Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(970)

Unified Diff: third_party/sqlite/sqlite-src-3080704/test/fts3rnd.test

Issue 2363173002: [sqlite] Remove obsolete reference version 3.8.7.4. (Closed)
Patch Set: Created 4 years, 3 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
Index: third_party/sqlite/sqlite-src-3080704/test/fts3rnd.test
diff --git a/third_party/sqlite/sqlite-src-3080704/test/fts3rnd.test b/third_party/sqlite/sqlite-src-3080704/test/fts3rnd.test
deleted file mode 100644
index 97af54925f3953e866468ddac7cc3afa8736b471..0000000000000000000000000000000000000000
--- a/third_party/sqlite/sqlite-src-3080704/test/fts3rnd.test
+++ /dev/null
@@ -1,460 +0,0 @@
-# 2009 December 03
-#
-# May you do good and not evil.
-# May you find forgiveness for yourself and forgive others.
-# May you share freely, never taking more than you give.
-#
-#***********************************************************************
-#
-# Brute force (random data) tests for FTS3.
-#
-
-#-------------------------------------------------------------------------
-#
-# The FTS3 tests implemented in this file focus on testing that FTS3
-# returns the correct set of documents for various types of full-text
-# query. This is done using pseudo-randomly generated data and queries.
-# The expected result of each query is calculated using Tcl code.
-#
-# 1. The database is initialized to contain a single table with three
-# columns. 100 rows are inserted into the table. Each of the three
-# values in each row is a document consisting of between 0 and 100
-# terms. Terms are selected from a vocabulary of $G(nVocab) terms.
-#
-# 2. The following is performed 100 times:
-#
-# a. A row is inserted into the database. The row contents are
-# generated as in step 1. The docid is a pseudo-randomly selected
-# value between 0 and 1000000.
-#
-# b. A psuedo-randomly selected row is updated. One of its columns is
-# set to contain a new document generated in the same way as the
-# documents in step 1.
-#
-# c. A psuedo-randomly selected row is deleted.
-#
-# d. For each of several types of fts3 queries, 10 SELECT queries
-# of the form:
-#
-# SELECT docid FROM <tbl> WHERE <tbl> MATCH '<query>'
-#
-# are evaluated. The results are compared to those calculated by
-# Tcl code in this file. The patterns used for the different query
-# types are:
-#
-# 1. query = <term>
-# 2. query = <prefix>
-# 3. query = "<term> <term>"
-# 4. query = "<term> <term> <term>"
-# 5. query = "<prefix> <prefix> <prefix>"
-# 6. query = <term> NEAR <term>
-# 7. query = <term> NEAR/11 <term> NEAR/11 <term>
-# 8. query = <term> OR <term>
-# 9. query = <term> NOT <term>
-# 10. query = <term> AND <term>
-# 11. query = <term> NEAR <term> OR <term> NEAR <term>
-# 12. query = <term> NEAR <term> NOT <term> NEAR <term>
-# 13. query = <term> NEAR <term> AND <term> NEAR <term>
-#
-# where <term> is a term psuedo-randomly selected from the vocabulary
-# and prefix is the first 2 characters of such a term followed by
-# a "*" character.
-#
-# Every second iteration, steps (a) through (d) above are performed
-# within a single transaction. This forces the queries in (d) to
-# read data from both the database and the in-memory hash table
-# that caches the full-text index entries created by steps (a), (b)
-# and (c) until the transaction is committed.
-#
-# The procedure above is run 5 times, using advisory fts3 node sizes of 50,
-# 500, 1000 and 2000 bytes.
-#
-# After the test using an advisory node-size of 50, an OOM test is run using
-# the database. This test is similar to step (d) above, except that it tests
-# the effects of transient and persistent OOM conditions encountered while
-# executing each query.
-#
-
-set testdir [file dirname $argv0]
-source $testdir/tester.tcl
-
-# If this build does not include FTS3, skip the tests in this file.
-#
-ifcapable !fts3 { finish_test ; return }
-source $testdir/fts3_common.tcl
-source $testdir/malloc_common.tcl
-
-set G(nVocab) 100
-
-set nVocab 100
-set lVocab [list]
-
-expr srand(0)
-
-# Generate a vocabulary of nVocab words. Each word is 3 characters long.
