _valueAt(int offset, Object key) { |
| - if (identical(key, _NULL)) return null; |
| - return key; |
| } |
| -} |
| -class _HashTableValueIterable<V> extends _HashTableIterable<V> { |
| - final int _entryIndex; |
| - |
| - _HashTableValueIterable(_HashTable hashTable, this._entryIndex) |
| - : super(hashTable); |
| - |
| - Iterator<V> get iterator { |
| - return new _HashTableValueIterator<V>(_hashTable, _entryIndex); |
| + void _addEntry(E key, int hashCode, int index) { |
| + _buckets[index] = |
| + new _LinkedHashSetEntry(key, hashCode, _buckets[index], |
| + _previousEntry, this); |
| + int newElements = _elementCount + 1; |
| + _elementCount = newElements; |
| + int length = _buckets.length; |
| + // If we end up with more than 75% non-empty entries, we |
| + // resize the backing store. |
| + if ((newElements << 2) > ((length << 1) + length)) _resize(); |
| + _modificationCount = (_modificationCount + 1) & _MODIFICATION_COUNT_MASK; |
| } |
| - V _valueAt(int offset, Object key) => _hashTable._table[offset + _entryIndex]; |
| -} |
| - |
| -class _HashTableValueIterator<V> extends _HashTableIterator<V> { |
| - final int _entryIndex; |
| - |
| - _HashTableValueIterator(_HashTable hashTable, this._entryIndex) |
| - : super(hashTable); |
| - |
| - V _valueAt(int offset, Object key) => _hashTable._table[offset + _entryIndex]; |
| -} |
| - |
| -class _HashMapTable<K, V> extends _HashTable<K> { |
| - static const int _INITIAL_CAPACITY = 8; |
| - static const int _VALUE_INDEX = 1; |
| - |
| - _HashMapTable() : super(_INITIAL_CAPACITY); |
| - |
| - int get _entrySize => 2; |
| - |
| - V _value(int offset) => _table[offset + _VALUE_INDEX]; |
| - void _setValue(int offset, V value) { _table[offset + _VALUE_INDEX] = value; } |
| - |
| - _copyEntry(List fromTable, int fromOffset, int toOffset) { |
| - _table[toOffset + _VALUE_INDEX] = fromTable[fromOffset + _VALUE_INDEX]; |
| - } |
| + HashSet<E> _newSet() => new _LinkedHashSet<E>(); |
| } |
| -/** Unique marker object for the head of a linked list of entries. */ |
| -class _LinkedHashTableHeadMarker { |
| - const _LinkedHashTableHeadMarker(); |
| +class _LinkedIdentityHashSet<E> extends _LinkedHashSet<E> { |
| + bool _equals(e1, e2) => identical(e1, e2); |
| + HashSet<E> _newSet() => new _LinkedIdentityHashSet<E>(); |
| } |
| -const _LinkedHashTableHeadMarker _HEAD_MARKER = |
| - const _LinkedHashTableHeadMarker(); |
| - |
| -class _LinkedHashTable<K> extends _HashTable<K> { |
| - static const _NEXT_INDEX = 1; |
| - static const _PREV_INDEX = 2; |
| - static const _HEAD_OFFSET = 0; |
| - |
| - _LinkedHashTable(int initialCapacity) : super(initialCapacity); |
| +class _LinkedCustomHashSet<E> extends _LinkedHashSet<E> { |
| + final _Equality<E> _equality; |
| + final _Hasher<E> _hasher; |
| + final _Predicate _validKey; |
| - int get _entrySize => 3; |
| + _LinkedCustomHashSet(this._equality, this._hasher, bool validKey(object)) |
| + : _validKey = (validKey != null) ? validKey : new _TypeTest<E>().test; |
| - List _createTable(int capacity) { |
| - List result = new List(capacity * _entrySize); |
| - result[_HEAD_OFFSET] = _HEAD_MARKER; |
| - result[_HEAD_OFFSET + _NEXT_INDEX] = _HEAD_OFFSET; |
| - result[_HEAD_OFFSET + _PREV_INDEX] = _HEAD_OFFSET; |
| - return result; |
| - } |
| + bool _equals(e1, e2) => _equality(e1, e2); |
| - int _next(int offset) => _table[offset + _NEXT_INDEX]; |
| - void _setNext(int offset, int to) { _table[offset + _NEXT_INDEX] = to; } |
| - |
| - int _prev(int offset) => _table[offset + _PREV_INDEX]; |
| - void _setPrev(int offset, int to) { _table[offset + _PREV_INDEX] = to; } |
| - |
| - void _linkLast(int offset) { |
| - // Add entry at offset at end of double-linked list. |
| - int last = _prev(_HEAD_OFFSET); |
| - _setNext(offset, _HEAD_OFFSET); |
| - _setPrev(offset, last); |
| - _setNext(last, offset); |
| - _setPrev(_HEAD_OFFSET, offset); |
| - } |
| - |
| - void _unlink(int offset) { |
| - assert(offset != _HEAD_OFFSET); |
| - int next = _next(offset); |
| - int prev = _prev(offset); |
| - _setNext(offset, null); |
| - _setPrev(offset, null); |
| - _setNext(prev, next); |
| - _setPrev(next, prev); |
| - } |
| - |
| - /** |
| - * Copies all non-free entries from the old table to the new empty table. |
| - */ |
| - void _addAllEntries(List oldTable) { |
| - int offset = oldTable[_HEAD_OFFSET + _NEXT_INDEX]; |
| - while (offset != _HEAD_OFFSET) { |
| - Object object = oldTable[offset]; |
| - int nextOffset = oldTable[offset + _NEXT_INDEX]; |
| - int toOffset = _put(object); |
| - _copyEntry(oldTable, offset, toOffset); |
