Index: third_party/sqlite/sqlite-src-3080704/ext/fts2/fts2.c |
diff --git a/third_party/sqlite/sqlite-src-3080704/ext/fts2/fts2.c b/third_party/sqlite/sqlite-src-3080704/ext/fts2/fts2.c |
deleted file mode 100644 |
index 0405fb7b1e56f9aefccebcc274131b973a16b768..0000000000000000000000000000000000000000 |
--- a/third_party/sqlite/sqlite-src-3080704/ext/fts2/fts2.c |
+++ /dev/null |
@@ -1,6860 +0,0 @@ |
-/* fts2 has a design flaw which can lead to database corruption (see |
-** below). It is recommended not to use it any longer, instead use |
-** fts3 (or higher). If you believe that your use of fts2 is safe, |
-** add -DSQLITE_ENABLE_BROKEN_FTS2=1 to your CFLAGS. |
-*/ |
-#if (!defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS2)) \ |
- && !defined(SQLITE_ENABLE_BROKEN_FTS2) |
-#error fts2 has a design flaw and has been deprecated. |
-#endif |
-/* The flaw is that fts2 uses the content table's unaliased rowid as |
-** the unique docid. fts2 embeds the rowid in the index it builds, |
-** and expects the rowid to not change. The SQLite VACUUM operation |
-** will renumber such rowids, thereby breaking fts2. If you are using |
-** fts2 in a system which has disabled VACUUM, then you can continue |
-** to use it safely. Note that PRAGMA auto_vacuum does NOT disable |
-** VACUUM, though systems using auto_vacuum are unlikely to invoke |
-** VACUUM. |
-** |
-** Unlike fts1, which is safe across VACUUM if you never delete |
-** documents, fts2 has a second exposure to this flaw, in the segments |
-** table. So fts2 should be considered unsafe across VACUUM in all |
-** cases. |
-*/ |
- |
-/* |
-** 2006 Oct 10 |
-** |
-** The author disclaims copyright to this source code. In place of |
-** a legal notice, here is a blessing: |
-** |
-** May you do good and not evil. |
-** May you find forgiveness for yourself and forgive others. |
-** May you share freely, never taking more than you give. |
-** |
-****************************************************************************** |
-** |
-** This is an SQLite module implementing full-text search. |
-*/ |
- |
-/* |
-** The code in this file is only compiled if: |
-** |
-** * The FTS2 module is being built as an extension |
-** (in which case SQLITE_CORE is not defined), or |
-** |
-** * The FTS2 module is being built into the core of |
-** SQLite (in which case SQLITE_ENABLE_FTS2 is defined). |
-*/ |
- |
-/* TODO(shess) Consider exporting this comment to an HTML file or the |
-** wiki. |
-*/ |
-/* The full-text index is stored in a series of b+tree (-like) |
-** structures called segments which map terms to doclists. The |
-** structures are like b+trees in layout, but are constructed from the |
-** bottom up in optimal fashion and are not updatable. Since trees |
-** are built from the bottom up, things will be described from the |
-** bottom up. |
-** |
-** |
-**** Varints **** |
-** The basic unit of encoding is a variable-length integer called a |
-** varint. We encode variable-length integers in little-endian order |
-** using seven bits * per byte as follows: |
-** |
-** KEY: |
-** A = 0xxxxxxx 7 bits of data and one flag bit |
-** B = 1xxxxxxx 7 bits of data and one flag bit |
-** |
-** 7 bits - A |
-** 14 bits - BA |
-** 21 bits - BBA |
-** and so on. |
-** |
-** This is identical to how sqlite encodes varints (see util.c). |
-** |
-** |
-**** Document lists **** |
-** A doclist (document list) holds a docid-sorted list of hits for a |
-** given term. Doclists hold docids, and can optionally associate |
-** token positions and offsets with docids. |
-** |
-** A DL_POSITIONS_OFFSETS doclist is stored like this: |
-** |
-** array { |
-** varint docid; |
-** array { (position list for column 0) |
-** varint position; (delta from previous position plus POS_BASE) |
-** varint startOffset; (delta from previous startOffset) |
-** varint endOffset; (delta from startOffset) |
-** } |
-** array { |
-** varint POS_COLUMN; (marks start of position list for new column) |
-** varint column; (index of new column) |
-** array { |
-** varint position; (delta from previous position plus POS_BASE) |
-** varint startOffset;(delta from previous startOffset) |
-** varint endOffset; (delta from startOffset) |
-** } |
-** } |
-** varint POS_END; (marks end of positions for this document. |
-** } |
-** |
-** Here, array { X } means zero or more occurrences of X, adjacent in |
-** memory. A "position" is an index of a token in the token stream |
-** generated by the tokenizer, while an "offset" is a byte offset, |
-** both based at 0. Note that POS_END and POS_COLUMN occur in the |
-** same logical place as the position element, and act as sentinals |
-** ending a position list array. |
-** |
-** A DL_POSITIONS doclist omits the startOffset and endOffset |
-** information. A DL_DOCIDS doclist omits both the position and |
-** offset information, becoming an array of varint-encoded docids. |
-** |
-** On-disk data is stored as type DL_DEFAULT, so we don't serialize |
-** the type. Due to how deletion is implemented in the segmentation |
-** system, on-disk doclists MUST store at least positions. |
-** |
-** |
-**** Segment leaf nodes **** |
-** Segment leaf nodes store terms and doclists, ordered by term. Leaf |
-** nodes are written using LeafWriter, and read using LeafReader (to |
-** iterate through a single leaf node's data) and LeavesReader (to |
-** iterate through a segment's entire leaf layer). Leaf nodes have |
-** the format: |
-** |
-** varint iHeight; (height from leaf level, always 0) |
-** varint nTerm; (length of first term) |
-** char pTerm[nTerm]; (content of first term) |
-** varint nDoclist; (length of term's associated doclist) |
-** char pDoclist[nDoclist]; (content of doclist) |
-** array { |
-** (further terms are delta-encoded) |
-** varint nPrefix; (length of prefix shared with previous term) |
-** varint nSuffix; (length of unshared suffix) |
-** char pTermSuffix[nSuffix];(unshared suffix of next term) |
-** varint nDoclist; (length of term's associated doclist) |
-** char pDoclist[nDoclist]; (content of doclist) |
-** } |
-** |
-** Here, array { X } means zero or more occurrences of X, adjacent in |
-** memory. |
-** |
-** Leaf nodes are broken into blocks which are stored contiguously in |
-** the %_segments table in sorted order. This means that when the end |
-** of a node is reached, the next term is in the node with the next |
-** greater node id. |
-** |
-** New data is spilled to a new leaf node when the current node |
-** exceeds LEAF_MAX bytes (default 2048). New data which itself is |
-** larger than STANDALONE_MIN (default 1024) is placed in a standalone |
-** node (a leaf node with a single term and doclist). The goal of |
-** these settings is to pack together groups of small doclists while |
-** making it efficient to directly access large doclists. The |
-** assumption is that large doclists represent terms which are more |
-** likely to be query targets. |
-** |
-** TODO(shess) It may be useful for blocking decisions to be more |
-** dynamic. For instance, it may make more sense to have a 2.5k leaf |
-** node rather than splitting into 2k and .5k nodes. My intuition is |
-** that this might extend through 2x or 4x the pagesize. |
-** |
-** |
-**** Segment interior nodes **** |
-** Segment interior nodes store blockids for subtree nodes and terms |
-** to describe what data is stored by the each subtree. Interior |
-** nodes are written using InteriorWriter, and read using |
-** InteriorReader. InteriorWriters are created as needed when |
-** SegmentWriter creates new leaf nodes, or when an interior node |
-** itself grows too big and must be split. The format of interior |
-** nodes: |
-** |
-** varint iHeight; (height from leaf level, always >0) |
-** varint iBlockid; (block id of node's leftmost subtree) |
-** optional { |
-** varint nTerm; (length of first term) |
-** char pTerm[nTerm]; (content of first term) |
-** array { |
-** (further terms are delta-encoded) |
-** varint nPrefix; (length of shared prefix with previous term) |
-** varint nSuffix; (length of unshared suffix) |
-** char pTermSuffix[nSuffix]; (unshared suffix of next term) |
-** } |
-** } |
-** |
-** Here, optional { X } means an optional element, while array { X } |
-** means zero or more occurrences of X, adjacent in memory. |
-** |
-** An interior node encodes n terms separating n+1 subtrees. The |
-** subtree blocks are contiguous, so only the first subtree's blockid |
-** is encoded. The subtree at iBlockid will contain all terms less |
-** than the first term encoded (or all terms if no term is encoded). |
-** Otherwise, for terms greater than or equal to pTerm[i] but less |
-** than pTerm[i+1], the subtree for that term will be rooted at |
-** iBlockid+i. Interior nodes only store enough term data to |
-** distinguish adjacent children (if the rightmost term of the left |
-** child is "something", and the leftmost term of the right child is |
-** "wicked", only "w" is stored). |
-** |
-** New data is spilled to a new interior node at the same height when |
-** the current node exceeds INTERIOR_MAX bytes (default 2048). |
-** INTERIOR_MIN_TERMS (default 7) keeps large terms from monopolizing |
-** interior nodes and making the tree too skinny. The interior nodes |
-** at a given height are naturally tracked by interior nodes at |
-** height+1, and so on. |
-** |
-** |
-**** Segment directory **** |
-** The segment directory in table %_segdir stores meta-information for |
-** merging and deleting segments, and also the root node of the |
-** segment's tree. |
-** |
-** The root node is the top node of the segment's tree after encoding |
-** the entire segment, restricted to ROOT_MAX bytes (default 1024). |
-** This could be either a leaf node or an interior node. If the top |
-** node requires more than ROOT_MAX bytes, it is flushed to %_segments |
-** and a new root interior node is generated (which should always fit |
-** within ROOT_MAX because it only needs space for 2 varints, the |
-** height and the blockid of the previous root). |
-** |
-** The meta-information in the segment directory is: |
-** level - segment level (see below) |
-** idx - index within level |
-** - (level,idx uniquely identify a segment) |
-** start_block - first leaf node |
-** leaves_end_block - last leaf node |
-** end_block - last block (including interior nodes) |
-** root - contents of root node |
-** |
-** If the root node is a leaf node, then start_block, |
-** leaves_end_block, and end_block are all 0. |
-** |
-** |
-**** Segment merging **** |
-** To amortize update costs, segments are groups into levels and |
-** merged in matches. Each increase in level represents exponentially |
-** more documents. |
-** |
-** New documents (actually, document updates) are tokenized and |
-** written individually (using LeafWriter) to a level 0 segment, with |
-** incrementing idx. When idx reaches MERGE_COUNT (default 16), all |
-** level 0 segments are merged into a single level 1 segment. Level 1 |
-** is populated like level 0, and eventually MERGE_COUNT level 1 |
-** segments are merged to a single level 2 segment (representing |
-** MERGE_COUNT^2 updates), and so on. |
-** |
-** A segment merge traverses all segments at a given level in |
-** parallel, performing a straightforward sorted merge. Since segment |
-** leaf nodes are written in to the %_segments table in order, this |
-** merge traverses the underlying sqlite disk structures efficiently. |
-** After the merge, all segment blocks from the merged level are |
-** deleted. |
-** |
-** MERGE_COUNT controls how often we merge segments. 16 seems to be |
-** somewhat of a sweet spot for insertion performance. 32 and 64 show |
-** very similar performance numbers to 16 on insertion, though they're |
-** a tiny bit slower (perhaps due to more overhead in merge-time |
-** sorting). 8 is about 20% slower than 16, 4 about 50% slower than |
-** 16, 2 about 66% slower than 16. |
-** |
-** At query time, high MERGE_COUNT increases the number of segments |
-** which need to be scanned and merged. For instance, with 100k docs |
-** inserted: |
-** |
-** MERGE_COUNT segments |
-** 16 25 |
-** 8 12 |
-** 4 10 |
-** 2 6 |
-** |
-** This appears to have only a moderate impact on queries for very |
-** frequent terms (which are somewhat dominated by segment merge |
-** costs), and infrequent and non-existent terms still seem to be fast |
-** even with many segments. |
-** |
-** TODO(shess) That said, it would be nice to have a better query-side |
-** argument for MERGE_COUNT of 16. Also, it is possible/likely that |
-** optimizations to things like doclist merging will swing the sweet |
-** spot around. |
-** |
-** |
-** |
-**** Handling of deletions and updates **** |
-** Since we're using a segmented structure, with no docid-oriented |
-** index into the term index, we clearly cannot simply update the term |
-** index when a document is deleted or updated. For deletions, we |
-** write an empty doclist (varint(docid) varint(POS_END)), for updates |
-** we simply write the new doclist. Segment merges overwrite older |
-** data for a particular docid with newer data, so deletes or updates |
-** will eventually overtake the earlier data and knock it out. The |
-** query logic likewise merges doclists so that newer data knocks out |
-** older data. |
-** |
-** TODO(shess) Provide a VACUUM type operation to clear out all |
-** deletions and duplications. This would basically be a forced merge |
-** into a single segment. |
-*/ |
- |
-#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS2) |
- |
-#if defined(SQLITE_ENABLE_FTS2) && !defined(SQLITE_CORE) |
-# define SQLITE_CORE 1 |
-#endif |
- |
-#include <assert.h> |
-#include <stdlib.h> |
-#include <stdio.h> |
-#include <string.h> |
-#include "fts2.h" |
-#include "fts2_hash.h" |
-#include "fts2_tokenizer.h" |
-#include "sqlite3.h" |
-#include "sqlite3ext.h" |
-SQLITE_EXTENSION_INIT1 |
- |
- |
-/* TODO(shess) MAN, this thing needs some refactoring. At minimum, it |
-** would be nice to order the file better, perhaps something along the |
-** lines of: |
-** |
-** - utility functions |
-** - table setup functions |
-** - table update functions |
-** - table query functions |
-** |
-** Put the query functions last because they're likely to reference |
-** typedefs or functions from the table update section. |
-*/ |
- |
-#if 0 |
-# define TRACE(A) printf A; fflush(stdout) |
-#else |
-# define TRACE(A) |
-#endif |
- |
-/* It is not safe to call isspace(), tolower(), or isalnum() on |
-** hi-bit-set characters. This is the same solution used in the |
-** tokenizer. |
-*/ |
-/* TODO(shess) The snippet-generation code should be using the |
-** tokenizer-generated tokens rather than doing its own local |
-** tokenization. |
-*/ |
-/* TODO(shess) Is __isascii() a portable version of (c&0x80)==0? */ |
-static int safe_isspace(char c){ |
- return c==' ' || c=='\t' || c=='\n' || c=='\r' || c=='\v' || c=='\f'; |
-} |
-static int safe_tolower(char c){ |
- return (c>='A' && c<='Z') ? (c - 'A' + 'a') : c; |
-} |
-static int safe_isalnum(char c){ |
- return (c>='0' && c<='9') || (c>='A' && c<='Z') || (c>='a' && c<='z'); |
-} |
- |
-typedef enum DocListType { |
- DL_DOCIDS, /* docids only */ |
- DL_POSITIONS, /* docids + positions */ |
- DL_POSITIONS_OFFSETS /* docids + positions + offsets */ |
-} DocListType; |
- |
-/* |
-** By default, only positions and not offsets are stored in the doclists. |
-** To change this so that offsets are stored too, compile with |
-** |
-** -DDL_DEFAULT=DL_POSITIONS_OFFSETS |
-** |
-** If DL_DEFAULT is set to DL_DOCIDS, your table can only be inserted |
-** into (no deletes or updates). |
-*/ |
-#ifndef DL_DEFAULT |
-# define DL_DEFAULT DL_POSITIONS |
-#endif |
- |
-enum { |
- POS_END = 0, /* end of this position list */ |
- POS_COLUMN, /* followed by new column number */ |
- POS_BASE |
-}; |
- |
-/* MERGE_COUNT controls how often we merge segments (see comment at |
-** top of file). |
-*/ |
-#define MERGE_COUNT 16 |
- |
-/* utility functions */ |
- |
-/* CLEAR() and SCRAMBLE() abstract memset() on a pointer to a single |
-** record to prevent errors of the form: |
-** |
-** my_function(SomeType *b){ |
-** memset(b, '\0', sizeof(b)); // sizeof(b)!=sizeof(*b) |
-** } |
-*/ |
-/* TODO(shess) Obvious candidates for a header file. */ |
-#define CLEAR(b) memset(b, '\0', sizeof(*(b))) |
- |
-#ifndef NDEBUG |
-# define SCRAMBLE(b) memset(b, 0x55, sizeof(*(b))) |
-#else |
-# define SCRAMBLE(b) |
-#endif |
- |
-/* We may need up to VARINT_MAX bytes to store an encoded 64-bit integer. */ |
-#define VARINT_MAX 10 |
- |
-/* Write a 64-bit variable-length integer to memory starting at p[0]. |
- * The length of data written will be between 1 and VARINT_MAX bytes. |
- * The number of bytes written is returned. */ |
-static int putVarint(char *p, sqlite_int64 v){ |
- unsigned char *q = (unsigned char *) p; |
- sqlite_uint64 vu = v; |
- do{ |
- *q++ = (unsigned char) ((vu & 0x7f) | 0x80); |
- vu >>= 7; |
- }while( vu!=0 ); |
- q[-1] &= 0x7f; /* turn off high bit in final byte */ |
- assert( q - (unsigned char *)p <= VARINT_MAX ); |
- return (int) (q - (unsigned char *)p); |
-} |
- |
-/* Read a 64-bit variable-length integer from memory starting at p[0]. |
- * Return the number of bytes read, or 0 on error. |
- * The value is stored in *v. */ |
-static int getVarint(const char *p, sqlite_int64 *v){ |
- const unsigned char *q = (const unsigned char *) p; |
- sqlite_uint64 x = 0, y = 1; |
- while( (*q & 0x80) == 0x80 ){ |
- x += y * (*q++ & 0x7f); |
- y <<= 7; |
- if( q - (unsigned char *)p >= VARINT_MAX ){ /* bad data */ |
- assert( 0 ); |
- return 0; |
- } |
- } |
- x += y * (*q++); |
- *v = (sqlite_int64) x; |
- return (int) (q - (unsigned char *)p); |
-} |
- |
-static int getVarint32(const char *p, int *pi){ |
- sqlite_int64 i; |
- int ret = getVarint(p, &i); |
- *pi = (int) i; |
- assert( *pi==i ); |
- return ret; |
-} |
- |
-/*******************************************************************/ |
-/* DataBuffer is used to collect data into a buffer in piecemeal |
-** fashion. It implements the usual distinction between amount of |
-** data currently stored (nData) and buffer capacity (nCapacity). |
-** |
-** dataBufferInit - create a buffer with given initial capacity. |
-** dataBufferReset - forget buffer's data, retaining capacity. |
-** dataBufferDestroy - free buffer's data. |
-** dataBufferSwap - swap contents of two buffers. |
-** dataBufferExpand - expand capacity without adding data. |
-** dataBufferAppend - append data. |
-** dataBufferAppend2 - append two pieces of data at once. |
-** dataBufferReplace - replace buffer's data. |
-*/ |
-typedef struct DataBuffer { |
- char *pData; /* Pointer to malloc'ed buffer. */ |
- int nCapacity; /* Size of pData buffer. */ |
- int nData; /* End of data loaded into pData. */ |
-} DataBuffer; |
- |
-static void dataBufferInit(DataBuffer *pBuffer, int nCapacity){ |
- assert( nCapacity>=0 ); |
- pBuffer->nData = 0; |
- pBuffer->nCapacity = nCapacity; |
- pBuffer->pData = nCapacity==0 ? NULL : sqlite3_malloc(nCapacity); |
-} |
-static void dataBufferReset(DataBuffer *pBuffer){ |
- pBuffer->nData = 0; |
-} |
-static void dataBufferDestroy(DataBuffer *pBuffer){ |
- if( pBuffer->pData!=NULL ) sqlite3_free(pBuffer->pData); |
- SCRAMBLE(pBuffer); |
-} |
-static void dataBufferSwap(DataBuffer *pBuffer1, DataBuffer *pBuffer2){ |
- DataBuffer tmp = *pBuffer1; |
- *pBuffer1 = *pBuffer2; |
- *pBuffer2 = tmp; |
-} |
-static void dataBufferExpand(DataBuffer *pBuffer, int nAddCapacity){ |
- assert( nAddCapacity>0 ); |
- /* TODO(shess) Consider expanding more aggressively. Note that the |
- ** underlying malloc implementation may take care of such things for |
- ** us already. |
- */ |
- if( pBuffer->nData+nAddCapacity>pBuffer->nCapacity ){ |
- pBuffer->nCapacity = pBuffer->nData+nAddCapacity; |
- pBuffer->pData = sqlite3_realloc(pBuffer->pData, pBuffer->nCapacity); |
- } |
-} |
-static void dataBufferAppend(DataBuffer *pBuffer, |
- const char *pSource, int nSource){ |
- assert( nSource>0 && pSource!=NULL ); |
- dataBufferExpand(pBuffer, nSource); |
- memcpy(pBuffer->pData+pBuffer->nData, pSource, nSource); |
- pBuffer->nData += nSource; |
-} |
-static void dataBufferAppend2(DataBuffer *pBuffer, |
- const char *pSource1, int nSource1, |
- const char *pSource2, int nSource2){ |
- assert( nSource1>0 && pSource1!=NULL ); |
- assert( nSource2>0 && pSource2!=NULL ); |
- dataBufferExpand(pBuffer, nSource1+nSource2); |
- memcpy(pBuffer->pData+pBuffer->nData, pSource1, nSource1); |
- memcpy(pBuffer->pData+pBuffer->nData+nSource1, pSource2, nSource2); |
- pBuffer->nData += nSource1+nSource2; |
-} |
-static void dataBufferReplace(DataBuffer *pBuffer, |
- const char *pSource, int nSource){ |
- dataBufferReset(pBuffer); |
- dataBufferAppend(pBuffer, pSource, nSource); |
-} |
- |
-/* StringBuffer is a null-terminated version of DataBuffer. */ |
-typedef struct StringBuffer { |
- DataBuffer b; /* Includes null terminator. */ |
-} StringBuffer; |
- |
-static void initStringBuffer(StringBuffer *sb){ |
- dataBufferInit(&sb->b, 100); |
- dataBufferReplace(&sb->b, "", 1); |
-} |
-static int stringBufferLength(StringBuffer *sb){ |
- return sb->b.nData-1; |
-} |
-static char *stringBufferData(StringBuffer *sb){ |
- return sb->b.pData; |
-} |
-static void stringBufferDestroy(StringBuffer *sb){ |
- dataBufferDestroy(&sb->b); |
-} |
- |
-static void nappend(StringBuffer *sb, const char *zFrom, int nFrom){ |
- assert( sb->b.nData>0 ); |
- if( nFrom>0 ){ |
- sb->b.nData--; |
- dataBufferAppend2(&sb->b, zFrom, nFrom, "", 1); |
- } |
-} |
-static void append(StringBuffer *sb, const char *zFrom){ |
- nappend(sb, zFrom, strlen(zFrom)); |
-} |
- |
-/* Append a list of strings separated by commas. */ |
-static void appendList(StringBuffer *sb, int nString, char **azString){ |
- int i; |
- for(i=0; i<nString; ++i){ |
- if( i>0 ) append(sb, ", "); |
- append(sb, azString[i]); |
- } |
-} |
- |
-static int endsInWhiteSpace(StringBuffer *p){ |
- return stringBufferLength(p)>0 && |
- safe_isspace(stringBufferData(p)[stringBufferLength(p)-1]); |
-} |
- |
-/* If the StringBuffer ends in something other than white space, add a |
-** single space character to the end. |
-*/ |
-static void appendWhiteSpace(StringBuffer *p){ |
- if( stringBufferLength(p)==0 ) return; |
- if( !endsInWhiteSpace(p) ) append(p, " "); |
-} |
- |
-/* Remove white space from the end of the StringBuffer */ |
-static void trimWhiteSpace(StringBuffer *p){ |
- while( endsInWhiteSpace(p) ){ |
- p->b.pData[--p->b.nData-1] = '\0'; |
- } |
-} |
- |
-/*******************************************************************/ |
-/* DLReader is used to read document elements from a doclist. The |
-** current docid is cached, so dlrDocid() is fast. DLReader does not |
-** own the doclist buffer. |
-** |
-** dlrAtEnd - true if there's no more data to read. |
-** dlrDocid - docid of current document. |
-** dlrDocData - doclist data for current document (including docid). |
-** dlrDocDataBytes - length of same. |
-** dlrAllDataBytes - length of all remaining data. |
-** dlrPosData - position data for current document. |
-** dlrPosDataLen - length of pos data for current document (incl POS_END). |
-** dlrStep - step to current document. |
-** dlrInit - initial for doclist of given type against given data. |
-** dlrDestroy - clean up. |
-** |
-** Expected usage is something like: |
-** |
-** DLReader reader; |
-** dlrInit(&reader, pData, nData); |
-** while( !dlrAtEnd(&reader) ){ |
-** // calls to dlrDocid() and kin. |
-** dlrStep(&reader); |
-** } |
-** dlrDestroy(&reader); |
-*/ |
-typedef struct DLReader { |
- DocListType iType; |
- const char *pData; |
- int nData; |
- |
- sqlite_int64 iDocid; |
- int nElement; |
-} DLReader; |
- |
-static int dlrAtEnd(DLReader *pReader){ |
- assert( pReader->nData>=0 ); |
- return pReader->nData==0; |
-} |
-static sqlite_int64 dlrDocid(DLReader *pReader){ |
- assert( !dlrAtEnd(pReader) ); |
- return pReader->iDocid; |
-} |
-static const char *dlrDocData(DLReader *pReader){ |
- assert( !dlrAtEnd(pReader) ); |
- return pReader->pData; |
-} |
-static int dlrDocDataBytes(DLReader *pReader){ |
- assert( !dlrAtEnd(pReader) ); |
- return pReader->nElement; |
-} |
-static int dlrAllDataBytes(DLReader *pReader){ |
- assert( !dlrAtEnd(pReader) ); |
- return pReader->nData; |
-} |
-/* TODO(shess) Consider adding a field to track iDocid varint length |
-** to make these two functions faster. This might matter (a tiny bit) |
-** for queries. |
-*/ |
-static const char *dlrPosData(DLReader *pReader){ |
- sqlite_int64 iDummy; |
- int n = getVarint(pReader->pData, &iDummy); |
- assert( !dlrAtEnd(pReader) ); |
- return pReader->pData+n; |
-} |
-static int dlrPosDataLen(DLReader *pReader){ |
- sqlite_int64 iDummy; |
- int n = getVarint(pReader->pData, &iDummy); |
- assert( !dlrAtEnd(pReader) ); |
- return pReader->nElement-n; |
-} |
-static void dlrStep(DLReader *pReader){ |
- assert( !dlrAtEnd(pReader) ); |
- |
- /* Skip past current doclist element. */ |
- assert( pReader->nElement<=pReader->nData ); |
- pReader->pData += pReader->nElement; |
- pReader->nData -= pReader->nElement; |
- |
- /* If there is more data, read the next doclist element. */ |
- if( pReader->nData!=0 ){ |
- sqlite_int64 iDocidDelta; |
- int iDummy, n = getVarint(pReader->pData, &iDocidDelta); |
- pReader->iDocid += iDocidDelta; |
- if( pReader->iType>=DL_POSITIONS ){ |
- assert( n<pReader->nData ); |
- while( 1 ){ |
- n += getVarint32(pReader->pData+n, &iDummy); |
- assert( n<=pReader->nData ); |
- if( iDummy==POS_END ) break; |
- if( iDummy==POS_COLUMN ){ |
- n += getVarint32(pReader->pData+n, &iDummy); |
- assert( n<pReader->nData ); |
- }else if( pReader->iType==DL_POSITIONS_OFFSETS ){ |
- n += getVarint32(pReader->pData+n, &iDummy); |
- n += getVarint32(pReader->pData+n, &iDummy); |
- assert( n<pReader->nData ); |
- } |
- } |
- } |
- pReader->nElement = n; |
- assert( pReader->nElement<=pReader->nData ); |
- } |
-} |
-static void dlrInit(DLReader *pReader, DocListType iType, |
- const char *pData, int nData){ |
- assert( pData!=NULL && nData!=0 ); |
- pReader->iType = iType; |
- pReader->pData = pData; |
- pReader->nData = nData; |
- pReader->nElement = 0; |
- pReader->iDocid = 0; |
- |
- /* Load the first element's data. There must be a first element. */ |
- dlrStep(pReader); |
-} |
-static void dlrDestroy(DLReader *pReader){ |
- SCRAMBLE(pReader); |
-} |
- |
-#ifndef NDEBUG |
-/* Verify that the doclist can be validly decoded. Also returns the |
-** last docid found because it is convenient in other assertions for |
-** DLWriter. |
-*/ |
-static void docListValidate(DocListType iType, const char *pData, int nData, |
- sqlite_int64 *pLastDocid){ |
- sqlite_int64 iPrevDocid = 0; |
- assert( nData>0 ); |
- assert( pData!=0 ); |
- assert( pData+nData>pData ); |
- while( nData!=0 ){ |
- sqlite_int64 iDocidDelta; |
- int n = getVarint(pData, &iDocidDelta); |
- iPrevDocid += iDocidDelta; |
- if( iType>DL_DOCIDS ){ |
- int iDummy; |
- while( 1 ){ |
- n += getVarint32(pData+n, &iDummy); |
- if( iDummy==POS_END ) break; |
- if( iDummy==POS_COLUMN ){ |
- n += getVarint32(pData+n, &iDummy); |
- }else if( iType>DL_POSITIONS ){ |
- n += getVarint32(pData+n, &iDummy); |
- n += getVarint32(pData+n, &iDummy); |
- } |
- assert( n<=nData ); |
- } |
- } |
- assert( n<=nData ); |
- pData += n; |
- nData -= n; |
- } |
- if( pLastDocid ) *pLastDocid = iPrevDocid; |
-} |
-#define ASSERT_VALID_DOCLIST(i, p, n, o) docListValidate(i, p, n, o) |
-#else |
-#define ASSERT_VALID_DOCLIST(i, p, n, o) assert( 1 ) |
-#endif |
- |
-/*******************************************************************/ |
-/* DLWriter is used to write doclist data to a DataBuffer. DLWriter |
-** always appends to the buffer and does not own it. |
-** |
-** dlwInit - initialize to write a given type doclistto a buffer. |
-** dlwDestroy - clear the writer's memory. Does not free buffer. |
