Index: third_party/sqlite/sqlite-src-3080704/ext/misc/totype.c |
diff --git a/third_party/sqlite/sqlite-src-3080704/ext/misc/totype.c b/third_party/sqlite/sqlite-src-3080704/ext/misc/totype.c |
deleted file mode 100644 |
index 5dc99f3d7dc5f36ba4adf311e18b55a24bc29e7e..0000000000000000000000000000000000000000 |
--- a/third_party/sqlite/sqlite-src-3080704/ext/misc/totype.c |
+++ /dev/null |
@@ -1,512 +0,0 @@ |
-/* |
-** 2013-10-14 |
-** |
-** The author disclaims copyright to this source code. In place of |
-** a legal notice, here is a blessing: |
-** |
-** May you do good and not evil. |
-** May you find forgiveness for yourself and forgive others. |
-** May you share freely, never taking more than you give. |
-** |
-****************************************************************************** |
-** |
-** This SQLite extension implements functions tointeger(X) and toreal(X). |
-** |
-** If X is an integer, real, or string value that can be |
-** losslessly represented as an integer, then tointeger(X) |
-** returns the corresponding integer value. |
-** If X is an 8-byte BLOB then that blob is interpreted as |
-** a signed two-compliment little-endian encoding of an integer |
-** and tointeger(X) returns the corresponding integer value. |
-** Otherwise tointeger(X) return NULL. |
-** |
-** If X is an integer, real, or string value that can be |
-** convert into a real number, preserving at least 15 digits |
-** of precision, then toreal(X) returns the corresponding real value. |
-** If X is an 8-byte BLOB then that blob is interpreted as |
-** a 64-bit IEEE754 big-endian floating point value |
-** and toreal(X) returns the corresponding real value. |
-** Otherwise toreal(X) return NULL. |
-** |
-** Note that tointeger(X) of an 8-byte BLOB assumes a little-endian |
-** encoding whereas toreal(X) of an 8-byte BLOB assumes a big-endian |
-** encoding. |
-*/ |
-#include "sqlite3ext.h" |
-SQLITE_EXTENSION_INIT1 |
-#include <assert.h> |
-#include <string.h> |
- |
-/* |
-** Determine if this is running on a big-endian or little-endian |
-** processor |
-*/ |
-#if defined(i386) || defined(__i386__) || defined(_M_IX86)\ |
- || defined(__x86_64) || defined(__x86_64__) |
-# define TOTYPE_BIGENDIAN 0 |
-# define TOTYPE_LITTLEENDIAN 1 |
-#else |
- const int totype_one = 1; |
-# define TOTYPE_BIGENDIAN (*(char *)(&totype_one)==0) |
-# define TOTYPE_LITTLEENDIAN (*(char *)(&totype_one)==1) |
-#endif |
- |
-/* |
-** Constants for the largest and smallest possible 64-bit signed integers. |
-** These macros are designed to work correctly on both 32-bit and 64-bit |
-** compilers. |
-*/ |
-#ifndef LARGEST_INT64 |
-# define LARGEST_INT64 (0xffffffff|(((sqlite3_int64)0x7fffffff)<<32)) |
-#endif |
- |
-#ifndef SMALLEST_INT64 |
-# define SMALLEST_INT64 (((sqlite3_int64)-1) - LARGEST_INT64) |
-#endif |
- |
-/* |
-** Return TRUE if character c is a whitespace character |
-*/ |
-static int totypeIsspace(unsigned char c){ |
- return c==' ' || c=='\t' || c=='\n' || c=='\v' || c=='\f' || c=='\r'; |
-} |
- |
-/* |
