Index: src/arm64/code-stubs-arm64.cc |
diff --git a/src/arm64/code-stubs-arm64.cc b/src/arm64/code-stubs-arm64.cc |
index 071abde92a27cc5dc742f4bd5820f29b0c6dd78f..3754ea4a3d931024917baad6dc60554b9c91f928 100644 |
--- a/src/arm64/code-stubs-arm64.cc |
+++ b/src/arm64/code-stubs-arm64.cc |
@@ -2673,6 +2673,257 @@ |
__ Jump(stub_entry); |
} |
+ |
+void SubStringStub::Generate(MacroAssembler* masm) { |
+ ASM_LOCATION("SubStringStub::Generate"); |
+ Label runtime; |
+ |
+ // Stack frame on entry. |
+ // lr: return address |
+ // jssp[0]: substring "to" offset |
+ // jssp[8]: substring "from" offset |
+ // jssp[16]: pointer to string object |
+ |
+ // This stub is called from the native-call %_SubString(...), so |
+ // nothing can be assumed about the arguments. It is tested that: |
+ // "string" is a sequential string, |
+ // both "from" and "to" are smis, and |
+ // 0 <= from <= to <= string.length (in debug mode.) |
+ // If any of these assumptions fail, we call the runtime system. |
+ |
+ static const int kToOffset = 0 * kPointerSize; |
+ static const int kFromOffset = 1 * kPointerSize; |
+ static const int kStringOffset = 2 * kPointerSize; |
+ |
+ Register to = x0; |
+ Register from = x15; |
+ Register input_string = x10; |
+ Register input_length = x11; |
+ Register input_type = x12; |
+ Register result_string = x0; |
+ Register result_length = x1; |
+ Register temp = x3; |
+ |
+ __ Peek(to, kToOffset); |
+ __ Peek(from, kFromOffset); |
+ |
+ // Check that both from and to are smis. If not, jump to runtime. |
+ __ JumpIfEitherNotSmi(from, to, &runtime); |
+ __ SmiUntag(from); |
+ __ SmiUntag(to); |
+ |
+ // Calculate difference between from and to. If to < from, branch to runtime. |
+ __ Subs(result_length, to, from); |
+ __ B(mi, &runtime); |
+ |
+ // Check from is positive. |
+ __ Tbnz(from, kWSignBit, &runtime); |
+ |
+ // Make sure first argument is a string. |
+ __ Peek(input_string, kStringOffset); |
+ __ JumpIfSmi(input_string, &runtime); |
+ __ IsObjectJSStringType(input_string, input_type, &runtime); |
+ |
+ Label single_char; |
+ __ Cmp(result_length, 1); |
+ __ B(eq, &single_char); |
+ |
+ // Short-cut for the case of trivial substring. |
+ Label return_x0; |
+ __ Ldrsw(input_length, |
+ UntagSmiFieldMemOperand(input_string, String::kLengthOffset)); |
+ |
+ __ Cmp(result_length, input_length); |
+ __ CmovX(x0, input_string, eq); |
+ // Return original string. |
+ __ B(eq, &return_x0); |
+ |
+ // Longer than original string's length or negative: unsafe arguments. |
+ __ B(hi, &runtime); |
+ |
+ // Shorter than original string's length: an actual substring. |
+ |
+ // x0 to substring end character offset |
+ // x1 result_length length of substring result |
+ // x10 input_string pointer to input string object |
+ // x10 unpacked_string pointer to unpacked string object |
+ // x11 input_length length of input string |
+ // x12 input_type instance type of input string |
+ // x15 from substring start character offset |
+ |
+ // Deal with different string types: update the index if necessary and put |
+ // the underlying string into register unpacked_string. |
+ Label underlying_unpacked, sliced_string, seq_or_external_string; |
+ Label update_instance_type; |
+ // If the string is not indirect, it can only be sequential or external. |
+ STATIC_ASSERT(kIsIndirectStringMask == (kSlicedStringTag & kConsStringTag)); |
+ STATIC_ASSERT(kIsIndirectStringMask != 0); |
+ |