-** dlwAppend - append raw doclist data to buffer. |
-** dlwCopy - copy next doclist from reader to writer. |
-** dlwAdd - construct doclist element and append to buffer. |
-** Only apply dlwAdd() to DL_DOCIDS doclists (else use PLWriter). |
-*/ |
-typedef struct DLWriter { |
- DocListType iType; |
- DataBuffer *b; |
- sqlite_int64 iPrevDocid; |
-#ifndef NDEBUG |
- int has_iPrevDocid; |
-#endif |
-} DLWriter; |
- |
-static void dlwInit(DLWriter *pWriter, DocListType iType, DataBuffer *b){ |
- pWriter->b = b; |
- pWriter->iType = iType; |
- pWriter->iPrevDocid = 0; |
-#ifndef NDEBUG |
- pWriter->has_iPrevDocid = 0; |
-#endif |
-} |
-static void dlwDestroy(DLWriter *pWriter){ |
- SCRAMBLE(pWriter); |
-} |
-/* iFirstDocid is the first docid in the doclist in pData. It is |
-** needed because pData may point within a larger doclist, in which |
-** case the first item would be delta-encoded. |
-** |
-** iLastDocid is the final docid in the doclist in pData. It is |
-** needed to create the new iPrevDocid for future delta-encoding. The |
-** code could decode the passed doclist to recreate iLastDocid, but |
-** the only current user (docListMerge) already has decoded this |
-** information. |
-*/ |
-/* TODO(shess) This has become just a helper for docListMerge. |
-** Consider a refactor to make this cleaner. |
-*/ |
-static void dlwAppend(DLWriter *pWriter, |
- const char *pData, int nData, |
- sqlite_int64 iFirstDocid, sqlite_int64 iLastDocid){ |
- sqlite_int64 iDocid = 0; |
- char c[VARINT_MAX]; |
- int nFirstOld, nFirstNew; /* Old and new varint len of first docid. */ |
-#ifndef NDEBUG |
- sqlite_int64 iLastDocidDelta; |
-#endif |
- |
- /* Recode the initial docid as delta from iPrevDocid. */ |
- nFirstOld = getVarint(pData, &iDocid); |
- assert( nFirstOld<nData || (nFirstOld==nData && pWriter->iType==DL_DOCIDS) ); |
- nFirstNew = putVarint(c, iFirstDocid-pWriter->iPrevDocid); |
- |
- /* Verify that the incoming doclist is valid AND that it ends with |
- ** the expected docid. This is essential because we'll trust this |
- ** docid in future delta-encoding. |
- */ |
- ASSERT_VALID_DOCLIST(pWriter->iType, pData, nData, &iLastDocidDelta); |
- assert( iLastDocid==iFirstDocid-iDocid+iLastDocidDelta ); |
- |
- /* Append recoded initial docid and everything else. Rest of docids |
- ** should have been delta-encoded from previous initial docid. |
- */ |
- if( nFirstOld<nData ){ |
- dataBufferAppend2(pWriter->b, c, nFirstNew, |
- pData+nFirstOld, nData-nFirstOld); |
- }else{ |
- dataBufferAppend(pWriter->b, c, nFirstNew); |
- } |
- pWriter->iPrevDocid = iLastDocid; |
-} |
-static void dlwCopy(DLWriter *pWriter, DLReader *pReader){ |
- dlwAppend(pWriter, dlrDocData(pReader), dlrDocDataBytes(pReader), |
- dlrDocid(pReader), dlrDocid(pReader)); |
-} |
-static void dlwAdd(DLWriter *pWriter, sqlite_int64 iDocid){ |
- char c[VARINT_MAX]; |
- int n = putVarint(c, iDocid-pWriter->iPrevDocid); |
- |
- /* Docids must ascend. */ |
- assert( !pWriter->has_iPrevDocid || iDocid>pWriter->iPrevDocid ); |
- assert( pWriter->iType==DL_DOCIDS ); |
- |
- dataBufferAppend(pWriter->b, c, n); |
- pWriter->iPrevDocid = iDocid; |
-#ifndef NDEBUG |
- pWriter->has_iPrevDocid = 1; |
-#endif |
-} |
- |
-/*******************************************************************/ |
-/* PLReader is used to read data from a document's position list. As |
-** the caller steps through the list, data is cached so that varints |
-** only need to be decoded once. |
-** |
-** plrInit, plrDestroy - create/destroy a reader. |
-** plrColumn, plrPosition, plrStartOffset, plrEndOffset - accessors |
-** plrAtEnd - at end of stream, only call plrDestroy once true. |
-** plrStep - step to the next element. |
-*/ |
-typedef struct PLReader { |
- /* These refer to the next position's data. nData will reach 0 when |
- ** reading the last position, so plrStep() signals EOF by setting |
- ** pData to NULL. |
- */ |
- const char *pData; |
- int nData; |
- |
- DocListType iType; |
- int iColumn; /* the last column read */ |
- int iPosition; /* the last position read */ |
- int iStartOffset; /* the last start offset read */ |
- int iEndOffset; /* the last end offset read */ |
-} PLReader; |
- |
-static int plrAtEnd(PLReader *pReader){ |
- return pReader->pData==NULL; |
-} |
-static int plrColumn(PLReader *pReader){ |
- assert( !plrAtEnd(pReader) ); |
- return pReader->iColumn; |
-} |
-static int plrPosition(PLReader *pReader){ |
- assert( !plrAtEnd(pReader) ); |
- return pReader->iPosition; |
-} |
-static int plrStartOffset(PLReader *pReader){ |
- assert( !plrAtEnd(pReader) ); |
- return pReader->iStartOffset; |
-} |
-static int plrEndOffset(PLReader *pReader){ |
- assert( !plrAtEnd(pReader) ); |
- return pReader->iEndOffset; |
-} |
-static void plrStep(PLReader *pReader){ |
- int i, n; |
- |
- assert( !plrAtEnd(pReader) ); |
- |
- if( pReader->nData==0 ){ |
- pReader->pData = NULL; |
- return; |
- } |
- |
- n = getVarint32(pReader->pData, &i); |
- if( i==POS_COLUMN ){ |
- n += getVarint32(pReader->pData+n, &pReader->iColumn); |
- pReader->iPosition = 0; |
- pReader->iStartOffset = 0; |
- n += getVarint32(pReader->pData+n, &i); |
- } |
- /* Should never see adjacent column changes. */ |
- assert( i!=POS_COLUMN ); |
- |
- if( i==POS_END ){ |
- pReader->nData = 0; |
- pReader->pData = NULL; |
- return; |
- } |
- |
- pReader->iPosition += i-POS_BASE; |
- if( pReader->iType==DL_POSITIONS_OFFSETS ){ |
- n += getVarint32(pReader->pData+n, &i); |
- pReader->iStartOffset += i; |
- n += getVarint32(pReader->pData+n, &i); |
- pReader->iEndOffset = pReader->iStartOffset+i; |
- } |
- assert( n<=pReader->nData ); |
- pReader->pData += n; |
- pReader->nData -= n; |
-} |
- |
-static void plrInit(PLReader *pReader, DLReader *pDLReader){ |
- pReader->pData = dlrPosData(pDLReader); |
- pReader->nData = dlrPosDataLen(pDLReader); |
- pReader->iType = pDLReader->iType; |
- pReader->iColumn = 0; |
- pReader->iPosition = 0; |
- pReader->iStartOffset = 0; |
- pReader->iEndOffset = 0; |
- plrStep(pReader); |
-} |
-static void plrDestroy(PLReader *pReader){ |
- SCRAMBLE(pReader); |
-} |
- |
-/*******************************************************************/ |
-/* PLWriter is used in constructing a document's position list. As a |
-** convenience, if iType is DL_DOCIDS, PLWriter becomes a no-op. |
-** PLWriter writes to the associated DLWriter's buffer. |
-** |
-** plwInit - init for writing a document's poslist. |
-** plwDestroy - clear a writer. |
-** plwAdd - append position and offset information. |
-** plwCopy - copy next position's data from reader to writer. |
-** plwTerminate - add any necessary doclist terminator. |
-** |
-** Calling plwAdd() after plwTerminate() may result in a corrupt |
-** doclist. |
-*/ |
-/* TODO(shess) Until we've written the second item, we can cache the |
-** first item's information. Then we'd have three states: |
-** |
-** - initialized with docid, no positions. |
-** - docid and one position. |
-** - docid and multiple positions. |
-** |
-** Only the last state needs to actually write to dlw->b, which would |
-** be an improvement in the DLCollector case. |
-*/ |
-typedef struct PLWriter { |
- DLWriter *dlw; |
- |
- int iColumn; /* the last column written */ |
- int iPos; /* the last position written */ |
- int iOffset; /* the last start offset written */ |
-} PLWriter; |
- |
-/* TODO(shess) In the case where the parent is reading these values |
-** from a PLReader, we could optimize to a copy if that PLReader has |
-** the same type as pWriter. |
-*/ |
-static void plwAdd(PLWriter *pWriter, int iColumn, int iPos, |
- int iStartOffset, int iEndOffset){ |
- /* Worst-case space for POS_COLUMN, iColumn, iPosDelta, |
- ** iStartOffsetDelta, and iEndOffsetDelta. |
- */ |
- char c[5*VARINT_MAX]; |
- int n = 0; |
- |
- /* Ban plwAdd() after plwTerminate(). */ |
- assert( pWriter->iPos!=-1 ); |
- |
- if( pWriter->dlw->iType==DL_DOCIDS ) return; |
- |
- if( iColumn!=pWriter->iColumn ){ |
- n += putVarint(c+n, POS_COLUMN); |
- n += putVarint(c+n, iColumn); |
- pWriter->iColumn = iColumn; |
- pWriter->iPos = 0; |
- pWriter->iOffset = 0; |
- } |
- assert( iPos>=pWriter->iPos ); |
- n += putVarint(c+n, POS_BASE+(iPos-pWriter->iPos)); |
- pWriter->iPos = iPos; |
- if( pWriter->dlw->iType==DL_POSITIONS_OFFSETS ){ |
- assert( iStartOffset>=pWriter->iOffset ); |
- n += putVarint(c+n, iStartOffset-pWriter->iOffset); |
- pWriter->iOffset = iStartOffset; |
- assert( iEndOffset>=iStartOffset ); |
- n += putVarint(c+n, iEndOffset-iStartOffset); |
- } |
- dataBufferAppend(pWriter->dlw->b, c, n); |
-} |
-static void plwCopy(PLWriter *pWriter, PLReader *pReader){ |
- plwAdd(pWriter, plrColumn(pReader), plrPosition(pReader), |
- plrStartOffset(pReader), plrEndOffset(pReader)); |
-} |
-static void plwInit(PLWriter *pWriter, DLWriter *dlw, sqlite_int64 iDocid){ |
- char c[VARINT_MAX]; |
- int n; |
- |
- pWriter->dlw = dlw; |
- |
- /* Docids must ascend. */ |
- assert( !pWriter->dlw->has_iPrevDocid || iDocid>pWriter->dlw->iPrevDocid ); |
- n = putVarint(c, iDocid-pWriter->dlw->iPrevDocid); |
- dataBufferAppend(pWriter->dlw->b, c, n); |
- pWriter->dlw->iPrevDocid = iDocid; |
-#ifndef NDEBUG |
- pWriter->dlw->has_iPrevDocid = 1; |
-#endif |
- |
- pWriter->iColumn = 0; |
- pWriter->iPos = 0; |
- pWriter->iOffset = 0; |
-} |
-/* TODO(shess) Should plwDestroy() also terminate the doclist? But |
-** then plwDestroy() would no longer be just a destructor, it would |
-** also be doing work, which isn't consistent with the overall idiom. |
-** Another option would be for plwAdd() to always append any necessary |
-** terminator, so that the output is always correct. But that would |
-** add incremental work to the common case with the only benefit being |
-** API elegance. Punt for now. |
-*/ |
-static void plwTerminate(PLWriter *pWriter){ |
- if( pWriter->dlw->iType>DL_DOCIDS ){ |
- char c[VARINT_MAX]; |
- int n = putVarint(c, POS_END); |
- dataBufferAppend(pWriter->dlw->b, c, n); |
- } |
-#ifndef NDEBUG |
- /* Mark as terminated for assert in plwAdd(). */ |
- pWriter->iPos = -1; |
-#endif |
-} |
-static void plwDestroy(PLWriter *pWriter){ |
- SCRAMBLE(pWriter); |
-} |
- |
-/*******************************************************************/ |
-/* DLCollector wraps PLWriter and DLWriter to provide a |
-** dynamically-allocated doclist area to use during tokenization. |
-** |
-** dlcNew - malloc up and initialize a collector. |
-** dlcDelete - destroy a collector and all contained items. |
-** dlcAddPos - append position and offset information. |
-** dlcAddDoclist - add the collected doclist to the given buffer. |
-** dlcNext - terminate the current document and open another. |
-*/ |
-typedef struct DLCollector { |
- DataBuffer b; |
- DLWriter dlw; |
- PLWriter plw; |
-} DLCollector; |
- |
-/* TODO(shess) This could also be done by calling plwTerminate() and |
-** dataBufferAppend(). I tried that, expecting nominal performance |
-** differences, but it seemed to pretty reliably be worth 1% to code |
-** it this way. I suspect it is the incremental malloc overhead (some |
-** percentage of the plwTerminate() calls will cause a realloc), so |
-** this might be worth revisiting if the DataBuffer implementation |
-** changes. |
-*/ |
-static void dlcAddDoclist(DLCollector *pCollector, DataBuffer *b){ |
- if( pCollector->dlw.iType>DL_DOCIDS ){ |
- char c[VARINT_MAX]; |
- int n = putVarint(c, POS_END); |
- dataBufferAppend2(b, pCollector->b.pData, pCollector->b.nData, c, n); |
- }else{ |
- dataBufferAppend(b, pCollector->b.pData, pCollector->b.nData); |
- } |
-} |
-static void dlcNext(DLCollector *pCollector, sqlite_int64 iDocid){ |
- plwTerminate(&pCollector->plw); |
- plwDestroy(&pCollector->plw); |
- plwInit(&pCollector->plw, &pCollector->dlw, iDocid); |
-} |
-static void dlcAddPos(DLCollector *pCollector, int iColumn, int iPos, |
- int iStartOffset, int iEndOffset){ |
- plwAdd(&pCollector->plw, iColumn, iPos, iStartOffset, iEndOffset); |
-} |
- |
-static DLCollector *dlcNew(sqlite_int64 iDocid, DocListType iType){ |
- DLCollector *pCollector = sqlite3_malloc(sizeof(DLCollector)); |
- dataBufferInit(&pCollector->b, 0); |
- dlwInit(&pCollector->dlw, iType, &pCollector->b); |
- plwInit(&pCollector->plw, &pCollector->dlw, iDocid); |
- return pCollector; |
-} |
-static void dlcDelete(DLCollector *pCollector){ |
- plwDestroy(&pCollector->plw); |
- dlwDestroy(&pCollector->dlw); |
- dataBufferDestroy(&pCollector->b); |
- SCRAMBLE(pCollector); |
- sqlite3_free(pCollector); |
-} |
- |
- |
-/* Copy the doclist data of iType in pData/nData into *out, trimming |
-** unnecessary data as we go. Only columns matching iColumn are |
-** copied, all columns copied if iColumn is -1. Elements with no |
-** matching columns are dropped. The output is an iOutType doclist. |
-*/ |
-/* NOTE(shess) This code is only valid after all doclists are merged. |
-** If this is run before merges, then doclist items which represent |
-** deletion will be trimmed, and will thus not effect a deletion |
-** during the merge. |
-*/ |
-static void docListTrim(DocListType iType, const char *pData, int nData, |
- int iColumn, DocListType iOutType, DataBuffer *out){ |
- DLReader dlReader; |
- DLWriter dlWriter; |
- |
- assert( iOutType<=iType ); |
- |
- dlrInit(&dlReader, iType, pData, nData); |
- dlwInit(&dlWriter, iOutType, out); |
- |
- while( !dlrAtEnd(&dlReader) ){ |
- PLReader plReader; |
- PLWriter plWriter; |
- int match = 0; |
- |
- plrInit(&plReader, &dlReader); |
- |
- while( !plrAtEnd(&plReader) ){ |
- if( iColumn==-1 || plrColumn(&plReader)==iColumn ){ |
- if( !match ){ |
- plwInit(&plWriter, &dlWriter, dlrDocid(&dlReader)); |
- match = 1; |
- } |
- plwAdd(&plWriter, plrColumn(&plReader), plrPosition(&plReader), |
- plrStartOffset(&plReader), plrEndOffset(&plReader)); |
- } |
- plrStep(&plReader); |
- } |
- if( match ){ |
- plwTerminate(&plWriter); |
- plwDestroy(&plWriter); |
- } |
- |
- plrDestroy(&plReader); |
- dlrStep(&dlReader); |
- } |
- dlwDestroy(&dlWriter); |
- dlrDestroy(&dlReader); |
-} |
- |
-/* Used by docListMerge() to keep doclists in the ascending order by |
-** docid, then ascending order by age (so the newest comes first). |
-*/ |
-typedef struct OrderedDLReader { |
- DLReader *pReader; |
- |
- /* TODO(shess) If we assume that docListMerge pReaders is ordered by |
- ** age (which we do), then we could use pReader comparisons to break |
- ** ties. |
- */ |
- int idx; |
-} OrderedDLReader; |
- |
-/* Order eof to end, then by docid asc, idx desc. */ |
-static int orderedDLReaderCmp(OrderedDLReader *r1, OrderedDLReader *r2){ |
- if( dlrAtEnd(r1->pReader) ){ |
- if( dlrAtEnd(r2->pReader) ) return 0; /* Both atEnd(). */ |
- return 1; /* Only r1 atEnd(). */ |
- } |
- if( dlrAtEnd(r2->pReader) ) return -1; /* Only r2 atEnd(). */ |
- |
- if( dlrDocid(r1->pReader)<dlrDocid(r2->pReader) ) return -1; |
- if( dlrDocid(r1->pReader)>dlrDocid(r2->pReader) ) return 1; |
- |
- /* Descending on idx. */ |
- return r2->idx-r1->idx; |
-} |
- |
-/* Bubble p[0] to appropriate place in p[1..n-1]. Assumes that |
-** p[1..n-1] is already sorted. |
-*/ |
-/* TODO(shess) Is this frequent enough to warrant a binary search? |
-** Before implementing that, instrument the code to check. In most |
-** current usage, I expect that p[0] will be less than p[1] a very |
-** high proportion of the time. |
-*/ |
-static void orderedDLReaderReorder(OrderedDLReader *p, int n){ |
- while( n>1 && orderedDLReaderCmp(p, p+1)>0 ){ |
- OrderedDLReader tmp = p[0]; |
- p[0] = p[1]; |
- p[1] = tmp; |
- n--; |
- p++; |
- } |
-} |
- |
-/* Given an array of doclist readers, merge their doclist elements |
-** into out in sorted order (by docid), dropping elements from older |
-** readers when there is a duplicate docid. pReaders is assumed to be |
-** ordered by age, oldest first. |
-*/ |
-/* TODO(shess) nReaders must be <= MERGE_COUNT. This should probably |
-** be fixed. |
-*/ |
-static void docListMerge(DataBuffer *out, |
- DLReader *pReaders, int nReaders){ |
- OrderedDLReader readers[MERGE_COUNT]; |
- DLWriter writer; |
- int i, n; |
- const char *pStart = 0; |
- int nStart = 0; |
- sqlite_int64 iFirstDocid = 0, iLastDocid = 0; |
- |
- assert( nReaders>0 ); |
- if( nReaders==1 ){ |
- dataBufferAppend(out, dlrDocData(pReaders), dlrAllDataBytes(pReaders)); |
- return; |
- } |
- |
- assert( nReaders<=MERGE_COUNT ); |
- n = 0; |
- for(i=0; i<nReaders; i++){ |
- assert( pReaders[i].iType==pReaders[0].iType ); |
- readers[i].pReader = pReaders+i; |
- readers[i].idx = i; |
- n += dlrAllDataBytes(&pReaders[i]); |
- } |
- /* Conservatively size output to sum of inputs. Output should end |
- ** up strictly smaller than input. |
- */ |
- dataBufferExpand(out, n); |
- |
- /* Get the readers into sorted order. */ |
- while( i-->0 ){ |
- orderedDLReaderReorder(readers+i, nReaders-i); |
- } |
- |
- dlwInit(&writer, pReaders[0].iType, out); |
- while( !dlrAtEnd(readers[0].pReader) ){ |
- sqlite_int64 iDocid = dlrDocid(readers[0].pReader); |
- |
- /* If this is a continuation of the current buffer to copy, extend |
- ** that buffer. memcpy() seems to be more efficient if it has a |
- ** lots of data to copy. |
- */ |
- if( dlrDocData(readers[0].pReader)==pStart+nStart ){ |
- nStart += dlrDocDataBytes(readers[0].pReader); |
- }else{ |
- if( pStart!=0 ){ |
- dlwAppend(&writer, pStart, nStart, iFirstDocid, iLastDocid); |
- } |
- pStart = dlrDocData(readers[0].pReader); |
- nStart = dlrDocDataBytes(readers[0].pReader); |
- iFirstDocid = iDocid; |
- } |
- iLastDocid = iDocid; |
- dlrStep(readers[0].pReader); |
- |
- /* Drop all of the older elements with the same docid. */ |
- for(i=1; i<nReaders && |
- !dlrAtEnd(readers[i].pReader) && |
- dlrDocid(readers[i].pReader)==iDocid; i++){ |
- dlrStep(readers[i].pReader); |
- } |
- |
- /* Get the readers back into order. */ |
- while( i-->0 ){ |
- orderedDLReaderReorder(readers+i, nReaders-i); |
- } |
- } |
- |
- /* Copy over any remaining elements. */ |
- if( nStart>0 ) dlwAppend(&writer, pStart, nStart, iFirstDocid, iLastDocid); |
- dlwDestroy(&writer); |
-} |
- |
-/* Helper function for posListUnion(). Compares the current position |
-** between left and right, returning as standard C idiom of <0 if |
-** left<right, >0 if left>right, and 0 if left==right. "End" always |
-** compares greater. |
-*/ |
-static int posListCmp(PLReader *pLeft, PLReader *pRight){ |
- assert( pLeft->iType==pRight->iType ); |
- if( pLeft->iType==DL_DOCIDS ) return 0; |
- |
- if( plrAtEnd(pLeft) ) return plrAtEnd(pRight) ? 0 : 1; |
- if( plrAtEnd(pRight) ) return -1; |
- |
- if( plrColumn(pLeft)<plrColumn(pRight) ) return -1; |
- if( plrColumn(pLeft)>plrColumn(pRight) ) return 1; |
- |
- if( plrPosition(pLeft)<plrPosition(pRight) ) return -1; |
- if( plrPosition(pLeft)>plrPosition(pRight) ) return 1; |
- if( pLeft->iType==DL_POSITIONS ) return 0; |
- |
- if( plrStartOffset(pLeft)<plrStartOffset(pRight) ) return -1; |
- if( plrStartOffset(pLeft)>plrStartOffset(pRight) ) return 1; |
- |
- if( plrEndOffset(pLeft)<plrEndOffset(pRight) ) return -1; |
- if( plrEndOffset(pLeft)>plrEndOffset(pRight) ) return 1; |
- |
- return 0; |
-} |
- |
-/* Write the union of position lists in pLeft and pRight to pOut. |
-** "Union" in this case meaning "All unique position tuples". Should |
-** work with any doclist type, though both inputs and the output |
-** should be the same type. |
-*/ |
-static void posListUnion(DLReader *pLeft, DLReader *pRight, DLWriter *pOut){ |
- PLReader left, right; |
- PLWriter writer; |
- |
- assert( dlrDocid(pLeft)==dlrDocid(pRight) ); |
- assert( pLeft->iType==pRight->iType ); |
- assert( pLeft->iType==pOut->iType ); |
- |
- plrInit(&left, pLeft); |
- plrInit(&right, pRight); |
- plwInit(&writer, pOut, dlrDocid(pLeft)); |
- |
- while( !plrAtEnd(&left) || !plrAtEnd(&right) ){ |
- int c = posListCmp(&left, &right); |
- if( c<0 ){ |
- plwCopy(&writer, &left); |
- plrStep(&left); |
- }else if( c>0 ){ |
- plwCopy(&writer, &right); |
- plrStep(&right); |
- }else{ |
- plwCopy(&writer, &left); |
- plrStep(&left); |
- plrStep(&right); |
- } |
- } |
- |
- plwTerminate(&writer); |
- plwDestroy(&writer); |
- plrDestroy(&left); |
- plrDestroy(&right); |
-} |
- |
-/* Write the union of doclists in pLeft and pRight to pOut. For |
-** docids in common between the inputs, the union of the position |
-** lists is written. Inputs and outputs are always type DL_DEFAULT. |
-*/ |
-static void docListUnion( |
- const char *pLeft, int nLeft, |
- const char *pRight, int nRight, |
- DataBuffer *pOut /* Write the combined doclist here */ |
-){ |
- DLReader left, right; |
- DLWriter writer; |
- |
- if( nLeft==0 ){ |
- if( nRight!=0) dataBufferAppend(pOut, pRight, nRight); |
- return; |
- } |
- if( nRight==0 ){ |
- dataBufferAppend(pOut, pLeft, nLeft); |
- return; |
- } |
- |
- dlrInit(&left, DL_DEFAULT, pLeft, nLeft); |
- dlrInit(&right, DL_DEFAULT, pRight, nRight); |
- dlwInit(&writer, DL_DEFAULT, pOut); |
- |
- while( !dlrAtEnd(&left) || !dlrAtEnd(&right) ){ |
- if( dlrAtEnd(&right) ){ |
- dlwCopy(&writer, &left); |
- dlrStep(&left); |
- }else if( dlrAtEnd(&left) ){ |
- dlwCopy(&writer, &right); |
- dlrStep(&right); |
- }else if( dlrDocid(&left)<dlrDocid(&right) ){ |
- dlwCopy(&writer, &left); |
- dlrStep(&left); |
- }else if( dlrDocid(&left)>dlrDocid(&right) ){ |
- dlwCopy(&writer, &right); |
- dlrStep(&right); |
- }else{ |
- posListUnion(&left, &right, &writer); |
- dlrStep(&left); |
- dlrStep(&right); |
- } |
- } |
- |
- dlrDestroy(&left); |
- dlrDestroy(&right); |
- dlwDestroy(&writer); |
-} |
- |
-/* pLeft and pRight are DLReaders positioned to the same docid. |
-** |
-** If there are no instances in pLeft or pRight where the position |
-** of pLeft is one less than the position of pRight, then this |
-** routine adds nothing to pOut. |
-** |
-** If there are one or more instances where positions from pLeft |
-** are exactly one less than positions from pRight, then add a new |
-** document record to pOut. If pOut wants to hold positions, then |
-** include the positions from pRight that are one more than a |
-** position in pLeft. In other words: pRight.iPos==pLeft.iPos+1. |
-*/ |
-static void posListPhraseMerge(DLReader *pLeft, DLReader *pRight, |
- DLWriter *pOut){ |
- PLReader left, right; |
- PLWriter writer; |
- int match = 0; |
- |
- assert( dlrDocid(pLeft)==dlrDocid(pRight) ); |
- assert( pOut->iType!=DL_POSITIONS_OFFSETS ); |
- |
- plrInit(&left, pLeft); |
- plrInit(&right, pRight); |
- |
- while( !plrAtEnd(&left) && !plrAtEnd(&right) ){ |
- if( plrColumn(&left)<plrColumn(&right) ){ |
- plrStep(&left); |
- }else if( plrColumn(&left)>plrColumn(&right) ){ |
- plrStep(&right); |
- }else if( plrPosition(&left)+1<plrPosition(&right) ){ |
- plrStep(&left); |
- }else if( plrPosition(&left)+1>plrPosition(&right) ){ |
- plrStep(&right); |
- }else{ |
- if( !match ){ |
- plwInit(&writer, pOut, dlrDocid(pLeft)); |
- match = 1; |
- } |
- plwAdd(&writer, plrColumn(&right), plrPosition(&right), 0, 0); |
- plrStep(&left); |
- plrStep(&right); |
- } |
- } |
- |
- if( match ){ |
- plwTerminate(&writer); |
- plwDestroy(&writer); |
- } |
- |
- plrDestroy(&left); |
- plrDestroy(&right); |
-} |
- |
-/* We have two doclists with positions: pLeft and pRight. |
-** Write the phrase intersection of these two doclists into pOut. |
-** |
-** A phrase intersection means that two documents only match |
-** if pLeft.iPos+1==pRight.iPos. |
-** |
-** iType controls the type of data written to pOut. If iType is |
-** DL_POSITIONS, the positions are those from pRight. |
-*/ |
-static void docListPhraseMerge( |
- const char *pLeft, int nLeft, |
- const char *pRight, int nRight, |
- DocListType iType, |
- DataBuffer *pOut /* Write the combined doclist here */ |
-){ |
- DLReader left, right; |
- DLWriter writer; |
- |
- if( nLeft==0 || nRight==0 ) return; |
- |
- assert( iType!=DL_POSITIONS_OFFSETS ); |
- |
- dlrInit(&left, DL_POSITIONS, pLeft, nLeft); |
- dlrInit(&right, DL_POSITIONS, pRight, nRight); |
- dlwInit(&writer, iType, pOut); |
- |
- while( !dlrAtEnd(&left) && !dlrAtEnd(&right) ){ |
- if( dlrDocid(&left)<dlrDocid(&right) ){ |
- dlrStep(&left); |
- }else if( dlrDocid(&right)<dlrDocid(&left) ){ |
- dlrStep(&right); |
- }else{ |
- posListPhraseMerge(&left, &right, &writer); |
- dlrStep(&left); |
- dlrStep(&right); |
- } |
- } |
- |
- dlrDestroy(&left); |
- dlrDestroy(&right); |
- dlwDestroy(&writer); |
-} |
- |
-/* We have two DL_DOCIDS doclists: pLeft and pRight. |
-** Write the intersection of these two doclists into pOut as a |
-** DL_DOCIDS doclist. |
-*/ |
-static void docListAndMerge( |
- const char *pLeft, int nLeft, |
- const char *pRight, int nRight, |
- DataBuffer *pOut /* Write the combined doclist here */ |
-){ |
- DLReader left, right; |
- DLWriter writer; |
- |
- if( nLeft==0 || nRight==0 ) return; |
- |
- dlrInit(&left, DL_DOCIDS, pLeft, nLeft); |
- dlrInit(&right, DL_DOCIDS, pRight, nRight); |
- dlwInit(&writer, DL_DOCIDS, pOut); |
- |
- while( !dlrAtEnd(&left) && !dlrAtEnd(&right) ){ |
- if( dlrDocid(&left)<dlrDocid(&right) ){ |
- dlrStep(&left); |
- }else if( dlrDocid(&right)<dlrDocid(&left) ){ |
- dlrStep(&right); |
- }else{ |
- dlwAdd(&writer, dlrDocid(&left)); |
- dlrStep(&left); |
- dlrStep(&right); |
- } |
- } |
- |
- dlrDestroy(&left); |
- dlrDestroy(&right); |
- dlwDestroy(&writer); |
-} |
- |
-/* We have two DL_DOCIDS doclists: pLeft and pRight. |
-** Write the union of these two doclists into pOut as a |
-** DL_DOCIDS doclist. |
-*/ |
-static void docListOrMerge( |
- const char *pLeft, int nLeft, |
- const char *pRight, int nRight, |
- DataBuffer *pOut /* Write the combined doclist here */ |
-){ |
- DLReader left, right; |
- DLWriter writer; |
- |
- if( nLeft==0 ){ |
- if( nRight!=0 ) dataBufferAppend(pOut, pRight, nRight); |
- return; |
- } |
- if( nRight==0 ){ |
- dataBufferAppend(pOut, pLeft, nLeft); |
- return; |
- } |
- |
- dlrInit(&left, DL_DOCIDS, pLeft, nLeft); |
- dlrInit(&right, DL_DOCIDS, pRight, nRight); |
- dlwInit(&writer, DL_DOCIDS, pOut); |
- |
- while( !dlrAtEnd(&left) || !dlrAtEnd(&right) ){ |
- if( dlrAtEnd(&right) ){ |
- dlwAdd(&writer, dlrDocid(&left)); |
- dlrStep(&left); |
- }else if( dlrAtEnd(&left) ){ |
- dlwAdd(&writer, dlrDocid(&right)); |
- dlrStep(&right); |
- }else if( dlrDocid(&left)<dlrDocid(&right) ){ |
- dlwAdd(&writer, dlrDocid(&left)); |
- dlrStep(&left); |
- }else if( dlrDocid(&right)<dlrDocid(&left) ){ |
- dlwAdd(&writer, dlrDocid(&right)); |
- dlrStep(&right); |
- }else{ |
- dlwAdd(&writer, dlrDocid(&left)); |
- dlrStep(&left); |
- dlrStep(&right); |
- } |
- } |
- |
- dlrDestroy(&left); |
- dlrDestroy(&right); |
- dlwDestroy(&writer); |
-} |
- |
-/* We have two DL_DOCIDS doclists: pLeft and pRight. |
-** Write into pOut as DL_DOCIDS doclist containing all documents that |
-** occur in pLeft but not in pRight. |
-*/ |
-static void docListExceptMerge( |
- const char *pLeft, int nLeft, |
- const char *pRight, int nRight, |
- DataBuffer *pOut /* Write the combined doclist here */ |
-){ |
- DLReader left, right; |
- DLWriter writer; |
- |
- if( nLeft==0 ) return; |
- if( nRight==0 ){ |
- dataBufferAppend(pOut, pLeft, nLeft); |
- return; |
- } |
- |
- dlrInit(&left, DL_DOCIDS, pLeft, nLeft); |
- dlrInit(&right, DL_DOCIDS, pRight, nRight); |
- dlwInit(&writer, DL_DOCIDS, pOut); |
- |
- while( !dlrAtEnd(&left) ){ |
- while( !dlrAtEnd(&right) && dlrDocid(&right)<dlrDocid(&left) ){ |
- dlrStep(&right); |
- } |
- if( dlrAtEnd(&right) || dlrDocid(&left)<dlrDocid(&right) ){ |
- dlwAdd(&writer, dlrDocid(&left)); |
- } |
- dlrStep(&left); |
- } |
- |
- dlrDestroy(&left); |
- dlrDestroy(&right); |
- dlwDestroy(&writer); |
-} |
- |
-static char *string_dup_n(const char *s, int n){ |
- char *str = sqlite3_malloc(n + 1); |
- memcpy(str, s, n); |
- str[n] = '\0'; |
- return str; |
-} |
- |
-/* Duplicate a string; the caller must free() the returned string. |
- * (We don't use strdup() since it is not part of the standard C library and |
- * may not be available everywhere.) */ |
-static char *string_dup(const char *s){ |