-#
-set lChar {a b c d e f g h i j k l m n o p q r s t u v w x y z}
-for {set i 0} {$i < $nVocab} {incr i} {
- set len [expr int(rand()*3)+2]
- set word [lindex $lChar [expr int(rand()*26)]]
- append word [lindex $lChar [expr int(rand()*26)]]
- if {$len>2} { append word [lindex $lChar [expr int(rand()*26)]] }
- if {$len>3} { append word [lindex $lChar [expr int(rand()*26)]] }
- lappend lVocab $word
-}
-
-proc random_term {} {
- lindex $::lVocab [expr {int(rand()*$::nVocab)}]
-}
-
-# Return a document consisting of $nWord arbitrarily selected terms
-# from the $::lVocab list.
-#
-proc generate_doc {nWord} {
- set doc [list]
- for {set i 0} {$i < $nWord} {incr i} {
- lappend doc [random_term]
- }
- return $doc
-}
-
-
-
-# Primitives to update the table.
-#
-unset -nocomplain t1
-proc insert_row {rowid} {
- set a [generate_doc [expr int((rand()*100))]]
- set b [generate_doc [expr int((rand()*100))]]
- set c [generate_doc [expr int((rand()*100))]]
- execsql { INSERT INTO t1(docid, a, b, c) VALUES($rowid, $a, $b, $c) }
- set ::t1($rowid) [list $a $b $c]
-}
-proc delete_row {rowid} {
- execsql { DELETE FROM t1 WHERE rowid = $rowid }
- catch {unset ::t1($rowid)}
-}
-proc update_row {rowid} {
- set cols {a b c}
- set iCol [expr int(rand()*3)]
- set doc [generate_doc [expr int((rand()*100))]]
- lset ::t1($rowid) $iCol $doc
- execsql "UPDATE t1 SET [lindex $cols $iCol] = \$doc WHERE rowid = \$rowid"
-}
-
-proc simple_phrase {zPrefix} {
- set ret [list]
-
- set reg [string map {* {[^ ]*}} $zPrefix]
- set reg " $reg "
-
- foreach key [lsort -integer [array names ::t1]] {
- set value $::t1($key)
- set cnt [list]
- foreach col $value {
- if {[regexp $reg " $col "]} { lappend ret $key ; break }
- }
- }
-
- #lsort -uniq -integer $ret
- set ret
-}
-
-# This [proc] is used to test the FTS3 matchinfo() function.
-#
-proc simple_token_matchinfo {zToken bDesc} {
-
- set nDoc(0) 0
- set nDoc(1) 0
- set nDoc(2) 0
- set nHit(0) 0
- set nHit(1) 0
- set nHit(2) 0
-
- set dir -inc
- if {$bDesc} { set dir -dec }
-
- foreach key [array names ::t1] {
- set value $::t1($key)
- set a($key) [list]
- foreach i {0 1 2} col $value {
- set hit [llength [lsearch -all $col $zToken]]
- lappend a($key) $hit
- incr nHit($i) $hit
- if {$hit>0} { incr nDoc($i) }
- }
- }
-
- set ret [list]
- foreach docid [lsort -integer $dir [array names a]] {
- if { [lindex [lsort -integer $a($docid)] end] } {
- set matchinfo [list 1 3]
- foreach i {0 1 2} hit $a($docid) {
- lappend matchinfo $hit $nHit($i) $nDoc($i)
- }
- lappend ret $docid $matchinfo
- }
- }
-
- set ret
-}
-
-proc simple_near {termlist nNear} {
- set ret [list]
-
- foreach {key value} [array get ::t1] {
- foreach v $value {
-
- set l [lsearch -exact -all $v [lindex $termlist 0]]
- foreach T [lrange $termlist 1 end] {
- set l2 [list]
- foreach i $l {
- set iStart [expr $i - $nNear - 1]
- set iEnd [expr $i + $nNear + 1]
- if {$iStart < 0} {set iStart 0}
- foreach i2 [lsearch -exact -all [lrange $v $iStart $iEnd] $T] {
- incr i2 $iStart
- if {$i2 != $i} { lappend l2 $i2 }
- }
- }
- set l [lsort -uniq -integer $l2]
- }
-
- if {[llength $l]} {
-#puts "MATCH($key): $v"
- lappend ret $key
- }
- }
- }
-
- lsort -unique -integer $ret
-}
-
-# The following three procs:
-#
-# setup_not A B
-# setup_or A B
-# setup_and A B
-#
-# each take two arguments. Both arguments must be lists of integer values
-# sorted by value. The return value is the list produced by evaluating
-# the equivalent of "A op B", where op is the FTS3 operator NOT, OR or
-# AND.
