| Index: src/time/time.cc
 | 
| diff --git a/src/time/time.cc b/src/time/time.cc
 | 
| deleted file mode 100644
 | 
| index 1742f30b67804022f89051bbf61b9497b3bb71bb..0000000000000000000000000000000000000000
 | 
| --- a/src/time/time.cc
 | 
| +++ /dev/null
 | 
| @@ -1,483 +0,0 @@
 | 
| -// Copyright 2013 the V8 project authors. All rights reserved.
 | 
| -// Redistribution and use in source and binary forms, with or without
 | 
| -// modification, are permitted provided that the following conditions are
 | 
| -// met:
 | 
| -//
 | 
| -//     * Redistributions of source code must retain the above copyright
 | 
| -//       notice, this list of conditions and the following disclaimer.
 | 
| -//     * Redistributions in binary form must reproduce the above
 | 
| -//       copyright notice, this list of conditions and the following
 | 
| -//       disclaimer in the documentation and/or other materials provided
 | 
| -//       with the distribution.
 | 
| -//     * Neither the name of Google Inc. nor the names of its
 | 
| -//       contributors may be used to endorse or promote products derived
 | 
| -//       from this software without specific prior written permission.
 | 
| -//
 | 
| -// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 | 
| -// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 | 
| -// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 | 
| -// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 | 
| -// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 | 
| -// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 | 
| -// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 | 
| -// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 | 
| -// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 | 
| -// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 | 
| -// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 | 
| -
 | 
| -#include "time.h"
 | 
| -
 | 
| -#if V8_OS_POSIX
 | 
| -#include <sys/time.h>
 | 
| -#endif
 | 
| -#if V8_OS_MACOSX
 | 
| -#include <mach/mach_time.h>
 | 
| -#endif
 | 
| -
 | 
| -#include <cstring>
 | 
| -
 | 
| -#include "checks.h"
 | 
| -#include "cpu.h"
 | 
| -#include "platform.h"
 | 
| -#if V8_OS_WIN
 | 
| -#define V8_WIN32_HEADERS_FULL
 | 
| -#include "win32-headers.h"
 | 
| -#endif
 | 
| -
 | 
| -namespace v8 {
 | 
| -namespace internal {
 | 
| -
 | 
| -TimeDelta TimeDelta::FromDays(int days) {
 | 
| -  return TimeDelta(days * Time::kMicrosecondsPerDay);
 | 
| -}
 | 
| -
 | 
| -
 | 
| -TimeDelta TimeDelta::FromHours(int hours) {
 | 
| -  return TimeDelta(hours * Time::kMicrosecondsPerHour);
 | 
| -}
 | 
| -
 | 
| -
 | 
| -TimeDelta TimeDelta::FromMinutes(int minutes) {
 | 
| -  return TimeDelta(minutes * Time::kMicrosecondsPerMinute);
 | 
| -}
 | 
| -
 | 
| -
 | 
| -TimeDelta TimeDelta::FromSeconds(int64_t seconds) {
 | 
| -  return TimeDelta(seconds * Time::kMicrosecondsPerSecond);
 | 
| -}
 | 
| -
 | 
| -
 | 
| -TimeDelta TimeDelta::FromMilliseconds(int64_t milliseconds) {
 | 
| -  return TimeDelta(milliseconds * Time::kMicrosecondsPerMillisecond);
 | 
| -}
 | 
| -
 | 
| -
 | 
| -TimeDelta TimeDelta::FromNanoseconds(int64_t nanoseconds) {
 | 
| -  return TimeDelta(nanoseconds / Time::kNanosecondsPerMicrosecond);
 | 
| -}
 | 
| -
 | 
| -
 | 
| -int TimeDelta::InDays() const {
 | 
| -  return static_cast<int>(delta_ / Time::kMicrosecondsPerDay);