-** Return TRUE if character c is a digit |
-*/ |
-static int totypeIsdigit(unsigned char c){ |
- return c>='0' && c<='9'; |
-} |
- |
-/* |
-** Compare the 19-character string zNum against the text representation |
-** value 2^63: 9223372036854775808. Return negative, zero, or positive |
-** if zNum is less than, equal to, or greater than the string. |
-** Note that zNum must contain exactly 19 characters. |
-** |
-** Unlike memcmp() this routine is guaranteed to return the difference |
-** in the values of the last digit if the only difference is in the |
-** last digit. So, for example, |
-** |
-** totypeCompare2pow63("9223372036854775800") |
-** |
-** will return -8. |
-*/ |
-static int totypeCompare2pow63(const char *zNum){ |
- int c = 0; |
- int i; |
- /* 012345678901234567 */ |
- const char *pow63 = "922337203685477580"; |
- for(i=0; c==0 && i<18; i++){ |
- c = (zNum[i]-pow63[i])*10; |
- } |
- if( c==0 ){ |
- c = zNum[18] - '8'; |
- } |
- return c; |
-} |
- |
-/* |
-** Convert zNum to a 64-bit signed integer. |
-** |
-** If the zNum value is representable as a 64-bit twos-complement |
-** integer, then write that value into *pNum and return 0. |
-** |
-** If zNum is exactly 9223372036854665808, return 2. This special |
-** case is broken out because while 9223372036854665808 cannot be a |
-** signed 64-bit integer, its negative -9223372036854665808 can be. |
-** |
-** If zNum is too big for a 64-bit integer and is not |
-** 9223372036854665808 or if zNum contains any non-numeric text, |
-** then return 1. |
-** |
-** The string is not necessarily zero-terminated. |
-*/ |
-static int totypeAtoi64(const char *zNum, sqlite3_int64 *pNum, int length){ |
- sqlite3_uint64 u = 0; |
- int neg = 0; /* assume positive */ |
- int i; |
- int c = 0; |
- int nonNum = 0; |
- const char *zStart; |
- const char *zEnd = zNum + length; |
- |
- while( zNum<zEnd && totypeIsspace(*zNum) ) zNum++; |
- if( zNum<zEnd ){ |
- if( *zNum=='-' ){ |
- neg = 1; |
- zNum++; |
- }else if( *zNum=='+' ){ |
- zNum++; |
- } |
- } |
- zStart = zNum; |
- while( zNum<zEnd && zNum[0]=='0' ){ zNum++; } /* Skip leading zeros. */ |
- for(i=0; &zNum[i]<zEnd && (c=zNum[i])>='0' && c<='9'; i++){ |
- u = u*10 + c - '0'; |
- } |
- if( u>LARGEST_INT64 ){ |
- *pNum = SMALLEST_INT64; |
- }else if( neg ){ |
- *pNum = -(sqlite3_int64)u; |
- }else{ |
- *pNum = (sqlite3_int64)u; |
- } |
- if( (c!=0 && &zNum[i]<zEnd) || (i==0 && zStart==zNum) || i>19 || nonNum ){ |
- /* zNum is empty or contains non-numeric text or is longer |
- ** than 19 digits (thus guaranteeing that it is too large) */ |
- return 1; |
- }else if( i<19 ){ |
- /* Less than 19 digits, so we know that it fits in 64 bits */ |
- assert( u<=LARGEST_INT64 ); |
- return 0; |
- }else{ |
- /* zNum is a 19-digit numbers. Compare it against 9223372036854775808. */ |
- c = totypeCompare2pow63(zNum); |
- if( c<0 ){ |
- /* zNum is less than 9223372036854775808 so it fits */ |
- assert( u<=LARGEST_INT64 ); |
- return 0; |
- }else if( c>0 ){ |
- /* zNum is greater than 9223372036854775808 so it overflows */ |
- return 1; |