-#
-proc setop_not {A B} {
- foreach b $B { set n($b) {} }
- set ret [list]
- foreach a $A { if {![info exists n($a)]} {lappend ret $a} }
- return $ret
-}
-proc setop_or {A B} {
- lsort -integer -uniq [concat $A $B]
-}
-proc setop_and {A B} {
- foreach b $B { set n($b) {} }
- set ret [list]
- foreach a $A { if {[info exists n($a)]} {lappend ret $a} }
- return $ret
-}
-
-proc mit {blob} {
- set scan(littleEndian) i*
- set scan(bigEndian) I*
- binary scan $blob $scan($::tcl_platform(byteOrder)) r
- return $r
-}
-db func mit mit
-set sqlite_fts3_enable_parentheses 1
-
-proc do_orderbydocid_test {tn sql res} {
- uplevel [list do_select_test $tn.asc "$sql ORDER BY docid ASC" $res]
- uplevel [list do_select_test $tn.desc "$sql ORDER BY docid DESC" \
- [lsort -int -dec $res]
- ]
-}
-
-set NUM_TRIALS 100
-
-foreach {nodesize order} {
- 50 DESC
- 50 ASC
- 500 ASC
- 1000 DESC
- 2000 ASC
-} {
- catch { array unset ::t1 }
- set testname "$nodesize/$order"
-
- # Create the FTS3 table. Populate it (and the Tcl array) with 100 rows.
- #
- db transaction {
- catchsql { DROP TABLE t1 }
- execsql "CREATE VIRTUAL TABLE t1 USING fts4(a, b, c, order=$order)"
- execsql "INSERT INTO t1(t1) VALUES('nodesize=$nodesize')"
- for {set i 0} {$i < 100} {incr i} { insert_row $i }
- }
-
- for {set iTest 1} {$iTest <= $NUM_TRIALS} {incr iTest} {
- catchsql COMMIT
-
- set DO_MALLOC_TEST 0
- set nRep 10
- if {$iTest==100 && $nodesize==50} {
- set DO_MALLOC_TEST 1
- set nRep 2
- }
-
- set ::testprefix fts3rnd-1.$testname.$iTest
-
- # Delete one row, update one row and insert one row.
- #
- set rows [array names ::t1]
- set nRow [llength $rows]
- set iUpdate [lindex $rows [expr {int(rand()*$nRow)}]]
- set iDelete $iUpdate
- while {$iDelete == $iUpdate} {
- set iDelete [lindex $rows [expr {int(rand()*$nRow)}]]
- }
- set iInsert $iUpdate
- while {[info exists ::t1($iInsert)]} {
- set iInsert [expr {int(rand()*1000000)}]
- }
- execsql BEGIN
- insert_row $iInsert
- update_row $iUpdate
- delete_row $iDelete
- if {0==($iTest%2)} { execsql COMMIT }
-
- if {0==($iTest%2)} {
- #do_test 0 { fts3_integrity_check t1 } ok
- }
-
- # Pick 10 terms from the vocabulary. Check that the results of querying
- # the database for the set of documents containing each of these terms
- # is the same as the result obtained by scanning the contents of the Tcl
- # array for each term.
