OLD | NEW |
(Empty) | |
| 1 // Copyright 2013 the V8 project authors. All rights reserved. |
| 2 // Redistribution and use in source and binary forms, with or without |
| 3 // modification, are permitted provided that the following conditions are |
| 4 // met: |
| 5 // |
| 6 // * Redistributions of source code must retain the above copyright |
| 7 // notice, this list of conditions and the following disclaimer. |
| 8 // * Redistributions in binary form must reproduce the above |
| 9 // copyright notice, this list of conditions and the following |
| 10 // disclaimer in the documentation and/or other materials provided |
| 11 // with the distribution. |
| 12 // * Neither the name of Google Inc. nor the names of its |
| 13 // contributors may be used to endorse or promote products derived |
| 14 // from this software without specific prior written permission. |
| 15 // |
| 16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| 19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| 20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| 21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| 22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| 23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| 24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 27 |
| 28 #include "platform/virtual-memory.h" |
| 29 |
| 30 #if V8_OS_POSIX |
| 31 #include <sys/types.h> |
| 32 #include <sys/mman.h> |
| 33 #include <sys/time.h> |
| 34 #include <sys/resource.h> |
| 35 |
| 36 #include <unistd.h> |
| 37 #endif |
| 38 |
| 39 #if V8_OS_MACOSX |
| 40 #include <mach/vm_statistics.h> |
| 41 #endif |
| 42 |
| 43 #include <cerrno> |
| 44 |
| 45 #include "platform/mutex.h" |
| 46 #include "utils.h" |
| 47 #include "utils/random-number-generator.h" |
| 48 #if V8_OS_CYGIN || V8_OS_WIN |
| 49 #include "win32-headers.h" |
| 50 #endif |
| 51 |
| 52 namespace v8 { |
| 53 namespace internal { |
| 54 |
| 55 class RandomAddressGenerator V8_FINAL { |
| 56 public: |
| 57 V8_INLINE(uintptr_t NextAddress()) { |
| 58 LockGuard<Mutex> lock_guard(&mutex_); |
| 59 uintptr_t address = rng_.NextInt(); |
| 60 #if V8_HOST_ARCH_64_BIT |
| 61 address = (address << 32) + static_cast<uintptr_t>(rng_.NextInt()); |
| 62 #endif |
| 63 return address; |
| 64 } |
| 65 |
| 66 private: |
| 67 Mutex mutex_; |
| 68 RandomNumberGenerator rng_; |
| 69 }; |
| 70 |
| 71 typedef LazyInstance<RandomAddressGenerator, |
| 72 DefaultConstructTrait<RandomAddressGenerator>, |
| 73 ThreadSafeInitOnceTrait>::type LazyRandomAddressGenerator; |
| 74 |
| 75 #define LAZY_RANDOM_ADDRESS_GENERATOR_INITIALIZER LAZY_INSTANCE_INITIALIZER |
| 76 |
| 77 |
| 78 static V8_INLINE(void* GenerateRandomAddress()) { |
| 79 #if V8_OS_NACL |
| 80 // TODO(bradchen): Restore randomization once Native Client gets smarter |
| 81 // about using mmap address hints. |
| 82 // See http://code.google.com/p/nativeclient/issues/3341 |
| 83 return NULL; |
| 84 #else // V8_OS_NACL |
| 85 LazyRandomAddressGenerator random_address_generator = |
| 86 LAZY_RANDOM_ADDRESS_GENERATOR_INITIALIZER; |
| 87 uintptr_t address = random_address_generator.Pointer()->NextAddress(); |
| 88 |
| 89 # if V8_TARGET_ARCH_X64 |
| 90 # if V8_OS_CYGWIN || V8_OS_WIN |
| 91 // Try not to map pages into the default range that windows loads DLLs. |
| 92 // Use a multiple of 64KiB to prevent committing unused memory. |