- return string_dup_n(s, strlen(s)); |
-} |
- |
-/* Format a string, replacing each occurrence of the % character with |
- * zDb.zName. This may be more convenient than sqlite_mprintf() |
- * when one string is used repeatedly in a format string. |
- * The caller must free() the returned string. */ |
-static char *string_format(const char *zFormat, |
- const char *zDb, const char *zName){ |
- const char *p; |
- size_t len = 0; |
- size_t nDb = strlen(zDb); |
- size_t nName = strlen(zName); |
- size_t nFullTableName = nDb+1+nName; |
- char *result; |
- char *r; |
- |
- /* first compute length needed */ |
- for(p = zFormat ; *p ; ++p){ |
- len += (*p=='%' ? nFullTableName : 1); |
- } |
- len += 1; /* for null terminator */ |
- |
- r = result = sqlite3_malloc(len); |
- for(p = zFormat; *p; ++p){ |
- if( *p=='%' ){ |
- memcpy(r, zDb, nDb); |
- r += nDb; |
- *r++ = '.'; |
- memcpy(r, zName, nName); |
- r += nName; |
- } else { |
- *r++ = *p; |
- } |
- } |
- *r++ = '\0'; |
- assert( r == result + len ); |
- return result; |
-} |
- |
-static int sql_exec(sqlite3 *db, const char *zDb, const char *zName, |
- const char *zFormat){ |
- char *zCommand = string_format(zFormat, zDb, zName); |
- int rc; |
- TRACE(("FTS2 sql: %s\n", zCommand)); |
- rc = sqlite3_exec(db, zCommand, NULL, 0, NULL); |
- sqlite3_free(zCommand); |
- return rc; |
-} |
- |
-static int sql_prepare(sqlite3 *db, const char *zDb, const char *zName, |
- sqlite3_stmt **ppStmt, const char *zFormat){ |
- char *zCommand = string_format(zFormat, zDb, zName); |
- int rc; |
- TRACE(("FTS2 prepare: %s\n", zCommand)); |
- rc = sqlite3_prepare_v2(db, zCommand, -1, ppStmt, NULL); |
- sqlite3_free(zCommand); |
- return rc; |
-} |
- |
-/* end utility functions */ |
- |
-/* Forward reference */ |
-typedef struct fulltext_vtab fulltext_vtab; |
- |
-/* A single term in a query is represented by an instances of |
-** the following structure. |
-*/ |
-typedef struct QueryTerm { |
- short int nPhrase; /* How many following terms are part of the same phrase */ |
- short int iPhrase; /* This is the i-th term of a phrase. */ |
- short int iColumn; /* Column of the index that must match this term */ |
- signed char isOr; /* this term is preceded by "OR" */ |
- signed char isNot; /* this term is preceded by "-" */ |
- signed char isPrefix; /* this term is followed by "*" */ |
- char *pTerm; /* text of the term. '\000' terminated. malloced */ |
- int nTerm; /* Number of bytes in pTerm[] */ |
-} QueryTerm; |
- |
- |
-/* A query string is parsed into a Query structure. |
- * |
- * We could, in theory, allow query strings to be complicated |
- * nested expressions with precedence determined by parentheses. |
- * But none of the major search engines do this. (Perhaps the |
- * feeling is that an parenthesized expression is two complex of |
- * an idea for the average user to grasp.) Taking our lead from |
- * the major search engines, we will allow queries to be a list |
- * of terms (with an implied AND operator) or phrases in double-quotes, |
- * with a single optional "-" before each non-phrase term to designate |
- * negation and an optional OR connector. |
- * |
- * OR binds more tightly than the implied AND, which is what the |
- * major search engines seem to do. So, for example: |
- * |
- * [one two OR three] ==> one AND (two OR three) |
- * [one OR two three] ==> (one OR two) AND three |
- * |
- * A "-" before a term matches all entries that lack that term. |
- * The "-" must occur immediately before the term with in intervening |
- * space. This is how the search engines do it. |
- * |
- * A NOT term cannot be the right-hand operand of an OR. If this |
- * occurs in the query string, the NOT is ignored: |
- * |
- * [one OR -two] ==> one OR two |
- * |
- */ |
-typedef struct Query { |
- fulltext_vtab *pFts; /* The full text index */ |
- int nTerms; /* Number of terms in the query */ |
- QueryTerm *pTerms; /* Array of terms. Space obtained from malloc() */ |
- int nextIsOr; /* Set the isOr flag on the next inserted term */ |
- int nextColumn; /* Next word parsed must be in this column */ |
- int dfltColumn; /* The default column */ |
-} Query; |
- |
- |
-/* |
-** An instance of the following structure keeps track of generated |
-** matching-word offset information and snippets. |
-*/ |
-typedef struct Snippet { |
- int nMatch; /* Total number of matches */ |
- int nAlloc; /* Space allocated for aMatch[] */ |
- struct snippetMatch { /* One entry for each matching term */ |
- char snStatus; /* Status flag for use while constructing snippets */ |
- short int iCol; /* The column that contains the match */ |
- short int iTerm; /* The index in Query.pTerms[] of the matching term */ |
- short int nByte; /* Number of bytes in the term */ |
- int iStart; /* The offset to the first character of the term */ |
- } *aMatch; /* Points to space obtained from malloc */ |
- char *zOffset; /* Text rendering of aMatch[] */ |
- int nOffset; /* strlen(zOffset) */ |
- char *zSnippet; /* Snippet text */ |
- int nSnippet; /* strlen(zSnippet) */ |
-} Snippet; |
- |
- |
-typedef enum QueryType { |
- QUERY_GENERIC, /* table scan */ |
- QUERY_ROWID, /* lookup by rowid */ |
- QUERY_FULLTEXT /* QUERY_FULLTEXT + [i] is a full-text search for column i*/ |
-} QueryType; |
- |
-typedef enum fulltext_statement { |
- CONTENT_INSERT_STMT, |
- CONTENT_SELECT_STMT, |
- CONTENT_UPDATE_STMT, |
- CONTENT_DELETE_STMT, |
- CONTENT_EXISTS_STMT, |
- |
- BLOCK_INSERT_STMT, |
- BLOCK_SELECT_STMT, |
- BLOCK_DELETE_STMT, |
- BLOCK_DELETE_ALL_STMT, |
- |
- SEGDIR_MAX_INDEX_STMT, |
- SEGDIR_SET_STMT, |
- SEGDIR_SELECT_LEVEL_STMT, |
- SEGDIR_SPAN_STMT, |
- SEGDIR_DELETE_STMT, |
- SEGDIR_SELECT_SEGMENT_STMT, |
- SEGDIR_SELECT_ALL_STMT, |
- SEGDIR_DELETE_ALL_STMT, |
- SEGDIR_COUNT_STMT, |
- |
- MAX_STMT /* Always at end! */ |
-} fulltext_statement; |
- |
-/* These must exactly match the enum above. */ |
-/* TODO(shess): Is there some risk that a statement will be used in two |
-** cursors at once, e.g. if a query joins a virtual table to itself? |
-** If so perhaps we should move some of these to the cursor object. |
-*/ |
-static const char *const fulltext_zStatement[MAX_STMT] = { |
- /* CONTENT_INSERT */ NULL, /* generated in contentInsertStatement() */ |
- /* CONTENT_SELECT */ "select * from %_content where rowid = ?", |
- /* CONTENT_UPDATE */ NULL, /* generated in contentUpdateStatement() */ |
- /* CONTENT_DELETE */ "delete from %_content where rowid = ?", |
- /* CONTENT_EXISTS */ "select rowid from %_content limit 1", |
- |
- /* BLOCK_INSERT */ "insert into %_segments values (?)", |
- /* BLOCK_SELECT */ "select block from %_segments where rowid = ?", |
- /* BLOCK_DELETE */ "delete from %_segments where rowid between ? and ?", |
- /* BLOCK_DELETE_ALL */ "delete from %_segments", |
- |
- /* SEGDIR_MAX_INDEX */ "select max(idx) from %_segdir where level = ?", |
- /* SEGDIR_SET */ "insert into %_segdir values (?, ?, ?, ?, ?, ?)", |
- /* SEGDIR_SELECT_LEVEL */ |
- "select start_block, leaves_end_block, root from %_segdir " |
- " where level = ? order by idx", |
- /* SEGDIR_SPAN */ |
- "select min(start_block), max(end_block) from %_segdir " |
- " where level = ? and start_block <> 0", |
- /* SEGDIR_DELETE */ "delete from %_segdir where level = ?", |
- |
- /* NOTE(shess): The first three results of the following two |
- ** statements must match. |
- */ |
- /* SEGDIR_SELECT_SEGMENT */ |
- "select start_block, leaves_end_block, root from %_segdir " |
- " where level = ? and idx = ?", |
- /* SEGDIR_SELECT_ALL */ |
- "select start_block, leaves_end_block, root from %_segdir " |
- " order by level desc, idx asc", |
- /* SEGDIR_DELETE_ALL */ "delete from %_segdir", |
- /* SEGDIR_COUNT */ "select count(*), ifnull(max(level),0) from %_segdir", |
-}; |
- |
-/* |
-** A connection to a fulltext index is an instance of the following |
-** structure. The xCreate and xConnect methods create an instance |
-** of this structure and xDestroy and xDisconnect free that instance. |
-** All other methods receive a pointer to the structure as one of their |
-** arguments. |
-*/ |
-struct fulltext_vtab { |
- sqlite3_vtab base; /* Base class used by SQLite core */ |
- sqlite3 *db; /* The database connection */ |
- const char *zDb; /* logical database name */ |
- const char *zName; /* virtual table name */ |
- int nColumn; /* number of columns in virtual table */ |
- char **azColumn; /* column names. malloced */ |
- char **azContentColumn; /* column names in content table; malloced */ |
- sqlite3_tokenizer *pTokenizer; /* tokenizer for inserts and queries */ |
- |
- /* Precompiled statements which we keep as long as the table is |
- ** open. |
- */ |
- sqlite3_stmt *pFulltextStatements[MAX_STMT]; |
- |
- /* Precompiled statements used for segment merges. We run a |
- ** separate select across the leaf level of each tree being merged. |
- */ |
- sqlite3_stmt *pLeafSelectStmts[MERGE_COUNT]; |
- /* The statement used to prepare pLeafSelectStmts. */ |
-#define LEAF_SELECT \ |
- "select block from %_segments where rowid between ? and ? order by rowid" |
- |
- /* These buffer pending index updates during transactions. |
- ** nPendingData estimates the memory size of the pending data. It |
- ** doesn't include the hash-bucket overhead, nor any malloc |
- ** overhead. When nPendingData exceeds kPendingThreshold, the |
- ** buffer is flushed even before the transaction closes. |
- ** pendingTerms stores the data, and is only valid when nPendingData |
- ** is >=0 (nPendingData<0 means pendingTerms has not been |
- ** initialized). iPrevDocid is the last docid written, used to make |
- ** certain we're inserting in sorted order. |
- */ |
- int nPendingData; |
-#define kPendingThreshold (1*1024*1024) |
- sqlite_int64 iPrevDocid; |
- fts2Hash pendingTerms; |
-}; |
- |
-/* |
-** When the core wants to do a query, it create a cursor using a |
-** call to xOpen. This structure is an instance of a cursor. It |
-** is destroyed by xClose. |
-*/ |
-typedef struct fulltext_cursor { |
- sqlite3_vtab_cursor base; /* Base class used by SQLite core */ |
- QueryType iCursorType; /* Copy of sqlite3_index_info.idxNum */ |
- sqlite3_stmt *pStmt; /* Prepared statement in use by the cursor */ |
- int eof; /* True if at End Of Results */ |
- Query q; /* Parsed query string */ |
- Snippet snippet; /* Cached snippet for the current row */ |
- int iColumn; /* Column being searched */ |
- DataBuffer result; /* Doclist results from fulltextQuery */ |
- DLReader reader; /* Result reader if result not empty */ |
-} fulltext_cursor; |
- |
-static struct fulltext_vtab *cursor_vtab(fulltext_cursor *c){ |
- return (fulltext_vtab *) c->base.pVtab; |
-} |
- |
-static const sqlite3_module fts2Module; /* forward declaration */ |
- |
-/* Return a dynamically generated statement of the form |
- * insert into %_content (rowid, ...) values (?, ...) |
- */ |
-static const char *contentInsertStatement(fulltext_vtab *v){ |
- StringBuffer sb; |
- int i; |
- |
- initStringBuffer(&sb); |
- append(&sb, "insert into %_content (rowid, "); |
- appendList(&sb, v->nColumn, v->azContentColumn); |
- append(&sb, ") values (?"); |
- for(i=0; i<v->nColumn; ++i) |
- append(&sb, ", ?"); |
- append(&sb, ")"); |
- return stringBufferData(&sb); |
-} |
- |
-/* Return a dynamically generated statement of the form |
- * update %_content set [col_0] = ?, [col_1] = ?, ... |
- * where rowid = ? |
- */ |
-static const char *contentUpdateStatement(fulltext_vtab *v){ |
- StringBuffer sb; |
- int i; |
- |
- initStringBuffer(&sb); |
- append(&sb, "update %_content set "); |
- for(i=0; i<v->nColumn; ++i) { |
- if( i>0 ){ |
- append(&sb, ", "); |
- } |
- append(&sb, v->azContentColumn[i]); |
- append(&sb, " = ?"); |
- } |
- append(&sb, " where rowid = ?"); |
- return stringBufferData(&sb); |
-} |
- |
-/* Puts a freshly-prepared statement determined by iStmt in *ppStmt. |
-** If the indicated statement has never been prepared, it is prepared |
-** and cached, otherwise the cached version is reset. |
-*/ |
-static int sql_get_statement(fulltext_vtab *v, fulltext_statement iStmt, |
- sqlite3_stmt **ppStmt){ |
- assert( iStmt<MAX_STMT ); |
- if( v->pFulltextStatements[iStmt]==NULL ){ |
- const char *zStmt; |
- int rc; |
- switch( iStmt ){ |
- case CONTENT_INSERT_STMT: |
- zStmt = contentInsertStatement(v); break; |
- case CONTENT_UPDATE_STMT: |
- zStmt = contentUpdateStatement(v); break; |
- default: |
- zStmt = fulltext_zStatement[iStmt]; |
- } |
- rc = sql_prepare(v->db, v->zDb, v->zName, &v->pFulltextStatements[iStmt], |
- zStmt); |
- if( zStmt != fulltext_zStatement[iStmt]) sqlite3_free((void *) zStmt); |
- if( rc!=SQLITE_OK ) return rc; |
- } else { |
- int rc = sqlite3_reset(v->pFulltextStatements[iStmt]); |
- if( rc!=SQLITE_OK ) return rc; |
- } |
- |
- *ppStmt = v->pFulltextStatements[iStmt]; |
- return SQLITE_OK; |
-} |
- |
-/* Like sqlite3_step(), but convert SQLITE_DONE to SQLITE_OK and |
-** SQLITE_ROW to SQLITE_ERROR. Useful for statements like UPDATE, |
-** where we expect no results. |
-*/ |
-static int sql_single_step(sqlite3_stmt *s){ |
- int rc = sqlite3_step(s); |
- return (rc==SQLITE_DONE) ? SQLITE_OK : rc; |
-} |
- |
-/* Like sql_get_statement(), but for special replicated LEAF_SELECT |
-** statements. idx -1 is a special case for an uncached version of |
-** the statement (used in the optimize implementation). |
-*/ |
-/* TODO(shess) Write version for generic statements and then share |
-** that between the cached-statement functions. |
-*/ |
-static int sql_get_leaf_statement(fulltext_vtab *v, int idx, |
- sqlite3_stmt **ppStmt){ |
- assert( idx>=-1 && idx<MERGE_COUNT ); |
- if( idx==-1 ){ |
- return sql_prepare(v->db, v->zDb, v->zName, ppStmt, LEAF_SELECT); |
- }else if( v->pLeafSelectStmts[idx]==NULL ){ |
- int rc = sql_prepare(v->db, v->zDb, v->zName, &v->pLeafSelectStmts[idx], |
- LEAF_SELECT); |
- if( rc!=SQLITE_OK ) return rc; |
- }else{ |
- int rc = sqlite3_reset(v->pLeafSelectStmts[idx]); |
- if( rc!=SQLITE_OK ) return rc; |
- } |
- |
- *ppStmt = v->pLeafSelectStmts[idx]; |
- return SQLITE_OK; |
-} |
- |
-/* insert into %_content (rowid, ...) values ([rowid], [pValues]) */ |
-static int content_insert(fulltext_vtab *v, sqlite3_value *rowid, |
- sqlite3_value **pValues){ |
- sqlite3_stmt *s; |
- int i; |
- int rc = sql_get_statement(v, CONTENT_INSERT_STMT, &s); |
- if( rc!=SQLITE_OK ) return rc; |
- |
- rc = sqlite3_bind_value(s, 1, rowid); |
- if( rc!=SQLITE_OK ) return rc; |
- |
- for(i=0; i<v->nColumn; ++i){ |
- rc = sqlite3_bind_value(s, 2+i, pValues[i]); |
- if( rc!=SQLITE_OK ) return rc; |
- } |
- |
- return sql_single_step(s); |
-} |
- |
-/* update %_content set col0 = pValues[0], col1 = pValues[1], ... |
- * where rowid = [iRowid] */ |
-static int content_update(fulltext_vtab *v, sqlite3_value **pValues, |
- sqlite_int64 iRowid){ |
- sqlite3_stmt *s; |
- int i; |
- int rc = sql_get_statement(v, CONTENT_UPDATE_STMT, &s); |
- if( rc!=SQLITE_OK ) return rc; |
- |
- for(i=0; i<v->nColumn; ++i){ |
- rc = sqlite3_bind_value(s, 1+i, pValues[i]); |
- if( rc!=SQLITE_OK ) return rc; |
- } |
- |
- rc = sqlite3_bind_int64(s, 1+v->nColumn, iRowid); |
- if( rc!=SQLITE_OK ) return rc; |
- |
- return sql_single_step(s); |
-} |
- |
-static void freeStringArray(int nString, const char **pString){ |
- int i; |
- |
- for (i=0 ; i < nString ; ++i) { |
- if( pString[i]!=NULL ) sqlite3_free((void *) pString[i]); |
- } |
- sqlite3_free((void *) pString); |
-} |
- |
-/* select * from %_content where rowid = [iRow] |
- * The caller must delete the returned array and all strings in it. |
- * null fields will be NULL in the returned array. |
- * |
- * TODO: Perhaps we should return pointer/length strings here for consistency |
- * with other code which uses pointer/length. */ |
-static int content_select(fulltext_vtab *v, sqlite_int64 iRow, |
- const char ***pValues){ |
- sqlite3_stmt *s; |
- const char **values; |
- int i; |
- int rc; |
- |
- *pValues = NULL; |
- |
- rc = sql_get_statement(v, CONTENT_SELECT_STMT, &s); |
- if( rc!=SQLITE_OK ) return rc; |
- |
- rc = sqlite3_bind_int64(s, 1, iRow); |
- if( rc!=SQLITE_OK ) return rc; |
- |
- rc = sqlite3_step(s); |
- if( rc!=SQLITE_ROW ) return rc; |
- |
- values = (const char **) sqlite3_malloc(v->nColumn * sizeof(const char *)); |
- for(i=0; i<v->nColumn; ++i){ |
- if( sqlite3_column_type(s, i)==SQLITE_NULL ){ |
- values[i] = NULL; |
- }else{ |
- values[i] = string_dup((char*)sqlite3_column_text(s, i)); |
- } |
- } |
- |
- /* We expect only one row. We must execute another sqlite3_step() |
- * to complete the iteration; otherwise the table will remain locked. */ |
- rc = sqlite3_step(s); |
- if( rc==SQLITE_DONE ){ |
- *pValues = values; |
- return SQLITE_OK; |
- } |
- |
- freeStringArray(v->nColumn, values); |
- return rc; |
-} |
- |
-/* delete from %_content where rowid = [iRow ] */ |
-static int content_delete(fulltext_vtab *v, sqlite_int64 iRow){ |
- sqlite3_stmt *s; |
- int rc = sql_get_statement(v, CONTENT_DELETE_STMT, &s); |
- if( rc!=SQLITE_OK ) return rc; |
- |
- rc = sqlite3_bind_int64(s, 1, iRow); |
- if( rc!=SQLITE_OK ) return rc; |
- |
- return sql_single_step(s); |
-} |
- |
-/* Returns SQLITE_ROW if any rows exist in %_content, SQLITE_DONE if |
-** no rows exist, and any error in case of failure. |
-*/ |
-static int content_exists(fulltext_vtab *v){ |
- sqlite3_stmt *s; |
- int rc = sql_get_statement(v, CONTENT_EXISTS_STMT, &s); |
- if( rc!=SQLITE_OK ) return rc; |
- |
- rc = sqlite3_step(s); |
- if( rc!=SQLITE_ROW ) return rc; |
- |
- /* We expect only one row. We must execute another sqlite3_step() |
- * to complete the iteration; otherwise the table will remain locked. */ |
- rc = sqlite3_step(s); |
- if( rc==SQLITE_DONE ) return SQLITE_ROW; |
- if( rc==SQLITE_ROW ) return SQLITE_ERROR; |
- return rc; |
-} |
- |
-/* insert into %_segments values ([pData]) |
-** returns assigned rowid in *piBlockid |
-*/ |
-static int block_insert(fulltext_vtab *v, const char *pData, int nData, |
- sqlite_int64 *piBlockid){ |
- sqlite3_stmt *s; |
- int rc = sql_get_statement(v, BLOCK_INSERT_STMT, &s); |
- if( rc!=SQLITE_OK ) return rc; |
- |
- rc = sqlite3_bind_blob(s, 1, pData, nData, SQLITE_STATIC); |
- if( rc!=SQLITE_OK ) return rc; |
- |
- rc = sqlite3_step(s); |
- if( rc==SQLITE_ROW ) return SQLITE_ERROR; |
- if( rc!=SQLITE_DONE ) return rc; |
- |
- *piBlockid = sqlite3_last_insert_rowid(v->db); |
- return SQLITE_OK; |
-} |
- |
-/* delete from %_segments |
-** where rowid between [iStartBlockid] and [iEndBlockid] |
-** |
-** Deletes the range of blocks, inclusive, used to delete the blocks |
-** which form a segment. |
-*/ |
-static int block_delete(fulltext_vtab *v, |
- sqlite_int64 iStartBlockid, sqlite_int64 iEndBlockid){ |
- sqlite3_stmt *s; |
- int rc = sql_get_statement(v, BLOCK_DELETE_STMT, &s); |
- if( rc!=SQLITE_OK ) return rc; |
- |
- rc = sqlite3_bind_int64(s, 1, iStartBlockid); |
- if( rc!=SQLITE_OK ) return rc; |
- |
- rc = sqlite3_bind_int64(s, 2, iEndBlockid); |
- if( rc!=SQLITE_OK ) return rc; |
- |
- return sql_single_step(s); |
-} |
- |
-/* Returns SQLITE_ROW with *pidx set to the maximum segment idx found |
-** at iLevel. Returns SQLITE_DONE if there are no segments at |
-** iLevel. Otherwise returns an error. |
-*/ |
-static int segdir_max_index(fulltext_vtab *v, int iLevel, int *pidx){ |
- sqlite3_stmt *s; |
- int rc = sql_get_statement(v, SEGDIR_MAX_INDEX_STMT, &s); |
- if( rc!=SQLITE_OK ) return rc; |
- |
- rc = sqlite3_bind_int(s, 1, iLevel); |
- if( rc!=SQLITE_OK ) return rc; |
- |
- rc = sqlite3_step(s); |
- /* Should always get at least one row due to how max() works. */ |
- if( rc==SQLITE_DONE ) return SQLITE_DONE; |
- if( rc!=SQLITE_ROW ) return rc; |
- |
- /* NULL means that there were no inputs to max(). */ |
- if( SQLITE_NULL==sqlite3_column_type(s, 0) ){ |
- rc = sqlite3_step(s); |
- if( rc==SQLITE_ROW ) return SQLITE_ERROR; |
- return rc; |
- } |
- |
- *pidx = sqlite3_column_int(s, 0); |
- |
- /* We expect only one row. We must execute another sqlite3_step() |
- * to complete the iteration; otherwise the table will remain locked. */ |
- rc = sqlite3_step(s); |
- if( rc==SQLITE_ROW ) return SQLITE_ERROR; |
- if( rc!=SQLITE_DONE ) return rc; |
- return SQLITE_ROW; |
-} |
- |
-/* insert into %_segdir values ( |
-** [iLevel], [idx], |
-** [iStartBlockid], [iLeavesEndBlockid], [iEndBlockid], |
-** [pRootData] |
-** ) |
-*/ |
-static int segdir_set(fulltext_vtab *v, int iLevel, int idx, |
- sqlite_int64 iStartBlockid, |
- sqlite_int64 iLeavesEndBlockid, |
- sqlite_int64 iEndBlockid, |
- const char *pRootData, int nRootData){ |
- sqlite3_stmt *s; |
- int rc = sql_get_statement(v, SEGDIR_SET_STMT, &s); |
- if( rc!=SQLITE_OK ) return rc; |
- |
- rc = sqlite3_bind_int(s, 1, iLevel); |
- if( rc!=SQLITE_OK ) return rc; |
- |
- rc = sqlite3_bind_int(s, 2, idx); |
- if( rc!=SQLITE_OK ) return rc; |
- |
- rc = sqlite3_bind_int64(s, 3, iStartBlockid); |
- if( rc!=SQLITE_OK ) return rc; |
- |
- rc = sqlite3_bind_int64(s, 4, iLeavesEndBlockid); |
- if( rc!=SQLITE_OK ) return rc; |
- |
- rc = sqlite3_bind_int64(s, 5, iEndBlockid); |
- if( rc!=SQLITE_OK ) return rc; |
- |
- rc = sqlite3_bind_blob(s, 6, pRootData, nRootData, SQLITE_STATIC); |
- if( rc!=SQLITE_OK ) return rc; |
- |
- return sql_single_step(s); |
-} |
- |
-/* Queries %_segdir for the block span of the segments in level |
-** iLevel. Returns SQLITE_DONE if there are no blocks for iLevel, |
-** SQLITE_ROW if there are blocks, else an error. |
-*/ |
-static int segdir_span(fulltext_vtab *v, int iLevel, |
- sqlite_int64 *piStartBlockid, |
- sqlite_int64 *piEndBlockid){ |
- sqlite3_stmt *s; |
- int rc = sql_get_statement(v, SEGDIR_SPAN_STMT, &s); |
- if( rc!=SQLITE_OK ) return rc; |
- |
- rc = sqlite3_bind_int(s, 1, iLevel); |
- if( rc!=SQLITE_OK ) return rc; |
- |
- rc = sqlite3_step(s); |
- if( rc==SQLITE_DONE ) return SQLITE_DONE; /* Should never happen */ |
- if( rc!=SQLITE_ROW ) return rc; |
- |
- /* This happens if all segments at this level are entirely inline. */ |
- if( SQLITE_NULL==sqlite3_column_type(s, 0) ){ |
- /* We expect only one row. We must execute another sqlite3_step() |
- * to complete the iteration; otherwise the table will remain locked. */ |
- int rc2 = sqlite3_step(s); |
- if( rc2==SQLITE_ROW ) return SQLITE_ERROR; |
- return rc2; |
- } |
- |
- *piStartBlockid = sqlite3_column_int64(s, 0); |
- *piEndBlockid = sqlite3_column_int64(s, 1); |
- |
- /* We expect only one row. We must execute another sqlite3_step() |
- * to complete the iteration; otherwise the table will remain locked. */ |
- rc = sqlite3_step(s); |
- if( rc==SQLITE_ROW ) return SQLITE_ERROR; |
- if( rc!=SQLITE_DONE ) return rc; |
- return SQLITE_ROW; |
-} |
- |
-/* Delete the segment blocks and segment directory records for all |
-** segments at iLevel. |
-*/ |
-static int segdir_delete(fulltext_vtab *v, int iLevel){ |
- sqlite3_stmt *s; |
- sqlite_int64 iStartBlockid, iEndBlockid; |
- int rc = segdir_span(v, iLevel, &iStartBlockid, &iEndBlockid); |
- if( rc!=SQLITE_ROW && rc!=SQLITE_DONE ) return rc; |
- |
- if( rc==SQLITE_ROW ){ |
- rc = block_delete(v, iStartBlockid, iEndBlockid); |
- if( rc!=SQLITE_OK ) return rc; |
- } |
- |
- /* Delete the segment directory itself. */ |
- rc = sql_get_statement(v, SEGDIR_DELETE_STMT, &s); |
- if( rc!=SQLITE_OK ) return rc; |
- |
- rc = sqlite3_bind_int64(s, 1, iLevel); |
- if( rc!=SQLITE_OK ) return rc; |
- |
- return sql_single_step(s); |
-} |
- |
-/* Delete entire fts index, SQLITE_OK on success, relevant error on |
-** failure. |
-*/ |
-static int segdir_delete_all(fulltext_vtab *v){ |
- sqlite3_stmt *s; |
- int rc = sql_get_statement(v, SEGDIR_DELETE_ALL_STMT, &s); |
- if( rc!=SQLITE_OK ) return rc; |
- |
- rc = sql_single_step(s); |
- if( rc!=SQLITE_OK ) return rc; |
- |
- rc = sql_get_statement(v, BLOCK_DELETE_ALL_STMT, &s); |
- if( rc!=SQLITE_OK ) return rc; |
- |
- return sql_single_step(s); |
-} |
- |
-/* Returns SQLITE_OK with *pnSegments set to the number of entries in |
-** %_segdir and *piMaxLevel set to the highest level which has a |
-** segment. Otherwise returns the SQLite error which caused failure. |
-*/ |
-static int segdir_count(fulltext_vtab *v, int *pnSegments, int *piMaxLevel){ |
- sqlite3_stmt *s; |
- int rc = sql_get_statement(v, SEGDIR_COUNT_STMT, &s); |
- if( rc!=SQLITE_OK ) return rc; |
- |
- rc = sqlite3_step(s); |
- /* TODO(shess): This case should not be possible? Should stronger |
- ** measures be taken if it happens? |
- */ |
- if( rc==SQLITE_DONE ){ |
- *pnSegments = 0; |
- *piMaxLevel = 0; |
- return SQLITE_OK; |
- } |
- if( rc!=SQLITE_ROW ) return rc; |
- |
- *pnSegments = sqlite3_column_int(s, 0); |
- *piMaxLevel = sqlite3_column_int(s, 1); |
- |
- /* We expect only one row. We must execute another sqlite3_step() |
- * to complete the iteration; otherwise the table will remain locked. */ |
- rc = sqlite3_step(s); |
- if( rc==SQLITE_DONE ) return SQLITE_OK; |
- if( rc==SQLITE_ROW ) return SQLITE_ERROR; |
- return rc; |
-} |
- |
-/* TODO(shess) clearPendingTerms() is far down the file because |
-** writeZeroSegment() is far down the file because LeafWriter is far |
-** down the file. Consider refactoring the code to move the non-vtab |
-** code above the vtab code so that we don't need this forward |
-** reference. |
-*/ |
-static int clearPendingTerms(fulltext_vtab *v); |
- |
-/* |
-** Free the memory used to contain a fulltext_vtab structure. |
-*/ |
-static void fulltext_vtab_destroy(fulltext_vtab *v){ |
- int iStmt, i; |
- |
- TRACE(("FTS2 Destroy %p\n", v)); |
- for( iStmt=0; iStmt<MAX_STMT; iStmt++ ){ |
- if( v->pFulltextStatements[iStmt]!=NULL ){ |
- sqlite3_finalize(v->pFulltextStatements[iStmt]); |
- v->pFulltextStatements[iStmt] = NULL; |
- } |
- } |
- |
- for( i=0; i<MERGE_COUNT; i++ ){ |
- if( v->pLeafSelectStmts[i]!=NULL ){ |
- sqlite3_finalize(v->pLeafSelectStmts[i]); |
- v->pLeafSelectStmts[i] = NULL; |
- } |
- } |
- |
- if( v->pTokenizer!=NULL ){ |
- v->pTokenizer->pModule->xDestroy(v->pTokenizer); |
- v->pTokenizer = NULL; |
- } |
- |
- clearPendingTerms(v); |
- |
- sqlite3_free(v->azColumn); |
- for(i = 0; i < v->nColumn; ++i) { |
- sqlite3_free(v->azContentColumn[i]); |
- } |
- sqlite3_free(v->azContentColumn); |
- sqlite3_free(v); |
-} |
- |
-/* |
-** Token types for parsing the arguments to xConnect or xCreate. |
-*/ |
-#define TOKEN_EOF 0 /* End of file */ |
-#define TOKEN_SPACE 1 /* Any kind of whitespace */ |
-#define TOKEN_ID 2 /* An identifier */ |
-#define TOKEN_STRING 3 /* A string literal */ |
-#define TOKEN_PUNCT 4 /* A single punctuation character */ |
- |
-/* |
-** If X is a character that can be used in an identifier then |
-** IdChar(X) will be true. Otherwise it is false. |
-** |
-** For ASCII, any character with the high-order bit set is |
-** allowed in an identifier. For 7-bit characters, |
-** sqlite3IsIdChar[X] must be 1. |
-** |
-** Ticket #1066. the SQL standard does not allow '$' in the |
-** middle of identfiers. But many SQL implementations do. |
-** SQLite will allow '$' in identifiers for compatibility. |
-** But the feature is undocumented. |
-*/ |
-static const char isIdChar[] = { |
-/* x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF */ |
- 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 2x */ |
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, /* 3x */ |
- 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 4x */ |
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, /* 5x */ |
- 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 6x */ |
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, /* 7x */ |
-}; |
-#define IdChar(C) (((c=C)&0x80)!=0 || (c>0x1f && isIdChar[c-0x20])) |
- |
- |
-/* |
-** Return the length of the token that begins at z[0]. |
-** Store the token type in *tokenType before returning. |
-*/ |
-static int getToken(const char *z, int *tokenType){ |
- int i, c; |
- switch( *z ){ |
- case 0: { |
- *tokenType = TOKEN_EOF; |
- return 0; |
- } |
- case ' ': case '\t': case '\n': case '\f': case '\r': { |
- for(i=1; safe_isspace(z[i]); i++){} |