+ // Test for string types, and branch/fall through to appropriate unpacking |
+ // code. |
+ __ Tst(input_type, kIsIndirectStringMask); |
+ __ B(eq, &seq_or_external_string); |
+ __ Tst(input_type, kSlicedNotConsMask); |
+ __ B(ne, &sliced_string); |
+ |
+ Register unpacked_string = input_string; |
+ |
+ // Cons string. Check whether it is flat, then fetch first part. |
+ __ Ldr(temp, FieldMemOperand(input_string, ConsString::kSecondOffset)); |
+ __ JumpIfNotRoot(temp, Heap::kempty_stringRootIndex, &runtime); |
+ __ Ldr(unpacked_string, |
+ FieldMemOperand(input_string, ConsString::kFirstOffset)); |
+ __ B(&update_instance_type); |
+ |
+ __ Bind(&sliced_string); |
+ // Sliced string. Fetch parent and correct start index by offset. |
+ __ Ldrsw(temp, |
+ UntagSmiFieldMemOperand(input_string, SlicedString::kOffsetOffset)); |
+ __ Add(from, from, temp); |
+ __ Ldr(unpacked_string, |
+ FieldMemOperand(input_string, SlicedString::kParentOffset)); |
+ |
+ __ Bind(&update_instance_type); |
+ __ Ldr(temp, FieldMemOperand(unpacked_string, HeapObject::kMapOffset)); |
+ __ Ldrb(input_type, FieldMemOperand(temp, Map::kInstanceTypeOffset)); |
+ // Now control must go to &underlying_unpacked. Since the no code is generated |
+ // before then we fall through instead of generating a useless branch. |
+ |
+ __ Bind(&seq_or_external_string); |
+ // Sequential or external string. Registers unpacked_string and input_string |
+ // alias, so there's nothing to do here. |
+ // Note that if code is added here, the above code must be updated. |
+ |
+ // x0 result_string pointer to result string object (uninit) |
+ // x1 result_length length of substring result |
+ // x10 unpacked_string pointer to unpacked string object |
+ // x11 input_length length of input string |
+ // x12 input_type instance type of input string |
+ // x15 from substring start character offset |
+ __ Bind(&underlying_unpacked); |
+ |
+ if (FLAG_string_slices) { |
+ Label copy_routine; |
+ __ Cmp(result_length, SlicedString::kMinLength); |
+ // Short slice. Copy instead of slicing. |
+ __ B(lt, ©_routine); |
+ // Allocate new sliced string. At this point we do not reload the instance |
+ // type including the string encoding because we simply rely on the info |
+ // provided by the original string. It does not matter if the original |
+ // string's encoding is wrong because we always have to recheck encoding of |
+ // the newly created string's parent anyway due to externalized strings. |
+ Label two_byte_slice, set_slice_header; |
+ STATIC_ASSERT((kStringEncodingMask & kOneByteStringTag) != 0); |
+ STATIC_ASSERT((kStringEncodingMask & kTwoByteStringTag) == 0); |
+ __ Tbz(input_type, MaskToBit(kStringEncodingMask), &two_byte_slice); |
+ __ AllocateOneByteSlicedString(result_string, result_length, x3, x4, |
+ &runtime); |
+ __ B(&set_slice_header); |
+ |
+ __ Bind(&two_byte_slice); |
+ __ AllocateTwoByteSlicedString(result_string, result_length, x3, x4, |
+ &runtime); |
+ |
+ __ Bind(&set_slice_header); |
+ __ SmiTag(from); |
+ __ Str(from, FieldMemOperand(result_string, SlicedString::kOffsetOffset)); |
+ __ Str(unpacked_string, |
+ FieldMemOperand(result_string, SlicedString::kParentOffset)); |
+ __ B(&return_x0); |
+ |
+ __ Bind(©_routine); |
+ } |
+ |
+ // x0 result_string pointer to result string object (uninit) |
+ // x1 result_length length of substring result |
+ // x10 unpacked_string pointer to unpacked string object |