| 93 address += V8_UINT64_C(0x00080000000); |
| 94 address &= V8_UINT64_C(0x3ffffff0000); |
| 95 # else // V8_OS_CYGWIN || V8_OS_WIN |
| 96 // Currently available CPUs have 48 bits of virtual addressing. Truncate |
| 97 // the hint address to 46 bits to give the kernel a fighting chance of |
| 98 // fulfilling our placement request. |
| 99 address &= V8_UINT64_C(0x3ffffffff000); |
| 100 # endif // V8_OS_CYGWIN || V8_OS_WIN |
| 101 # else // V8_TARGET_ARCH_X64 |
| 102 # if V8_OS_CYGWIN || V8_OS_WIN |
| 103 // Try not to map pages into the default range that windows loads DLLs. |
| 104 // Use a multiple of 64KiB to prevent committing unused memory. |
| 105 address += 0x04000000; |
| 106 address &= 0x3fff0000; |
| 107 # elif V8_OS_SOLARIS |
| 108 // For our Solaris/illumos mmap hint, we pick a random address in the bottom |
| 109 // half of the top half of the address space (that is, the third quarter). |
| 110 // Because we do not MAP_FIXED, this will be treated only as a hint -- the |
| 111 // system will not fail to mmap() because something else happens to already |
| 112 // be mapped at our random address. We deliberately set the hint high enough |
| 113 // to get well above the system's break (that is, the heap); Solaris and |
| 114 // illumos will try the hint and if that fails allocate as if there were |
| 115 // no hint at all. The high hint prevents the break from getting hemmed in |
| 116 // at low values, ceding half of the address space to the system heap. |
| 117 address &= 0x3ffff000; |
| 118 address += 0x80000000; |
| 119 # else // V8_OS_CYGWIN || V8_OS_WIN |
| 120 // The range 0x20000000 - 0x60000000 is relatively unpopulated across a |
| 121 // variety of ASLR modes (PAE kernel, NX compat mode, etc) and on Mac OS X |
| 122 // 10.6 and 10.7. |
| 123 address &= 0x3ffff000; |
| 124 address += 0x20000000; |
| 125 # endif // V8_OS_CYGIN || V8_OS_WIN |
| 126 # endif // V8_TARGET_ARCH_X64 |
| 127 return reinterpret_cast<void*>(address); |
| 128 #endif // V8_OS_NACL |
| 129 } |
| 130 |
| 131 |
| 132 // static |
| 133 void* VirtualMemory::AllocateRegion(size_t size, |
| 134 size_t* size_return, |
| 135 Executability executability) { |
| 136 ASSERT_LT(0, size); |
| 137 ASSERT_NE(NULL, size_return); |
| 138 void* address = ReserveRegion(size, &size); |
| 139 if (address == NULL) return NULL; |
| 140 if (!CommitRegion(address, size, executability)) { |
| 141 bool result = ReleaseRegion(address, size); |
| 142 ASSERT(result); |
| 143 USE(result); |
| 144 return NULL; |
| 145 } |
| 146 *size_return = size; |
| 147 return address; |
| 148 } |
| 149 |
| 150 #if V8_OS_CYGWIN || V8_OS_WIN |
| 151 |
| 152 // static |
| 153 void* VirtualMemory::ReserveRegion(size_t size, size_t* size_return) { |
| 154 ASSERT_LT(0, size); |
| 155 ASSERT_NE(NULL, size_return); |
| 156 // The minimum size that can be reserved is 64KiB, see |
| 157 // http://msdn.microsoft.com/en-us/library/ms810627.aspx |
| 158 if (size < 64 * KB) { |
| 159 size = 64 * KB; |
| 160 } |
| 161 size = RoundUp(size, GetAllocationGranularity()); |
| 162 LPVOID address = NULL; |
| 163 // Try and randomize the allocation address (up to three attempts). |
| 164 for (unsigned attempts = 0; address == NULL && attempts < 3; ++attempts) { |
| 165 address = VirtualAlloc(GenerateRandomAddress(), |
| 166 size, |
| 167 MEM_RESERVE, |
| 168 PAGE_NOACCESS); |
| 169 } |