- *tokenType = TOKEN_SPACE; |
- return i; |
- } |
- case '`': |
- case '\'': |
- case '"': { |
- int delim = z[0]; |
- for(i=1; (c=z[i])!=0; i++){ |
- if( c==delim ){ |
- if( z[i+1]==delim ){ |
- i++; |
- }else{ |
- break; |
- } |
- } |
- } |
- *tokenType = TOKEN_STRING; |
- return i + (c!=0); |
- } |
- case '[': { |
- for(i=1, c=z[0]; c!=']' && (c=z[i])!=0; i++){} |
- *tokenType = TOKEN_ID; |
- return i; |
- } |
- default: { |
- if( !IdChar(*z) ){ |
- break; |
- } |
- for(i=1; IdChar(z[i]); i++){} |
- *tokenType = TOKEN_ID; |
- return i; |
- } |
- } |
- *tokenType = TOKEN_PUNCT; |
- return 1; |
-} |
- |
-/* |
-** A token extracted from a string is an instance of the following |
-** structure. |
-*/ |
-typedef struct Token { |
- const char *z; /* Pointer to token text. Not '\000' terminated */ |
- short int n; /* Length of the token text in bytes. */ |
-} Token; |
- |
-/* |
-** Given a input string (which is really one of the argv[] parameters |
-** passed into xConnect or xCreate) split the string up into tokens. |
-** Return an array of pointers to '\000' terminated strings, one string |
-** for each non-whitespace token. |
-** |
-** The returned array is terminated by a single NULL pointer. |
-** |
-** Space to hold the returned array is obtained from a single |
-** malloc and should be freed by passing the return value to free(). |
-** The individual strings within the token list are all a part of |
-** the single memory allocation and will all be freed at once. |
-*/ |
-static char **tokenizeString(const char *z, int *pnToken){ |
- int nToken = 0; |
- Token *aToken = sqlite3_malloc( strlen(z) * sizeof(aToken[0]) ); |
- int n = 1; |
- int e, i; |
- int totalSize = 0; |
- char **azToken; |
- char *zCopy; |
- while( n>0 ){ |
- n = getToken(z, &e); |
- if( e!=TOKEN_SPACE ){ |
- aToken[nToken].z = z; |
- aToken[nToken].n = n; |
- nToken++; |
- totalSize += n+1; |
- } |
- z += n; |
- } |
- azToken = (char**)sqlite3_malloc( nToken*sizeof(char*) + totalSize ); |
- zCopy = (char*)&azToken[nToken]; |
- nToken--; |
- for(i=0; i<nToken; i++){ |
- azToken[i] = zCopy; |
- n = aToken[i].n; |
- memcpy(zCopy, aToken[i].z, n); |
- zCopy[n] = 0; |
- zCopy += n+1; |
- } |
- azToken[nToken] = 0; |
- sqlite3_free(aToken); |
- *pnToken = nToken; |
- return azToken; |
-} |
- |
-/* |
-** Convert an SQL-style quoted string into a normal string by removing |
-** the quote characters. The conversion is done in-place. If the |
-** input does not begin with a quote character, then this routine |
-** is a no-op. |
-** |
-** Examples: |
-** |
-** "abc" becomes abc |
-** 'xyz' becomes xyz |
-** [pqr] becomes pqr |
-** `mno` becomes mno |
-*/ |
-static void dequoteString(char *z){ |
- int quote; |
- int i, j; |
- if( z==0 ) return; |
- quote = z[0]; |
- switch( quote ){ |
- case '\'': break; |
- case '"': break; |
- case '`': break; /* For MySQL compatibility */ |
- case '[': quote = ']'; break; /* For MS SqlServer compatibility */ |
- default: return; |
- } |
- for(i=1, j=0; z[i]; i++){ |
- if( z[i]==quote ){ |
- if( z[i+1]==quote ){ |
- z[j++] = quote; |
- i++; |
- }else{ |
- z[j++] = 0; |
- break; |
- } |
- }else{ |
- z[j++] = z[i]; |
- } |
- } |
-} |
- |
-/* |
-** The input azIn is a NULL-terminated list of tokens. Remove the first |
-** token and all punctuation tokens. Remove the quotes from |
-** around string literal tokens. |
-** |
-** Example: |
-** |
-** input: tokenize chinese ( 'simplifed' , 'mixed' ) |
-** output: chinese simplifed mixed |
-** |
-** Another example: |
-** |
-** input: delimiters ( '[' , ']' , '...' ) |
-** output: [ ] ... |
-*/ |
-static void tokenListToIdList(char **azIn){ |
- int i, j; |
- if( azIn ){ |
- for(i=0, j=-1; azIn[i]; i++){ |
- if( safe_isalnum(azIn[i][0]) || azIn[i][1] ){ |
- dequoteString(azIn[i]); |
- if( j>=0 ){ |
- azIn[j] = azIn[i]; |
- } |
- j++; |
- } |
- } |
- azIn[j] = 0; |
- } |
-} |
- |
- |
-/* |
-** Find the first alphanumeric token in the string zIn. Null-terminate |
-** this token. Remove any quotation marks. And return a pointer to |
-** the result. |
-*/ |
-static char *firstToken(char *zIn, char **pzTail){ |
- int n, ttype; |
- while(1){ |
- n = getToken(zIn, &ttype); |
- if( ttype==TOKEN_SPACE ){ |
- zIn += n; |
- }else if( ttype==TOKEN_EOF ){ |
- *pzTail = zIn; |
- return 0; |
- }else{ |
- zIn[n] = 0; |
- *pzTail = &zIn[1]; |
- dequoteString(zIn); |
- return zIn; |
- } |
- } |
- /*NOTREACHED*/ |
-} |
- |
-/* Return true if... |
-** |
-** * s begins with the string t, ignoring case |
-** * s is longer than t |
-** * The first character of s beyond t is not a alphanumeric |
-** |
-** Ignore leading space in *s. |
-** |
-** To put it another way, return true if the first token of |
-** s[] is t[]. |
-*/ |
-static int startsWith(const char *s, const char *t){ |
- while( safe_isspace(*s) ){ s++; } |
- while( *t ){ |
- if( safe_tolower(*s++)!=safe_tolower(*t++) ) return 0; |
- } |
- return *s!='_' && !safe_isalnum(*s); |
-} |
- |
-/* |
-** An instance of this structure defines the "spec" of a |
-** full text index. This structure is populated by parseSpec |
-** and use by fulltextConnect and fulltextCreate. |
-*/ |
-typedef struct TableSpec { |
- const char *zDb; /* Logical database name */ |
- const char *zName; /* Name of the full-text index */ |
- int nColumn; /* Number of columns to be indexed */ |
- char **azColumn; /* Original names of columns to be indexed */ |
- char **azContentColumn; /* Column names for %_content */ |
- char **azTokenizer; /* Name of tokenizer and its arguments */ |
-} TableSpec; |
- |
-/* |
-** Reclaim all of the memory used by a TableSpec |
-*/ |
-static void clearTableSpec(TableSpec *p) { |
- sqlite3_free(p->azColumn); |
- sqlite3_free(p->azContentColumn); |
- sqlite3_free(p->azTokenizer); |
-} |
- |
-/* Parse a CREATE VIRTUAL TABLE statement, which looks like this: |
- * |
- * CREATE VIRTUAL TABLE email |
- * USING fts2(subject, body, tokenize mytokenizer(myarg)) |
- * |
- * We return parsed information in a TableSpec structure. |
- * |
- */ |
-static int parseSpec(TableSpec *pSpec, int argc, const char *const*argv, |
- char**pzErr){ |
- int i, n; |
- char *z, *zDummy; |
- char **azArg; |
- const char *zTokenizer = 0; /* argv[] entry describing the tokenizer */ |
- |
- assert( argc>=3 ); |
- /* Current interface: |
- ** argv[0] - module name |
- ** argv[1] - database name |
- ** argv[2] - table name |
- ** argv[3..] - columns, optionally followed by tokenizer specification |
- ** and snippet delimiters specification. |
- */ |
- |
- /* Make a copy of the complete argv[][] array in a single allocation. |
- ** The argv[][] array is read-only and transient. We can write to the |
- ** copy in order to modify things and the copy is persistent. |
- */ |
- CLEAR(pSpec); |
- for(i=n=0; i<argc; i++){ |
- n += strlen(argv[i]) + 1; |
- } |
- azArg = sqlite3_malloc( sizeof(char*)*argc + n ); |
- if( azArg==0 ){ |
- return SQLITE_NOMEM; |
- } |
- z = (char*)&azArg[argc]; |
- for(i=0; i<argc; i++){ |
- azArg[i] = z; |
- strcpy(z, argv[i]); |
- z += strlen(z)+1; |
- } |
- |
- /* Identify the column names and the tokenizer and delimiter arguments |
- ** in the argv[][] array. |
- */ |
- pSpec->zDb = azArg[1]; |
- pSpec->zName = azArg[2]; |
- pSpec->nColumn = 0; |
- pSpec->azColumn = azArg; |
- zTokenizer = "tokenize simple"; |
- for(i=3; i<argc; ++i){ |
- if( startsWith(azArg[i],"tokenize") ){ |
- zTokenizer = azArg[i]; |
- }else{ |
- z = azArg[pSpec->nColumn] = firstToken(azArg[i], &zDummy); |
- pSpec->nColumn++; |
- } |
- } |
- if( pSpec->nColumn==0 ){ |
- azArg[0] = "content"; |
- pSpec->nColumn = 1; |
- } |
- |
- /* |
- ** Construct the list of content column names. |
- ** |
- ** Each content column name will be of the form cNNAAAA |
- ** where NN is the column number and AAAA is the sanitized |
- ** column name. "sanitized" means that special characters are |
- ** converted to "_". The cNN prefix guarantees that all column |
- ** names are unique. |
- ** |
- ** The AAAA suffix is not strictly necessary. It is included |
- ** for the convenience of people who might examine the generated |
- ** %_content table and wonder what the columns are used for. |
- */ |
- pSpec->azContentColumn = sqlite3_malloc( pSpec->nColumn * sizeof(char *) ); |
- if( pSpec->azContentColumn==0 ){ |
- clearTableSpec(pSpec); |
- return SQLITE_NOMEM; |
- } |
- for(i=0; i<pSpec->nColumn; i++){ |
- char *p; |
- pSpec->azContentColumn[i] = sqlite3_mprintf("c%d%s", i, azArg[i]); |
- for (p = pSpec->azContentColumn[i]; *p ; ++p) { |
- if( !safe_isalnum(*p) ) *p = '_'; |
- } |
- } |
- |
- /* |
- ** Parse the tokenizer specification string. |
- */ |
- pSpec->azTokenizer = tokenizeString(zTokenizer, &n); |
- tokenListToIdList(pSpec->azTokenizer); |
- |
- return SQLITE_OK; |
-} |
- |
-/* |
-** Generate a CREATE TABLE statement that describes the schema of |
-** the virtual table. Return a pointer to this schema string. |
-** |
-** Space is obtained from sqlite3_mprintf() and should be freed |
-** using sqlite3_free(). |
-*/ |
-static char *fulltextSchema( |
- int nColumn, /* Number of columns */ |
- const char *const* azColumn, /* List of columns */ |
- const char *zTableName /* Name of the table */ |
-){ |
- int i; |
- char *zSchema, *zNext; |
- const char *zSep = "("; |
- zSchema = sqlite3_mprintf("CREATE TABLE x"); |
- for(i=0; i<nColumn; i++){ |
- zNext = sqlite3_mprintf("%s%s%Q", zSchema, zSep, azColumn[i]); |
- sqlite3_free(zSchema); |
- zSchema = zNext; |
- zSep = ","; |
- } |
- zNext = sqlite3_mprintf("%s,%Q)", zSchema, zTableName); |
- sqlite3_free(zSchema); |
- return zNext; |
-} |
- |
-/* |
-** Build a new sqlite3_vtab structure that will describe the |
-** fulltext index defined by spec. |
-*/ |
-static int constructVtab( |
- sqlite3 *db, /* The SQLite database connection */ |
- fts2Hash *pHash, /* Hash table containing tokenizers */ |
- TableSpec *spec, /* Parsed spec information from parseSpec() */ |
- sqlite3_vtab **ppVTab, /* Write the resulting vtab structure here */ |
- char **pzErr /* Write any error message here */ |
-){ |
- int rc; |
- int n; |
- fulltext_vtab *v = 0; |
- const sqlite3_tokenizer_module *m = NULL; |
- char *schema; |
- |
- char const *zTok; /* Name of tokenizer to use for this fts table */ |
- int nTok; /* Length of zTok, including nul terminator */ |
- |
- v = (fulltext_vtab *) sqlite3_malloc(sizeof(fulltext_vtab)); |
- if( v==0 ) return SQLITE_NOMEM; |
- CLEAR(v); |
- /* sqlite will initialize v->base */ |
- v->db = db; |
- v->zDb = spec->zDb; /* Freed when azColumn is freed */ |
- v->zName = spec->zName; /* Freed when azColumn is freed */ |
- v->nColumn = spec->nColumn; |
- v->azContentColumn = spec->azContentColumn; |
- spec->azContentColumn = 0; |
- v->azColumn = spec->azColumn; |
- spec->azColumn = 0; |
- |
- if( spec->azTokenizer==0 ){ |
- return SQLITE_NOMEM; |
- } |
- |
- zTok = spec->azTokenizer[0]; |
- if( !zTok ){ |
- zTok = "simple"; |
- } |
- nTok = strlen(zTok)+1; |
- |
- m = (sqlite3_tokenizer_module *)sqlite3Fts2HashFind(pHash, zTok, nTok); |
- if( !m ){ |
- *pzErr = sqlite3_mprintf("unknown tokenizer: %s", spec->azTokenizer[0]); |
- rc = SQLITE_ERROR; |
- goto err; |
- } |
- |
- for(n=0; spec->azTokenizer[n]; n++){} |
- if( n ){ |
- rc = m->xCreate(n-1, (const char*const*)&spec->azTokenizer[1], |
- &v->pTokenizer); |
- }else{ |
- rc = m->xCreate(0, 0, &v->pTokenizer); |
- } |
- if( rc!=SQLITE_OK ) goto err; |
- v->pTokenizer->pModule = m; |
- |
- /* TODO: verify the existence of backing tables foo_content, foo_term */ |
- |
- schema = fulltextSchema(v->nColumn, (const char*const*)v->azColumn, |
- spec->zName); |
- rc = sqlite3_declare_vtab(db, schema); |
- sqlite3_free(schema); |
- if( rc!=SQLITE_OK ) goto err; |
- |
- memset(v->pFulltextStatements, 0, sizeof(v->pFulltextStatements)); |
- |
- /* Indicate that the buffer is not live. */ |
- v->nPendingData = -1; |
- |
- *ppVTab = &v->base; |
- TRACE(("FTS2 Connect %p\n", v)); |
- |
- return rc; |
- |
-err: |
- fulltext_vtab_destroy(v); |
- return rc; |
-} |
- |
-static int fulltextConnect( |
- sqlite3 *db, |
- void *pAux, |
- int argc, const char *const*argv, |
- sqlite3_vtab **ppVTab, |
- char **pzErr |
-){ |
- TableSpec spec; |
- int rc = parseSpec(&spec, argc, argv, pzErr); |
- if( rc!=SQLITE_OK ) return rc; |
- |
- rc = constructVtab(db, (fts2Hash *)pAux, &spec, ppVTab, pzErr); |
- clearTableSpec(&spec); |
- return rc; |
-} |
- |
-/* The %_content table holds the text of each document, with |
-** the rowid used as the docid. |
-*/ |
-/* TODO(shess) This comment needs elaboration to match the updated |
-** code. Work it into the top-of-file comment at that time. |
-*/ |
-static int fulltextCreate(sqlite3 *db, void *pAux, |
- int argc, const char * const *argv, |
- sqlite3_vtab **ppVTab, char **pzErr){ |
- int rc; |
- TableSpec spec; |
- StringBuffer schema; |
- TRACE(("FTS2 Create\n")); |
- |
- rc = parseSpec(&spec, argc, argv, pzErr); |
- if( rc!=SQLITE_OK ) return rc; |
- |
- initStringBuffer(&schema); |
- append(&schema, "CREATE TABLE %_content("); |
- appendList(&schema, spec.nColumn, spec.azContentColumn); |
- append(&schema, ")"); |
- rc = sql_exec(db, spec.zDb, spec.zName, stringBufferData(&schema)); |
- stringBufferDestroy(&schema); |
- if( rc!=SQLITE_OK ) goto out; |
- |
- rc = sql_exec(db, spec.zDb, spec.zName, |
- "create table %_segments(block blob);"); |
- if( rc!=SQLITE_OK ) goto out; |
- |
- rc = sql_exec(db, spec.zDb, spec.zName, |
- "create table %_segdir(" |
- " level integer," |
- " idx integer," |
- " start_block integer," |
- " leaves_end_block integer," |
- " end_block integer," |
- " root blob," |
- " primary key(level, idx)" |
- ");"); |
- if( rc!=SQLITE_OK ) goto out; |
- |
- rc = constructVtab(db, (fts2Hash *)pAux, &spec, ppVTab, pzErr); |
- |
-out: |
- clearTableSpec(&spec); |
- return rc; |
-} |
- |
-/* Decide how to handle an SQL query. */ |
-static int fulltextBestIndex(sqlite3_vtab *pVTab, sqlite3_index_info *pInfo){ |
- int i; |
- TRACE(("FTS2 BestIndex\n")); |
- |
- for(i=0; i<pInfo->nConstraint; ++i){ |
- const struct sqlite3_index_constraint *pConstraint; |
- pConstraint = &pInfo->aConstraint[i]; |
- if( pConstraint->usable ) { |
- if( pConstraint->iColumn==-1 && |
- pConstraint->op==SQLITE_INDEX_CONSTRAINT_EQ ){ |
- pInfo->idxNum = QUERY_ROWID; /* lookup by rowid */ |
- TRACE(("FTS2 QUERY_ROWID\n")); |
- } else if( pConstraint->iColumn>=0 && |
- pConstraint->op==SQLITE_INDEX_CONSTRAINT_MATCH ){ |
- /* full-text search */ |
- pInfo->idxNum = QUERY_FULLTEXT + pConstraint->iColumn; |
- TRACE(("FTS2 QUERY_FULLTEXT %d\n", pConstraint->iColumn)); |
- } else continue; |
- |
- pInfo->aConstraintUsage[i].argvIndex = 1; |
- pInfo->aConstraintUsage[i].omit = 1; |
- |
- /* An arbitrary value for now. |
- * TODO: Perhaps rowid matches should be considered cheaper than |
- * full-text searches. */ |
- pInfo->estimatedCost = 1.0; |
- |
- return SQLITE_OK; |
- } |
- } |
- pInfo->idxNum = QUERY_GENERIC; |
- return SQLITE_OK; |
-} |
- |
-static int fulltextDisconnect(sqlite3_vtab *pVTab){ |
- TRACE(("FTS2 Disconnect %p\n", pVTab)); |
- fulltext_vtab_destroy((fulltext_vtab *)pVTab); |
- return SQLITE_OK; |
-} |
- |
-static int fulltextDestroy(sqlite3_vtab *pVTab){ |
- fulltext_vtab *v = (fulltext_vtab *)pVTab; |
- int rc; |
- |
- TRACE(("FTS2 Destroy %p\n", pVTab)); |
- rc = sql_exec(v->db, v->zDb, v->zName, |
- "drop table if exists %_content;" |
- "drop table if exists %_segments;" |
- "drop table if exists %_segdir;" |
- ); |
- if( rc!=SQLITE_OK ) return rc; |
- |
- fulltext_vtab_destroy((fulltext_vtab *)pVTab); |
- return SQLITE_OK; |
-} |
- |
-static int fulltextOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){ |
- fulltext_cursor *c; |
- |
- c = (fulltext_cursor *) sqlite3_malloc(sizeof(fulltext_cursor)); |
- if( c ){ |
- memset(c, 0, sizeof(fulltext_cursor)); |
- /* sqlite will initialize c->base */ |
- *ppCursor = &c->base; |
- TRACE(("FTS2 Open %p: %p\n", pVTab, c)); |
- return SQLITE_OK; |
- }else{ |
- return SQLITE_NOMEM; |
- } |
-} |
- |
- |
-/* Free all of the dynamically allocated memory held by *q |
-*/ |
-static void queryClear(Query *q){ |
- int i; |
- for(i = 0; i < q->nTerms; ++i){ |
- sqlite3_free(q->pTerms[i].pTerm); |
- } |
- sqlite3_free(q->pTerms); |
- CLEAR(q); |
-} |
- |
-/* Free all of the dynamically allocated memory held by the |
-** Snippet |
-*/ |
-static void snippetClear(Snippet *p){ |
- sqlite3_free(p->aMatch); |
- sqlite3_free(p->zOffset); |
- sqlite3_free(p->zSnippet); |
- CLEAR(p); |
-} |
-/* |
-** Append a single entry to the p->aMatch[] log. |
-*/ |
-static void snippetAppendMatch( |
- Snippet *p, /* Append the entry to this snippet */ |
- int iCol, int iTerm, /* The column and query term */ |
- int iStart, int nByte /* Offset and size of the match */ |
-){ |
- int i; |
- struct snippetMatch *pMatch; |
- if( p->nMatch+1>=p->nAlloc ){ |
- p->nAlloc = p->nAlloc*2 + 10; |
- p->aMatch = sqlite3_realloc(p->aMatch, p->nAlloc*sizeof(p->aMatch[0]) ); |
- if( p->aMatch==0 ){ |
- p->nMatch = 0; |
- p->nAlloc = 0; |
- return; |
- } |
- } |
- i = p->nMatch++; |
- pMatch = &p->aMatch[i]; |
- pMatch->iCol = iCol; |
- pMatch->iTerm = iTerm; |
- pMatch->iStart = iStart; |
- pMatch->nByte = nByte; |
-} |
- |
-/* |
-** Sizing information for the circular buffer used in snippetOffsetsOfColumn() |
-*/ |
-#define FTS2_ROTOR_SZ (32) |
-#define FTS2_ROTOR_MASK (FTS2_ROTOR_SZ-1) |
- |
-/* |
-** Add entries to pSnippet->aMatch[] for every match that occurs against |
-** document zDoc[0..nDoc-1] which is stored in column iColumn. |
-*/ |
-static void snippetOffsetsOfColumn( |
- Query *pQuery, |
- Snippet *pSnippet, |
- int iColumn, |
- const char *zDoc, |
- int nDoc |
-){ |
- const sqlite3_tokenizer_module *pTModule; /* The tokenizer module */ |
- sqlite3_tokenizer *pTokenizer; /* The specific tokenizer */ |
- sqlite3_tokenizer_cursor *pTCursor; /* Tokenizer cursor */ |
- fulltext_vtab *pVtab; /* The full text index */ |
- int nColumn; /* Number of columns in the index */ |
- const QueryTerm *aTerm; /* Query string terms */ |
- int nTerm; /* Number of query string terms */ |
- int i, j; /* Loop counters */ |
- int rc; /* Return code */ |
- unsigned int match, prevMatch; /* Phrase search bitmasks */ |
- const char *zToken; /* Next token from the tokenizer */ |
- int nToken; /* Size of zToken */ |
- int iBegin, iEnd, iPos; /* Offsets of beginning and end */ |
- |
- /* The following variables keep a circular buffer of the last |
- ** few tokens */ |
- unsigned int iRotor = 0; /* Index of current token */ |
- int iRotorBegin[FTS2_ROTOR_SZ]; /* Beginning offset of token */ |
- int iRotorLen[FTS2_ROTOR_SZ]; /* Length of token */ |
- |
- pVtab = pQuery->pFts; |
- nColumn = pVtab->nColumn; |
- pTokenizer = pVtab->pTokenizer; |
- pTModule = pTokenizer->pModule; |
- rc = pTModule->xOpen(pTokenizer, zDoc, nDoc, &pTCursor); |
- if( rc ) return; |
- pTCursor->pTokenizer = pTokenizer; |
- aTerm = pQuery->pTerms; |
- nTerm = pQuery->nTerms; |
- if( nTerm>=FTS2_ROTOR_SZ ){ |
- nTerm = FTS2_ROTOR_SZ - 1; |
- } |
- prevMatch = 0; |
- while(1){ |
- rc = pTModule->xNext(pTCursor, &zToken, &nToken, &iBegin, &iEnd, &iPos); |
- if( rc ) break; |
- iRotorBegin[iRotor&FTS2_ROTOR_MASK] = iBegin; |
- iRotorLen[iRotor&FTS2_ROTOR_MASK] = iEnd-iBegin; |
- match = 0; |
- for(i=0; i<nTerm; i++){ |
- int iCol; |
- iCol = aTerm[i].iColumn; |
- if( iCol>=0 && iCol<nColumn && iCol!=iColumn ) continue; |
- if( aTerm[i].nTerm>nToken ) continue; |
- if( !aTerm[i].isPrefix && aTerm[i].nTerm<nToken ) continue; |
- assert( aTerm[i].nTerm<=nToken ); |
- if( memcmp(aTerm[i].pTerm, zToken, aTerm[i].nTerm) ) continue; |
- if( aTerm[i].iPhrase>1 && (prevMatch & (1<<i))==0 ) continue; |
- match |= 1<<i; |
- if( i==nTerm-1 || aTerm[i+1].iPhrase==1 ){ |
- for(j=aTerm[i].iPhrase-1; j>=0; j--){ |
- int k = (iRotor-j) & FTS2_ROTOR_MASK; |
- snippetAppendMatch(pSnippet, iColumn, i-j, |
- iRotorBegin[k], iRotorLen[k]); |
- } |
- } |
- } |
- prevMatch = match<<1; |
- iRotor++; |
- } |
- pTModule->xClose(pTCursor); |
-} |
- |
- |
-/* |
-** Compute all offsets for the current row of the query. |
-** If the offsets have already been computed, this routine is a no-op. |
-*/ |
-static void snippetAllOffsets(fulltext_cursor *p){ |
- int nColumn; |
- int iColumn, i; |
- int iFirst, iLast; |
- fulltext_vtab *pFts; |
- |
- if( p->snippet.nMatch ) return; |
- if( p->q.nTerms==0 ) return; |
- pFts = p->q.pFts; |
- nColumn = pFts->nColumn; |
- iColumn = (p->iCursorType - QUERY_FULLTEXT); |
- if( iColumn<0 || iColumn>=nColumn ){ |
- iFirst = 0; |
- iLast = nColumn-1; |
- }else{ |
- iFirst = iColumn; |
- iLast = iColumn; |
- } |
- for(i=iFirst; i<=iLast; i++){ |
- const char *zDoc; |
- int nDoc; |
- zDoc = (const char*)sqlite3_column_text(p->pStmt, i+1); |
- nDoc = sqlite3_column_bytes(p->pStmt, i+1); |
- snippetOffsetsOfColumn(&p->q, &p->snippet, i, zDoc, nDoc); |
- } |
-} |
- |
-/* |
-** Convert the information in the aMatch[] array of the snippet |
-** into the string zOffset[0..nOffset-1]. |
-*/ |
-static void snippetOffsetText(Snippet *p){ |
- int i; |
- int cnt = 0; |
- StringBuffer sb; |
- char zBuf[200]; |
- if( p->zOffset ) return; |
- initStringBuffer(&sb); |
- for(i=0; i<p->nMatch; i++){ |
- struct snippetMatch *pMatch = &p->aMatch[i]; |
- zBuf[0] = ' '; |
- sqlite3_snprintf(sizeof(zBuf)-1, &zBuf[cnt>0], "%d %d %d %d", |
- pMatch->iCol, pMatch->iTerm, pMatch->iStart, pMatch->nByte); |
- append(&sb, zBuf); |
- cnt++; |
- } |
- p->zOffset = stringBufferData(&sb); |
- p->nOffset = stringBufferLength(&sb); |
-} |
- |
-/* |
-** zDoc[0..nDoc-1] is phrase of text. aMatch[0..nMatch-1] are a set |
-** of matching words some of which might be in zDoc. zDoc is column |
-** number iCol. |
-** |
-** iBreak is suggested spot in zDoc where we could begin or end an |
-** excerpt. Return a value similar to iBreak but possibly adjusted |
-** to be a little left or right so that the break point is better. |
-*/ |
-static int wordBoundary( |
- int iBreak, /* The suggested break point */ |
- const char *zDoc, /* Document text */ |
- int nDoc, /* Number of bytes in zDoc[] */ |
- struct snippetMatch *aMatch, /* Matching words */ |
- int nMatch, /* Number of entries in aMatch[] */ |
- int iCol /* The column number for zDoc[] */ |
-){ |
- int i; |
- if( iBreak<=10 ){ |
- return 0; |
- } |
- if( iBreak>=nDoc-10 ){ |
- return nDoc; |
- } |
- for(i=0; i<nMatch && aMatch[i].iCol<iCol; i++){} |
- while( i<nMatch && aMatch[i].iStart+aMatch[i].nByte<iBreak ){ i++; } |
- if( i<nMatch ){ |
- if( aMatch[i].iStart<iBreak+10 ){ |
- return aMatch[i].iStart; |
- } |
- if( i>0 && aMatch[i-1].iStart+aMatch[i-1].nByte>=iBreak ){ |
- return aMatch[i-1].iStart; |
- } |
- } |
- for(i=1; i<=10; i++){ |
- if( safe_isspace(zDoc[iBreak-i]) ){ |
- return iBreak - i + 1; |
- } |
- if( safe_isspace(zDoc[iBreak+i]) ){ |
- return iBreak + i + 1; |
- } |
- } |
- return iBreak; |
-} |
- |
- |
- |
-/* |
-** Allowed values for Snippet.aMatch[].snStatus |
-*/ |
-#define SNIPPET_IGNORE 0 /* It is ok to omit this match from the snippet */ |
-#define SNIPPET_DESIRED 1 /* We want to include this match in the snippet */ |
- |
-/* |
-** Generate the text of a snippet. |
-*/ |
-static void snippetText( |
- fulltext_cursor *pCursor, /* The cursor we need the snippet for */ |
- const char *zStartMark, /* Markup to appear before each match */ |
- const char *zEndMark, /* Markup to appear after each match */ |
- const char *zEllipsis /* Ellipsis mark */ |
-){ |
- int i, j; |
- struct snippetMatch *aMatch; |
- int nMatch; |
- int nDesired; |
- StringBuffer sb; |
- int tailCol; |
- int tailOffset; |
- int iCol; |
- int nDoc; |
- const char *zDoc; |
- int iStart, iEnd; |
- int tailEllipsis = 0; |
- int iMatch; |
- |
- |
- sqlite3_free(pCursor->snippet.zSnippet); |
- pCursor->snippet.zSnippet = 0; |
- aMatch = pCursor->snippet.aMatch; |
- nMatch = pCursor->snippet.nMatch; |
- initStringBuffer(&sb); |
- |
- for(i=0; i<nMatch; i++){ |
- aMatch[i].snStatus = SNIPPET_IGNORE; |
- } |
- nDesired = 0; |
- for(i=0; i<pCursor->q.nTerms; i++){ |
- for(j=0; j<nMatch; j++){ |
- if( aMatch[j].iTerm==i ){ |
- aMatch[j].snStatus = SNIPPET_DESIRED; |
- nDesired++; |
- break; |
- } |
- } |
- } |
- |
- iMatch = 0; |
- tailCol = -1; |
- tailOffset = 0; |
- for(i=0; i<nMatch && nDesired>0; i++){ |
- if( aMatch[i].snStatus!=SNIPPET_DESIRED ) continue; |
- nDesired--; |
- iCol = aMatch[i].iCol; |
- zDoc = (const char*)sqlite3_column_text(pCursor->pStmt, iCol+1); |
- nDoc = sqlite3_column_bytes(pCursor->pStmt, iCol+1); |
- iStart = aMatch[i].iStart - 40; |
- iStart = wordBoundary(iStart, zDoc, nDoc, aMatch, nMatch, iCol); |
- if( iStart<=10 ){ |
- iStart = 0; |
- } |
- if( iCol==tailCol && iStart<=tailOffset+20 ){ |
- iStart = tailOffset; |
- } |
- if( (iCol!=tailCol && tailCol>=0) || iStart!=tailOffset ){ |
- trimWhiteSpace(&sb); |
- appendWhiteSpace(&sb); |
- append(&sb, zEllipsis); |
- appendWhiteSpace(&sb); |
- } |
- iEnd = aMatch[i].iStart + aMatch[i].nByte + 40; |
- iEnd = wordBoundary(iEnd, zDoc, nDoc, aMatch, nMatch, iCol); |
- if( iEnd>=nDoc-10 ){ |
- iEnd = nDoc; |
- tailEllipsis = 0; |
- }else{ |
- tailEllipsis = 1; |
- } |
- while( iMatch<nMatch && aMatch[iMatch].iCol<iCol ){ iMatch++; } |
- while( iStart<iEnd ){ |
- while( iMatch<nMatch && aMatch[iMatch].iStart<iStart |
- && aMatch[iMatch].iCol<=iCol ){ |
- iMatch++; |
- } |
- if( iMatch<nMatch && aMatch[iMatch].iStart<iEnd |
- && aMatch[iMatch].iCol==iCol ){ |
- nappend(&sb, &zDoc[iStart], aMatch[iMatch].iStart - iStart); |
- iStart = aMatch[iMatch].iStart; |
- append(&sb, zStartMark); |
- nappend(&sb, &zDoc[iStart], aMatch[iMatch].nByte); |
- append(&sb, zEndMark); |
- iStart += aMatch[iMatch].nByte; |
- for(j=iMatch+1; j<nMatch; j++){ |
- if( aMatch[j].iTerm==aMatch[iMatch].iTerm |
- && aMatch[j].snStatus==SNIPPET_DESIRED ){ |
- nDesired--; |
- aMatch[j].snStatus = SNIPPET_IGNORE; |
- } |
- } |
- }else{ |
- nappend(&sb, &zDoc[iStart], iEnd - iStart); |
- iStart = iEnd; |
- } |
- } |
- tailCol = iCol; |
- tailOffset = iEnd; |
- } |
- trimWhiteSpace(&sb); |
- if( tailEllipsis ){ |
- appendWhiteSpace(&sb); |
- append(&sb, zEllipsis); |
- } |
- pCursor->snippet.zSnippet = stringBufferData(&sb); |
- pCursor->snippet.nSnippet = stringBufferLength(&sb); |
-} |
- |
- |
-/* |
-** Close the cursor. For additional information see the documentation |
-** on the xClose method of the virtual table interface. |
-*/ |
-static int fulltextClose(sqlite3_vtab_cursor *pCursor){ |
- fulltext_cursor *c = (fulltext_cursor *) pCursor; |
- TRACE(("FTS2 Close %p\n", c)); |
- sqlite3_finalize(c->pStmt); |
- queryClear(&c->q); |
- snippetClear(&c->snippet); |
- if( c->result.nData!=0 ) dlrDestroy(&c->reader); |
- dataBufferDestroy(&c->result); |
- sqlite3_free(c); |
- return SQLITE_OK; |
-} |
- |
-static int fulltextNext(sqlite3_vtab_cursor *pCursor){ |
- fulltext_cursor *c = (fulltext_cursor *) pCursor; |
- int rc; |
- |
- TRACE(("FTS2 Next %p\n", pCursor)); |
- snippetClear(&c->snippet); |
- if( c->iCursorType < QUERY_FULLTEXT ){ |
- /* TODO(shess) Handle SQLITE_SCHEMA AND SQLITE_BUSY. */ |
- rc = sqlite3_step(c->pStmt); |
- switch( rc ){ |
- case SQLITE_ROW: |
- c->eof = 0; |
- return SQLITE_OK; |
- case SQLITE_DONE: |
- c->eof = 1; |
- return SQLITE_OK; |
- default: |
- c->eof = 1; |
- return rc; |
- } |
- } else { /* full-text query */ |
- rc = sqlite3_reset(c->pStmt); |
- if( rc!=SQLITE_OK ) return rc; |
- |
- if( c->result.nData==0 || dlrAtEnd(&c->reader) ){ |
- c->eof = 1; |
- return SQLITE_OK; |
- } |
- rc = sqlite3_bind_int64(c->pStmt, 1, dlrDocid(&c->reader)); |
- dlrStep(&c->reader); |
- if( rc!=SQLITE_OK ) return rc; |
- /* TODO(shess) Handle SQLITE_SCHEMA AND SQLITE_BUSY. */ |
- rc = sqlite3_step(c->pStmt); |
- if( rc==SQLITE_ROW ){ /* the case we expect */ |
- c->eof = 0; |
- return SQLITE_OK; |
- } |
- /* an error occurred; abort */ |
- return rc==SQLITE_DONE ? SQLITE_ERROR : rc; |
- } |
-} |
- |
- |
-/* TODO(shess) If we pushed LeafReader to the top of the file, or to |
-** another file, term_select() could be pushed above |
-** docListOfTerm(). |
