OLD | NEW |
(Empty) | |
| 1 // Copyright 2017 the V8 project authors. All rights reserved. |
| 2 // Use of this source code is governed by a BSD-style license that can be |
| 3 // found in the LICENSE file. |
| 4 |
| 5 // PLEASE READ BEFORE CHANGING THIS FILE! |
| 6 // |
| 7 // This file implements the out of bounds signal handler for |
| 8 // WebAssembly. Signal handlers are notoriously difficult to get |
| 9 // right, and getting it wrong can lead to security |
| 10 // vulnerabilities. In order to minimize this risk, here are some |
| 11 // rules to follow. |
| 12 // |
| 13 // 1. Do not introduce any new external dependencies. This file needs |
| 14 // to be self contained so it is easy to audit everything that a |
| 15 // signal handler might do. |
| 16 // |
| 17 // 2. Any changes must be reviewed by someone from the crash reporting |
| 18 // or security team. See OWNERS for suggested reviewers. |
| 19 // |
| 20 // For more information, see https://goo.gl/yMeyUY. |
| 21 // |
| 22 // This file contains most of the code that actually runs in a signal handler |
| 23 // context. Some additional code is used both inside and outside the signal |
| 24 // handler. This code can be found in handler-shared.cc. |
| 25 |
| 26 #include <signal.h> |
| 27 #include <stddef.h> |
| 28 #include <stdlib.h> |
| 29 |
| 30 #include "src/trap-handler/trap-handler-internal.h" |
| 31 #include "src/trap-handler/trap-handler.h" |
| 32 |
| 33 namespace v8 { |
| 34 namespace internal { |
| 35 namespace trap_handler { |
| 36 |
| 37 namespace { |
| 38 |
| 39 bool IsKernelGeneratedSignal(siginfo_t* info) { |
| 40 return info->si_code > 0 && info->si_code != SI_USER && |
| 41 info->si_code != SI_QUEUE && info->si_code != SI_TIMER && |
| 42 info->si_code != SI_ASYNCIO && info->si_code != SI_MESGQ; |
| 43 } |
| 44 |
| 45 #if V8_TRAP_HANDLER_SUPPORTED |
| 46 class SigUnmaskStack { |
| 47 public: |
| 48 explicit SigUnmaskStack(sigset_t sigs) { |
| 49 // TODO(eholk): consider using linux-syscall-support for calling this |
| 50 // syscall. |
| 51 pthread_sigmask(SIG_UNBLOCK, &sigs, &old_mask_); |
| 52 } |
| 53 |
| 54 ~SigUnmaskStack() { pthread_sigmask(SIG_SETMASK, &old_mask_, nullptr); } |
| 55 |
| 56 private: |
| 57 sigset_t old_mask_; |
| 58 |
| 59 // We'd normally use DISALLOW_COPY_AND_ASSIGN, but we're avoiding a dependency |
| 60 // on base/macros.h |
| 61 SigUnmaskStack(const SigUnmaskStack&) = delete; |
| 62 void operator=(const SigUnmaskStack&) = delete; |
| 63 }; |
| 64 #endif |
| 65 } // namespace |
| 66 |
| 67 #if V8_TRAP_HANDLER_SUPPORTED && V8_OS_LINUX |
| 68 bool TryHandleSignal(int signum, siginfo_t* info, ucontext_t* context) { |
| 69 // Bail out early in case we got called for the wrong kind of signal. |
| 70 if (signum != SIGSEGV) { |
| 71 return false; |
| 72 } |
| 73 |
| 74 // Make sure the signal was generated by the kernel and not some other source. |
| 75 if (!IsKernelGeneratedSignal(info)) { |
| 76 return false; |
| 77 } |
| 78 |
| 79 // Ensure the faulting thread was actually running Wasm code. |
| 80 if (!IsThreadInWasm()) { |
| 81 return false; |
| 82 } |
| 83 |
| 84 // Clear g_thread_in_wasm_code, primarily to protect against nested faults. |
| 85 g_thread_in_wasm_code = false; |
| 86 |
| 87 // Begin signal mask scope. We need to be sure to restore the signal mask |
| 88 // before we restore the g_thread_in_wasm_code flag. |
| 89 { |
| 90 // Unmask the signal so that if this signal handler crashes, the crash will |