 | 
| -}
 | 
| -
 | 
| -
 | 
| -int TimeDelta::InHours() const {
 | 
| -  return static_cast<int>(delta_ / Time::kMicrosecondsPerHour);
 | 
| -}
 | 
| -
 | 
| -
 | 
| -int TimeDelta::InMinutes() const {
 | 
| -  return static_cast<int>(delta_ / Time::kMicrosecondsPerMinute);
 | 
| -}
 | 
| -
 | 
| -
 | 
| -double TimeDelta::InSecondsF() const {
 | 
| -  return static_cast<double>(delta_) / Time::kMicrosecondsPerSecond;
 | 
| -}
 | 
| -
 | 
| -
 | 
| -int64_t TimeDelta::InSeconds() const {
 | 
| -  return delta_ / Time::kMicrosecondsPerSecond;
 | 
| -}
 | 
| -
 | 
| -
 | 
| -double TimeDelta::InMillisecondsF() const {
 | 
| -  return static_cast<double>(delta_) / Time::kMicrosecondsPerMillisecond;
 | 
| -}
 | 
| -
 | 
| -
 | 
| -int64_t TimeDelta::InMilliseconds() const {
 | 
| -  return delta_ / Time::kMicrosecondsPerMillisecond;
 | 
| -}
 | 
| -
 | 
| -
 | 
| -int64_t TimeDelta::InNanoseconds() const {
 | 
| -  return delta_ * Time::kNanosecondsPerMicrosecond;
 | 
| -}
 | 
| -
 | 
| -
 | 
| -#if V8_OS_WIN
 | 
| -
 | 
| -// We implement time using the high-resolution timers so that we can get
 | 
| -// timeouts which are smaller than 10-15ms. To avoid any drift, we
 | 
| -// periodically resync the internal clock to the system clock.
 | 
| -class Clock V8_FINAL {
 | 
| - public:
 | 
| -  Clock() : initial_time_(CurrentWallclockTime()),
 | 
| -            initial_ticks_(TimeTicks::Now()),
 | 
| -            mutex_(OS::CreateMutex()) {}
 | 
| -
 | 
| -  ~Clock() { delete mutex_; }
 | 
| -
 | 
| -  Time Now() {
 | 
| -    // This must be executed under lock.
 | 
| -    ScopedLock sl(mutex_);
 | 
| -
 | 
| -    // Calculate the time elapsed since we started our timer.
 | 
| -    TimeDelta elapsed = TimeTicks::Now() - initial_ticks_;
 | 
| -
 | 
| -    // Check if we don't need to synchronize with the wallclock yet.
 | 
| -    if (elapsed.InMicroseconds() <= kMaxMicrosecondsToAvoidDrift) {
 | 
| -      return initial_time_ + elapsed;
 | 
| -    }
 | 
| -
 | 
| -    // Resynchronize with the wallclock.
 | 
| -    initial_ticks_ = TimeTicks::Now();
 | 
| -    initial_time_ = CurrentWallclockTime();
 | 
| -    return initial_time_;
 | 
| -  }
 | 
| -
 | 
| -  Time NowFromSystemTime() {
 | 
| -    ScopedLock sl(mutex_);
 | 
| -    initial_ticks_ = TimeTicks::Now();
 | 
| -    initial_time_ = CurrentWallclockTime();
 | 
| -    return initial_time_;
 | 
| -  }
 | 
| -
 | 
| - private:
 | 
| -  // Time between resampling the un-granular clock for this API (1 minute).
 | 
| -  static const int64_t kMaxMicrosecondsToAvoidDrift =
 | 
| -      Time::kMicrosecondsPerMinute;
 | 
| -
 | 
| -  static Time CurrentWallclockTime() {
 | 
| -    FILETIME ft;
 | 
| -    ::GetSystemTimeAsFileTime(&ft);
 | 
| -    return Time::FromFiletime(ft);
 | 
| -  }
 | 
| -
 | 
| -  TimeTicks initial_ticks_;
 | 
| -  Time initial_time_;
 | 
| -  Mutex* mutex_;
 | 
| -};
 | 
| -
 | 
| -
 | 
| -static LazyDynamicInstance<Clock,
 | 
| -    DefaultCreateTrait<Clock>,
 | 
| -    ThreadSafeInitOnceTrait>::type clock = LAZY_DYNAMIC_INSTANCE_INITIALIZER;
 | 
| -
 | 
| -
 | 
| -Time Time::Now() {
 | 
| -  return clock.Pointer()->Now();
 | 
| -}
 | 
| -
 | 
| -
 | 
| -Time Time::NowFromSystemTime() {
 | 
| -  return clock.Pointer()->NowFromSystemTime();
 | 
| -}
 | 
| -
 | 
| -
 | 
| -// Time between windows epoch and standard epoch.