-*/ |
-static int termSelect(fulltext_vtab *v, int iColumn, |
- const char *pTerm, int nTerm, int isPrefix, |
- DocListType iType, DataBuffer *out); |
- |
-/* Return a DocList corresponding to the query term *pTerm. If *pTerm |
-** is the first term of a phrase query, go ahead and evaluate the phrase |
-** query and return the doclist for the entire phrase query. |
-** |
-** The resulting DL_DOCIDS doclist is stored in pResult, which is |
-** overwritten. |
-*/ |
-static int docListOfTerm( |
- fulltext_vtab *v, /* The full text index */ |
- int iColumn, /* column to restrict to. No restriction if >=nColumn */ |
- QueryTerm *pQTerm, /* Term we are looking for, or 1st term of a phrase */ |
- DataBuffer *pResult /* Write the result here */ |
-){ |
- DataBuffer left, right, new; |
- int i, rc; |
- |
- /* No phrase search if no position info. */ |
- assert( pQTerm->nPhrase==0 || DL_DEFAULT!=DL_DOCIDS ); |
- |
- /* This code should never be called with buffered updates. */ |
- assert( v->nPendingData<0 ); |
- |
- dataBufferInit(&left, 0); |
- rc = termSelect(v, iColumn, pQTerm->pTerm, pQTerm->nTerm, pQTerm->isPrefix, |
- 0<pQTerm->nPhrase ? DL_POSITIONS : DL_DOCIDS, &left); |
- if( rc ) return rc; |
- for(i=1; i<=pQTerm->nPhrase && left.nData>0; i++){ |
- dataBufferInit(&right, 0); |
- rc = termSelect(v, iColumn, pQTerm[i].pTerm, pQTerm[i].nTerm, |
- pQTerm[i].isPrefix, DL_POSITIONS, &right); |
- if( rc ){ |
- dataBufferDestroy(&left); |
- return rc; |
- } |
- dataBufferInit(&new, 0); |
- docListPhraseMerge(left.pData, left.nData, right.pData, right.nData, |
- i<pQTerm->nPhrase ? DL_POSITIONS : DL_DOCIDS, &new); |
- dataBufferDestroy(&left); |
- dataBufferDestroy(&right); |
- left = new; |
- } |
- *pResult = left; |
- return SQLITE_OK; |
-} |
- |
-/* Add a new term pTerm[0..nTerm-1] to the query *q. |
-*/ |
-static void queryAdd(Query *q, const char *pTerm, int nTerm){ |
- QueryTerm *t; |
- ++q->nTerms; |
- q->pTerms = sqlite3_realloc(q->pTerms, q->nTerms * sizeof(q->pTerms[0])); |
- if( q->pTerms==0 ){ |
- q->nTerms = 0; |
- return; |
- } |
- t = &q->pTerms[q->nTerms - 1]; |
- CLEAR(t); |
- t->pTerm = sqlite3_malloc(nTerm+1); |
- memcpy(t->pTerm, pTerm, nTerm); |
- t->pTerm[nTerm] = 0; |
- t->nTerm = nTerm; |
- t->isOr = q->nextIsOr; |
- t->isPrefix = 0; |
- q->nextIsOr = 0; |
- t->iColumn = q->nextColumn; |
- q->nextColumn = q->dfltColumn; |
-} |
- |
-/* |
-** Check to see if the string zToken[0...nToken-1] matches any |
-** column name in the virtual table. If it does, |
-** return the zero-indexed column number. If not, return -1. |
-*/ |
-static int checkColumnSpecifier( |
- fulltext_vtab *pVtab, /* The virtual table */ |
- const char *zToken, /* Text of the token */ |
- int nToken /* Number of characters in the token */ |
-){ |
- int i; |
- for(i=0; i<pVtab->nColumn; i++){ |
- if( memcmp(pVtab->azColumn[i], zToken, nToken)==0 |
- && pVtab->azColumn[i][nToken]==0 ){ |
- return i; |
- } |
- } |
- return -1; |
-} |
- |
-/* |
-** Parse the text at pSegment[0..nSegment-1]. Add additional terms |
-** to the query being assemblied in pQuery. |
-** |
-** inPhrase is true if pSegment[0..nSegement-1] is contained within |
-** double-quotes. If inPhrase is true, then the first term |
-** is marked with the number of terms in the phrase less one and |
-** OR and "-" syntax is ignored. If inPhrase is false, then every |
-** term found is marked with nPhrase=0 and OR and "-" syntax is significant. |
-*/ |
-static int tokenizeSegment( |
- sqlite3_tokenizer *pTokenizer, /* The tokenizer to use */ |
- const char *pSegment, int nSegment, /* Query expression being parsed */ |
- int inPhrase, /* True if within "..." */ |
- Query *pQuery /* Append results here */ |
-){ |
- const sqlite3_tokenizer_module *pModule = pTokenizer->pModule; |
- sqlite3_tokenizer_cursor *pCursor; |
- int firstIndex = pQuery->nTerms; |
- int iCol; |
- int nTerm = 1; |
- |
- int rc = pModule->xOpen(pTokenizer, pSegment, nSegment, &pCursor); |
- if( rc!=SQLITE_OK ) return rc; |
- pCursor->pTokenizer = pTokenizer; |
- |
- while( 1 ){ |
- const char *pToken; |
- int nToken, iBegin, iEnd, iPos; |
- |
- rc = pModule->xNext(pCursor, |
- &pToken, &nToken, |
- &iBegin, &iEnd, &iPos); |
- if( rc!=SQLITE_OK ) break; |
- if( !inPhrase && |
- pSegment[iEnd]==':' && |
- (iCol = checkColumnSpecifier(pQuery->pFts, pToken, nToken))>=0 ){ |
- pQuery->nextColumn = iCol; |
- continue; |
- } |
- if( !inPhrase && pQuery->nTerms>0 && nToken==2 |
- && pSegment[iBegin]=='O' && pSegment[iBegin+1]=='R' ){ |
- pQuery->nextIsOr = 1; |
- continue; |
- } |
- queryAdd(pQuery, pToken, nToken); |
- if( !inPhrase && iBegin>0 && pSegment[iBegin-1]=='-' ){ |
- pQuery->pTerms[pQuery->nTerms-1].isNot = 1; |
- } |
- if( iEnd<nSegment && pSegment[iEnd]=='*' ){ |
- pQuery->pTerms[pQuery->nTerms-1].isPrefix = 1; |
- } |
- pQuery->pTerms[pQuery->nTerms-1].iPhrase = nTerm; |
- if( inPhrase ){ |
- nTerm++; |
- } |
- } |
- |
- if( inPhrase && pQuery->nTerms>firstIndex ){ |
- pQuery->pTerms[firstIndex].nPhrase = pQuery->nTerms - firstIndex - 1; |
- } |
- |
- return pModule->xClose(pCursor); |
-} |
- |
-/* Parse a query string, yielding a Query object pQuery. |
-** |
-** The calling function will need to queryClear() to clean up |
-** the dynamically allocated memory held by pQuery. |
-*/ |
-static int parseQuery( |
- fulltext_vtab *v, /* The fulltext index */ |
- const char *zInput, /* Input text of the query string */ |
- int nInput, /* Size of the input text */ |
- int dfltColumn, /* Default column of the index to match against */ |
- Query *pQuery /* Write the parse results here. */ |
-){ |
- int iInput, inPhrase = 0; |
- |
- if( zInput==0 ) nInput = 0; |
- if( nInput<0 ) nInput = strlen(zInput); |
- pQuery->nTerms = 0; |
- pQuery->pTerms = NULL; |
- pQuery->nextIsOr = 0; |
- pQuery->nextColumn = dfltColumn; |
- pQuery->dfltColumn = dfltColumn; |
- pQuery->pFts = v; |
- |
- for(iInput=0; iInput<nInput; ++iInput){ |
- int i; |
- for(i=iInput; i<nInput && zInput[i]!='"'; ++i){} |
- if( i>iInput ){ |
- tokenizeSegment(v->pTokenizer, zInput+iInput, i-iInput, inPhrase, |
- pQuery); |
- } |
- iInput = i; |
- if( i<nInput ){ |
- assert( zInput[i]=='"' ); |
- inPhrase = !inPhrase; |
- } |
- } |
- |
- if( inPhrase ){ |
- /* unmatched quote */ |
- queryClear(pQuery); |
- return SQLITE_ERROR; |
- } |
- return SQLITE_OK; |
-} |
- |
-/* TODO(shess) Refactor the code to remove this forward decl. */ |
-static int flushPendingTerms(fulltext_vtab *v); |
- |
-/* Perform a full-text query using the search expression in |
-** zInput[0..nInput-1]. Return a list of matching documents |
-** in pResult. |
-** |
-** Queries must match column iColumn. Or if iColumn>=nColumn |
-** they are allowed to match against any column. |
-*/ |
-static int fulltextQuery( |
- fulltext_vtab *v, /* The full text index */ |
- int iColumn, /* Match against this column by default */ |
- const char *zInput, /* The query string */ |
- int nInput, /* Number of bytes in zInput[] */ |
- DataBuffer *pResult, /* Write the result doclist here */ |
- Query *pQuery /* Put parsed query string here */ |
-){ |
- int i, iNext, rc; |
- DataBuffer left, right, or, new; |
- int nNot = 0; |
- QueryTerm *aTerm; |
- |
- /* TODO(shess) Instead of flushing pendingTerms, we could query for |
- ** the relevant term and merge the doclist into what we receive from |
- ** the database. Wait and see if this is a common issue, first. |
- ** |
- ** A good reason not to flush is to not generate update-related |
- ** error codes from here. |
- */ |
- |
- /* Flush any buffered updates before executing the query. */ |
- rc = flushPendingTerms(v); |
- if( rc!=SQLITE_OK ) return rc; |
- |
- /* TODO(shess) I think that the queryClear() calls below are not |
- ** necessary, because fulltextClose() already clears the query. |
- */ |
- rc = parseQuery(v, zInput, nInput, iColumn, pQuery); |
- if( rc!=SQLITE_OK ) return rc; |
- |
- /* Empty or NULL queries return no results. */ |
- if( pQuery->nTerms==0 ){ |
- dataBufferInit(pResult, 0); |
- return SQLITE_OK; |
- } |
- |
- /* Merge AND terms. */ |
- /* TODO(shess) I think we can early-exit if( i>nNot && left.nData==0 ). */ |
- aTerm = pQuery->pTerms; |
- for(i = 0; i<pQuery->nTerms; i=iNext){ |
- if( aTerm[i].isNot ){ |
- /* Handle all NOT terms in a separate pass */ |
- nNot++; |
- iNext = i + aTerm[i].nPhrase+1; |
- continue; |
- } |
- iNext = i + aTerm[i].nPhrase + 1; |
- rc = docListOfTerm(v, aTerm[i].iColumn, &aTerm[i], &right); |
- if( rc ){ |
- if( i!=nNot ) dataBufferDestroy(&left); |
- queryClear(pQuery); |
- return rc; |
- } |
- while( iNext<pQuery->nTerms && aTerm[iNext].isOr ){ |
- rc = docListOfTerm(v, aTerm[iNext].iColumn, &aTerm[iNext], &or); |
- iNext += aTerm[iNext].nPhrase + 1; |
- if( rc ){ |
- if( i!=nNot ) dataBufferDestroy(&left); |
- dataBufferDestroy(&right); |
- queryClear(pQuery); |
- return rc; |
- } |
- dataBufferInit(&new, 0); |
- docListOrMerge(right.pData, right.nData, or.pData, or.nData, &new); |
- dataBufferDestroy(&right); |
- dataBufferDestroy(&or); |
- right = new; |
- } |
- if( i==nNot ){ /* first term processed. */ |
- left = right; |
- }else{ |
- dataBufferInit(&new, 0); |
- docListAndMerge(left.pData, left.nData, right.pData, right.nData, &new); |
- dataBufferDestroy(&right); |
- dataBufferDestroy(&left); |
- left = new; |
- } |
- } |
- |
- if( nNot==pQuery->nTerms ){ |
- /* We do not yet know how to handle a query of only NOT terms */ |
- return SQLITE_ERROR; |
- } |
- |
- /* Do the EXCEPT terms */ |
- for(i=0; i<pQuery->nTerms; i += aTerm[i].nPhrase + 1){ |
- if( !aTerm[i].isNot ) continue; |
- rc = docListOfTerm(v, aTerm[i].iColumn, &aTerm[i], &right); |
- if( rc ){ |
- queryClear(pQuery); |
- dataBufferDestroy(&left); |
- return rc; |
- } |
- dataBufferInit(&new, 0); |
- docListExceptMerge(left.pData, left.nData, right.pData, right.nData, &new); |
- dataBufferDestroy(&right); |
- dataBufferDestroy(&left); |
- left = new; |
- } |
- |
- *pResult = left; |
- return rc; |
-} |
- |
-/* |
-** This is the xFilter interface for the virtual table. See |
-** the virtual table xFilter method documentation for additional |
-** information. |
-** |
-** If idxNum==QUERY_GENERIC then do a full table scan against |
-** the %_content table. |
-** |
-** If idxNum==QUERY_ROWID then do a rowid lookup for a single entry |
-** in the %_content table. |
-** |
-** If idxNum>=QUERY_FULLTEXT then use the full text index. The |
-** column on the left-hand side of the MATCH operator is column |
-** number idxNum-QUERY_FULLTEXT, 0 indexed. argv[0] is the right-hand |
-** side of the MATCH operator. |
-*/ |
-/* TODO(shess) Upgrade the cursor initialization and destruction to |
-** account for fulltextFilter() being called multiple times on the |
-** same cursor. The current solution is very fragile. Apply fix to |
-** fts2 as appropriate. |
-*/ |
-static int fulltextFilter( |
- sqlite3_vtab_cursor *pCursor, /* The cursor used for this query */ |
- int idxNum, const char *idxStr, /* Which indexing scheme to use */ |
- int argc, sqlite3_value **argv /* Arguments for the indexing scheme */ |
-){ |
- fulltext_cursor *c = (fulltext_cursor *) pCursor; |
- fulltext_vtab *v = cursor_vtab(c); |
- int rc; |
- |
- TRACE(("FTS2 Filter %p\n",pCursor)); |
- |
- /* If the cursor has a statement that was not prepared according to |
- ** idxNum, clear it. I believe all calls to fulltextFilter with a |
- ** given cursor will have the same idxNum , but in this case it's |
- ** easy to be safe. |
- */ |
- if( c->pStmt && c->iCursorType!=idxNum ){ |
- sqlite3_finalize(c->pStmt); |
- c->pStmt = NULL; |
- } |
- |
- /* Get a fresh statement appropriate to idxNum. */ |
- /* TODO(shess): Add a prepared-statement cache in the vt structure. |
- ** The cache must handle multiple open cursors. Easier to cache the |
- ** statement variants at the vt to reduce malloc/realloc/free here. |
- ** Or we could have a StringBuffer variant which allowed stack |
- ** construction for small values. |
- */ |
- if( !c->pStmt ){ |
- char *zSql = sqlite3_mprintf("select rowid, * from %%_content %s", |
- idxNum==QUERY_GENERIC ? "" : "where rowid=?"); |
- rc = sql_prepare(v->db, v->zDb, v->zName, &c->pStmt, zSql); |
- sqlite3_free(zSql); |
- if( rc!=SQLITE_OK ) return rc; |
- c->iCursorType = idxNum; |
- }else{ |
- sqlite3_reset(c->pStmt); |
- assert( c->iCursorType==idxNum ); |
- } |
- |
- switch( idxNum ){ |
- case QUERY_GENERIC: |
- break; |
- |
- case QUERY_ROWID: |
- rc = sqlite3_bind_int64(c->pStmt, 1, sqlite3_value_int64(argv[0])); |
- if( rc!=SQLITE_OK ) return rc; |
- break; |
- |
- default: /* full-text search */ |
- { |
- const char *zQuery = (const char *)sqlite3_value_text(argv[0]); |
- assert( idxNum<=QUERY_FULLTEXT+v->nColumn); |
- assert( argc==1 ); |
- queryClear(&c->q); |
- if( c->result.nData!=0 ){ |
- /* This case happens if the same cursor is used repeatedly. */ |
- dlrDestroy(&c->reader); |
- dataBufferReset(&c->result); |
- }else{ |
- dataBufferInit(&c->result, 0); |
- } |
- rc = fulltextQuery(v, idxNum-QUERY_FULLTEXT, zQuery, -1, &c->result, &c->q); |
- if( rc!=SQLITE_OK ) return rc; |
- if( c->result.nData!=0 ){ |
- dlrInit(&c->reader, DL_DOCIDS, c->result.pData, c->result.nData); |
- } |
- break; |
- } |
- } |
- |
- return fulltextNext(pCursor); |
-} |
- |
-/* This is the xEof method of the virtual table. The SQLite core |
-** calls this routine to find out if it has reached the end of |
-** a query's results set. |
-*/ |
-static int fulltextEof(sqlite3_vtab_cursor *pCursor){ |
- fulltext_cursor *c = (fulltext_cursor *) pCursor; |
- return c->eof; |
-} |
- |
-/* This is the xColumn method of the virtual table. The SQLite |
-** core calls this method during a query when it needs the value |
-** of a column from the virtual table. This method needs to use |
-** one of the sqlite3_result_*() routines to store the requested |
-** value back in the pContext. |
-*/ |
-static int fulltextColumn(sqlite3_vtab_cursor *pCursor, |
- sqlite3_context *pContext, int idxCol){ |
- fulltext_cursor *c = (fulltext_cursor *) pCursor; |
- fulltext_vtab *v = cursor_vtab(c); |
- |
- if( idxCol<v->nColumn ){ |
- sqlite3_value *pVal = sqlite3_column_value(c->pStmt, idxCol+1); |
- sqlite3_result_value(pContext, pVal); |
- }else if( idxCol==v->nColumn ){ |
- /* The extra column whose name is the same as the table. |
- ** Return a blob which is a pointer to the cursor |
- */ |
- sqlite3_result_blob(pContext, &c, sizeof(c), SQLITE_TRANSIENT); |
- } |
- return SQLITE_OK; |
-} |
- |
-/* This is the xRowid method. The SQLite core calls this routine to |
-** retrive the rowid for the current row of the result set. The |
-** rowid should be written to *pRowid. |
-*/ |
-static int fulltextRowid(sqlite3_vtab_cursor *pCursor, sqlite_int64 *pRowid){ |
- fulltext_cursor *c = (fulltext_cursor *) pCursor; |
- |
- *pRowid = sqlite3_column_int64(c->pStmt, 0); |
- return SQLITE_OK; |
-} |
- |
-/* Add all terms in [zText] to pendingTerms table. If [iColumn] > 0, |
-** we also store positions and offsets in the hash table using that |
-** column number. |
-*/ |
-static int buildTerms(fulltext_vtab *v, sqlite_int64 iDocid, |
- const char *zText, int iColumn){ |
- sqlite3_tokenizer *pTokenizer = v->pTokenizer; |
- sqlite3_tokenizer_cursor *pCursor; |
- const char *pToken; |
- int nTokenBytes; |
- int iStartOffset, iEndOffset, iPosition; |
- int rc; |
- |
- rc = pTokenizer->pModule->xOpen(pTokenizer, zText, -1, &pCursor); |
- if( rc!=SQLITE_OK ) return rc; |
- |
- pCursor->pTokenizer = pTokenizer; |
- while( SQLITE_OK==(rc=pTokenizer->pModule->xNext(pCursor, |
- &pToken, &nTokenBytes, |
- &iStartOffset, &iEndOffset, |
- &iPosition)) ){ |
- DLCollector *p; |
- int nData; /* Size of doclist before our update. */ |
- |
- /* Positions can't be negative; we use -1 as a terminator |
- * internally. Token can't be NULL or empty. */ |
- if( iPosition<0 || pToken == NULL || nTokenBytes == 0 ){ |
- rc = SQLITE_ERROR; |
- break; |
- } |
- |
- p = fts2HashFind(&v->pendingTerms, pToken, nTokenBytes); |
- if( p==NULL ){ |
- nData = 0; |
- p = dlcNew(iDocid, DL_DEFAULT); |
- fts2HashInsert(&v->pendingTerms, pToken, nTokenBytes, p); |
- |
- /* Overhead for our hash table entry, the key, and the value. */ |
- v->nPendingData += sizeof(struct fts2HashElem)+sizeof(*p)+nTokenBytes; |
- }else{ |
- nData = p->b.nData; |
- if( p->dlw.iPrevDocid!=iDocid ) dlcNext(p, iDocid); |
- } |
- if( iColumn>=0 ){ |
- dlcAddPos(p, iColumn, iPosition, iStartOffset, iEndOffset); |
- } |
- |
- /* Accumulate data added by dlcNew or dlcNext, and dlcAddPos. */ |
- v->nPendingData += p->b.nData-nData; |
- } |
- |
- /* TODO(shess) Check return? Should this be able to cause errors at |
- ** this point? Actually, same question about sqlite3_finalize(), |
- ** though one could argue that failure there means that the data is |
- ** not durable. *ponder* |
- */ |
- pTokenizer->pModule->xClose(pCursor); |
- if( SQLITE_DONE == rc ) return SQLITE_OK; |
- return rc; |
-} |
- |
-/* Add doclists for all terms in [pValues] to pendingTerms table. */ |
-static int insertTerms(fulltext_vtab *v, sqlite_int64 iRowid, |
- sqlite3_value **pValues){ |
- int i; |
- for(i = 0; i < v->nColumn ; ++i){ |
- char *zText = (char*)sqlite3_value_text(pValues[i]); |
- int rc = buildTerms(v, iRowid, zText, i); |
- if( rc!=SQLITE_OK ) return rc; |
- } |
- return SQLITE_OK; |
-} |
- |
-/* Add empty doclists for all terms in the given row's content to |
-** pendingTerms. |
-*/ |
-static int deleteTerms(fulltext_vtab *v, sqlite_int64 iRowid){ |
- const char **pValues; |
- int i, rc; |
- |
- /* TODO(shess) Should we allow such tables at all? */ |
- if( DL_DEFAULT==DL_DOCIDS ) return SQLITE_ERROR; |
- |
- rc = content_select(v, iRowid, &pValues); |
- if( rc!=SQLITE_OK ) return rc; |
- |
- for(i = 0 ; i < v->nColumn; ++i) { |
- rc = buildTerms(v, iRowid, pValues[i], -1); |
- if( rc!=SQLITE_OK ) break; |
- } |
- |
- freeStringArray(v->nColumn, pValues); |
- return SQLITE_OK; |
-} |
- |
-/* TODO(shess) Refactor the code to remove this forward decl. */ |
-static int initPendingTerms(fulltext_vtab *v, sqlite_int64 iDocid); |
- |
-/* Insert a row into the %_content table; set *piRowid to be the ID of the |
-** new row. Add doclists for terms to pendingTerms. |
-*/ |
-static int index_insert(fulltext_vtab *v, sqlite3_value *pRequestRowid, |
- sqlite3_value **pValues, sqlite_int64 *piRowid){ |
- int rc; |
- |
- rc = content_insert(v, pRequestRowid, pValues); /* execute an SQL INSERT */ |
- if( rc!=SQLITE_OK ) return rc; |
- |
- *piRowid = sqlite3_last_insert_rowid(v->db); |
- rc = initPendingTerms(v, *piRowid); |
- if( rc!=SQLITE_OK ) return rc; |
- |
- return insertTerms(v, *piRowid, pValues); |
-} |
- |
-/* Delete a row from the %_content table; add empty doclists for terms |
-** to pendingTerms. |
-*/ |
-static int index_delete(fulltext_vtab *v, sqlite_int64 iRow){ |
- int rc = initPendingTerms(v, iRow); |
- if( rc!=SQLITE_OK ) return rc; |
- |
- rc = deleteTerms(v, iRow); |
- if( rc!=SQLITE_OK ) return rc; |
- |
- return content_delete(v, iRow); /* execute an SQL DELETE */ |
-} |
- |
-/* Update a row in the %_content table; add delete doclists to |
-** pendingTerms for old terms not in the new data, add insert doclists |
-** to pendingTerms for terms in the new data. |
-*/ |
-static int index_update(fulltext_vtab *v, sqlite_int64 iRow, |
- sqlite3_value **pValues){ |
- int rc = initPendingTerms(v, iRow); |
- if( rc!=SQLITE_OK ) return rc; |
- |
- /* Generate an empty doclist for each term that previously appeared in this |
- * row. */ |
- rc = deleteTerms(v, iRow); |
- if( rc!=SQLITE_OK ) return rc; |
- |
- rc = content_update(v, pValues, iRow); /* execute an SQL UPDATE */ |
- if( rc!=SQLITE_OK ) return rc; |
- |
- /* Now add positions for terms which appear in the updated row. */ |
- return insertTerms(v, iRow, pValues); |
-} |
- |
-/*******************************************************************/ |
-/* InteriorWriter is used to collect terms and block references into |
-** interior nodes in %_segments. See commentary at top of file for |
-** format. |
-*/ |
- |
-/* How large interior nodes can grow. */ |
-#define INTERIOR_MAX 2048 |
- |
-/* Minimum number of terms per interior node (except the root). This |
-** prevents large terms from making the tree too skinny - must be >0 |
-** so that the tree always makes progress. Note that the min tree |
-** fanout will be INTERIOR_MIN_TERMS+1. |
-*/ |
-#define INTERIOR_MIN_TERMS 7 |
-#if INTERIOR_MIN_TERMS<1 |
-# error INTERIOR_MIN_TERMS must be greater than 0. |
-#endif |
- |
-/* ROOT_MAX controls how much data is stored inline in the segment |
-** directory. |
-*/ |
-/* TODO(shess) Push ROOT_MAX down to whoever is writing things. It's |
-** only here so that interiorWriterRootInfo() and leafWriterRootInfo() |
-** can both see it, but if the caller passed it in, we wouldn't even |
-** need a define. |
-*/ |
-#define ROOT_MAX 1024 |
-#if ROOT_MAX<VARINT_MAX*2 |
-# error ROOT_MAX must have enough space for a header. |
-#endif |
- |
-/* InteriorBlock stores a linked-list of interior blocks while a lower |
-** layer is being constructed. |
-*/ |
-typedef struct InteriorBlock { |
- DataBuffer term; /* Leftmost term in block's subtree. */ |
- DataBuffer data; /* Accumulated data for the block. */ |
- struct InteriorBlock *next; |
-} InteriorBlock; |
- |
-static InteriorBlock *interiorBlockNew(int iHeight, sqlite_int64 iChildBlock, |
- const char *pTerm, int nTerm){ |
- InteriorBlock *block = sqlite3_malloc(sizeof(InteriorBlock)); |
- char c[VARINT_MAX+VARINT_MAX]; |
- int n; |
- |
- if( block ){ |
- memset(block, 0, sizeof(*block)); |
- dataBufferInit(&block->term, 0); |
- dataBufferReplace(&block->term, pTerm, nTerm); |
- |
- n = putVarint(c, iHeight); |
- n += putVarint(c+n, iChildBlock); |
- dataBufferInit(&block->data, INTERIOR_MAX); |
- dataBufferReplace(&block->data, c, n); |
- } |
- return block; |
-} |
- |
-#ifndef NDEBUG |
-/* Verify that the data is readable as an interior node. */ |
-static void interiorBlockValidate(InteriorBlock *pBlock){ |
- const char *pData = pBlock->data.pData; |
- int nData = pBlock->data.nData; |
- int n, iDummy; |
- sqlite_int64 iBlockid; |
- |
- assert( nData>0 ); |
- assert( pData!=0 ); |
- assert( pData+nData>pData ); |
- |
- /* Must lead with height of node as a varint(n), n>0 */ |
- n = getVarint32(pData, &iDummy); |
- assert( n>0 ); |
- assert( iDummy>0 ); |
- assert( n<nData ); |
- pData += n; |
- nData -= n; |
- |
- /* Must contain iBlockid. */ |
- n = getVarint(pData, &iBlockid); |
- assert( n>0 ); |
- assert( n<=nData ); |
- pData += n; |
- nData -= n; |
- |
- /* Zero or more terms of positive length */ |
- if( nData!=0 ){ |
- /* First term is not delta-encoded. */ |
- n = getVarint32(pData, &iDummy); |
- assert( n>0 ); |
- assert( iDummy>0 ); |
- assert( n+iDummy>0); |
- assert( n+iDummy<=nData ); |
- pData += n+iDummy; |
- nData -= n+iDummy; |
- |
- /* Following terms delta-encoded. */ |
- while( nData!=0 ){ |
- /* Length of shared prefix. */ |
- n = getVarint32(pData, &iDummy); |
- assert( n>0 ); |
- assert( iDummy>=0 ); |
- assert( n<nData ); |
- pData += n; |
- nData -= n; |
- |
- /* Length and data of distinct suffix. */ |
- n = getVarint32(pData, &iDummy); |
- assert( n>0 ); |
- assert( iDummy>0 ); |
- assert( n+iDummy>0); |
- assert( n+iDummy<=nData ); |
- pData += n+iDummy; |
- nData -= n+iDummy; |
- } |
- } |
-} |
-#define ASSERT_VALID_INTERIOR_BLOCK(x) interiorBlockValidate(x) |
-#else |
-#define ASSERT_VALID_INTERIOR_BLOCK(x) assert( 1 ) |
-#endif |
- |
-typedef struct InteriorWriter { |
- int iHeight; /* from 0 at leaves. */ |
- InteriorBlock *first, *last; |
- struct InteriorWriter *parentWriter; |
- |
- DataBuffer term; /* Last term written to block "last". */ |
- sqlite_int64 iOpeningChildBlock; /* First child block in block "last". */ |
-#ifndef NDEBUG |
- sqlite_int64 iLastChildBlock; /* for consistency checks. */ |
-#endif |
-} InteriorWriter; |
- |
-/* Initialize an interior node where pTerm[nTerm] marks the leftmost |
-** term in the tree. iChildBlock is the leftmost child block at the |
-** next level down the tree. |
-*/ |
-static void interiorWriterInit(int iHeight, const char *pTerm, int nTerm, |
- sqlite_int64 iChildBlock, |
- InteriorWriter *pWriter){ |
- InteriorBlock *block; |
- assert( iHeight>0 ); |
- CLEAR(pWriter); |
- |
- pWriter->iHeight = iHeight; |
- pWriter->iOpeningChildBlock = iChildBlock; |
-#ifndef NDEBUG |
- pWriter->iLastChildBlock = iChildBlock; |
-#endif |
- block = interiorBlockNew(iHeight, iChildBlock, pTerm, nTerm); |
- pWriter->last = pWriter->first = block; |
- ASSERT_VALID_INTERIOR_BLOCK(pWriter->last); |
- dataBufferInit(&pWriter->term, 0); |
-} |
- |
-/* Append the child node rooted at iChildBlock to the interior node, |
-** with pTerm[nTerm] as the leftmost term in iChildBlock's subtree. |
-*/ |
-static void interiorWriterAppend(InteriorWriter *pWriter, |
- const char *pTerm, int nTerm, |
- sqlite_int64 iChildBlock){ |
- char c[VARINT_MAX+VARINT_MAX]; |
- int n, nPrefix = 0; |
- |
- ASSERT_VALID_INTERIOR_BLOCK(pWriter->last); |
- |
- /* The first term written into an interior node is actually |
- ** associated with the second child added (the first child was added |
- ** in interiorWriterInit, or in the if clause at the bottom of this |
- ** function). That term gets encoded straight up, with nPrefix left |
- ** at 0. |
- */ |
- if( pWriter->term.nData==0 ){ |
- n = putVarint(c, nTerm); |
- }else{ |
- while( nPrefix<pWriter->term.nData && |
- pTerm[nPrefix]==pWriter->term.pData[nPrefix] ){ |
- nPrefix++; |
- } |
- |
- n = putVarint(c, nPrefix); |
- n += putVarint(c+n, nTerm-nPrefix); |
- } |
- |
-#ifndef NDEBUG |
- pWriter->iLastChildBlock++; |
-#endif |
- assert( pWriter->iLastChildBlock==iChildBlock ); |
- |
- /* Overflow to a new block if the new term makes the current block |
- ** too big, and the current block already has enough terms. |
- */ |
- if( pWriter->last->data.nData+n+nTerm-nPrefix>INTERIOR_MAX && |
- iChildBlock-pWriter->iOpeningChildBlock>INTERIOR_MIN_TERMS ){ |
- pWriter->last->next = interiorBlockNew(pWriter->iHeight, iChildBlock, |
- pTerm, nTerm); |
- pWriter->last = pWriter->last->next; |
- pWriter->iOpeningChildBlock = iChildBlock; |
- dataBufferReset(&pWriter->term); |
- }else{ |
- dataBufferAppend2(&pWriter->last->data, c, n, |
- pTerm+nPrefix, nTerm-nPrefix); |
- dataBufferReplace(&pWriter->term, pTerm, nTerm); |
- } |
- ASSERT_VALID_INTERIOR_BLOCK(pWriter->last); |
-} |
- |
-/* Free the space used by pWriter, including the linked-list of |
-** InteriorBlocks, and parentWriter, if present. |
-*/ |
-static int interiorWriterDestroy(InteriorWriter *pWriter){ |
- InteriorBlock *block = pWriter->first; |
- |
- while( block!=NULL ){ |
- InteriorBlock *b = block; |
- block = block->next; |
- dataBufferDestroy(&b->term); |
- dataBufferDestroy(&b->data); |
- sqlite3_free(b); |
- } |
- if( pWriter->parentWriter!=NULL ){ |
- interiorWriterDestroy(pWriter->parentWriter); |
- sqlite3_free(pWriter->parentWriter); |
- } |
- dataBufferDestroy(&pWriter->term); |
- SCRAMBLE(pWriter); |
- return SQLITE_OK; |
-} |
- |
-/* If pWriter can fit entirely in ROOT_MAX, return it as the root info |
-** directly, leaving *piEndBlockid unchanged. Otherwise, flush |
-** pWriter to %_segments, building a new layer of interior nodes, and |
-** recursively ask for their root into. |
-*/ |
-static int interiorWriterRootInfo(fulltext_vtab *v, InteriorWriter *pWriter, |
- char **ppRootInfo, int *pnRootInfo, |
- sqlite_int64 *piEndBlockid){ |
- InteriorBlock *block = pWriter->first; |
- sqlite_int64 iBlockid = 0; |
- int rc; |
- |
- /* If we can fit the segment inline */ |
- if( block==pWriter->last && block->data.nData<ROOT_MAX ){ |
- *ppRootInfo = block->data.pData; |
- *pnRootInfo = block->data.nData; |
- return SQLITE_OK; |
- } |
- |
- /* Flush the first block to %_segments, and create a new level of |
- ** interior node. |
- */ |
- ASSERT_VALID_INTERIOR_BLOCK(block); |