| 91 // be handled by the crash reporter. Otherwise, the process might be killed |
| 92 // with the crash going unreported. |
| 93 sigset_t sigs; |
| 94 // Fortunately, sigemptyset and sigaddset are async-signal-safe according to |
| 95 // the POSIX standard. |
| 96 sigemptyset(&sigs); |
| 97 sigaddset(&sigs, SIGSEGV); |
| 98 SigUnmaskStack unmask(sigs); |
| 99 |
| 100 uintptr_t fault_addr = context->uc_mcontext.gregs[REG_RIP]; |
| 101 |
| 102 // TODO(eholk): broad code range check |
| 103 |
| 104 // Taking locks in a signal handler is risky because a fault in the signal |
| 105 // handler could lead to a deadlock when attempting to acquire the lock |
| 106 // again. We guard against this case with g_thread_in_wasm_code. The lock |
| 107 // may only be taken when not executing Wasm code (an assert in |
| 108 // MetadataLock's constructor ensures this). This signal handler will bail |
| 109 // out before trying to take the lock if g_thread_in_wasm_code is not set. |
| 110 MetadataLock lock_holder; |
| 111 |
| 112 for (size_t i = 0; i < gNumCodeObjects; ++i) { |
| 113 const CodeProtectionInfo* data = gCodeObjects[i].code_info; |
| 114 if (data == nullptr) { |
| 115 continue; |
| 116 } |
| 117 const uintptr_t base = reinterpret_cast<uintptr_t>(data->base); |
| 118 |
| 119 if (fault_addr >= base && fault_addr < base + data->size) { |
| 120 // Hurray, we found the code object. Check for protected addresses. |
| 121 const ptrdiff_t offset = fault_addr - base; |
| 122 |
| 123 for (unsigned i = 0; i < data->num_protected_instructions; ++i) { |
| 124 if (data->instructions[i].instr_offset == offset) { |
| 125 // Hurray again, we found the actual instruction. Tell the caller to |
| 126 // return to the landing pad. |
| 127 context->uc_mcontext.gregs[REG_RIP] = |
| 128 data->instructions[i].landing_offset + base; |
| 129 return true; |
| 130 } |
| 131 } |
| 132 } |
| 133 } |
| 134 } // end signal mask scope |
| 135 |
| 136 // If we get here, it's not a recoverable wasm fault, so we go to the next |
| 137 // handler. |
| 138 g_thread_in_wasm_code = true; |
| 139 return false; |
| 140 } |
| 141 #endif // V8_TRAP_HANDLER_SUPPORTED && V8_OS_LINUX |
| 142 |
| 143 #if V8_TRAP_HANDLER_SUPPORTED |
| 144 void HandleSignal(int signum, siginfo_t* info, void* context) { |
| 145 ucontext_t* uc = reinterpret_cast<ucontext_t*>(context); |
| 146 |
| 147 if (!TryHandleSignal(signum, info, uc)) { |
| 148 // Since V8 didn't handle this signal, we want to re-raise the same signal. |
| 149 // For kernel-generated SEGV signals, we do this by restoring the default |
| 150 // SEGV handler and then returning. The fault will happen again and the |
| 151 // usual SEGV handling will happen. |
| 152 // |
| 153 // We handle user-generated signals by calling raise() instead. This is for |
| 154 // completeness. We should never actually see one of these, but just in |
| 155 // case, we do the right thing. |
| 156 struct sigaction action; |
| 157 action.sa_handler = SIG_DFL; |
| 158 sigemptyset(&action.sa_mask); |
| 159 action.sa_flags = 0; |
| 160 sigaction(signum, &action, nullptr); |
| 161 if (!IsKernelGeneratedSignal(info)) { |
| 162 raise(signum); |
| 163 } |
| 164 } |
| 165 // TryHandleSignal modifies context to change where we return to. |
| 166 } |
| 167 #endif |
| 168 } // namespace trap_handler |
| 169 } // namespace internal |
| 170 } // namespace v8 |
OLD | NEW |