 | 
| -static const int64_t kTimeToEpochInMicroseconds = V8_INT64_C(11644473600000000);
 | 
| -
 | 
| -
 | 
| -Time Time::FromFiletime(FILETIME ft) {
 | 
| -  if (ft.dwLowDateTime == 0 && ft.dwHighDateTime == 0) {
 | 
| -    return Time();
 | 
| -  }
 | 
| -  if (ft.dwLowDateTime == std::numeric_limits<DWORD>::max() &&
 | 
| -      ft.dwHighDateTime == std::numeric_limits<DWORD>::max()) {
 | 
| -    return Max();
 | 
| -  }
 | 
| -  int64_t us = (static_cast<uint64_t>(ft.dwLowDateTime) +
 | 
| -                static_cast<uint64_t>(ft.dwHighDateTime) << 32) / 10;
 | 
| -  return Time(us - kTimeToEpochInMicroseconds);
 | 
| -}
 | 
| -
 | 
| -
 | 
| -FILETIME Time::ToFiletime() const {
 | 
| -  ASSERT(us_ >= 0);
 | 
| -  FILETIME ft;
 | 
| -  if (IsNull()) {
 | 
| -    ft.dwLowDateTime = 0;
 | 
| -    ft.dwHighDateTime = 0;
 | 
| -    return ft;
 | 
| -  }
 | 
| -  if (IsMax()) {
 | 
| -    ft.dwLowDateTime = std::numeric_limits<DWORD>::max();
 | 
| -    ft.dwHighDateTime = std::numeric_limits<DWORD>::max();
 | 
| -    return ft;
 | 
| -  }
 | 
| -  uint64_t us = static_cast<uint64_t>(us_ + kTimeToEpochInMicroseconds) * 10;
 | 
| -  ft.dwLowDateTime = static_cast<DWORD>(us);
 | 
| -  ft.dwHighDateTime = static_cast<DWORD>(us >> 32);
 | 
| -  return ft;
 | 
| -}
 | 
| -
 | 
| -#elif V8_OS_POSIX
 | 
| -
 | 
| -Time Time::Now() {
 | 
| -  struct timeval tv;
 | 
| -  int result = gettimeofday(&tv, NULL);
 | 
| -  ASSERT_EQ(0, result);
 | 
| -  USE(result);
 | 
| -  return FromTimeval(tv);
 | 
| -}
 | 
| -
 | 
| -
 | 
| -Time Time::NowFromSystemTime() {
 | 
| -  return Now();
 | 
| -}
 | 
| -
 | 
| -
 | 
| -Time Time::FromTimeval(struct timeval tv) {
 | 
| -  ASSERT(tv.tv_usec >= 0);
 | 
| -  ASSERT(tv.tv_usec < static_cast<suseconds_t>(kMicrosecondsPerSecond));
 | 
| -  if (tv.tv_usec == 0 && tv.tv_sec == 0) {
 | 
| -    return Time();
 | 
| -  }
 | 
| -  if (tv.tv_usec == static_cast<suseconds_t>(kMicrosecondsPerSecond - 1) &&
 | 
| -      tv.tv_sec == std::numeric_limits<time_t>::max()) {
 | 
| -    return Max();
 | 
| -  }
 | 
| -  return Time(tv.tv_sec * kMicrosecondsPerSecond + tv.tv_usec);
 | 
| -}
 | 
| -
 | 
| -
 | 
| -struct timeval Time::ToTimeval() const {
 | 
| -  struct timeval tv;
 | 
| -  if (IsNull()) {
 | 
| -    tv.tv_sec = 0;
 | 
| -    tv.tv_usec = 0;
 | 
| -    return tv;
 | 
| -  }
 | 
| -  if (IsMax()) {
 | 
| -    tv.tv_sec = std::numeric_limits<time_t>::max();
 | 
| -    tv.tv_usec = static_cast<suseconds_t>(kMicrosecondsPerSecond - 1);
 | 
| -    return tv;
 | 
| -  }
 | 
| -  tv.tv_sec = us_ / kMicrosecondsPerSecond;
 | 
| -  tv.tv_usec = us_ % kMicrosecondsPerSecond;
 | 
| -  return tv;
 | 
| -}
 | 
| -
 | 
| -#endif  // V8_OS_WIN
 | 
| -
 | 
| -
 | 
| -Time Time::FromJsTime(double ms_since_epoch) {
 | 
| -  // The epoch is a valid time, so this constructor doesn't interpret
 | 
| -  // 0 as the null time.