| - offset = nextOffset; |
| - } |
| - } |
| + int _hashCode(e) => _hasher(e); |
| - void _clear() { |
| - if (_elementCount == 0) return; |
| - _setNext(_HEAD_OFFSET, _HEAD_OFFSET); |
| - _setPrev(_HEAD_OFFSET, _HEAD_OFFSET); |
| - for (int i = _entrySize; i < _table.length; i++) { |
| - _table[i] = null; |
| - } |
| - _entryCount = _deletedCount = 0; |
| - _recordModification(); |
| + bool contains(Object o) { |
| + if (!_validKey(o)) return false; |
| + return super.contains(o); |
| } |
| - int _put(K key) { |
| - int offset = _probeForAdd(_hashCodeOf(key), key); |
| - Object oldEntry = _table[offset]; |
| - if (identical(oldEntry, _TOMBSTONE)) { |
| - _deletedCount--; |
| - } else if (oldEntry == null) { |
| - _entryCount++; |
| - } else { |
| - return offset; |
| - } |
| - _recordModification(); |
| - _setKey(offset, key); |
| - _linkLast(offset); |
| - return offset; |
| + bool remove(Object o) { |
| + if (!_validKey(o)) return false; |
| + return super.remove(o); |
| } |
| - void _deleteEntry(int offset) { |
| - _unlink(offset); |
| - _setKey(offset, _TOMBSTONE); |
| - _deletedCount++; |
| - _recordModification(); |
| + E operator[](Object o) { |
| + if (!_validKey(o)) return null; |
| + return super[o]; |
| } |
| -} |
| - |
| -class _LinkedHashTableKeyIterable<K> extends IterableBase<K> { |
| - final _LinkedHashTable<K> _table; |
| - _LinkedHashTableKeyIterable(this._table); |
| - Iterator<K> get iterator => new _LinkedHashTableKeyIterator<K>(_table); |
| - |
| - bool contains(Object value) => _table._get(value) >= 0; |
| - |
| - int get length => _table._elementCount; |
| -} |
| - |
| -class _LinkedHashTableKeyIterator<K> extends _LinkedHashTableIterator<K> { |
| - _LinkedHashTableKeyIterator(_LinkedHashTable<K> hashTable): super(hashTable); |
| - |
| - K _getCurrent(int offset) => _hashTable._key(offset); |
| -} |
| -class _LinkedHashTableValueIterable<V> extends IterableBase<V> { |
| - final _LinkedHashTable _hashTable; |
| - final int _valueIndex; |
| - _LinkedHashTableValueIterable(this._hashTable, this._valueIndex); |
| - Iterator<V> get iterator => |
| - new _LinkedHashTableValueIterator<V>(_hashTable, _valueIndex); |
| - int get length => _hashTable._elementCount; |
| + HashSet<E> _newSet() => |
| + new _LinkedCustomHashSet<E>(_equality, _hasher, _validKey); |
| } |
| -class _LinkedHashTableValueIterator<V> extends _LinkedHashTableIterator<V> { |
| - final int _valueIndex; |
| - |
| - _LinkedHashTableValueIterator(_LinkedHashTable hashTable, this._valueIndex) |
| - : super(hashTable); |
| - |
| - V _getCurrent(int offset) => _hashTable._table[offset + _valueIndex]; |
| -} |
| - |
| -abstract class _LinkedHashTableIterator<T> implements Iterator<T> { |
| - final _LinkedHashTable _hashTable; |
| +class _LinkedHashSetIterator<E> implements Iterator<E> { |
| + final _LinkedHashSet _set; |
| final int _modificationCount; |
| - int _offset; |
| - T _current; |
| + var _next; |
| + E _current; |
| - _LinkedHashTableIterator(_LinkedHashTable table) |
| - : _hashTable = table, |
| - _modificationCount = table._modificationCount, |
| - _offset = table._next(_LinkedHashTable._HEAD_OFFSET); |
| + _LinkedHashSetIterator(_LinkedHashSet hashSet) |
| + : _set = hashSet, |
| + _modificationCount = hashSet._modificationCount, |
| + _next = hashSet._nextEntry; |
| bool moveNext() { |
| - _hashTable._checkModification(_modificationCount); |
| - if (_offset == _LinkedHashTable._HEAD_OFFSET) { |
| + if (_modificationCount != _set._modificationCount) { |
| + throw new ConcurrentModificationError(_set); |
| + } |
| + if (identical(_set, _next)) { |
| _current = null; |
| return false; |
| } |
| - _current = _getCurrent(_offset); |
| - _offset = _hashTable._next(_offset); |
| + _LinkedHashSetEntry entry = _next; |
| + _current = entry.key; |
| + _next = entry._nextEntry; |
| return true; |
| } |
| - T _getCurrent(int offset); |
| - |
| - T get current => _current; |
| -} |
| - |
| -class _LinkedHashMapTable<K, V> extends _LinkedHashTable<K> { |
| - static const int _INITIAL_CAPACITY = 8; |
| - static const int _VALUE_INDEX = 3; |
| - |
| - int get _entrySize => 4; |
| - |
| - _LinkedHashMapTable() : super(_INITIAL_CAPACITY); |
| - |
| - V _value(int offset) => _table[offset + _VALUE_INDEX]; |
| - void _setValue(int offset, V value) { _table[offset + _VALUE_INDEX] = value; } |
| - |
| - _copyEntry(List oldTable, int fromOffset, int toOffset) { |
| - _table[toOffset + _VALUE_INDEX] = oldTable[fromOffset + _VALUE_INDEX]; |
| - } |
| + E get current => _current; |
| } |