+ // x11 input_length length of input string |
+ // x12 input_type instance type of input string |
+ // x13 unpacked_char0 pointer to first char of unpacked string (uninit) |
+ // x13 substring_char0 pointer to first char of substring (uninit) |
+ // x14 result_char0 pointer to first char of result (uninit) |
+ // x15 from substring start character offset |
+ Register unpacked_char0 = x13; |
+ Register substring_char0 = x13; |
+ Register result_char0 = x14; |
+ Label two_byte_sequential, sequential_string, allocate_result; |
+ STATIC_ASSERT(kExternalStringTag != 0); |
+ STATIC_ASSERT(kSeqStringTag == 0); |
+ |
+ __ Tst(input_type, kExternalStringTag); |
+ __ B(eq, &sequential_string); |
+ |
+ __ Tst(input_type, kShortExternalStringTag); |
+ __ B(ne, &runtime); |
+ __ Ldr(unpacked_char0, |
+ FieldMemOperand(unpacked_string, ExternalString::kResourceDataOffset)); |
+ // unpacked_char0 points to the first character of the underlying string. |
+ __ B(&allocate_result); |
+ |
+ __ Bind(&sequential_string); |
+ // Locate first character of underlying subject string. |
+ STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize); |
+ __ Add(unpacked_char0, unpacked_string, |
+ SeqOneByteString::kHeaderSize - kHeapObjectTag); |
+ |
+ __ Bind(&allocate_result); |
+ // Sequential one-byte string. Allocate the result. |
+ STATIC_ASSERT((kOneByteStringTag & kStringEncodingMask) != 0); |
+ __ Tbz(input_type, MaskToBit(kStringEncodingMask), &two_byte_sequential); |
+ |
+ // Allocate and copy the resulting one-byte string. |
+ __ AllocateOneByteString(result_string, result_length, x3, x4, x5, &runtime); |
+ |
+ // Locate first character of substring to copy. |
+ __ Add(substring_char0, unpacked_char0, from); |
+ |
+ // Locate first character of result. |
+ __ Add(result_char0, result_string, |
+ SeqOneByteString::kHeaderSize - kHeapObjectTag); |
+ |
+ STATIC_ASSERT((SeqOneByteString::kHeaderSize & kObjectAlignmentMask) == 0); |
+ __ CopyBytes(result_char0, substring_char0, result_length, x3, kCopyLong); |
+ __ B(&return_x0); |
+ |
+ // Allocate and copy the resulting two-byte string. |
+ __ Bind(&two_byte_sequential); |
+ __ AllocateTwoByteString(result_string, result_length, x3, x4, x5, &runtime); |
+ |
+ // Locate first character of substring to copy. |
+ __ Add(substring_char0, unpacked_char0, Operand(from, LSL, 1)); |
+ |
+ // Locate first character of result. |
+ __ Add(result_char0, result_string, |
+ SeqTwoByteString::kHeaderSize - kHeapObjectTag); |
+ |
+ STATIC_ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0); |
+ __ Add(result_length, result_length, result_length); |
+ __ CopyBytes(result_char0, substring_char0, result_length, x3, kCopyLong); |
+ |
+ __ Bind(&return_x0); |
+ Counters* counters = isolate()->counters(); |
+ __ IncrementCounter(counters->sub_string_native(), 1, x3, x4); |
+ __ Drop(3); |
+ __ Ret(); |
+ |
+ __ Bind(&runtime); |
+ __ TailCallRuntime(Runtime::kSubString); |
+ |
+ __ bind(&single_char); |
+ // x1: result_length |
+ // x10: input_string |
+ // x12: input_type |
+ // x15: from (untagged) |
+ __ SmiTag(from); |
+ StringCharAtGenerator generator(input_string, from, result_length, x0, |
+ &runtime, &runtime, &runtime, |
+ RECEIVER_IS_STRING); |
+ generator.GenerateFast(masm); |
+ __ Drop(3); |
+ __ Ret(); |
+ generator.SkipSlow(masm, &runtime); |
+} |
+ |
void ToStringStub::Generate(MacroAssembler* masm) { |
// The ToString stub takes one argument in x0. |
Label is_number; |