- rc = block_insert(v, block->data.pData, block->data.nData, &iBlockid); |
- if( rc!=SQLITE_OK ) return rc; |
- *piEndBlockid = iBlockid; |
- |
- pWriter->parentWriter = sqlite3_malloc(sizeof(*pWriter->parentWriter)); |
- interiorWriterInit(pWriter->iHeight+1, |
- block->term.pData, block->term.nData, |
- iBlockid, pWriter->parentWriter); |
- |
- /* Flush additional blocks and append to the higher interior |
- ** node. |
- */ |
- for(block=block->next; block!=NULL; block=block->next){ |
- ASSERT_VALID_INTERIOR_BLOCK(block); |
- rc = block_insert(v, block->data.pData, block->data.nData, &iBlockid); |
- if( rc!=SQLITE_OK ) return rc; |
- *piEndBlockid = iBlockid; |
- |
- interiorWriterAppend(pWriter->parentWriter, |
- block->term.pData, block->term.nData, iBlockid); |
- } |
- |
- /* Parent node gets the chance to be the root. */ |
- return interiorWriterRootInfo(v, pWriter->parentWriter, |
- ppRootInfo, pnRootInfo, piEndBlockid); |
-} |
- |
-/****************************************************************/ |
-/* InteriorReader is used to read off the data from an interior node |
-** (see comment at top of file for the format). |
-*/ |
-typedef struct InteriorReader { |
- const char *pData; |
- int nData; |
- |
- DataBuffer term; /* previous term, for decoding term delta. */ |
- |
- sqlite_int64 iBlockid; |
-} InteriorReader; |
- |
-static void interiorReaderDestroy(InteriorReader *pReader){ |
- dataBufferDestroy(&pReader->term); |
- SCRAMBLE(pReader); |
-} |
- |
-/* TODO(shess) The assertions are great, but what if we're in NDEBUG |
-** and the blob is empty or otherwise contains suspect data? |
-*/ |
-static void interiorReaderInit(const char *pData, int nData, |
- InteriorReader *pReader){ |
- int n, nTerm; |
- |
- /* Require at least the leading flag byte */ |
- assert( nData>0 ); |
- assert( pData[0]!='\0' ); |
- |
- CLEAR(pReader); |
- |
- /* Decode the base blockid, and set the cursor to the first term. */ |
- n = getVarint(pData+1, &pReader->iBlockid); |
- assert( 1+n<=nData ); |
- pReader->pData = pData+1+n; |
- pReader->nData = nData-(1+n); |
- |
- /* A single-child interior node (such as when a leaf node was too |
- ** large for the segment directory) won't have any terms. |
- ** Otherwise, decode the first term. |
- */ |
- if( pReader->nData==0 ){ |
- dataBufferInit(&pReader->term, 0); |
- }else{ |
- n = getVarint32(pReader->pData, &nTerm); |
- dataBufferInit(&pReader->term, nTerm); |
- dataBufferReplace(&pReader->term, pReader->pData+n, nTerm); |
- assert( n+nTerm<=pReader->nData ); |
- pReader->pData += n+nTerm; |
- pReader->nData -= n+nTerm; |
- } |
-} |
- |
-static int interiorReaderAtEnd(InteriorReader *pReader){ |
- return pReader->term.nData==0; |
-} |
- |
-static sqlite_int64 interiorReaderCurrentBlockid(InteriorReader *pReader){ |
- return pReader->iBlockid; |
-} |
- |
-static int interiorReaderTermBytes(InteriorReader *pReader){ |
- assert( !interiorReaderAtEnd(pReader) ); |
- return pReader->term.nData; |
-} |
-static const char *interiorReaderTerm(InteriorReader *pReader){ |
- assert( !interiorReaderAtEnd(pReader) ); |
- return pReader->term.pData; |
-} |
- |
-/* Step forward to the next term in the node. */ |
-static void interiorReaderStep(InteriorReader *pReader){ |
- assert( !interiorReaderAtEnd(pReader) ); |
- |
- /* If the last term has been read, signal eof, else construct the |
- ** next term. |
- */ |
- if( pReader->nData==0 ){ |
- dataBufferReset(&pReader->term); |
- }else{ |
- int n, nPrefix, nSuffix; |
- |
- n = getVarint32(pReader->pData, &nPrefix); |
- n += getVarint32(pReader->pData+n, &nSuffix); |
- |
- /* Truncate the current term and append suffix data. */ |
- pReader->term.nData = nPrefix; |
- dataBufferAppend(&pReader->term, pReader->pData+n, nSuffix); |
- |
- assert( n+nSuffix<=pReader->nData ); |
- pReader->pData += n+nSuffix; |
- pReader->nData -= n+nSuffix; |
- } |
- pReader->iBlockid++; |
-} |
- |
-/* Compare the current term to pTerm[nTerm], returning strcmp-style |
-** results. If isPrefix, equality means equal through nTerm bytes. |
-*/ |
-static int interiorReaderTermCmp(InteriorReader *pReader, |
- const char *pTerm, int nTerm, int isPrefix){ |
- const char *pReaderTerm = interiorReaderTerm(pReader); |
- int nReaderTerm = interiorReaderTermBytes(pReader); |
- int c, n = nReaderTerm<nTerm ? nReaderTerm : nTerm; |
- |
- if( n==0 ){ |
- if( nReaderTerm>0 ) return -1; |
- if( nTerm>0 ) return 1; |
- return 0; |
- } |
- |
- c = memcmp(pReaderTerm, pTerm, n); |
- if( c!=0 ) return c; |
- if( isPrefix && n==nTerm ) return 0; |
- return nReaderTerm - nTerm; |
-} |
- |
-/****************************************************************/ |
-/* LeafWriter is used to collect terms and associated doclist data |
-** into leaf blocks in %_segments (see top of file for format info). |
-** Expected usage is: |
-** |
-** LeafWriter writer; |
-** leafWriterInit(0, 0, &writer); |
-** while( sorted_terms_left_to_process ){ |
-** // data is doclist data for that term. |
-** rc = leafWriterStep(v, &writer, pTerm, nTerm, pData, nData); |
-** if( rc!=SQLITE_OK ) goto err; |
-** } |
-** rc = leafWriterFinalize(v, &writer); |
-**err: |
-** leafWriterDestroy(&writer); |
-** return rc; |
-** |
-** leafWriterStep() may write a collected leaf out to %_segments. |
-** leafWriterFinalize() finishes writing any buffered data and stores |
-** a root node in %_segdir. leafWriterDestroy() frees all buffers and |
-** InteriorWriters allocated as part of writing this segment. |
-** |
-** TODO(shess) Document leafWriterStepMerge(). |
-*/ |
- |
-/* Put terms with data this big in their own block. */ |
-#define STANDALONE_MIN 1024 |
- |
-/* Keep leaf blocks below this size. */ |
-#define LEAF_MAX 2048 |
- |
-typedef struct LeafWriter { |
- int iLevel; |
- int idx; |
- sqlite_int64 iStartBlockid; /* needed to create the root info */ |
- sqlite_int64 iEndBlockid; /* when we're done writing. */ |
- |
- DataBuffer term; /* previous encoded term */ |
- DataBuffer data; /* encoding buffer */ |
- |
- /* bytes of first term in the current node which distinguishes that |
- ** term from the last term of the previous node. |
- */ |
- int nTermDistinct; |
- |
- InteriorWriter parentWriter; /* if we overflow */ |
- int has_parent; |
-} LeafWriter; |
- |
-static void leafWriterInit(int iLevel, int idx, LeafWriter *pWriter){ |
- CLEAR(pWriter); |
- pWriter->iLevel = iLevel; |
- pWriter->idx = idx; |
- |
- dataBufferInit(&pWriter->term, 32); |
- |
- /* Start out with a reasonably sized block, though it can grow. */ |
- dataBufferInit(&pWriter->data, LEAF_MAX); |
-} |
- |
-#ifndef NDEBUG |
-/* Verify that the data is readable as a leaf node. */ |
-static void leafNodeValidate(const char *pData, int nData){ |
- int n, iDummy; |
- |
- if( nData==0 ) return; |
- assert( nData>0 ); |
- assert( pData!=0 ); |
- assert( pData+nData>pData ); |
- |
- /* Must lead with a varint(0) */ |
- n = getVarint32(pData, &iDummy); |
- assert( iDummy==0 ); |
- assert( n>0 ); |
- assert( n<nData ); |
- pData += n; |
- nData -= n; |
- |
- /* Leading term length and data must fit in buffer. */ |
- n = getVarint32(pData, &iDummy); |
- assert( n>0 ); |
- assert( iDummy>0 ); |
- assert( n+iDummy>0 ); |
- assert( n+iDummy<nData ); |
- pData += n+iDummy; |
- nData -= n+iDummy; |
- |
- /* Leading term's doclist length and data must fit. */ |
- n = getVarint32(pData, &iDummy); |
- assert( n>0 ); |
- assert( iDummy>0 ); |
- assert( n+iDummy>0 ); |
- assert( n+iDummy<=nData ); |
- ASSERT_VALID_DOCLIST(DL_DEFAULT, pData+n, iDummy, NULL); |
- pData += n+iDummy; |
- nData -= n+iDummy; |
- |
- /* Verify that trailing terms and doclists also are readable. */ |
- while( nData!=0 ){ |
- n = getVarint32(pData, &iDummy); |
- assert( n>0 ); |
- assert( iDummy>=0 ); |
- assert( n<nData ); |
- pData += n; |
- nData -= n; |
- n = getVarint32(pData, &iDummy); |
- assert( n>0 ); |
- assert( iDummy>0 ); |
- assert( n+iDummy>0 ); |
- assert( n+iDummy<nData ); |
- pData += n+iDummy; |
- nData -= n+iDummy; |
- |
- n = getVarint32(pData, &iDummy); |
- assert( n>0 ); |
- assert( iDummy>0 ); |
- assert( n+iDummy>0 ); |
- assert( n+iDummy<=nData ); |
- ASSERT_VALID_DOCLIST(DL_DEFAULT, pData+n, iDummy, NULL); |
- pData += n+iDummy; |
- nData -= n+iDummy; |
- } |
-} |
-#define ASSERT_VALID_LEAF_NODE(p, n) leafNodeValidate(p, n) |
-#else |
-#define ASSERT_VALID_LEAF_NODE(p, n) assert( 1 ) |
-#endif |
- |
-/* Flush the current leaf node to %_segments, and adding the resulting |
-** blockid and the starting term to the interior node which will |
-** contain it. |
-*/ |
-static int leafWriterInternalFlush(fulltext_vtab *v, LeafWriter *pWriter, |
- int iData, int nData){ |
- sqlite_int64 iBlockid = 0; |
- const char *pStartingTerm; |
- int nStartingTerm, rc, n; |
- |
- /* Must have the leading varint(0) flag, plus at least some |
- ** valid-looking data. |
- */ |
- assert( nData>2 ); |
- assert( iData>=0 ); |
- assert( iData+nData<=pWriter->data.nData ); |
- ASSERT_VALID_LEAF_NODE(pWriter->data.pData+iData, nData); |
- |
- rc = block_insert(v, pWriter->data.pData+iData, nData, &iBlockid); |
- if( rc!=SQLITE_OK ) return rc; |
- assert( iBlockid!=0 ); |
- |
- /* Reconstruct the first term in the leaf for purposes of building |
- ** the interior node. |
- */ |
- n = getVarint32(pWriter->data.pData+iData+1, &nStartingTerm); |
- pStartingTerm = pWriter->data.pData+iData+1+n; |
- assert( pWriter->data.nData>iData+1+n+nStartingTerm ); |
- assert( pWriter->nTermDistinct>0 ); |
- assert( pWriter->nTermDistinct<=nStartingTerm ); |
- nStartingTerm = pWriter->nTermDistinct; |
- |
- if( pWriter->has_parent ){ |
- interiorWriterAppend(&pWriter->parentWriter, |
- pStartingTerm, nStartingTerm, iBlockid); |
- }else{ |
- interiorWriterInit(1, pStartingTerm, nStartingTerm, iBlockid, |
- &pWriter->parentWriter); |
- pWriter->has_parent = 1; |
- } |
- |
- /* Track the span of this segment's leaf nodes. */ |
- if( pWriter->iEndBlockid==0 ){ |
- pWriter->iEndBlockid = pWriter->iStartBlockid = iBlockid; |
- }else{ |
- pWriter->iEndBlockid++; |
- assert( iBlockid==pWriter->iEndBlockid ); |
- } |
- |
- return SQLITE_OK; |
-} |
-static int leafWriterFlush(fulltext_vtab *v, LeafWriter *pWriter){ |
- int rc = leafWriterInternalFlush(v, pWriter, 0, pWriter->data.nData); |
- if( rc!=SQLITE_OK ) return rc; |
- |
- /* Re-initialize the output buffer. */ |
- dataBufferReset(&pWriter->data); |
- |
- return SQLITE_OK; |
-} |
- |
-/* Fetch the root info for the segment. If the entire leaf fits |
-** within ROOT_MAX, then it will be returned directly, otherwise it |
-** will be flushed and the root info will be returned from the |
-** interior node. *piEndBlockid is set to the blockid of the last |
-** interior or leaf node written to disk (0 if none are written at |
-** all). |
-*/ |
-static int leafWriterRootInfo(fulltext_vtab *v, LeafWriter *pWriter, |
- char **ppRootInfo, int *pnRootInfo, |
- sqlite_int64 *piEndBlockid){ |
- /* we can fit the segment entirely inline */ |
- if( !pWriter->has_parent && pWriter->data.nData<ROOT_MAX ){ |
- *ppRootInfo = pWriter->data.pData; |
- *pnRootInfo = pWriter->data.nData; |
- *piEndBlockid = 0; |
- return SQLITE_OK; |
- } |
- |
- /* Flush remaining leaf data. */ |
- if( pWriter->data.nData>0 ){ |
- int rc = leafWriterFlush(v, pWriter); |
- if( rc!=SQLITE_OK ) return rc; |
- } |
- |
- /* We must have flushed a leaf at some point. */ |
- assert( pWriter->has_parent ); |
- |
- /* Tenatively set the end leaf blockid as the end blockid. If the |
- ** interior node can be returned inline, this will be the final |
- ** blockid, otherwise it will be overwritten by |
- ** interiorWriterRootInfo(). |
- */ |
- *piEndBlockid = pWriter->iEndBlockid; |
- |
- return interiorWriterRootInfo(v, &pWriter->parentWriter, |
- ppRootInfo, pnRootInfo, piEndBlockid); |
-} |
- |
-/* Collect the rootInfo data and store it into the segment directory. |
-** This has the effect of flushing the segment's leaf data to |
-** %_segments, and also flushing any interior nodes to %_segments. |
-*/ |
-static int leafWriterFinalize(fulltext_vtab *v, LeafWriter *pWriter){ |
- sqlite_int64 iEndBlockid; |
- char *pRootInfo; |
- int rc, nRootInfo; |
- |
- rc = leafWriterRootInfo(v, pWriter, &pRootInfo, &nRootInfo, &iEndBlockid); |
- if( rc!=SQLITE_OK ) return rc; |
- |
- /* Don't bother storing an entirely empty segment. */ |
- if( iEndBlockid==0 && nRootInfo==0 ) return SQLITE_OK; |
- |
- return segdir_set(v, pWriter->iLevel, pWriter->idx, |
- pWriter->iStartBlockid, pWriter->iEndBlockid, |
- iEndBlockid, pRootInfo, nRootInfo); |
-} |
- |
-static void leafWriterDestroy(LeafWriter *pWriter){ |
- if( pWriter->has_parent ) interiorWriterDestroy(&pWriter->parentWriter); |
- dataBufferDestroy(&pWriter->term); |
- dataBufferDestroy(&pWriter->data); |
-} |
- |
-/* Encode a term into the leafWriter, delta-encoding as appropriate. |
-** Returns the length of the new term which distinguishes it from the |
-** previous term, which can be used to set nTermDistinct when a node |
-** boundary is crossed. |
-*/ |
-static int leafWriterEncodeTerm(LeafWriter *pWriter, |
- const char *pTerm, int nTerm){ |
- char c[VARINT_MAX+VARINT_MAX]; |
- int n, nPrefix = 0; |
- |
- assert( nTerm>0 ); |
- while( nPrefix<pWriter->term.nData && |
- pTerm[nPrefix]==pWriter->term.pData[nPrefix] ){ |
- nPrefix++; |
- /* Failing this implies that the terms weren't in order. */ |
- assert( nPrefix<nTerm ); |
- } |
- |
- if( pWriter->data.nData==0 ){ |
- /* Encode the node header and leading term as: |
- ** varint(0) |
- ** varint(nTerm) |
- ** char pTerm[nTerm] |
- */ |
- n = putVarint(c, '\0'); |
- n += putVarint(c+n, nTerm); |
- dataBufferAppend2(&pWriter->data, c, n, pTerm, nTerm); |
- }else{ |
- /* Delta-encode the term as: |
- ** varint(nPrefix) |
- ** varint(nSuffix) |
- ** char pTermSuffix[nSuffix] |
- */ |
- n = putVarint(c, nPrefix); |
- n += putVarint(c+n, nTerm-nPrefix); |
- dataBufferAppend2(&pWriter->data, c, n, pTerm+nPrefix, nTerm-nPrefix); |
- } |
- dataBufferReplace(&pWriter->term, pTerm, nTerm); |
- |
- return nPrefix+1; |
-} |
- |
-/* Used to avoid a memmove when a large amount of doclist data is in |
-** the buffer. This constructs a node and term header before |
-** iDoclistData and flushes the resulting complete node using |
-** leafWriterInternalFlush(). |
-*/ |
-static int leafWriterInlineFlush(fulltext_vtab *v, LeafWriter *pWriter, |
- const char *pTerm, int nTerm, |
- int iDoclistData){ |
- char c[VARINT_MAX+VARINT_MAX]; |
- int iData, n = putVarint(c, 0); |
- n += putVarint(c+n, nTerm); |
- |
- /* There should always be room for the header. Even if pTerm shared |
- ** a substantial prefix with the previous term, the entire prefix |
- ** could be constructed from earlier data in the doclist, so there |
- ** should be room. |
- */ |
- assert( iDoclistData>=n+nTerm ); |
- |
- iData = iDoclistData-(n+nTerm); |
- memcpy(pWriter->data.pData+iData, c, n); |
- memcpy(pWriter->data.pData+iData+n, pTerm, nTerm); |
- |
- return leafWriterInternalFlush(v, pWriter, iData, pWriter->data.nData-iData); |
-} |
- |
-/* Push pTerm[nTerm] along with the doclist data to the leaf layer of |
-** %_segments. |
-*/ |
-static int leafWriterStepMerge(fulltext_vtab *v, LeafWriter *pWriter, |
- const char *pTerm, int nTerm, |
- DLReader *pReaders, int nReaders){ |
- char c[VARINT_MAX+VARINT_MAX]; |
- int iTermData = pWriter->data.nData, iDoclistData; |
- int i, nData, n, nActualData, nActual, rc, nTermDistinct; |
- |
- ASSERT_VALID_LEAF_NODE(pWriter->data.pData, pWriter->data.nData); |
- nTermDistinct = leafWriterEncodeTerm(pWriter, pTerm, nTerm); |
- |
- /* Remember nTermDistinct if opening a new node. */ |
- if( iTermData==0 ) pWriter->nTermDistinct = nTermDistinct; |
- |
- iDoclistData = pWriter->data.nData; |
- |
- /* Estimate the length of the merged doclist so we can leave space |
- ** to encode it. |
- */ |
- for(i=0, nData=0; i<nReaders; i++){ |
- nData += dlrAllDataBytes(&pReaders[i]); |
- } |
- n = putVarint(c, nData); |
- dataBufferAppend(&pWriter->data, c, n); |
- |
- docListMerge(&pWriter->data, pReaders, nReaders); |
- ASSERT_VALID_DOCLIST(DL_DEFAULT, |
- pWriter->data.pData+iDoclistData+n, |
- pWriter->data.nData-iDoclistData-n, NULL); |
- |
- /* The actual amount of doclist data at this point could be smaller |
- ** than the length we encoded. Additionally, the space required to |
- ** encode this length could be smaller. For small doclists, this is |
- ** not a big deal, we can just use memmove() to adjust things. |
- */ |
- nActualData = pWriter->data.nData-(iDoclistData+n); |
- nActual = putVarint(c, nActualData); |
- assert( nActualData<=nData ); |
- assert( nActual<=n ); |
- |
- /* If the new doclist is big enough for force a standalone leaf |
- ** node, we can immediately flush it inline without doing the |
- ** memmove(). |
- */ |
- /* TODO(shess) This test matches leafWriterStep(), which does this |
- ** test before it knows the cost to varint-encode the term and |
- ** doclist lengths. At some point, change to |
- ** pWriter->data.nData-iTermData>STANDALONE_MIN. |
- */ |
- if( nTerm+nActualData>STANDALONE_MIN ){ |
- /* Push leaf node from before this term. */ |
- if( iTermData>0 ){ |
- rc = leafWriterInternalFlush(v, pWriter, 0, iTermData); |
- if( rc!=SQLITE_OK ) return rc; |
- |
- pWriter->nTermDistinct = nTermDistinct; |
- } |
- |
- /* Fix the encoded doclist length. */ |
- iDoclistData += n - nActual; |
- memcpy(pWriter->data.pData+iDoclistData, c, nActual); |
- |
- /* Push the standalone leaf node. */ |
- rc = leafWriterInlineFlush(v, pWriter, pTerm, nTerm, iDoclistData); |
- if( rc!=SQLITE_OK ) return rc; |
- |
- /* Leave the node empty. */ |
- dataBufferReset(&pWriter->data); |
- |
- return rc; |
- } |
- |
- /* At this point, we know that the doclist was small, so do the |
- ** memmove if indicated. |
- */ |
- if( nActual<n ){ |
- memmove(pWriter->data.pData+iDoclistData+nActual, |
- pWriter->data.pData+iDoclistData+n, |
- pWriter->data.nData-(iDoclistData+n)); |
- pWriter->data.nData -= n-nActual; |
- } |
- |
- /* Replace written length with actual length. */ |
- memcpy(pWriter->data.pData+iDoclistData, c, nActual); |
- |
- /* If the node is too large, break things up. */ |
- /* TODO(shess) This test matches leafWriterStep(), which does this |
- ** test before it knows the cost to varint-encode the term and |
- ** doclist lengths. At some point, change to |
- ** pWriter->data.nData>LEAF_MAX. |
- */ |
- if( iTermData+nTerm+nActualData>LEAF_MAX ){ |
- /* Flush out the leading data as a node */ |
- rc = leafWriterInternalFlush(v, pWriter, 0, iTermData); |
- if( rc!=SQLITE_OK ) return rc; |
- |
- pWriter->nTermDistinct = nTermDistinct; |
- |
- /* Rebuild header using the current term */ |
- n = putVarint(pWriter->data.pData, 0); |
- n += putVarint(pWriter->data.pData+n, nTerm); |
- memcpy(pWriter->data.pData+n, pTerm, nTerm); |
- n += nTerm; |
- |
- /* There should always be room, because the previous encoding |
- ** included all data necessary to construct the term. |
- */ |
- assert( n<iDoclistData ); |
- /* So long as STANDALONE_MIN is half or less of LEAF_MAX, the |
- ** following memcpy() is safe (as opposed to needing a memmove). |
- */ |
- assert( 2*STANDALONE_MIN<=LEAF_MAX ); |
- assert( n+pWriter->data.nData-iDoclistData<iDoclistData ); |
- memcpy(pWriter->data.pData+n, |
- pWriter->data.pData+iDoclistData, |
- pWriter->data.nData-iDoclistData); |
- pWriter->data.nData -= iDoclistData-n; |
- } |
- ASSERT_VALID_LEAF_NODE(pWriter->data.pData, pWriter->data.nData); |
- |
- return SQLITE_OK; |
-} |
- |
-/* Push pTerm[nTerm] along with the doclist data to the leaf layer of |
-** %_segments. |
-*/ |
-/* TODO(shess) Revise writeZeroSegment() so that doclists are |
-** constructed directly in pWriter->data. |
-*/ |
-static int leafWriterStep(fulltext_vtab *v, LeafWriter *pWriter, |
- const char *pTerm, int nTerm, |
- const char *pData, int nData){ |
- int rc; |
- DLReader reader; |
- |
- dlrInit(&reader, DL_DEFAULT, pData, nData); |
- rc = leafWriterStepMerge(v, pWriter, pTerm, nTerm, &reader, 1); |
- dlrDestroy(&reader); |
- |
- return rc; |
-} |
- |
- |
-/****************************************************************/ |
-/* LeafReader is used to iterate over an individual leaf node. */ |
-typedef struct LeafReader { |
- DataBuffer term; /* copy of current term. */ |
- |
- const char *pData; /* data for current term. */ |
- int nData; |
-} LeafReader; |
- |
-static void leafReaderDestroy(LeafReader *pReader){ |
- dataBufferDestroy(&pReader->term); |
- SCRAMBLE(pReader); |
-} |
- |
-static int leafReaderAtEnd(LeafReader *pReader){ |
- return pReader->nData<=0; |
-} |
- |
-/* Access the current term. */ |
-static int leafReaderTermBytes(LeafReader *pReader){ |
- return pReader->term.nData; |
-} |
-static const char *leafReaderTerm(LeafReader *pReader){ |
- assert( pReader->term.nData>0 ); |
- return pReader->term.pData; |
-} |
- |
-/* Access the doclist data for the current term. */ |
-static int leafReaderDataBytes(LeafReader *pReader){ |
- int nData; |
- assert( pReader->term.nData>0 ); |
- getVarint32(pReader->pData, &nData); |
- return nData; |
-} |
-static const char *leafReaderData(LeafReader *pReader){ |
- int n, nData; |
- assert( pReader->term.nData>0 ); |
- n = getVarint32(pReader->pData, &nData); |
- return pReader->pData+n; |
-} |
- |
-static void leafReaderInit(const char *pData, int nData, |
- LeafReader *pReader){ |
- int nTerm, n; |
- |
- assert( nData>0 ); |
- assert( pData[0]=='\0' ); |
- |
- CLEAR(pReader); |
- |
- /* Read the first term, skipping the header byte. */ |
- n = getVarint32(pData+1, &nTerm); |
- dataBufferInit(&pReader->term, nTerm); |
- dataBufferReplace(&pReader->term, pData+1+n, nTerm); |
- |
- /* Position after the first term. */ |
- assert( 1+n+nTerm<nData ); |
- pReader->pData = pData+1+n+nTerm; |
- pReader->nData = nData-1-n-nTerm; |
-} |
- |
-/* Step the reader forward to the next term. */ |
-static void leafReaderStep(LeafReader *pReader){ |
- int n, nData, nPrefix, nSuffix; |
- assert( !leafReaderAtEnd(pReader) ); |
- |
- /* Skip previous entry's data block. */ |
- n = getVarint32(pReader->pData, &nData); |
- assert( n+nData<=pReader->nData ); |
- pReader->pData += n+nData; |
- pReader->nData -= n+nData; |
- |
- if( !leafReaderAtEnd(pReader) ){ |
- /* Construct the new term using a prefix from the old term plus a |
- ** suffix from the leaf data. |
- */ |
- n = getVarint32(pReader->pData, &nPrefix); |
- n += getVarint32(pReader->pData+n, &nSuffix); |
- assert( n+nSuffix<pReader->nData ); |
- pReader->term.nData = nPrefix; |
- dataBufferAppend(&pReader->term, pReader->pData+n, nSuffix); |
- |
- pReader->pData += n+nSuffix; |
- pReader->nData -= n+nSuffix; |
- } |
-} |
- |
-/* strcmp-style comparison of pReader's current term against pTerm. |
-** If isPrefix, equality means equal through nTerm bytes. |
-*/ |
-static int leafReaderTermCmp(LeafReader *pReader, |
- const char *pTerm, int nTerm, int isPrefix){ |
- int c, n = pReader->term.nData<nTerm ? pReader->term.nData : nTerm; |
- if( n==0 ){ |
- if( pReader->term.nData>0 ) return -1; |
- if(nTerm>0 ) return 1; |
- return 0; |
- } |
- |
- c = memcmp(pReader->term.pData, pTerm, n); |
- if( c!=0 ) return c; |
- if( isPrefix && n==nTerm ) return 0; |
- return pReader->term.nData - nTerm; |
-} |
- |
- |
-/****************************************************************/ |
-/* LeavesReader wraps LeafReader to allow iterating over the entire |
-** leaf layer of the tree. |
-*/ |
-typedef struct LeavesReader { |
- int idx; /* Index within the segment. */ |
- |
- sqlite3_stmt *pStmt; /* Statement we're streaming leaves from. */ |
- int eof; /* we've seen SQLITE_DONE from pStmt. */ |
- |
- LeafReader leafReader; /* reader for the current leaf. */ |
- DataBuffer rootData; /* root data for inline. */ |
-} LeavesReader; |
- |
-/* Access the current term. */ |
-static int leavesReaderTermBytes(LeavesReader *pReader){ |
- assert( !pReader->eof ); |
- return leafReaderTermBytes(&pReader->leafReader); |
-} |
-static const char *leavesReaderTerm(LeavesReader *pReader){ |
- assert( !pReader->eof ); |
- return leafReaderTerm(&pReader->leafReader); |
-} |
- |
-/* Access the doclist data for the current term. */ |
-static int leavesReaderDataBytes(LeavesReader *pReader){ |
- assert( !pReader->eof ); |
- return leafReaderDataBytes(&pReader->leafReader); |
-} |
-static const char *leavesReaderData(LeavesReader *pReader){ |
- assert( !pReader->eof ); |
- return leafReaderData(&pReader->leafReader); |
-} |
- |
-static int leavesReaderAtEnd(LeavesReader *pReader){ |
- return pReader->eof; |
-} |
- |
-/* loadSegmentLeaves() may not read all the way to SQLITE_DONE, thus |
-** leaving the statement handle open, which locks the table. |
-*/ |
-/* TODO(shess) This "solution" is not satisfactory. Really, there |
-** should be check-in function for all statement handles which |
-** arranges to call sqlite3_reset(). This most likely will require |
-** modification to control flow all over the place, though, so for now |
-** just punt. |
-** |
-** Note the current system assumes that segment merges will run to |
-** completion, which is why this particular probably hasn't arisen in |
-** this case. Probably a brittle assumption. |
-*/ |
-static int leavesReaderReset(LeavesReader *pReader){ |
- return sqlite3_reset(pReader->pStmt); |
-} |
- |
-static void leavesReaderDestroy(LeavesReader *pReader){ |
- /* If idx is -1, that means we're using a non-cached statement |
- ** handle in the optimize() case, so we need to release it. |
- */ |
- if( pReader->pStmt!=NULL && pReader->idx==-1 ){ |
- sqlite3_finalize(pReader->pStmt); |
- } |
- leafReaderDestroy(&pReader->leafReader); |
- dataBufferDestroy(&pReader->rootData); |
- SCRAMBLE(pReader); |
-} |
- |
-/* Initialize pReader with the given root data (if iStartBlockid==0 |
-** the leaf data was entirely contained in the root), or from the |
-** stream of blocks between iStartBlockid and iEndBlockid, inclusive. |
-*/ |
-static int leavesReaderInit(fulltext_vtab *v, |
- int idx, |
- sqlite_int64 iStartBlockid, |
- sqlite_int64 iEndBlockid, |
- const char *pRootData, int nRootData, |
- LeavesReader *pReader){ |
- CLEAR(pReader); |
- pReader->idx = idx; |
- |
- dataBufferInit(&pReader->rootData, 0); |
- if( iStartBlockid==0 ){ |
- /* Entire leaf level fit in root data. */ |
- dataBufferReplace(&pReader->rootData, pRootData, nRootData); |
- leafReaderInit(pReader->rootData.pData, pReader->rootData.nData, |
- &pReader->leafReader); |
- }else{ |
- sqlite3_stmt *s; |
- int rc = sql_get_leaf_statement(v, idx, &s); |
- if( rc!=SQLITE_OK ) return rc; |
- |
- rc = sqlite3_bind_int64(s, 1, iStartBlockid); |
- if( rc!=SQLITE_OK ) return rc; |
- |
- rc = sqlite3_bind_int64(s, 2, iEndBlockid); |
- if( rc!=SQLITE_OK ) return rc; |
- |
- rc = sqlite3_step(s); |
- if( rc==SQLITE_DONE ){ |
- pReader->eof = 1; |
- return SQLITE_OK; |
- } |
- if( rc!=SQLITE_ROW ) return rc; |
- |
- pReader->pStmt = s; |
- leafReaderInit(sqlite3_column_blob(pReader->pStmt, 0), |
- sqlite3_column_bytes(pReader->pStmt, 0), |
- &pReader->leafReader); |
- } |
- return SQLITE_OK; |
-} |
- |
-/* Step the current leaf forward to the next term. If we reach the |
-** end of the current leaf, step forward to the next leaf block. |
-*/ |
-static int leavesReaderStep(fulltext_vtab *v, LeavesReader *pReader){ |
- assert( !leavesReaderAtEnd(pReader) ); |
- leafReaderStep(&pReader->leafReader); |
- |
- if( leafReaderAtEnd(&pReader->leafReader) ){ |
- int rc; |
- if( pReader->rootData.pData ){ |
- pReader->eof = 1; |
- return SQLITE_OK; |
- } |
- rc = sqlite3_step(pReader->pStmt); |
- if( rc!=SQLITE_ROW ){ |
- pReader->eof = 1; |
- return rc==SQLITE_DONE ? SQLITE_OK : rc; |
- } |
- leafReaderDestroy(&pReader->leafReader); |
- leafReaderInit(sqlite3_column_blob(pReader->pStmt, 0), |
- sqlite3_column_bytes(pReader->pStmt, 0), |
- &pReader->leafReader); |
- } |
- return SQLITE_OK; |
-} |
- |
-/* Order LeavesReaders by their term, ignoring idx. Readers at eof |
-** always sort to the end. |
-*/ |