 | 
| -  if (ms_since_epoch == std::numeric_limits<double>::max()) {
 | 
| -    return Max();
 | 
| -  }
 | 
| -  return Time(
 | 
| -      static_cast<int64_t>(ms_since_epoch * kMicrosecondsPerMillisecond));
 | 
| -}
 | 
| -
 | 
| -
 | 
| -double Time::ToJsTime() const {
 | 
| -  if (IsNull()) {
 | 
| -    // Preserve 0 so the invalid result doesn't depend on the platform.
 | 
| -    return 0;
 | 
| -  }
 | 
| -  if (IsMax()) {
 | 
| -    // Preserve max without offset to prevent overflow.
 | 
| -    return std::numeric_limits<double>::max();
 | 
| -  }
 | 
| -  return static_cast<double>(us_) / kMicrosecondsPerMillisecond;
 | 
| -}
 | 
| -
 | 
| -
 | 
| -#if V8_OS_WIN
 | 
| -
 | 
| -class TickClock {
 | 
| - public:
 | 
| -  virtual ~TickClock() {}
 | 
| -  virtual int64_t Now() = 0;
 | 
| -};
 | 
| -
 | 
| -
 | 
| -// Overview of time counters:
 | 
| -// (1) CPU cycle counter. (Retrieved via RDTSC)
 | 
| -// The CPU counter provides the highest resolution time stamp and is the least
 | 
| -// expensive to retrieve. However, the CPU counter is unreliable and should not
 | 
| -// be used in production. Its biggest issue is that it is per processor and it
 | 
| -// is not synchronized between processors. Also, on some computers, the counters
 | 
| -// will change frequency due to thermal and power changes, and stop in some
 | 
| -// states.
 | 
| -//
 | 
| -// (2) QueryPerformanceCounter (QPC). The QPC counter provides a high-
 | 
| -// resolution (100 nanoseconds) time stamp but is comparatively more expensive
 | 
| -// to retrieve. What QueryPerformanceCounter actually does is up to the HAL.
 | 
| -// (with some help from ACPI).
 | 
| -// According to http://blogs.msdn.com/oldnewthing/archive/2005/09/02/459952.aspx
 | 
| -// in the worst case, it gets the counter from the rollover interrupt on the
 | 
| -// programmable interrupt timer. In best cases, the HAL may conclude that the
 | 
| -// RDTSC counter runs at a constant frequency, then it uses that instead. On
 | 
| -// multiprocessor machines, it will try to verify the values returned from
 | 
| -// RDTSC on each processor are consistent with each other, and apply a handful
 | 
| -// of workarounds for known buggy hardware. In other words, QPC is supposed to
 | 
| -// give consistent result on a multiprocessor computer, but it is unreliable in
 | 
| -// reality due to bugs in BIOS or HAL on some, especially old computers.
 | 
| -// With recent updates on HAL and newer BIOS, QPC is getting more reliable but
 | 
| -// it should be used with caution.