| 170 if (address == NULL) { |
| 171 // After three attempts give up and let the kernel find an address. |
| 172 address = VirtualAlloc(NULL, size, MEM_RESERVE, PAGE_NOACCESS); |
| 173 } |
| 174 if (address == NULL) { |
| 175 return NULL; |
| 176 } |
| 177 ASSERT(IsAligned(reinterpret_cast<uintptr_t>(address), |
| 178 GetAllocationGranularity())); |
| 179 *size_return = size; |
| 180 return address; |
| 181 } |
| 182 |
| 183 |
| 184 // static |
| 185 void* VirtualMemory::ReserveRegion(size_t size, |
| 186 size_t* size_return, |
| 187 size_t alignment) { |
| 188 ASSERT_LT(0, size); |
| 189 ASSERT_NE(NULL, size_return); |
| 190 ASSERT(IsAligned(alignment, GetAllocationGranularity())); |
| 191 |
| 192 size_t reserved_size; |
| 193 Address reserved_base = static_cast<Address>( |
| 194 ReserveRegion(size + alignment, &reserved_size)); |
| 195 if (reserved_base == NULL) { |
| 196 return NULL; |
| 197 } |
| 198 ASSERT_LE(size, reserved_size); |
| 199 ASSERT(IsAligned(reserved_size, GetPageSize())); |
| 200 |
| 201 // Try reducing the size by freeing and then reallocating a specific area. |
| 202 bool result = ReleaseRegion(reserved_base, reserved_size); |
| 203 USE(result); |
| 204 ASSERT(result); |
| 205 size_t aligned_size = RoundUp(size, GetPageSize()); |
| 206 Address aligned_base = static_cast<Address>( |
| 207 VirtualAlloc(RoundUp(reserved_base, alignment), |
| 208 aligned_size, |
| 209 MEM_RESERVE, |
| 210 PAGE_NOACCESS)); |
| 211 if (aligned_base != NULL) { |
| 212 ASSERT(aligned_base == RoundUp(reserved_base, alignment)); |
| 213 ASSERT(IsAligned(reinterpret_cast<uintptr_t>(aligned_base), |
| 214 GetAllocationGranularity())); |
| 215 ASSERT(IsAligned(aligned_size, GetPageSize())); |
| 216 *size_return = aligned_size; |
| 217 return aligned_base; |
| 218 } |
| 219 |
| 220 // Resizing failed, just go with a bigger area. |
| 221 return ReserveRegion(reserved_size, size_return); |
| 222 } |
| 223 |
| 224 |
| 225 // static |
| 226 bool VirtualMemory::CommitRegion(void* address, |
| 227 size_t size, |
| 228 Executability executability) { |
| 229 ASSERT_NE(NULL, address); |
| 230 ASSERT_LT(0, size); |
| 231 DWORD protect = 0; |
| 232 switch (executability) { |
| 233 case NOT_EXECUTABLE: |
| 234 protect = PAGE_READWRITE; |
| 235 break; |
| 236 |
| 237 case EXECUTABLE: |
| 238 protect = PAGE_EXECUTE_READWRITE; |
| 239 break; |
| 240 } |
| 241 LPVOID result = VirtualAlloc(address, size, MEM_COMMIT, protect); |
| 242 if (result == NULL) { |
| 243 ASSERT(GetLastError() != ERROR_INVALID_ADDRESS); |
| 244 return false; |
| 245 } |
| 246 ASSERT_EQ(address, result); |
| 247 return true; |
| 248 } |
| 249 |
| 250 |
| 251 // static |
| 252 bool VirtualMemory::UncommitRegion(void* address, size_t size) { |
| 253 ASSERT_NE(NULL, address); |
| 254 ASSERT_LT(0, size); |
| 255 int result = VirtualFree(address, size, MEM_DECOMMIT); |
| 256 if (result == 0) { |
| 257 return false; |
| 258 } |
| 259 return true; |
| 260 } |
| 261 |
| 262 |
| 263 // static |
| 264 bool VirtualMemory::WriteProtectRegion(void* address, size_t size) { |
| 265 ASSERT_NE(NULL, address); |
| 266 ASSERT_LT(0, size); |
| 267 DWORD old_protect; |
| 268 return VirtualProtect(address, size, PAGE_EXECUTE_READ, &old_protect); |
| 269 } |
| 270 |
| 271 |
| 272 // static |
| 273 bool VirtualMemory::ReleaseRegion(void* address, size_t size) { |
| 274 ASSERT_NE(NULL, address); |