-static int leavesReaderTermCmp(LeavesReader *lr1, LeavesReader *lr2){ |
- if( leavesReaderAtEnd(lr1) ){ |
- if( leavesReaderAtEnd(lr2) ) return 0; |
- return 1; |
- } |
- if( leavesReaderAtEnd(lr2) ) return -1; |
- |
- return leafReaderTermCmp(&lr1->leafReader, |
- leavesReaderTerm(lr2), leavesReaderTermBytes(lr2), |
- 0); |
-} |
- |
-/* Similar to leavesReaderTermCmp(), with additional ordering by idx |
-** so that older segments sort before newer segments. |
-*/ |
-static int leavesReaderCmp(LeavesReader *lr1, LeavesReader *lr2){ |
- int c = leavesReaderTermCmp(lr1, lr2); |
- if( c!=0 ) return c; |
- return lr1->idx-lr2->idx; |
-} |
- |
-/* Assume that pLr[1]..pLr[nLr] are sorted. Bubble pLr[0] into its |
-** sorted position. |
-*/ |
-static void leavesReaderReorder(LeavesReader *pLr, int nLr){ |
- while( nLr>1 && leavesReaderCmp(pLr, pLr+1)>0 ){ |
- LeavesReader tmp = pLr[0]; |
- pLr[0] = pLr[1]; |
- pLr[1] = tmp; |
- nLr--; |
- pLr++; |
- } |
-} |
- |
-/* Initializes pReaders with the segments from level iLevel, returning |
-** the number of segments in *piReaders. Leaves pReaders in sorted |
-** order. |
-*/ |
-static int leavesReadersInit(fulltext_vtab *v, int iLevel, |
- LeavesReader *pReaders, int *piReaders){ |
- sqlite3_stmt *s; |
- int i, rc = sql_get_statement(v, SEGDIR_SELECT_LEVEL_STMT, &s); |
- if( rc!=SQLITE_OK ) return rc; |
- |
- rc = sqlite3_bind_int(s, 1, iLevel); |
- if( rc!=SQLITE_OK ) return rc; |
- |
- i = 0; |
- while( (rc = sqlite3_step(s))==SQLITE_ROW ){ |
- sqlite_int64 iStart = sqlite3_column_int64(s, 0); |
- sqlite_int64 iEnd = sqlite3_column_int64(s, 1); |
- const char *pRootData = sqlite3_column_blob(s, 2); |
- int nRootData = sqlite3_column_bytes(s, 2); |
- |
- assert( i<MERGE_COUNT ); |
- rc = leavesReaderInit(v, i, iStart, iEnd, pRootData, nRootData, |
- &pReaders[i]); |
- if( rc!=SQLITE_OK ) break; |
- |
- i++; |
- } |
- if( rc!=SQLITE_DONE ){ |
- while( i-->0 ){ |
- leavesReaderDestroy(&pReaders[i]); |
- } |
- return rc; |
- } |
- |
- *piReaders = i; |
- |
- /* Leave our results sorted by term, then age. */ |
- while( i-- ){ |
- leavesReaderReorder(pReaders+i, *piReaders-i); |
- } |
- return SQLITE_OK; |
-} |
- |
-/* Merge doclists from pReaders[nReaders] into a single doclist, which |
-** is written to pWriter. Assumes pReaders is ordered oldest to |
-** newest. |
-*/ |
-/* TODO(shess) Consider putting this inline in segmentMerge(). */ |
-static int leavesReadersMerge(fulltext_vtab *v, |
- LeavesReader *pReaders, int nReaders, |
- LeafWriter *pWriter){ |
- DLReader dlReaders[MERGE_COUNT]; |
- const char *pTerm = leavesReaderTerm(pReaders); |
- int i, nTerm = leavesReaderTermBytes(pReaders); |
- |
- assert( nReaders<=MERGE_COUNT ); |
- |
- for(i=0; i<nReaders; i++){ |
- dlrInit(&dlReaders[i], DL_DEFAULT, |
- leavesReaderData(pReaders+i), |
- leavesReaderDataBytes(pReaders+i)); |
- } |
- |
- return leafWriterStepMerge(v, pWriter, pTerm, nTerm, dlReaders, nReaders); |
-} |
- |
-/* Forward ref due to mutual recursion with segdirNextIndex(). */ |
-static int segmentMerge(fulltext_vtab *v, int iLevel); |
- |
-/* Put the next available index at iLevel into *pidx. If iLevel |
-** already has MERGE_COUNT segments, they are merged to a higher |
-** level to make room. |
-*/ |
-static int segdirNextIndex(fulltext_vtab *v, int iLevel, int *pidx){ |
- int rc = segdir_max_index(v, iLevel, pidx); |
- if( rc==SQLITE_DONE ){ /* No segments at iLevel. */ |
- *pidx = 0; |
- }else if( rc==SQLITE_ROW ){ |
- if( *pidx==(MERGE_COUNT-1) ){ |
- rc = segmentMerge(v, iLevel); |
- if( rc!=SQLITE_OK ) return rc; |
- *pidx = 0; |
- }else{ |
- (*pidx)++; |
- } |
- }else{ |
- return rc; |
- } |
- return SQLITE_OK; |
-} |
- |
-/* Merge MERGE_COUNT segments at iLevel into a new segment at |
-** iLevel+1. If iLevel+1 is already full of segments, those will be |
-** merged to make room. |
-*/ |
-static int segmentMerge(fulltext_vtab *v, int iLevel){ |
- LeafWriter writer; |
- LeavesReader lrs[MERGE_COUNT]; |
- int i, rc, idx = 0; |
- |
- /* Determine the next available segment index at the next level, |
- ** merging as necessary. |
- */ |
- rc = segdirNextIndex(v, iLevel+1, &idx); |
- if( rc!=SQLITE_OK ) return rc; |
- |
- /* TODO(shess) This assumes that we'll always see exactly |
- ** MERGE_COUNT segments to merge at a given level. That will be |
- ** broken if we allow the developer to request preemptive or |
- ** deferred merging. |
- */ |
- memset(&lrs, '\0', sizeof(lrs)); |
- rc = leavesReadersInit(v, iLevel, lrs, &i); |
- if( rc!=SQLITE_OK ) return rc; |
- assert( i==MERGE_COUNT ); |
- |
- leafWriterInit(iLevel+1, idx, &writer); |
- |
- /* Since leavesReaderReorder() pushes readers at eof to the end, |
- ** when the first reader is empty, all will be empty. |
- */ |
- while( !leavesReaderAtEnd(lrs) ){ |
- /* Figure out how many readers share their next term. */ |
- for(i=1; i<MERGE_COUNT && !leavesReaderAtEnd(lrs+i); i++){ |
- if( 0!=leavesReaderTermCmp(lrs, lrs+i) ) break; |
- } |
- |
- rc = leavesReadersMerge(v, lrs, i, &writer); |
- if( rc!=SQLITE_OK ) goto err; |
- |
- /* Step forward those that were merged. */ |
- while( i-->0 ){ |
- rc = leavesReaderStep(v, lrs+i); |
- if( rc!=SQLITE_OK ) goto err; |
- |
- /* Reorder by term, then by age. */ |
- leavesReaderReorder(lrs+i, MERGE_COUNT-i); |
- } |
- } |
- |
- for(i=0; i<MERGE_COUNT; i++){ |
- leavesReaderDestroy(&lrs[i]); |
- } |
- |
- rc = leafWriterFinalize(v, &writer); |
- leafWriterDestroy(&writer); |
- if( rc!=SQLITE_OK ) return rc; |
- |
- /* Delete the merged segment data. */ |
- return segdir_delete(v, iLevel); |
- |
- err: |
- for(i=0; i<MERGE_COUNT; i++){ |
- leavesReaderDestroy(&lrs[i]); |
- } |
- leafWriterDestroy(&writer); |
- return rc; |
-} |
- |
-/* Accumulate the union of *acc and *pData into *acc. */ |
-static void docListAccumulateUnion(DataBuffer *acc, |
- const char *pData, int nData) { |
- DataBuffer tmp = *acc; |
- dataBufferInit(acc, tmp.nData+nData); |
- docListUnion(tmp.pData, tmp.nData, pData, nData, acc); |
- dataBufferDestroy(&tmp); |
-} |
- |
-/* TODO(shess) It might be interesting to explore different merge |
-** strategies, here. For instance, since this is a sorted merge, we |
-** could easily merge many doclists in parallel. With some |
-** comprehension of the storage format, we could merge all of the |
-** doclists within a leaf node directly from the leaf node's storage. |
-** It may be worthwhile to merge smaller doclists before larger |
-** doclists, since they can be traversed more quickly - but the |
-** results may have less overlap, making them more expensive in a |
-** different way. |
-*/ |
- |
-/* Scan pReader for pTerm/nTerm, and merge the term's doclist over |
-** *out (any doclists with duplicate docids overwrite those in *out). |
-** Internal function for loadSegmentLeaf(). |
-*/ |
-static int loadSegmentLeavesInt(fulltext_vtab *v, LeavesReader *pReader, |
- const char *pTerm, int nTerm, int isPrefix, |
- DataBuffer *out){ |
- /* doclist data is accumulated into pBuffers similar to how one does |
- ** increment in binary arithmetic. If index 0 is empty, the data is |
- ** stored there. If there is data there, it is merged and the |
- ** results carried into position 1, with further merge-and-carry |
- ** until an empty position is found. |
- */ |
- DataBuffer *pBuffers = NULL; |
- int nBuffers = 0, nMaxBuffers = 0, rc; |
- |
- assert( nTerm>0 ); |
- |
- for(rc=SQLITE_OK; rc==SQLITE_OK && !leavesReaderAtEnd(pReader); |
- rc=leavesReaderStep(v, pReader)){ |
- /* TODO(shess) Really want leavesReaderTermCmp(), but that name is |
- ** already taken to compare the terms of two LeavesReaders. Think |
- ** on a better name. [Meanwhile, break encapsulation rather than |
- ** use a confusing name.] |
- */ |
- int c = leafReaderTermCmp(&pReader->leafReader, pTerm, nTerm, isPrefix); |
- if( c>0 ) break; /* Past any possible matches. */ |
- if( c==0 ){ |
- const char *pData = leavesReaderData(pReader); |
- int iBuffer, nData = leavesReaderDataBytes(pReader); |
- |
- /* Find the first empty buffer. */ |
- for(iBuffer=0; iBuffer<nBuffers; ++iBuffer){ |
- if( 0==pBuffers[iBuffer].nData ) break; |
- } |
- |
- /* Out of buffers, add an empty one. */ |
- if( iBuffer==nBuffers ){ |
- if( nBuffers==nMaxBuffers ){ |
- DataBuffer *p; |
- nMaxBuffers += 20; |
- |
- /* Manual realloc so we can handle NULL appropriately. */ |
- p = sqlite3_malloc(nMaxBuffers*sizeof(*pBuffers)); |
- if( p==NULL ){ |
- rc = SQLITE_NOMEM; |
- break; |
- } |
- |
- if( nBuffers>0 ){ |
- assert(pBuffers!=NULL); |
- memcpy(p, pBuffers, nBuffers*sizeof(*pBuffers)); |
- sqlite3_free(pBuffers); |
- } |
- pBuffers = p; |
- } |
- dataBufferInit(&(pBuffers[nBuffers]), 0); |
- nBuffers++; |
- } |
- |
- /* At this point, must have an empty at iBuffer. */ |
- assert(iBuffer<nBuffers && pBuffers[iBuffer].nData==0); |
- |
- /* If empty was first buffer, no need for merge logic. */ |
- if( iBuffer==0 ){ |
- dataBufferReplace(&(pBuffers[0]), pData, nData); |
- }else{ |
- /* pAcc is the empty buffer the merged data will end up in. */ |
- DataBuffer *pAcc = &(pBuffers[iBuffer]); |
- DataBuffer *p = &(pBuffers[0]); |
- |
- /* Handle position 0 specially to avoid need to prime pAcc |
- ** with pData/nData. |
- */ |
- dataBufferSwap(p, pAcc); |
- docListAccumulateUnion(pAcc, pData, nData); |
- |
- /* Accumulate remaining doclists into pAcc. */ |
- for(++p; p<pAcc; ++p){ |
- docListAccumulateUnion(pAcc, p->pData, p->nData); |
- |
- /* dataBufferReset() could allow a large doclist to blow up |
- ** our memory requirements. |
- */ |
- if( p->nCapacity<1024 ){ |
- dataBufferReset(p); |
- }else{ |
- dataBufferDestroy(p); |
- dataBufferInit(p, 0); |
- } |
- } |
- } |
- } |
- } |
- |
- /* Union all the doclists together into *out. */ |
- /* TODO(shess) What if *out is big? Sigh. */ |
- if( rc==SQLITE_OK && nBuffers>0 ){ |
- int iBuffer; |
- for(iBuffer=0; iBuffer<nBuffers; ++iBuffer){ |
- if( pBuffers[iBuffer].nData>0 ){ |
- if( out->nData==0 ){ |
- dataBufferSwap(out, &(pBuffers[iBuffer])); |
- }else{ |
- docListAccumulateUnion(out, pBuffers[iBuffer].pData, |
- pBuffers[iBuffer].nData); |
- } |
- } |
- } |
- } |
- |
- while( nBuffers-- ){ |
- dataBufferDestroy(&(pBuffers[nBuffers])); |
- } |
- if( pBuffers!=NULL ) sqlite3_free(pBuffers); |
- |
- return rc; |
-} |
- |
-/* Call loadSegmentLeavesInt() with pData/nData as input. */ |
-static int loadSegmentLeaf(fulltext_vtab *v, const char *pData, int nData, |
- const char *pTerm, int nTerm, int isPrefix, |
- DataBuffer *out){ |
- LeavesReader reader; |
- int rc; |
- |
- assert( nData>1 ); |
- assert( *pData=='\0' ); |
- rc = leavesReaderInit(v, 0, 0, 0, pData, nData, &reader); |
- if( rc!=SQLITE_OK ) return rc; |
- |
- rc = loadSegmentLeavesInt(v, &reader, pTerm, nTerm, isPrefix, out); |
- leavesReaderReset(&reader); |
- leavesReaderDestroy(&reader); |
- return rc; |
-} |
- |
-/* Call loadSegmentLeavesInt() with the leaf nodes from iStartLeaf to |
-** iEndLeaf (inclusive) as input, and merge the resulting doclist into |
-** out. |
-*/ |
-static int loadSegmentLeaves(fulltext_vtab *v, |
- sqlite_int64 iStartLeaf, sqlite_int64 iEndLeaf, |
- const char *pTerm, int nTerm, int isPrefix, |
- DataBuffer *out){ |
- int rc; |
- LeavesReader reader; |
- |
- assert( iStartLeaf<=iEndLeaf ); |
- rc = leavesReaderInit(v, 0, iStartLeaf, iEndLeaf, NULL, 0, &reader); |
- if( rc!=SQLITE_OK ) return rc; |
- |
- rc = loadSegmentLeavesInt(v, &reader, pTerm, nTerm, isPrefix, out); |
- leavesReaderReset(&reader); |
- leavesReaderDestroy(&reader); |
- return rc; |
-} |
- |
-/* Taking pData/nData as an interior node, find the sequence of child |
-** nodes which could include pTerm/nTerm/isPrefix. Note that the |
-** interior node terms logically come between the blocks, so there is |
-** one more blockid than there are terms (that block contains terms >= |
-** the last interior-node term). |
-*/ |
-/* TODO(shess) The calling code may already know that the end child is |
-** not worth calculating, because the end may be in a later sibling |
-** node. Consider whether breaking symmetry is worthwhile. I suspect |
-** it is not worthwhile. |
-*/ |
-static void getChildrenContaining(const char *pData, int nData, |
- const char *pTerm, int nTerm, int isPrefix, |
- sqlite_int64 *piStartChild, |
- sqlite_int64 *piEndChild){ |
- InteriorReader reader; |
- |
- assert( nData>1 ); |
- assert( *pData!='\0' ); |
- interiorReaderInit(pData, nData, &reader); |
- |
- /* Scan for the first child which could contain pTerm/nTerm. */ |
- while( !interiorReaderAtEnd(&reader) ){ |
- if( interiorReaderTermCmp(&reader, pTerm, nTerm, 0)>0 ) break; |
- interiorReaderStep(&reader); |
- } |
- *piStartChild = interiorReaderCurrentBlockid(&reader); |
- |
- /* Keep scanning to find a term greater than our term, using prefix |
- ** comparison if indicated. If isPrefix is false, this will be the |
- ** same blockid as the starting block. |
- */ |
- while( !interiorReaderAtEnd(&reader) ){ |
- if( interiorReaderTermCmp(&reader, pTerm, nTerm, isPrefix)>0 ) break; |
- interiorReaderStep(&reader); |
- } |
- *piEndChild = interiorReaderCurrentBlockid(&reader); |
- |
- interiorReaderDestroy(&reader); |
- |
- /* Children must ascend, and if !prefix, both must be the same. */ |
- assert( *piEndChild>=*piStartChild ); |
- assert( isPrefix || *piStartChild==*piEndChild ); |
-} |
- |
-/* Read block at iBlockid and pass it with other params to |
-** getChildrenContaining(). |
-*/ |
-static int loadAndGetChildrenContaining( |
- fulltext_vtab *v, |
- sqlite_int64 iBlockid, |
- const char *pTerm, int nTerm, int isPrefix, |
- sqlite_int64 *piStartChild, sqlite_int64 *piEndChild |
-){ |
- sqlite3_stmt *s = NULL; |
- int rc; |
- |
- assert( iBlockid!=0 ); |
- assert( pTerm!=NULL ); |
- assert( nTerm!=0 ); /* TODO(shess) Why not allow this? */ |
- assert( piStartChild!=NULL ); |
- assert( piEndChild!=NULL ); |
- |
- rc = sql_get_statement(v, BLOCK_SELECT_STMT, &s); |
- if( rc!=SQLITE_OK ) return rc; |
- |
- rc = sqlite3_bind_int64(s, 1, iBlockid); |
- if( rc!=SQLITE_OK ) return rc; |
- |
- rc = sqlite3_step(s); |
- if( rc==SQLITE_DONE ) return SQLITE_ERROR; |
- if( rc!=SQLITE_ROW ) return rc; |
- |
- getChildrenContaining(sqlite3_column_blob(s, 0), sqlite3_column_bytes(s, 0), |
- pTerm, nTerm, isPrefix, piStartChild, piEndChild); |
- |
- /* We expect only one row. We must execute another sqlite3_step() |
- * to complete the iteration; otherwise the table will remain |
- * locked. */ |
- rc = sqlite3_step(s); |
- if( rc==SQLITE_ROW ) return SQLITE_ERROR; |
- if( rc!=SQLITE_DONE ) return rc; |
- |
- return SQLITE_OK; |
-} |
- |
-/* Traverse the tree represented by pData[nData] looking for |
-** pTerm[nTerm], placing its doclist into *out. This is internal to |
-** loadSegment() to make error-handling cleaner. |
-*/ |
-static int loadSegmentInt(fulltext_vtab *v, const char *pData, int nData, |
- sqlite_int64 iLeavesEnd, |
- const char *pTerm, int nTerm, int isPrefix, |
- DataBuffer *out){ |
- /* Special case where root is a leaf. */ |
- if( *pData=='\0' ){ |
- return loadSegmentLeaf(v, pData, nData, pTerm, nTerm, isPrefix, out); |
- }else{ |
- int rc; |
- sqlite_int64 iStartChild, iEndChild; |
- |
- /* Process pData as an interior node, then loop down the tree |
- ** until we find the set of leaf nodes to scan for the term. |
- */ |
- getChildrenContaining(pData, nData, pTerm, nTerm, isPrefix, |
- &iStartChild, &iEndChild); |
- while( iStartChild>iLeavesEnd ){ |
- sqlite_int64 iNextStart, iNextEnd; |
- rc = loadAndGetChildrenContaining(v, iStartChild, pTerm, nTerm, isPrefix, |
- &iNextStart, &iNextEnd); |
- if( rc!=SQLITE_OK ) return rc; |
- |
- /* If we've branched, follow the end branch, too. */ |
- if( iStartChild!=iEndChild ){ |
- sqlite_int64 iDummy; |
- rc = loadAndGetChildrenContaining(v, iEndChild, pTerm, nTerm, isPrefix, |
- &iDummy, &iNextEnd); |
- if( rc!=SQLITE_OK ) return rc; |
- } |
- |
- assert( iNextStart<=iNextEnd ); |
- iStartChild = iNextStart; |
- iEndChild = iNextEnd; |
- } |
- assert( iStartChild<=iLeavesEnd ); |
- assert( iEndChild<=iLeavesEnd ); |
- |
- /* Scan through the leaf segments for doclists. */ |
- return loadSegmentLeaves(v, iStartChild, iEndChild, |
- pTerm, nTerm, isPrefix, out); |
- } |
-} |
- |
-/* Call loadSegmentInt() to collect the doclist for pTerm/nTerm, then |
-** merge its doclist over *out (any duplicate doclists read from the |
-** segment rooted at pData will overwrite those in *out). |
-*/ |
-/* TODO(shess) Consider changing this to determine the depth of the |
-** leaves using either the first characters of interior nodes (when |
-** ==1, we're one level above the leaves), or the first character of |
-** the root (which will describe the height of the tree directly). |
-** Either feels somewhat tricky to me. |
-*/ |
-/* TODO(shess) The current merge is likely to be slow for large |
-** doclists (though it should process from newest/smallest to |
-** oldest/largest, so it may not be that bad). It might be useful to |
-** modify things to allow for N-way merging. This could either be |
-** within a segment, with pairwise merges across segments, or across |
-** all segments at once. |
-*/ |
-static int loadSegment(fulltext_vtab *v, const char *pData, int nData, |
- sqlite_int64 iLeavesEnd, |
- const char *pTerm, int nTerm, int isPrefix, |
- DataBuffer *out){ |
- DataBuffer result; |
- int rc; |
- |
- assert( nData>1 ); |
- |
- /* This code should never be called with buffered updates. */ |
- assert( v->nPendingData<0 ); |
- |
- dataBufferInit(&result, 0); |
- rc = loadSegmentInt(v, pData, nData, iLeavesEnd, |
- pTerm, nTerm, isPrefix, &result); |
- if( rc==SQLITE_OK && result.nData>0 ){ |
- if( out->nData==0 ){ |
- DataBuffer tmp = *out; |
- *out = result; |
- result = tmp; |
- }else{ |
- DataBuffer merged; |
- DLReader readers[2]; |
- |
- dlrInit(&readers[0], DL_DEFAULT, out->pData, out->nData); |
- dlrInit(&readers[1], DL_DEFAULT, result.pData, result.nData); |
- dataBufferInit(&merged, out->nData+result.nData); |
- docListMerge(&merged, readers, 2); |
- dataBufferDestroy(out); |
- *out = merged; |
- dlrDestroy(&readers[0]); |
- dlrDestroy(&readers[1]); |
- } |
- } |
- dataBufferDestroy(&result); |
- return rc; |
-} |
- |
-/* Scan the database and merge together the posting lists for the term |
-** into *out. |
-*/ |
-static int termSelect(fulltext_vtab *v, int iColumn, |
- const char *pTerm, int nTerm, int isPrefix, |
- DocListType iType, DataBuffer *out){ |
- DataBuffer doclist; |
- sqlite3_stmt *s; |
- int rc = sql_get_statement(v, SEGDIR_SELECT_ALL_STMT, &s); |
- if( rc!=SQLITE_OK ) return rc; |
- |
- /* This code should never be called with buffered updates. */ |
- assert( v->nPendingData<0 ); |
- |
- dataBufferInit(&doclist, 0); |
- |
- /* Traverse the segments from oldest to newest so that newer doclist |
- ** elements for given docids overwrite older elements. |
- */ |
- while( (rc = sqlite3_step(s))==SQLITE_ROW ){ |
- const char *pData = sqlite3_column_blob(s, 2); |
- const int nData = sqlite3_column_bytes(s, 2); |
- const sqlite_int64 iLeavesEnd = sqlite3_column_int64(s, 1); |
- rc = loadSegment(v, pData, nData, iLeavesEnd, pTerm, nTerm, isPrefix, |
- &doclist); |
- if( rc!=SQLITE_OK ) goto err; |
- } |
- if( rc==SQLITE_DONE ){ |
- if( doclist.nData!=0 ){ |
- /* TODO(shess) The old term_select_all() code applied the column |
- ** restrict as we merged segments, leading to smaller buffers. |
- ** This is probably worthwhile to bring back, once the new storage |
- ** system is checked in. |
- */ |
- if( iColumn==v->nColumn) iColumn = -1; |
- docListTrim(DL_DEFAULT, doclist.pData, doclist.nData, |
- iColumn, iType, out); |
- } |
- rc = SQLITE_OK; |
- } |
- |
- err: |
- dataBufferDestroy(&doclist); |
- return rc; |
-} |
- |
-/****************************************************************/ |
-/* Used to hold hashtable data for sorting. */ |
-typedef struct TermData { |
- const char *pTerm; |
- int nTerm; |
- DLCollector *pCollector; |
-} TermData; |
- |
-/* Orders TermData elements in strcmp fashion ( <0 for less-than, 0 |
-** for equal, >0 for greater-than). |
-*/ |
-static int termDataCmp(const void *av, const void *bv){ |
- const TermData *a = (const TermData *)av; |
- const TermData *b = (const TermData *)bv; |
- int n = a->nTerm<b->nTerm ? a->nTerm : b->nTerm; |
- int c = memcmp(a->pTerm, b->pTerm, n); |
- if( c!=0 ) return c; |
- return a->nTerm-b->nTerm; |
-} |
- |
-/* Order pTerms data by term, then write a new level 0 segment using |
-** LeafWriter. |
-*/ |
-static int writeZeroSegment(fulltext_vtab *v, fts2Hash *pTerms){ |
- fts2HashElem *e; |
- int idx, rc, i, n; |
- TermData *pData; |
- LeafWriter writer; |
- DataBuffer dl; |
- |
- /* Determine the next index at level 0, merging as necessary. */ |
- rc = segdirNextIndex(v, 0, &idx); |
- if( rc!=SQLITE_OK ) return rc; |
- |
- n = fts2HashCount(pTerms); |
- pData = sqlite3_malloc(n*sizeof(TermData)); |
- |
- for(i = 0, e = fts2HashFirst(pTerms); e; i++, e = fts2HashNext(e)){ |
- assert( i<n ); |
- pData[i].pTerm = fts2HashKey(e); |
- pData[i].nTerm = fts2HashKeysize(e); |
- pData[i].pCollector = fts2HashData(e); |
- } |
- assert( i==n ); |
- |
- /* TODO(shess) Should we allow user-defined collation sequences, |
- ** here? I think we only need that once we support prefix searches. |
- */ |
- if( n>1 ) qsort(pData, n, sizeof(*pData), termDataCmp); |
- |
- /* TODO(shess) Refactor so that we can write directly to the segment |
- ** DataBuffer, as happens for segment merges. |
- */ |
- leafWriterInit(0, idx, &writer); |
- dataBufferInit(&dl, 0); |
- for(i=0; i<n; i++){ |
- dataBufferReset(&dl); |
- dlcAddDoclist(pData[i].pCollector, &dl); |
- rc = leafWriterStep(v, &writer, |
- pData[i].pTerm, pData[i].nTerm, dl.pData, dl.nData); |
- if( rc!=SQLITE_OK ) goto err; |
- } |
- rc = leafWriterFinalize(v, &writer); |
- |
- err: |
- dataBufferDestroy(&dl); |
- sqlite3_free(pData); |
- leafWriterDestroy(&writer); |
- return rc; |
-} |
- |
-/* If pendingTerms has data, free it. */ |
-static int clearPendingTerms(fulltext_vtab *v){ |
- if( v->nPendingData>=0 ){ |
- fts2HashElem *e; |
- for(e=fts2HashFirst(&v->pendingTerms); e; e=fts2HashNext(e)){ |
- dlcDelete(fts2HashData(e)); |
- } |
- fts2HashClear(&v->pendingTerms); |
- v->nPendingData = -1; |
- } |
- return SQLITE_OK; |
-} |
- |
-/* If pendingTerms has data, flush it to a level-zero segment, and |
-** free it. |
-*/ |
-static int flushPendingTerms(fulltext_vtab *v){ |
- if( v->nPendingData>=0 ){ |
- int rc = writeZeroSegment(v, &v->pendingTerms); |
- if( rc==SQLITE_OK ) clearPendingTerms(v); |
- return rc; |
- } |
- return SQLITE_OK; |
-} |
- |
-/* If pendingTerms is "too big", or docid is out of order, flush it. |
-** Regardless, be certain that pendingTerms is initialized for use. |
-*/ |
-static int initPendingTerms(fulltext_vtab *v, sqlite_int64 iDocid){ |
- /* TODO(shess) Explore whether partially flushing the buffer on |
- ** forced-flush would provide better performance. I suspect that if |
- ** we ordered the doclists by size and flushed the largest until the |
- ** buffer was half empty, that would let the less frequent terms |
- ** generate longer doclists. |
- */ |
- if( iDocid<=v->iPrevDocid || v->nPendingData>kPendingThreshold ){ |
- int rc = flushPendingTerms(v); |
- if( rc!=SQLITE_OK ) return rc; |
- } |
- if( v->nPendingData<0 ){ |
- fts2HashInit(&v->pendingTerms, FTS2_HASH_STRING, 1); |
- v->nPendingData = 0; |
- } |
- v->iPrevDocid = iDocid; |
- return SQLITE_OK; |
-} |
- |
-/* This function implements the xUpdate callback; it is the top-level entry |
- * point for inserting, deleting or updating a row in a full-text table. */ |
-static int fulltextUpdate(sqlite3_vtab *pVtab, int nArg, sqlite3_value **ppArg, |
- sqlite_int64 *pRowid){ |
- fulltext_vtab *v = (fulltext_vtab *) pVtab; |
- int rc; |
- |
- TRACE(("FTS2 Update %p\n", pVtab)); |
- |
- if( nArg<2 ){ |
- rc = index_delete(v, sqlite3_value_int64(ppArg[0])); |
- if( rc==SQLITE_OK ){ |
- /* If we just deleted the last row in the table, clear out the |
- ** index data. |
- */ |
- rc = content_exists(v); |
- if( rc==SQLITE_ROW ){ |
- rc = SQLITE_OK; |
- }else if( rc==SQLITE_DONE ){ |
- /* Clear the pending terms so we don't flush a useless level-0 |
- ** segment when the transaction closes. |
- */ |
- rc = clearPendingTerms(v); |
- if( rc==SQLITE_OK ){ |
- rc = segdir_delete_all(v); |
- } |
- } |
- } |
- } else if( sqlite3_value_type(ppArg[0]) != SQLITE_NULL ){ |
- /* An update: |
- * ppArg[0] = old rowid |
- * ppArg[1] = new rowid |
- * ppArg[2..2+v->nColumn-1] = values |
- * ppArg[2+v->nColumn] = value for magic column (we ignore this) |
- */ |
- sqlite_int64 rowid = sqlite3_value_int64(ppArg[0]); |
- if( sqlite3_value_type(ppArg[1]) != SQLITE_INTEGER || |
- sqlite3_value_int64(ppArg[1]) != rowid ){ |
- rc = SQLITE_ERROR; /* we don't allow changing the rowid */ |
- } else { |
- assert( nArg==2+v->nColumn+1); |
- rc = index_update(v, rowid, &ppArg[2]); |
- } |
- } else { |
- /* An insert: |
- * ppArg[1] = requested rowid |
- * ppArg[2..2+v->nColumn-1] = values |
- * ppArg[2+v->nColumn] = value for magic column (we ignore this) |
- */ |
- assert( nArg==2+v->nColumn+1); |
- rc = index_insert(v, ppArg[1], &ppArg[2], pRowid); |
- } |
- |
- return rc; |
-} |
- |
-static int fulltextSync(sqlite3_vtab *pVtab){ |
- TRACE(("FTS2 xSync()\n")); |
- return flushPendingTerms((fulltext_vtab *)pVtab); |
-} |
- |
-static int fulltextBegin(sqlite3_vtab *pVtab){ |
- fulltext_vtab *v = (fulltext_vtab *) pVtab; |
- TRACE(("FTS2 xBegin()\n")); |
- |
- /* Any buffered updates should have been cleared by the previous |
- ** transaction. |
- */ |
- assert( v->nPendingData<0 ); |
- return clearPendingTerms(v); |
-} |
- |
-static int fulltextCommit(sqlite3_vtab *pVtab){ |
- fulltext_vtab *v = (fulltext_vtab *) pVtab; |
- TRACE(("FTS2 xCommit()\n")); |
- |
- /* Buffered updates should have been cleared by fulltextSync(). */ |
- assert( v->nPendingData<0 ); |
- return clearPendingTerms(v); |
-} |
- |
-static int fulltextRollback(sqlite3_vtab *pVtab){ |
- TRACE(("FTS2 xRollback()\n")); |
- return clearPendingTerms((fulltext_vtab *)pVtab); |
-} |
- |
-/* |
-** Implementation of the snippet() function for FTS2 |
-*/ |
-static void snippetFunc( |
- sqlite3_context *pContext, |
- int argc, |
- sqlite3_value **argv |
-){ |
- fulltext_cursor *pCursor; |
- if( argc<1 ) return; |
- if( sqlite3_value_type(argv[0])!=SQLITE_BLOB || |
- sqlite3_value_bytes(argv[0])!=sizeof(pCursor) ){ |
- sqlite3_result_error(pContext, "illegal first argument to html_snippet",-1); |
- }else{ |
- const char *zStart = "<b>"; |
- const char *zEnd = "</b>"; |
- const char *zEllipsis = "<b>...</b>"; |
- memcpy(&pCursor, sqlite3_value_blob(argv[0]), sizeof(pCursor)); |
- if( argc>=2 ){ |
- zStart = (const char*)sqlite3_value_text(argv[1]); |
- if( argc>=3 ){ |
- zEnd = (const char*)sqlite3_value_text(argv[2]); |
- if( argc>=4 ){ |
- zEllipsis = (const char*)sqlite3_value_text(argv[3]); |
- } |
- } |
- } |
- snippetAllOffsets(pCursor); |
- snippetText(pCursor, zStart, zEnd, zEllipsis); |
- sqlite3_result_text(pContext, pCursor->snippet.zSnippet, |
- pCursor->snippet.nSnippet, SQLITE_STATIC); |
- } |
-} |
- |
-/* |
-** Implementation of the offsets() function for FTS2 |
-*/ |
-static void snippetOffsetsFunc( |
- sqlite3_context *pContext, |
- int argc, |
- sqlite3_value **argv |
-){ |
- fulltext_cursor *pCursor; |
- if( argc<1 ) return; |
- if( sqlite3_value_type(argv[0])!=SQLITE_BLOB || |
- sqlite3_value_bytes(argv[0])!=sizeof(pCursor) ){ |
- sqlite3_result_error(pContext, "illegal first argument to offsets",-1); |
- }else{ |
- memcpy(&pCursor, sqlite3_value_blob(argv[0]), sizeof(pCursor)); |
- snippetAllOffsets(pCursor); |
- snippetOffsetText(&pCursor->snippet); |
- sqlite3_result_text(pContext, |
- pCursor->snippet.zOffset, pCursor->snippet.nOffset, |
- SQLITE_STATIC); |
- } |
-} |
- |
-/* OptLeavesReader is nearly identical to LeavesReader, except that |
-** where LeavesReader is geared towards the merging of complete |