- }else{ |
- /* zNum is exactly 9223372036854775808. Fits if negative. The |
- ** special case 2 overflow if positive */ |
- assert( u-1==LARGEST_INT64 ); |
- assert( (*pNum)==SMALLEST_INT64 ); |
- return neg ? 0 : 2; |
- } |
- } |
-} |
- |
-/* |
-** The string z[] is an text representation of a real number. |
-** Convert this string to a double and write it into *pResult. |
-** |
-** The string is not necessarily zero-terminated. |
-** |
-** Return TRUE if the result is a valid real number (or integer) and FALSE |
-** if the string is empty or contains extraneous text. Valid numbers |
-** are in one of these formats: |
-** |
-** [+-]digits[E[+-]digits] |
-** [+-]digits.[digits][E[+-]digits] |
-** [+-].digits[E[+-]digits] |
-** |
-** Leading and trailing whitespace is ignored for the purpose of determining |
-** validity. |
-** |
-** If some prefix of the input string is a valid number, this routine |
-** returns FALSE but it still converts the prefix and writes the result |
-** into *pResult. |
-*/ |
-static int totypeAtoF(const char *z, double *pResult, int length){ |
- const char *zEnd = z + length; |
- /* sign * significand * (10 ^ (esign * exponent)) */ |
- int sign = 1; /* sign of significand */ |
- sqlite3_int64 s = 0; /* significand */ |
- int d = 0; /* adjust exponent for shifting decimal point */ |
- int esign = 1; /* sign of exponent */ |
- int e = 0; /* exponent */ |
- int eValid = 1; /* True exponent is either not used or is well-formed */ |
- double result; |
- int nDigits = 0; |
- int nonNum = 0; |
- |
- *pResult = 0.0; /* Default return value, in case of an error */ |
- |
- /* skip leading spaces */ |
- while( z<zEnd && totypeIsspace(*z) ) z++; |
- if( z>=zEnd ) return 0; |
- |
- /* get sign of significand */ |
- if( *z=='-' ){ |
- sign = -1; |
- z++; |
- }else if( *z=='+' ){ |
- z++; |
- } |
- |
- /* skip leading zeroes */ |
- while( z<zEnd && z[0]=='0' ) z++, nDigits++; |
- |
- /* copy max significant digits to significand */ |
- while( z<zEnd && totypeIsdigit(*z) && s<((LARGEST_INT64-9)/10) ){ |
- s = s*10 + (*z - '0'); |
- z++, nDigits++; |
- } |
- |
- /* skip non-significant significand digits |
- ** (increase exponent by d to shift decimal left) */ |
- while( z<zEnd && totypeIsdigit(*z) ) z++, nDigits++, d++; |
- if( z>=zEnd ) goto totype_atof_calc; |
- |
- /* if decimal point is present */ |
- if( *z=='.' ){ |
- z++; |
- /* copy digits from after decimal to significand |
- ** (decrease exponent by d to shift decimal right) */ |
- while( z<zEnd && totypeIsdigit(*z) && s<((LARGEST_INT64-9)/10) ){ |
- s = s*10 + (*z - '0'); |
- z++, nDigits++, d--; |
- } |
- /* skip non-significant digits */ |
- while( z<zEnd && totypeIsdigit(*z) ) z++, nDigits++; |
- } |
- if( z>=zEnd ) goto totype_atof_calc; |
- |
- /* if exponent is present */ |
- if( *z=='e' || *z=='E' ){ |
- z++; |
- eValid = 0; |
- if( z>=zEnd ) goto totype_atof_calc; |
- /* get sign of exponent */ |
- if( *z=='-' ){ |
- esign = -1; |
- z++; |
- }else if( *z=='+' ){ |
- z++; |
- } |
- /* copy digits to exponent */ |