| 275 ASSERT_LT(0, size); |
| 276 USE(size); |
| 277 int result = VirtualFree(address, 0, MEM_RELEASE); |
| 278 if (result == 0) { |
| 279 return false; |
| 280 } |
| 281 return true; |
| 282 } |
| 283 |
| 284 |
| 285 // static |
| 286 size_t VirtualMemory::GetAllocationGranularity() { |
| 287 static size_t allocation_granularity = 0; |
| 288 if (allocation_granularity == 0) { |
| 289 SYSTEM_INFO system_info; |
| 290 GetSystemInfo(&system_info); |
| 291 allocation_granularity = system_info.dwAllocationGranularity; |
| 292 MemoryBarrier(); |
| 293 } |
| 294 return allocation_granularity; |
| 295 } |
| 296 |
| 297 |
| 298 // static |
| 299 size_t VirtualMemory::GetLimit() { |
| 300 return 0; |
| 301 } |
| 302 |
| 303 |
| 304 // static |
| 305 size_t VirtualMemory::GetPageSize() { |
| 306 static size_t page_size = 0; |
| 307 if (page_size == 0) { |
| 308 SYSTEM_INFO system_info; |
| 309 GetSystemInfo(&system_info); |
| 310 page_size = system_info.dwPageSize; |
| 311 MemoryBarrier(); |
| 312 } |
| 313 return page_size; |
| 314 } |
| 315 |
| 316 |
| 317 #else // V8_OS_CYGIN || V8_OS_WIN |
| 318 |
| 319 |
| 320 // Constants used for mmap. |
| 321 #if V8_OS_MACOSX |
| 322 // kMmapFd is used to pass vm_alloc flags to tag the region with the user |
| 323 // defined tag 255 This helps identify V8-allocated regions in memory analysis |
| 324 // tools like vmmap(1). |
| 325 static const int kMmapFd = VM_MAKE_TAG(255); |
| 326 #else |
| 327 static const int kMmapFd = -1; |
| 328 #endif // V8_OS_MACOSX |
| 329 static const off_t kMmapFdOffset = 0; |
| 330 |
| 331 |
| 332 // static |
| 333 void* VirtualMemory::ReserveRegion(size_t size, size_t* size_return) { |
| 334 ASSERT_LT(0, size); |
| 335 ASSERT_NE(NULL, size_return); |
| 336 |
| 337 size = RoundUp(size, GetPageSize()); |
| 338 void* address = mmap(GenerateRandomAddress(), |
| 339 size, |
| 340 PROT_NONE, |
| 341 MAP_ANON | MAP_NORESERVE | MAP_PRIVATE, |
| 342 kMmapFd, |
| 343 kMmapFdOffset); |
| 344 if (address == MAP_FAILED) { |
| 345 ASSERT_NE(EINVAL, errno); |
| 346 return NULL; |
| 347 } |
| 348 *size_return = size; |
| 349 return address; |
| 350 } |
| 351 |
| 352 |
| 353 // static |
| 354 void* VirtualMemory::ReserveRegion(size_t size, |
| 355 size_t* size_return, |
| 356 size_t alignment) { |
| 357 ASSERT_LT(0, size); |
| 358 ASSERT_NE(NULL, size_return); |
| 359 ASSERT(IsAligned(alignment, GetPageSize())); |
| 360 |
| 361 size_t reserved_size; |
| 362 Address reserved_base = static_cast<Address>( |
| 363 ReserveRegion(size + alignment, &reserved_size)); |
| 364 if (reserved_base == NULL) { |
| 365 return NULL; |
| 366 } |
| 367 |
| 368 Address aligned_base = RoundUp(reserved_base, alignment); |
| 369 ASSERT_LE(reserved_base, aligned_base); |
| 370 |
| 371 // Unmap extra memory reserved before the aligned region. |
| 372 if (aligned_base != reserved_base) { |
| 373 size_t prefix_size = static_cast<size_t>(aligned_base - reserved_base); |
| 374 bool result = ReleaseRegion(reserved_base, prefix_size); |
| 375 ASSERT(result); |
| 376 USE(result); |
| 377 reserved_size -= prefix_size; |
| 378 } |
| 379 |
| 380 size_t aligned_size = RoundUp(size, GetPageSize()); |
| 381 ASSERT_LE(aligned_size, reserved_size); |
| 382 |
| 383 // Unmap extra memory reserved after the aligned region. |
| 384 if (aligned_size != reserved_size) { |