 | 
| -//
 | 
| -// (3) System time. The system time provides a low-resolution (typically 10ms
 | 
| -// to 55 milliseconds) time stamp but is comparatively less expensive to
 | 
| -// retrieve and more reliable.
 | 
| -class HighResolutionTickClock V8_FINAL : public TickClock {
 | 
| - public:
 | 
| -  explicit HighResolutionTickClock(int64_t ticks_per_second)
 | 
| -      : ticks_per_second_(ticks_per_second) {
 | 
| -    ASSERT_NE(0, ticks_per_second);
 | 
| -  }
 | 
| -  virtual ~HighResolutionTickClock() {}
 | 
| -
 | 
| -  virtual int64_t Now() V8_OVERRIDE {
 | 
| -    LARGE_INTEGER now;
 | 
| -    BOOL result = QueryPerformanceCounter(&now);
 | 
| -    ASSERT(result);
 | 
| -    USE(result);
 | 
| -
 | 
| -    // Intentionally calculate microseconds in a round about manner to avoid
 | 
| -    // overflow and precision issues. Think twice before simplifying!
 | 
| -    int64_t whole_seconds = now.QuadPart / ticks_per_second_;
 | 
| -    int64_t leftover_ticks = now.QuadPart % ticks_per_second_;
 | 
| -    int64_t ticks = (whole_seconds * Time::kMicrosecondsPerSecond) +
 | 
| -        ((leftover_ticks * Time::kMicrosecondsPerSecond) / ticks_per_second_);
 | 
| -
 | 
| -    // Make sure we never return 0 here, so that TimeTicks::HighResNow()
 | 
| -    // will never return 0.
 | 
| -    return ticks + 1;
 | 
| -  }
 | 
| -
 | 
| - private:
 | 
| -  int64_t ticks_per_second_;
 | 
| -};
 | 
| -
 | 
| -
 | 
| -class RolloverProtectedTickClock V8_FINAL : public TickClock {
 | 
| - public:
 | 
| -  RolloverProtectedTickClock()
 | 
| -      : mutex_(OS::CreateMutex()), last_seen_now_(0), rollover_ms_(1) {
 | 
| -    // We initialize rollover_ms_ to 1 to ensure that we will never
 | 
| -    // return 0 from TimeTicks::HighResNow() and TimeTicks::Now() below.
 | 
| -  }
 | 
| -  virtual ~RolloverProtectedTickClock() { delete mutex_; }
 | 
| -
 | 
| -  virtual int64_t Now() V8_OVERRIDE {
 | 
| -    ScopedLock sl(mutex_);
 | 
| -    // We use timeGetTime() to implement TimeTicks::Now(), which rolls over
 | 
| -    // every ~49.7 days. We try to track rollover ourselves, which works if
 | 
| -    // TimeTicks::Now() is called at least every 49 days.
 | 
| -    // Note that we do not use GetTickCount() here, since timeGetTime() gives
 | 
| -    // more predictable delta values, as described here:
 | 
| -    // http://blogs.msdn.com/b/larryosterman/archive/2009/09/02/what-s-the-difference-between-gettickcount-and-timegettime.aspx
 | 
| -    DWORD now = timeGetTime();
 | 
| -    if (now < last_seen_now_) {
 | 
| -      rollover_ms_ += V8_INT64_C(0x100000000);  // ~49.7 days.
 | 
| -    }
 | 
| -    last_seen_now_ = now;
 | 
| -    return now + rollover_ms_;
 | 
| -  }
 | 
| -
 | 
| - private:
 | 
| -  Mutex* mutex_;
 | 
| -  DWORD last_seen_now_;
 | 
| -  int64_t rollover_ms_;
 | 
| -};
 | 
| -
 | 
| -
 | 
| -static LazyDynamicInstance<RolloverProtectedTickClock,
 | 
| -    DefaultCreateTrait<RolloverProtectedTickClock>,
 | 
| -    ThreadSafeInitOnceTrait>::type tick_clock =
 | 
| -        LAZY_DYNAMIC_INSTANCE_INITIALIZER;
 | 
| -
 | 
| -
 | 
| -struct CreateHighResTickClockTrait {
 | 
| -  static TickClock* Create() {
 | 
| -    // Check if the installed hardware supports a high-resolution performance
 | 
| -    // counter, and if not fallback to the low-resolution tick clock.