-** segment levels (with exactly MERGE_COUNT segments), OptLeavesReader |
-** is geared towards implementation of the optimize() function, and |
-** can merge all segments simultaneously. This version may be |
-** somewhat less efficient than LeavesReader because it merges into an |
-** accumulator rather than doing an N-way merge, but since segment |
-** size grows exponentially (so segment count logrithmically) this is |
-** probably not an immediate problem. |
-*/ |
-/* TODO(shess): Prove that assertion, or extend the merge code to |
-** merge tree fashion (like the prefix-searching code does). |
-*/ |
-/* TODO(shess): OptLeavesReader and LeavesReader could probably be |
-** merged with little or no loss of performance for LeavesReader. The |
-** merged code would need to handle >MERGE_COUNT segments, and would |
-** also need to be able to optionally optimize away deletes. |
-*/ |
-typedef struct OptLeavesReader { |
- /* Segment number, to order readers by age. */ |
- int segment; |
- LeavesReader reader; |
-} OptLeavesReader; |
- |
-static int optLeavesReaderAtEnd(OptLeavesReader *pReader){ |
- return leavesReaderAtEnd(&pReader->reader); |
-} |
-static int optLeavesReaderTermBytes(OptLeavesReader *pReader){ |
- return leavesReaderTermBytes(&pReader->reader); |
-} |
-static const char *optLeavesReaderData(OptLeavesReader *pReader){ |
- return leavesReaderData(&pReader->reader); |
-} |
-static int optLeavesReaderDataBytes(OptLeavesReader *pReader){ |
- return leavesReaderDataBytes(&pReader->reader); |
-} |
-static const char *optLeavesReaderTerm(OptLeavesReader *pReader){ |
- return leavesReaderTerm(&pReader->reader); |
-} |
-static int optLeavesReaderStep(fulltext_vtab *v, OptLeavesReader *pReader){ |
- return leavesReaderStep(v, &pReader->reader); |
-} |
-static int optLeavesReaderTermCmp(OptLeavesReader *lr1, OptLeavesReader *lr2){ |
- return leavesReaderTermCmp(&lr1->reader, &lr2->reader); |
-} |
-/* Order by term ascending, segment ascending (oldest to newest), with |
-** exhausted readers to the end. |
-*/ |
-static int optLeavesReaderCmp(OptLeavesReader *lr1, OptLeavesReader *lr2){ |
- int c = optLeavesReaderTermCmp(lr1, lr2); |
- if( c!=0 ) return c; |
- return lr1->segment-lr2->segment; |
-} |
-/* Bubble pLr[0] to appropriate place in pLr[1..nLr-1]. Assumes that |
-** pLr[1..nLr-1] is already sorted. |
-*/ |
-static void optLeavesReaderReorder(OptLeavesReader *pLr, int nLr){ |
- while( nLr>1 && optLeavesReaderCmp(pLr, pLr+1)>0 ){ |
- OptLeavesReader tmp = pLr[0]; |
- pLr[0] = pLr[1]; |
- pLr[1] = tmp; |
- nLr--; |
- pLr++; |
- } |
-} |
- |
-/* optimize() helper function. Put the readers in order and iterate |
-** through them, merging doclists for matching terms into pWriter. |
-** Returns SQLITE_OK on success, or the SQLite error code which |
-** prevented success. |
-*/ |
-static int optimizeInternal(fulltext_vtab *v, |
- OptLeavesReader *readers, int nReaders, |
- LeafWriter *pWriter){ |
- int i, rc = SQLITE_OK; |
- DataBuffer doclist, merged, tmp; |
- |
- /* Order the readers. */ |
- i = nReaders; |
- while( i-- > 0 ){ |
- optLeavesReaderReorder(&readers[i], nReaders-i); |
- } |
- |
- dataBufferInit(&doclist, LEAF_MAX); |
- dataBufferInit(&merged, LEAF_MAX); |
- |
- /* Exhausted readers bubble to the end, so when the first reader is |
- ** at eof, all are at eof. |
- */ |
- while( !optLeavesReaderAtEnd(&readers[0]) ){ |
- |
- /* Figure out how many readers share the next term. */ |
- for(i=1; i<nReaders && !optLeavesReaderAtEnd(&readers[i]); i++){ |
- if( 0!=optLeavesReaderTermCmp(&readers[0], &readers[i]) ) break; |
- } |
- |
- /* Special-case for no merge. */ |
- if( i==1 ){ |
- /* Trim deletions from the doclist. */ |
- dataBufferReset(&merged); |
- docListTrim(DL_DEFAULT, |
- optLeavesReaderData(&readers[0]), |
- optLeavesReaderDataBytes(&readers[0]), |
- -1, DL_DEFAULT, &merged); |
- }else{ |
- DLReader dlReaders[MERGE_COUNT]; |
- int iReader, nReaders; |
- |
- /* Prime the pipeline with the first reader's doclist. After |
- ** one pass index 0 will reference the accumulated doclist. |
- */ |
- dlrInit(&dlReaders[0], DL_DEFAULT, |
- optLeavesReaderData(&readers[0]), |
- optLeavesReaderDataBytes(&readers[0])); |
- iReader = 1; |
- |
- assert( iReader<i ); /* Must execute the loop at least once. */ |
- while( iReader<i ){ |
- /* Merge 16 inputs per pass. */ |
- for( nReaders=1; iReader<i && nReaders<MERGE_COUNT; |
- iReader++, nReaders++ ){ |
- dlrInit(&dlReaders[nReaders], DL_DEFAULT, |
- optLeavesReaderData(&readers[iReader]), |
- optLeavesReaderDataBytes(&readers[iReader])); |
- } |
- |
- /* Merge doclists and swap result into accumulator. */ |
- dataBufferReset(&merged); |
- docListMerge(&merged, dlReaders, nReaders); |
- tmp = merged; |
- merged = doclist; |
- doclist = tmp; |
- |
- while( nReaders-- > 0 ){ |
- dlrDestroy(&dlReaders[nReaders]); |
- } |
- |
- /* Accumulated doclist to reader 0 for next pass. */ |
- dlrInit(&dlReaders[0], DL_DEFAULT, doclist.pData, doclist.nData); |
- } |
- |
- /* Destroy reader that was left in the pipeline. */ |
- dlrDestroy(&dlReaders[0]); |
- |
- /* Trim deletions from the doclist. */ |
- dataBufferReset(&merged); |
- docListTrim(DL_DEFAULT, doclist.pData, doclist.nData, |
- -1, DL_DEFAULT, &merged); |
- } |
- |
- /* Only pass doclists with hits (skip if all hits deleted). */ |
- if( merged.nData>0 ){ |
- rc = leafWriterStep(v, pWriter, |
- optLeavesReaderTerm(&readers[0]), |
- optLeavesReaderTermBytes(&readers[0]), |
- merged.pData, merged.nData); |
- if( rc!=SQLITE_OK ) goto err; |
- } |
- |
- /* Step merged readers to next term and reorder. */ |
- while( i-- > 0 ){ |
- rc = optLeavesReaderStep(v, &readers[i]); |
- if( rc!=SQLITE_OK ) goto err; |
- |
- optLeavesReaderReorder(&readers[i], nReaders-i); |
- } |
- } |
- |
- err: |
- dataBufferDestroy(&doclist); |
- dataBufferDestroy(&merged); |
- return rc; |
-} |
- |
-/* Implement optimize() function for FTS3. optimize(t) merges all |
-** segments in the fts index into a single segment. 't' is the magic |
-** table-named column. |
-*/ |
-static void optimizeFunc(sqlite3_context *pContext, |
- int argc, sqlite3_value **argv){ |
- fulltext_cursor *pCursor; |
- if( argc>1 ){ |
- sqlite3_result_error(pContext, "excess arguments to optimize()",-1); |
- }else if( sqlite3_value_type(argv[0])!=SQLITE_BLOB || |
- sqlite3_value_bytes(argv[0])!=sizeof(pCursor) ){ |
- sqlite3_result_error(pContext, "illegal first argument to optimize",-1); |
- }else{ |
- fulltext_vtab *v; |
- int i, rc, iMaxLevel; |
- OptLeavesReader *readers; |
- int nReaders; |
- LeafWriter writer; |
- sqlite3_stmt *s; |
- |
- memcpy(&pCursor, sqlite3_value_blob(argv[0]), sizeof(pCursor)); |
- v = cursor_vtab(pCursor); |
- |
- /* Flush any buffered updates before optimizing. */ |
- rc = flushPendingTerms(v); |
- if( rc!=SQLITE_OK ) goto err; |
- |
- rc = segdir_count(v, &nReaders, &iMaxLevel); |
- if( rc!=SQLITE_OK ) goto err; |
- if( nReaders==0 || nReaders==1 ){ |
- sqlite3_result_text(pContext, "Index already optimal", -1, |
- SQLITE_STATIC); |
- return; |
- } |
- |
- rc = sql_get_statement(v, SEGDIR_SELECT_ALL_STMT, &s); |
- if( rc!=SQLITE_OK ) goto err; |
- |
- readers = sqlite3_malloc(nReaders*sizeof(readers[0])); |
- if( readers==NULL ) goto err; |
- |
- /* Note that there will already be a segment at this position |
- ** until we call segdir_delete() on iMaxLevel. |
- */ |
- leafWriterInit(iMaxLevel, 0, &writer); |
- |
- i = 0; |
- while( (rc = sqlite3_step(s))==SQLITE_ROW ){ |
- sqlite_int64 iStart = sqlite3_column_int64(s, 0); |
- sqlite_int64 iEnd = sqlite3_column_int64(s, 1); |
- const char *pRootData = sqlite3_column_blob(s, 2); |
- int nRootData = sqlite3_column_bytes(s, 2); |
- |
- assert( i<nReaders ); |
- rc = leavesReaderInit(v, -1, iStart, iEnd, pRootData, nRootData, |
- &readers[i].reader); |
- if( rc!=SQLITE_OK ) break; |
- |
- readers[i].segment = i; |
- i++; |
- } |
- |
- /* If we managed to successfully read them all, optimize them. */ |
- if( rc==SQLITE_DONE ){ |
- assert( i==nReaders ); |
- rc = optimizeInternal(v, readers, nReaders, &writer); |
- } |
- |
- while( i-- > 0 ){ |
- leavesReaderDestroy(&readers[i].reader); |
- } |
- sqlite3_free(readers); |
- |
- /* If we've successfully gotten to here, delete the old segments |
- ** and flush the interior structure of the new segment. |
- */ |
- if( rc==SQLITE_OK ){ |
- for( i=0; i<=iMaxLevel; i++ ){ |
- rc = segdir_delete(v, i); |
- if( rc!=SQLITE_OK ) break; |
- } |
- |
- if( rc==SQLITE_OK ) rc = leafWriterFinalize(v, &writer); |
- } |
- |
- leafWriterDestroy(&writer); |
- |
- if( rc!=SQLITE_OK ) goto err; |
- |
- sqlite3_result_text(pContext, "Index optimized", -1, SQLITE_STATIC); |
- return; |
- |
- /* TODO(shess): Error-handling needs to be improved along the |
- ** lines of the dump_ functions. |
- */ |
- err: |
- { |
- char buf[512]; |
- sqlite3_snprintf(sizeof(buf), buf, "Error in optimize: %s", |
- sqlite3_errmsg(sqlite3_context_db_handle(pContext))); |
- sqlite3_result_error(pContext, buf, -1); |
- } |
- } |
-} |
- |
-#ifdef SQLITE_TEST |
-/* Generate an error of the form "<prefix>: <msg>". If msg is NULL, |
-** pull the error from the context's db handle. |
-*/ |
-static void generateError(sqlite3_context *pContext, |
- const char *prefix, const char *msg){ |
- char buf[512]; |
- if( msg==NULL ) msg = sqlite3_errmsg(sqlite3_context_db_handle(pContext)); |
- sqlite3_snprintf(sizeof(buf), buf, "%s: %s", prefix, msg); |
- sqlite3_result_error(pContext, buf, -1); |
-} |
- |
-/* Helper function to collect the set of terms in the segment into |
-** pTerms. The segment is defined by the leaf nodes between |
-** iStartBlockid and iEndBlockid, inclusive, or by the contents of |
-** pRootData if iStartBlockid is 0 (in which case the entire segment |
-** fit in a leaf). |
-*/ |
-static int collectSegmentTerms(fulltext_vtab *v, sqlite3_stmt *s, |
- fts2Hash *pTerms){ |
- const sqlite_int64 iStartBlockid = sqlite3_column_int64(s, 0); |
- const sqlite_int64 iEndBlockid = sqlite3_column_int64(s, 1); |
- const char *pRootData = sqlite3_column_blob(s, 2); |
- const int nRootData = sqlite3_column_bytes(s, 2); |
- LeavesReader reader; |
- int rc = leavesReaderInit(v, 0, iStartBlockid, iEndBlockid, |
- pRootData, nRootData, &reader); |
- if( rc!=SQLITE_OK ) return rc; |
- |
- while( rc==SQLITE_OK && !leavesReaderAtEnd(&reader) ){ |
- const char *pTerm = leavesReaderTerm(&reader); |
- const int nTerm = leavesReaderTermBytes(&reader); |
- void *oldValue = sqlite3Fts2HashFind(pTerms, pTerm, nTerm); |
- void *newValue = (void *)((char *)oldValue+1); |
- |
- /* From the comment before sqlite3Fts2HashInsert in fts2_hash.c, |
- ** the data value passed is returned in case of malloc failure. |
- */ |
- if( newValue==sqlite3Fts2HashInsert(pTerms, pTerm, nTerm, newValue) ){ |
- rc = SQLITE_NOMEM; |
- }else{ |
- rc = leavesReaderStep(v, &reader); |
- } |
- } |
- |
- leavesReaderDestroy(&reader); |
- return rc; |
-} |
- |
-/* Helper function to build the result string for dump_terms(). */ |
-static int generateTermsResult(sqlite3_context *pContext, fts2Hash *pTerms){ |
- int iTerm, nTerms, nResultBytes, iByte; |
- char *result; |
- TermData *pData; |
- fts2HashElem *e; |
- |
- /* Iterate pTerms to generate an array of terms in pData for |
- ** sorting. |
- */ |
- nTerms = fts2HashCount(pTerms); |
- assert( nTerms>0 ); |
- pData = sqlite3_malloc(nTerms*sizeof(TermData)); |
- if( pData==NULL ) return SQLITE_NOMEM; |
- |
- nResultBytes = 0; |
- for(iTerm = 0, e = fts2HashFirst(pTerms); e; iTerm++, e = fts2HashNext(e)){ |
- nResultBytes += fts2HashKeysize(e)+1; /* Term plus trailing space */ |
- assert( iTerm<nTerms ); |
- pData[iTerm].pTerm = fts2HashKey(e); |
- pData[iTerm].nTerm = fts2HashKeysize(e); |
- pData[iTerm].pCollector = fts2HashData(e); /* unused */ |
- } |
- assert( iTerm==nTerms ); |
- |
- assert( nResultBytes>0 ); /* nTerms>0, nResultsBytes must be, too. */ |
- result = sqlite3_malloc(nResultBytes); |
- if( result==NULL ){ |
- sqlite3_free(pData); |
- return SQLITE_NOMEM; |
- } |
- |
- if( nTerms>1 ) qsort(pData, nTerms, sizeof(*pData), termDataCmp); |
- |
- /* Read the terms in order to build the result. */ |
- iByte = 0; |
- for(iTerm=0; iTerm<nTerms; ++iTerm){ |
- memcpy(result+iByte, pData[iTerm].pTerm, pData[iTerm].nTerm); |
- iByte += pData[iTerm].nTerm; |
- result[iByte++] = ' '; |
- } |
- assert( iByte==nResultBytes ); |
- assert( result[nResultBytes-1]==' ' ); |
- result[nResultBytes-1] = '\0'; |
- |
- /* Passes away ownership of result. */ |
- sqlite3_result_text(pContext, result, nResultBytes-1, sqlite3_free); |
- sqlite3_free(pData); |
- return SQLITE_OK; |
-} |
- |
-/* Implements dump_terms() for use in inspecting the fts2 index from |
-** tests. TEXT result containing the ordered list of terms joined by |
-** spaces. dump_terms(t, level, idx) dumps the terms for the segment |
-** specified by level, idx (in %_segdir), while dump_terms(t) dumps |
-** all terms in the index. In both cases t is the fts table's magic |
-** table-named column. |
-*/ |
-static void dumpTermsFunc( |
- sqlite3_context *pContext, |
- int argc, sqlite3_value **argv |
-){ |
- fulltext_cursor *pCursor; |
- if( argc!=3 && argc!=1 ){ |
- generateError(pContext, "dump_terms", "incorrect arguments"); |
- }else if( sqlite3_value_type(argv[0])!=SQLITE_BLOB || |
- sqlite3_value_bytes(argv[0])!=sizeof(pCursor) ){ |
- generateError(pContext, "dump_terms", "illegal first argument"); |
- }else{ |
- fulltext_vtab *v; |
- fts2Hash terms; |
- sqlite3_stmt *s = NULL; |
- int rc; |
- |
- memcpy(&pCursor, sqlite3_value_blob(argv[0]), sizeof(pCursor)); |
- v = cursor_vtab(pCursor); |
- |
- /* If passed only the cursor column, get all segments. Otherwise |
- ** get the segment described by the following two arguments. |
- */ |
- if( argc==1 ){ |
- rc = sql_get_statement(v, SEGDIR_SELECT_ALL_STMT, &s); |
- }else{ |
- rc = sql_get_statement(v, SEGDIR_SELECT_SEGMENT_STMT, &s); |
- if( rc==SQLITE_OK ){ |
- rc = sqlite3_bind_int(s, 1, sqlite3_value_int(argv[1])); |
- if( rc==SQLITE_OK ){ |
- rc = sqlite3_bind_int(s, 2, sqlite3_value_int(argv[2])); |
- } |
- } |
- } |
- |
- if( rc!=SQLITE_OK ){ |
- generateError(pContext, "dump_terms", NULL); |
- return; |
- } |
- |
- /* Collect the terms for each segment. */ |
- sqlite3Fts2HashInit(&terms, FTS2_HASH_STRING, 1); |
- while( (rc = sqlite3_step(s))==SQLITE_ROW ){ |
- rc = collectSegmentTerms(v, s, &terms); |
- if( rc!=SQLITE_OK ) break; |
- } |
- |
- if( rc!=SQLITE_DONE ){ |
- sqlite3_reset(s); |
- generateError(pContext, "dump_terms", NULL); |
- }else{ |
- const int nTerms = fts2HashCount(&terms); |
- if( nTerms>0 ){ |
- rc = generateTermsResult(pContext, &terms); |
- if( rc==SQLITE_NOMEM ){ |
- generateError(pContext, "dump_terms", "out of memory"); |
- }else{ |
- assert( rc==SQLITE_OK ); |
- } |
- }else if( argc==3 ){ |
- /* The specific segment asked for could not be found. */ |
- generateError(pContext, "dump_terms", "segment not found"); |
- }else{ |
- /* No segments found. */ |
- /* TODO(shess): It should be impossible to reach this. This |
- ** case can only happen for an empty table, in which case |
- ** SQLite has no rows to call this function on. |
- */ |
- sqlite3_result_null(pContext); |
- } |
- } |
- sqlite3Fts2HashClear(&terms); |
- } |
-} |
- |
-/* Expand the DL_DEFAULT doclist in pData into a text result in |
-** pContext. |
-*/ |
-static void createDoclistResult(sqlite3_context *pContext, |
- const char *pData, int nData){ |
- DataBuffer dump; |
- DLReader dlReader; |
- |
- assert( pData!=NULL && nData>0 ); |
- |
- dataBufferInit(&dump, 0); |
- dlrInit(&dlReader, DL_DEFAULT, pData, nData); |
- for( ; !dlrAtEnd(&dlReader); dlrStep(&dlReader) ){ |
- char buf[256]; |
- PLReader plReader; |
- |
- plrInit(&plReader, &dlReader); |
- if( DL_DEFAULT==DL_DOCIDS || plrAtEnd(&plReader) ){ |
- sqlite3_snprintf(sizeof(buf), buf, "[%lld] ", dlrDocid(&dlReader)); |
- dataBufferAppend(&dump, buf, strlen(buf)); |
- }else{ |
- int iColumn = plrColumn(&plReader); |
- |
- sqlite3_snprintf(sizeof(buf), buf, "[%lld %d[", |
- dlrDocid(&dlReader), iColumn); |
- dataBufferAppend(&dump, buf, strlen(buf)); |
- |
- for( ; !plrAtEnd(&plReader); plrStep(&plReader) ){ |
- if( plrColumn(&plReader)!=iColumn ){ |
- iColumn = plrColumn(&plReader); |
- sqlite3_snprintf(sizeof(buf), buf, "] %d[", iColumn); |
- assert( dump.nData>0 ); |
- dump.nData--; /* Overwrite trailing space. */ |
- assert( dump.pData[dump.nData]==' '); |
- dataBufferAppend(&dump, buf, strlen(buf)); |
- } |
- if( DL_DEFAULT==DL_POSITIONS_OFFSETS ){ |
- sqlite3_snprintf(sizeof(buf), buf, "%d,%d,%d ", |
- plrPosition(&plReader), |
- plrStartOffset(&plReader), plrEndOffset(&plReader)); |
- }else if( DL_DEFAULT==DL_POSITIONS ){ |
- sqlite3_snprintf(sizeof(buf), buf, "%d ", plrPosition(&plReader)); |
- }else{ |
- assert( NULL=="Unhandled DL_DEFAULT value"); |
- } |
- dataBufferAppend(&dump, buf, strlen(buf)); |
- } |
- plrDestroy(&plReader); |
- |
- assert( dump.nData>0 ); |
- dump.nData--; /* Overwrite trailing space. */ |
- assert( dump.pData[dump.nData]==' '); |
- dataBufferAppend(&dump, "]] ", 3); |
- } |
- } |
- dlrDestroy(&dlReader); |
- |
- assert( dump.nData>0 ); |
- dump.nData--; /* Overwrite trailing space. */ |
- assert( dump.pData[dump.nData]==' '); |
- dump.pData[dump.nData] = '\0'; |
- assert( dump.nData>0 ); |
- |
- /* Passes ownership of dump's buffer to pContext. */ |
- sqlite3_result_text(pContext, dump.pData, dump.nData, sqlite3_free); |
- dump.pData = NULL; |
- dump.nData = dump.nCapacity = 0; |
-} |
- |
-/* Implements dump_doclist() for use in inspecting the fts2 index from |
-** tests. TEXT result containing a string representation of the |
-** doclist for the indicated term. dump_doclist(t, term, level, idx) |
-** dumps the doclist for term from the segment specified by level, idx |
-** (in %_segdir), while dump_doclist(t, term) dumps the logical |
-** doclist for the term across all segments. The per-segment doclist |
-** can contain deletions, while the full-index doclist will not |
-** (deletions are omitted). |
-** |
-** Result formats differ with the setting of DL_DEFAULTS. Examples: |
-** |
-** DL_DOCIDS: [1] [3] [7] |
-** DL_POSITIONS: [1 0[0 4] 1[17]] [3 1[5]] |
-** DL_POSITIONS_OFFSETS: [1 0[0,0,3 4,23,26] 1[17,102,105]] [3 1[5,20,23]] |
-** |
-** In each case the number after the outer '[' is the docid. In the |
-** latter two cases, the number before the inner '[' is the column |
-** associated with the values within. For DL_POSITIONS the numbers |
-** within are the positions, for DL_POSITIONS_OFFSETS they are the |
-** position, the start offset, and the end offset. |
-*/ |
-static void dumpDoclistFunc( |
- sqlite3_context *pContext, |
- int argc, sqlite3_value **argv |
-){ |
- fulltext_cursor *pCursor; |
- if( argc!=2 && argc!=4 ){ |
- generateError(pContext, "dump_doclist", "incorrect arguments"); |
- }else if( sqlite3_value_type(argv[0])!=SQLITE_BLOB || |
- sqlite3_value_bytes(argv[0])!=sizeof(pCursor) ){ |
- generateError(pContext, "dump_doclist", "illegal first argument"); |
- }else if( sqlite3_value_text(argv[1])==NULL || |
- sqlite3_value_text(argv[1])[0]=='\0' ){ |
- generateError(pContext, "dump_doclist", "empty second argument"); |
- }else{ |
- const char *pTerm = (const char *)sqlite3_value_text(argv[1]); |
- const int nTerm = strlen(pTerm); |
- fulltext_vtab *v; |
- int rc; |
- DataBuffer doclist; |
- |
- memcpy(&pCursor, sqlite3_value_blob(argv[0]), sizeof(pCursor)); |
- v = cursor_vtab(pCursor); |
- |
- dataBufferInit(&doclist, 0); |
- |
- /* termSelect() yields the same logical doclist that queries are |
- ** run against. |
- */ |
- if( argc==2 ){ |
- rc = termSelect(v, v->nColumn, pTerm, nTerm, 0, DL_DEFAULT, &doclist); |
- }else{ |
- sqlite3_stmt *s = NULL; |
- |
- /* Get our specific segment's information. */ |
- rc = sql_get_statement(v, SEGDIR_SELECT_SEGMENT_STMT, &s); |
- if( rc==SQLITE_OK ){ |
- rc = sqlite3_bind_int(s, 1, sqlite3_value_int(argv[2])); |
- if( rc==SQLITE_OK ){ |
- rc = sqlite3_bind_int(s, 2, sqlite3_value_int(argv[3])); |
- } |
- } |
- |
- if( rc==SQLITE_OK ){ |
- rc = sqlite3_step(s); |
- |
- if( rc==SQLITE_DONE ){ |
- dataBufferDestroy(&doclist); |
- generateError(pContext, "dump_doclist", "segment not found"); |
- return; |
- } |
- |
- /* Found a segment, load it into doclist. */ |
- if( rc==SQLITE_ROW ){ |
- const sqlite_int64 iLeavesEnd = sqlite3_column_int64(s, 1); |
- const char *pData = sqlite3_column_blob(s, 2); |
- const int nData = sqlite3_column_bytes(s, 2); |
- |
- /* loadSegment() is used by termSelect() to load each |
- ** segment's data. |
- */ |
- rc = loadSegment(v, pData, nData, iLeavesEnd, pTerm, nTerm, 0, |
- &doclist); |
- if( rc==SQLITE_OK ){ |
- rc = sqlite3_step(s); |
- |
- /* Should not have more than one matching segment. */ |
- if( rc!=SQLITE_DONE ){ |
- sqlite3_reset(s); |
- dataBufferDestroy(&doclist); |
- generateError(pContext, "dump_doclist", "invalid segdir"); |
- return; |
- } |
- rc = SQLITE_OK; |
- } |
- } |
- } |
- |
- sqlite3_reset(s); |
- } |
- |
- if( rc==SQLITE_OK ){ |
- if( doclist.nData>0 ){ |
- createDoclistResult(pContext, doclist.pData, doclist.nData); |
- }else{ |
- /* TODO(shess): This can happen if the term is not present, or |
- ** if all instances of the term have been deleted and this is |
- ** an all-index dump. It may be interesting to distinguish |
- ** these cases. |
- */ |
- sqlite3_result_text(pContext, "", 0, SQLITE_STATIC); |
- } |
- }else if( rc==SQLITE_NOMEM ){ |
- /* Handle out-of-memory cases specially because if they are |
- ** generated in fts2 code they may not be reflected in the db |
- ** handle. |
- */ |
- /* TODO(shess): Handle this more comprehensively. |
- ** sqlite3ErrStr() has what I need, but is internal. |
- */ |
- generateError(pContext, "dump_doclist", "out of memory"); |
- }else{ |
- generateError(pContext, "dump_doclist", NULL); |
- } |
- |
- dataBufferDestroy(&doclist); |
- } |
-} |
-#endif |
- |
-/* |
-** This routine implements the xFindFunction method for the FTS2 |
-** virtual table. |
-*/ |
-static int fulltextFindFunction( |
- sqlite3_vtab *pVtab, |
- int nArg, |
- const char *zName, |
- void (**pxFunc)(sqlite3_context*,int,sqlite3_value**), |
- void **ppArg |
-){ |
- if( strcmp(zName,"snippet")==0 ){ |
- *pxFunc = snippetFunc; |
- return 1; |
- }else if( strcmp(zName,"offsets")==0 ){ |
- *pxFunc = snippetOffsetsFunc; |
- return 1; |
- }else if( strcmp(zName,"optimize")==0 ){ |
- *pxFunc = optimizeFunc; |
- return 1; |
-#ifdef SQLITE_TEST |
- /* NOTE(shess): These functions are present only for testing |
- ** purposes. No particular effort is made to optimize their |
- ** execution or how they build their results. |
- */ |
- }else if( strcmp(zName,"dump_terms")==0 ){ |
- /* fprintf(stderr, "Found dump_terms\n"); */ |
- *pxFunc = dumpTermsFunc; |
- return 1; |
- }else if( strcmp(zName,"dump_doclist")==0 ){ |
- /* fprintf(stderr, "Found dump_doclist\n"); */ |
- *pxFunc = dumpDoclistFunc; |
- return 1; |
-#endif |
- } |
- return 0; |
-} |
- |
-/* |
-** Rename an fts2 table. |
-*/ |
-static int fulltextRename( |
- sqlite3_vtab *pVtab, |
- const char *zName |
-){ |
- fulltext_vtab *p = (fulltext_vtab *)pVtab; |
- int rc = SQLITE_NOMEM; |
- char *zSql = sqlite3_mprintf( |
- "ALTER TABLE %Q.'%q_content' RENAME TO '%q_content';" |
- "ALTER TABLE %Q.'%q_segments' RENAME TO '%q_segments';" |
- "ALTER TABLE %Q.'%q_segdir' RENAME TO '%q_segdir';" |
- , p->zDb, p->zName, zName |
- , p->zDb, p->zName, zName |
- , p->zDb, p->zName, zName |
- ); |
- if( zSql ){ |
- rc = sqlite3_exec(p->db, zSql, 0, 0, 0); |
- sqlite3_free(zSql); |
- } |
- return rc; |
-} |
- |
-static const sqlite3_module fts2Module = { |
- /* iVersion */ 0, |
- /* xCreate */ fulltextCreate, |
- /* xConnect */ fulltextConnect, |
- /* xBestIndex */ fulltextBestIndex, |
- /* xDisconnect */ fulltextDisconnect, |
- /* xDestroy */ fulltextDestroy, |
- /* xOpen */ fulltextOpen, |
- /* xClose */ fulltextClose, |
- /* xFilter */ fulltextFilter, |
- /* xNext */ fulltextNext, |
- /* xEof */ fulltextEof, |
- /* xColumn */ fulltextColumn, |
- /* xRowid */ fulltextRowid, |
- /* xUpdate */ fulltextUpdate, |
- /* xBegin */ fulltextBegin, |
- /* xSync */ fulltextSync, |
- /* xCommit */ fulltextCommit, |
- /* xRollback */ fulltextRollback, |
- /* xFindFunction */ fulltextFindFunction, |
- /* xRename */ fulltextRename, |
-}; |
- |
-static void hashDestroy(void *p){ |
- fts2Hash *pHash = (fts2Hash *)p; |
- sqlite3Fts2HashClear(pHash); |
- sqlite3_free(pHash); |
-} |
- |
-/* |
-** The fts2 built-in tokenizers - "simple" and "porter" - are implemented |
-** in files fts2_tokenizer1.c and fts2_porter.c respectively. The following |
-** two forward declarations are for functions declared in these files |
-** used to retrieve the respective implementations. |
-** |
-** Calling sqlite3Fts2SimpleTokenizerModule() sets the value pointed |
-** to by the argument to point a the "simple" tokenizer implementation. |
-** Function ...PorterTokenizerModule() sets *pModule to point to the |
-** porter tokenizer/stemmer implementation. |
-*/ |
-void sqlite3Fts2SimpleTokenizerModule(sqlite3_tokenizer_module const**ppModule); |
-void sqlite3Fts2PorterTokenizerModule(sqlite3_tokenizer_module const**ppModule); |
-void sqlite3Fts2IcuTokenizerModule(sqlite3_tokenizer_module const**ppModule); |
- |
-int sqlite3Fts2InitHashTable(sqlite3 *, fts2Hash *, const char *); |
- |
-/* |
-** Initialize the fts2 extension. If this extension is built as part |
-** of the sqlite library, then this function is called directly by |
-** SQLite. If fts2 is built as a dynamically loadable extension, this |
-** function is called by the sqlite3_extension_init() entry point. |
-*/ |
-int sqlite3Fts2Init(sqlite3 *db){ |
- int rc = SQLITE_OK; |
- fts2Hash *pHash = 0; |
- const sqlite3_tokenizer_module *pSimple = 0; |
- const sqlite3_tokenizer_module *pPorter = 0; |
- const sqlite3_tokenizer_module *pIcu = 0; |
- |
- sqlite3Fts2SimpleTokenizerModule(&pSimple); |
- sqlite3Fts2PorterTokenizerModule(&pPorter); |
-#ifdef SQLITE_ENABLE_ICU |
- sqlite3Fts2IcuTokenizerModule(&pIcu); |
-#endif |
- |
- /* Allocate and initialize the hash-table used to store tokenizers. */ |
- pHash = sqlite3_malloc(sizeof(fts2Hash)); |
- if( !pHash ){ |
- rc = SQLITE_NOMEM; |
- }else{ |
- sqlite3Fts2HashInit(pHash, FTS2_HASH_STRING, 1); |
- } |
- |
- /* Load the built-in tokenizers into the hash table */ |
- if( rc==SQLITE_OK ){ |
- if( sqlite3Fts2HashInsert(pHash, "simple", 7, (void *)pSimple) |
- || sqlite3Fts2HashInsert(pHash, "porter", 7, (void *)pPorter) |
- || (pIcu && sqlite3Fts2HashInsert(pHash, "icu", 4, (void *)pIcu)) |
- ){ |
- rc = SQLITE_NOMEM; |
- } |
- } |
- |
- /* Create the virtual table wrapper around the hash-table and overload |
- ** the two scalar functions. If this is successful, register the |
- ** module with sqlite. |
- */ |
- if( SQLITE_OK==rc |
- && SQLITE_OK==(rc = sqlite3Fts2InitHashTable(db, pHash, "fts2_tokenizer")) |
- && SQLITE_OK==(rc = sqlite3_overload_function(db, "snippet", -1)) |
- && SQLITE_OK==(rc = sqlite3_overload_function(db, "offsets", -1)) |
- && SQLITE_OK==(rc = sqlite3_overload_function(db, "optimize", -1)) |
-#ifdef SQLITE_TEST |
- && SQLITE_OK==(rc = sqlite3_overload_function(db, "dump_terms", -1)) |
- && SQLITE_OK==(rc = sqlite3_overload_function(db, "dump_doclist", -1)) |
-#endif |
- ){ |
- return sqlite3_create_module_v2( |
- db, "fts2", &fts2Module, (void *)pHash, hashDestroy |
- ); |
- } |
- |
- /* An error has occurred. Delete the hash table and return the error code. */ |
- assert( rc!=SQLITE_OK ); |
- if( pHash ){ |
- sqlite3Fts2HashClear(pHash); |
- sqlite3_free(pHash); |
- } |
- return rc; |
-} |
- |
-#if !SQLITE_CORE |
-#ifdef _WIN32 |
-__declspec(dllexport) |
-#endif |
-int sqlite3_fts2_init( |
- sqlite3 *db, |
- char **pzErrMsg, |
- const sqlite3_api_routines *pApi |
-){ |
- SQLITE_EXTENSION_INIT2(pApi) |
- return sqlite3Fts2Init(db); |
-} |
-#endif |
- |
-#endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS2) */ |