| 385 size_t suffix_size = reserved_size - aligned_size; |
| 386 bool result = ReleaseRegion(aligned_base + aligned_size, suffix_size); |
| 387 ASSERT(result); |
| 388 USE(result); |
| 389 reserved_size -= suffix_size; |
| 390 } |
| 391 |
| 392 ASSERT(aligned_size == reserved_size); |
| 393 ASSERT_NE(NULL, aligned_base); |
| 394 |
| 395 *size_return = aligned_size; |
| 396 return aligned_base; |
| 397 } |
| 398 |
| 399 |
| 400 // static |
| 401 bool VirtualMemory::CommitRegion(void* address, |
| 402 size_t size, |
| 403 Executability executability) { |
| 404 ASSERT_NE(NULL, address); |
| 405 ASSERT_LT(0, size); |
| 406 int prot = 0; |
| 407 // The Native Client port of V8 uses an interpreter, |
| 408 // so code pages don't need PROT_EXEC. |
| 409 #if V8_OS_NACL |
| 410 executability = NOT_EXECUTABLE; |
| 411 #endif |
| 412 switch (executability) { |
| 413 case NOT_EXECUTABLE: |
| 414 prot = PROT_READ | PROT_WRITE; |
| 415 break; |
| 416 |
| 417 case EXECUTABLE: |
| 418 prot = PROT_EXEC | PROT_READ | PROT_WRITE; |
| 419 break; |
| 420 } |
| 421 void* result = mmap(address, |
| 422 size, |
| 423 prot, |
| 424 MAP_ANON | MAP_FIXED | MAP_PRIVATE, |
| 425 kMmapFd, |
| 426 kMmapFdOffset); |
| 427 if (result == MAP_FAILED) { |
| 428 ASSERT_NE(EINVAL, errno); |
| 429 return false; |
| 430 } |
| 431 return true; |
| 432 } |
| 433 |
| 434 |
| 435 // static |
| 436 bool VirtualMemory::UncommitRegion(void* address, size_t size) { |
| 437 ASSERT_NE(NULL, address); |
| 438 ASSERT_LT(0, size); |
| 439 void* result = mmap(address, |
| 440 size, |
| 441 PROT_NONE, |
| 442 MAP_ANON | MAP_FIXED | MAP_NORESERVE | MAP_PRIVATE, |
| 443 kMmapFd, |
| 444 kMmapFdOffset); |
| 445 if (result == MAP_FAILED) { |
| 446 ASSERT_NE(EINVAL, errno); |
| 447 return false; |
| 448 } |
| 449 return true; |
| 450 } |
| 451 |
| 452 |
| 453 // static |
| 454 bool VirtualMemory::WriteProtectRegion(void* address, size_t size) { |
| 455 ASSERT_NE(NULL, address); |
| 456 ASSERT_LT(0, size); |
| 457 #if V8_OS_NACL |
| 458 // The Native Client port of V8 uses an interpreter, |
| 459 // so code pages don't need PROT_EXEC. |
| 460 int prot = PROT_READ; |
| 461 #else |
| 462 int prot = PROT_EXEC | PROT_READ; |
| 463 #endif |
| 464 int result = mprotect(address, size, prot); |
| 465 if (result < 0) { |
| 466 ASSERT_NE(EINVAL, errno); |
| 467 return false; |
| 468 } |
| 469 return true; |
| 470 } |
| 471 |
| 472 |
| 473 // static |
| 474 bool VirtualMemory::ReleaseRegion(void* address, size_t size) { |
| 475 ASSERT_NE(NULL, address); |
| 476 ASSERT_LT(0, size); |
| 477 int result = munmap(address, size); |
| 478 if (result < 0) { |
| 479 ASSERT_NE(EINVAL, errno); |
| 480 return false; |
| 481 } |
| 482 return true; |
| 483 } |
| 484 |
| 485 |
| 486 // static |
| 487 size_t VirtualMemory::GetAllocationGranularity() { |
| 488 return GetPageSize(); |
| 489 } |
| 490 |
| 491 |
| 492 // static |
| 493 size_t VirtualMemory::GetLimit() { |
| 494 struct rlimit rlim; |
| 495 int result = getrlimit(RLIMIT_DATA, &rlim); |
| 496 ASSERT_EQ(0, result); |
| 497 USE(result); |
| 498 return rlim.rlim_cur; |
| 499 } |
| 500 |
| 501 |
| 502 // static |
| 503 size_t VirtualMemory::GetPageSize() { |
| 504 static const size_t kPageSize = getpagesize(); |
| 505 return kPageSize; |
| 506 } |
| 507 |
| 508 #endif // V8_OS_CYGWIN || V8_OS_WIN |
| 509 |
| 510 } } // namespace v8::internal |
OLD | NEW |