 | 
| -    LARGE_INTEGER ticks_per_second;
 | 
| -    if (!QueryPerformanceFrequency(&ticks_per_second)) {
 | 
| -      return tick_clock.Pointer();
 | 
| -    }
 | 
| -
 | 
| -    // On Athlon X2 CPUs (e.g. model 15) the QueryPerformanceCounter
 | 
| -    // is unreliable, fallback to the low-resolution tick clock.
 | 
| -    CPU cpu;
 | 
| -    if (strcmp(cpu.vendor(), "AuthenticAMD") == 0 && cpu.family() == 15) {
 | 
| -      return tick_clock.Pointer();
 | 
| -    }
 | 
| -
 | 
| -    return new HighResolutionTickClock(ticks_per_second.QuadPart);
 | 
| -  }
 | 
| -};
 | 
| -
 | 
| -
 | 
| -static LazyDynamicInstance<TickClock,
 | 
| -    CreateHighResTickClockTrait,
 | 
| -    ThreadSafeInitOnceTrait>::type high_res_tick_clock =
 | 
| -        LAZY_DYNAMIC_INSTANCE_INITIALIZER;
 | 
| -
 | 
| -
 | 
| -TimeTicks TimeTicks::Now() {
 | 
| -  // Make sure we never return 0 here.
 | 
| -  TimeTicks ticks(tick_clock.Pointer()->Now());
 | 
| -  ASSERT(!ticks.IsNull());
 | 
| -  return ticks;
 | 
| -}
 | 
| -
 | 
| -
 | 
| -TimeTicks TimeTicks::HighResNow() {
 | 
| -  // Make sure we never return 0 here.
 | 
| -  TimeTicks ticks(high_res_tick_clock.Pointer()->Now());
 | 
| -  ASSERT(!ticks.IsNull());
 | 
| -  return ticks;
 | 
| -}
 | 
| -
 | 
| -#else  // V8_OS_WIN
 | 
| -
 | 
| -TimeTicks TimeTicks::Now() {
 | 
| -  return HighResNow();
 | 
| -}
 | 
| -
 | 
| -
 | 
| -TimeTicks TimeTicks::HighResNow() {
 | 
| -  int64_t ticks;
 | 
| -#if V8_OS_MACOSX
 | 
| -  static struct mach_timebase_info info;
 | 
| -  if (info.denom == 0) {
 | 
| -    kern_return_t result = mach_timebase_info(&info);
 | 
| -    ASSERT_EQ(KERN_SUCCESS, result);
 | 
| -    USE(result);
 | 
| -  }
 | 
| -  ticks = (mach_absolute_time() / Time::kNanosecondsPerMicrosecond *
 | 
| -           info.numer / info.denom);
 | 
| -#elif V8_OS_SOLARIS
 | 
| -  ticks = (gethrtime() / Time::kNanosecondsPerMicrosecond);
 | 
| -#elif V8_OS_POSIX
 | 
| -  struct timespec ts;
 | 
| -  int result = clock_gettime(CLOCK_MONOTONIC, &ts);
 | 
| -  ASSERT_EQ(0, result);
 | 
| -  USE(result);
 | 
| -  ticks = (ts.tv_sec * Time::kMicrosecondsPerSecond +
 | 
| -           ts.tv_nsec / Time::kNanosecondsPerMicrosecond);
 | 
| -#endif  // V8_OS_MACOSX
 | 
| -  // Make sure we never return 0 here.
 | 
| -  return TimeTicks(ticks + 1);
 | 
| -}
 | 
| -
 | 
| -#endif  // V8_OS_WIN
 | 
| -
 | 
| -} }  // namespace v8::internal
 | 
| 
 |