- while( z<zEnd && totypeIsdigit(*z) ){ |
- e = e<10000 ? (e*10 + (*z - '0')) : 10000; |
- z++; |
- eValid = 1; |
- } |
- } |
- |
- /* skip trailing spaces */ |
- if( nDigits && eValid ){ |
- while( z<zEnd && totypeIsspace(*z) ) z++; |
- } |
- |
-totype_atof_calc: |
- /* adjust exponent by d, and update sign */ |
- e = (e*esign) + d; |
- if( e<0 ) { |
- esign = -1; |
- e *= -1; |
- } else { |
- esign = 1; |
- } |
- |
- /* if 0 significand */ |
- if( !s ) { |
- /* In the IEEE 754 standard, zero is signed. |
- ** Add the sign if we've seen at least one digit */ |
- result = (sign<0 && nDigits) ? -(double)0 : (double)0; |
- } else { |
- /* attempt to reduce exponent */ |
- if( esign>0 ){ |
- while( s<(LARGEST_INT64/10) && e>0 ) e--,s*=10; |
- }else{ |
- while( !(s%10) && e>0 ) e--,s/=10; |
- } |
- |
- /* adjust the sign of significand */ |
- s = sign<0 ? -s : s; |
- |
- /* if exponent, scale significand as appropriate |
- ** and store in result. */ |
- if( e ){ |
- double scale = 1.0; |
- /* attempt to handle extremely small/large numbers better */ |
- if( e>307 && e<342 ){ |
- while( e%308 ) { scale *= 1.0e+1; e -= 1; } |
- if( esign<0 ){ |
- result = s / scale; |
- result /= 1.0e+308; |
- }else{ |
- result = s * scale; |
- result *= 1.0e+308; |
- } |
- }else if( e>=342 ){ |
- if( esign<0 ){ |
- result = 0.0*s; |
- }else{ |
- result = 1e308*1e308*s; /* Infinity */ |
- } |
- }else{ |
- /* 1.0e+22 is the largest power of 10 than can be |
- ** represented exactly. */ |
- while( e%22 ) { scale *= 1.0e+1; e -= 1; } |
- while( e>0 ) { scale *= 1.0e+22; e -= 22; } |
- if( esign<0 ){ |
- result = s / scale; |
- }else{ |
- result = s * scale; |
- } |
- } |
- } else { |
- result = (double)s; |
- } |
- } |
- |
- /* store the result */ |
- *pResult = result; |
- |
- /* return true if number and no extra non-whitespace chracters after */ |
- return z>=zEnd && nDigits>0 && eValid && nonNum==0; |
-} |
- |
-/* |
-** tointeger(X): If X is any value (integer, double, blob, or string) that |
-** can be losslessly converted into an integer, then make the conversion and |
-** return the result. Otherwise, return NULL. |
-*/ |
-static void tointegerFunc( |
- sqlite3_context *context, |
- int argc, |
- sqlite3_value **argv |
-){ |
- assert( argc==1 ); |
- (void)argc; |
- switch( sqlite3_value_type(argv[0]) ){ |
- case SQLITE_FLOAT: { |
- double rVal = sqlite3_value_double(argv[0]); |
- sqlite3_int64 iVal = (sqlite3_int64)rVal; |
- if( rVal==(double)iVal ){ |
- sqlite3_result_int64(context, iVal); |
- } |
- break; |
- } |
- case SQLITE_INTEGER: { |
- sqlite3_result_int64(context, sqlite3_value_int64(argv[0])); |
- break; |
- } |
- case SQLITE_BLOB: { |
- const unsigned char *zBlob = sqlite3_value_blob(argv[0]); |
- if( zBlob ){ |
- int nBlob = sqlite3_value_bytes(argv[0]); |
- if( nBlob==sizeof(sqlite3_int64) ){ |
- sqlite3_int64 iVal; |
- if( TOTYPE_BIGENDIAN ){ |
- int i; |
- unsigned char zBlobRev[sizeof(sqlite3_int64)]; |
- for(i=0; i<sizeof(sqlite3_int64); i++){ |
- zBlobRev[i] = zBlob[sizeof(sqlite3_int64)-1-i]; |
- } |