- #
- for {set i 0} {$i < 10} {incr i} {
- set term [random_term]
- do_select_test 1.$i.asc {
- SELECT docid, mit(matchinfo(t1)) FROM t1 WHERE t1 MATCH $term
- ORDER BY docid ASC
- } [simple_token_matchinfo $term 0]
- do_select_test 1.$i.desc {
- SELECT docid, mit(matchinfo(t1)) FROM t1 WHERE t1 MATCH $term
- ORDER BY docid DESC
- } [simple_token_matchinfo $term 1]
- }
-
- # This time, use the first two characters of each term as a term prefix
- # to query for. Test that querying the Tcl array produces the same results
- # as querying the FTS3 table for the prefix.
- #
- for {set i 0} {$i < $nRep} {incr i} {
- set prefix [string range [random_term] 0 end-1]
- set match "${prefix}*"
- do_orderbydocid_test 2.$i {
- SELECT docid FROM t1 WHERE t1 MATCH $match
- } [simple_phrase $match]
- }
-
- # Similar to the above, except for phrase queries.
- #
- for {set i 0} {$i < $nRep} {incr i} {
- set term [list [random_term] [random_term]]
- set match "\"$term\""
- do_orderbydocid_test 3.$i {
- SELECT docid FROM t1 WHERE t1 MATCH $match
- } [simple_phrase $term]
- }
-
- # Three word phrases.
- #
- for {set i 0} {$i < $nRep} {incr i} {
- set term [list [random_term] [random_term] [random_term]]
- set match "\"$term\""
- do_orderbydocid_test 4.$i {
- SELECT docid FROM t1 WHERE t1 MATCH $match
- } [simple_phrase $term]
- }
-
- # Three word phrases made up of term-prefixes.
- #
- for {set i 0} {$i < $nRep} {incr i} {
- set query "[string range [random_term] 0 end-1]* "
- append query "[string range [random_term] 0 end-1]* "
- append query "[string range [random_term] 0 end-1]*"
-
- set match "\"$query\""
- do_orderbydocid_test 5.$i {
- SELECT docid FROM t1 WHERE t1 MATCH $match
- } [simple_phrase $query]
- }
-
- # A NEAR query with terms as the arguments:
- #
- # ... MATCH '$term1 NEAR $term2' ...
- #
- for {set i 0} {$i < $nRep} {incr i} {
- set terms [list [random_term] [random_term]]
- set match [join $terms " NEAR "]
- do_orderbydocid_test 6.$i {
- SELECT docid FROM t1 WHERE t1 MATCH $match
- } [simple_near $terms 10]
- }
-
- # A 3-way NEAR query with terms as the arguments.
- #
- for {set i 0} {$i < $nRep} {incr i} {
- set terms [list [random_term] [random_term] [random_term]]
- set nNear 11
- set match [join $terms " NEAR/$nNear "]
- do_orderbydocid_test 7.$i {
- SELECT docid FROM t1 WHERE t1 MATCH $match
- } [simple_near $terms $nNear]
- }
-
- # Set operations on simple term queries.
- #
- foreach {tn op proc} {
- 8 OR setop_or
- 9 NOT setop_not
- 10 AND setop_and
- } {
- for {set i 0} {$i < $nRep} {incr i} {
- set term1 [random_term]
- set term2 [random_term]
- set match "$term1 $op $term2"
- do_orderbydocid_test $tn.$i {
- SELECT docid FROM t1 WHERE t1 MATCH $match
- } [$proc [simple_phrase $term1] [simple_phrase $term2]]
- }
- }
-
- # Set operations on NEAR queries.
- #
- foreach {tn op proc} {
- 11 OR setop_or
- 12 NOT setop_not
- 13 AND setop_and
- } {
- for {set i 0} {$i < $nRep} {incr i} {
- set term1 [random_term]
- set term2 [random_term]
- set term3 [random_term]
- set term4 [random_term]
- set match "$term1 NEAR $term2 $op $term3 NEAR $term4"
- do_orderbydocid_test $tn.$i {
- SELECT docid FROM t1 WHERE t1 MATCH $match
- } [$proc \
- [simple_near [list $term1 $term2] 10] \
- [simple_near [list $term3 $term4] 10]
- ]
- }
- }
-
- catchsql COMMIT
- }
-}
-
-finish_test
« no previous file with comments | « third_party/sqlite/sqlite-src-3080704/test/fts3query.test ('k') | third_party/sqlite/sqlite-src-3080704/test/fts3shared.test » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698