- memcpy(&iVal, zBlobRev, sizeof(sqlite3_int64)); |
- }else{ |
- memcpy(&iVal, zBlob, sizeof(sqlite3_int64)); |
- } |
- sqlite3_result_int64(context, iVal); |
- } |
- } |
- break; |
- } |
- case SQLITE_TEXT: { |
- const unsigned char *zStr = sqlite3_value_text(argv[0]); |
- if( zStr ){ |
- int nStr = sqlite3_value_bytes(argv[0]); |
- if( nStr && !totypeIsspace(zStr[0]) ){ |
- sqlite3_int64 iVal; |
- if( !totypeAtoi64((const char*)zStr, &iVal, nStr) ){ |
- sqlite3_result_int64(context, iVal); |
- } |
- } |
- } |
- break; |
- } |
- default: { |
- assert( sqlite3_value_type(argv[0])==SQLITE_NULL ); |
- break; |
- } |
- } |
-} |
- |
-/* |
-** toreal(X): If X is any value (integer, double, blob, or string) that can |
-** be losslessly converted into a real number, then do so and return that |
-** real number. Otherwise return NULL. |
-*/ |
-#if defined(_MSC_VER) |
-#pragma warning(disable: 4748) |
-#pragma optimize("", off) |
-#endif |
-static void torealFunc( |
- sqlite3_context *context, |
- int argc, |
- sqlite3_value **argv |
-){ |
- assert( argc==1 ); |
- (void)argc; |
- switch( sqlite3_value_type(argv[0]) ){ |
- case SQLITE_FLOAT: { |
- sqlite3_result_double(context, sqlite3_value_double(argv[0])); |
- break; |
- } |
- case SQLITE_INTEGER: { |
- sqlite3_int64 iVal = sqlite3_value_int64(argv[0]); |
- double rVal = (double)iVal; |
- if( iVal==(sqlite3_int64)rVal ){ |
- sqlite3_result_double(context, rVal); |
- } |
- break; |
- } |
- case SQLITE_BLOB: { |
- const unsigned char *zBlob = sqlite3_value_blob(argv[0]); |
- if( zBlob ){ |
- int nBlob = sqlite3_value_bytes(argv[0]); |
- if( nBlob==sizeof(double) ){ |
- double rVal; |
- if( TOTYPE_LITTLEENDIAN ){ |
- int i; |
- unsigned char zBlobRev[sizeof(double)]; |
- for(i=0; i<sizeof(double); i++){ |
- zBlobRev[i] = zBlob[sizeof(double)-1-i]; |
- } |
- memcpy(&rVal, zBlobRev, sizeof(double)); |
- }else{ |
- memcpy(&rVal, zBlob, sizeof(double)); |
- } |
- sqlite3_result_double(context, rVal); |
- } |
- } |
- break; |
- } |
- case SQLITE_TEXT: { |
- const unsigned char *zStr = sqlite3_value_text(argv[0]); |
- if( zStr ){ |
- int nStr = sqlite3_value_bytes(argv[0]); |
- if( nStr && !totypeIsspace(zStr[0]) && !totypeIsspace(zStr[nStr-1]) ){ |
- double rVal; |
- if( totypeAtoF((const char*)zStr, &rVal, nStr) ){ |
- sqlite3_result_double(context, rVal); |
- return; |
- } |
- } |
- } |
- break; |
- } |
- default: { |
- assert( sqlite3_value_type(argv[0])==SQLITE_NULL ); |
- break; |
- } |
- } |
-} |
-#if defined(_MSC_VER) |
-#pragma optimize("", on) |
-#pragma warning(default: 4748) |
-#endif |
- |
-#ifdef _WIN32 |
-__declspec(dllexport) |
-#endif |
-int sqlite3_totype_init( |
- sqlite3 *db, |
- char **pzErrMsg, |
- const sqlite3_api_routines *pApi |
-){ |
- int rc = SQLITE_OK; |
- SQLITE_EXTENSION_INIT2(pApi); |
- (void)pzErrMsg; /* Unused parameter */ |
- rc = sqlite3_create_function(db, "tointeger", 1, SQLITE_UTF8, 0, |
- tointegerFunc, 0, 0); |
- if( rc==SQLITE_OK ){ |
- rc = sqlite3_create_function(db, "toreal", 1, SQLITE_UTF8, 0, |
- torealFunc, 0, 0); |
- } |
- return rc; |
-} |