Index: third_party/sqlite/sqlite-src-3080704/src/analyze.c |
diff --git a/third_party/sqlite/sqlite-src-3080704/src/analyze.c b/third_party/sqlite/sqlite-src-3080704/src/analyze.c |
deleted file mode 100644 |
index e655aaa50c7136cfb712f3799bcd3c65f3d050f6..0000000000000000000000000000000000000000 |
--- a/third_party/sqlite/sqlite-src-3080704/src/analyze.c |
+++ /dev/null |
@@ -1,1883 +0,0 @@ |
-/* |
-** 2005-07-08 |
-** |
-** The author disclaims copyright to this source code. In place of |
-** a legal notice, here is a blessing: |
-** |
-** May you do good and not evil. |
-** May you find forgiveness for yourself and forgive others. |
-** May you share freely, never taking more than you give. |
-** |
-************************************************************************* |
-** This file contains code associated with the ANALYZE command. |
-** |
-** The ANALYZE command gather statistics about the content of tables |
-** and indices. These statistics are made available to the query planner |
-** to help it make better decisions about how to perform queries. |
-** |
-** The following system tables are or have been supported: |
-** |
-** CREATE TABLE sqlite_stat1(tbl, idx, stat); |
-** CREATE TABLE sqlite_stat2(tbl, idx, sampleno, sample); |
-** CREATE TABLE sqlite_stat3(tbl, idx, nEq, nLt, nDLt, sample); |
-** CREATE TABLE sqlite_stat4(tbl, idx, nEq, nLt, nDLt, sample); |
-** |
-** Additional tables might be added in future releases of SQLite. |
-** The sqlite_stat2 table is not created or used unless the SQLite version |
-** is between 3.6.18 and 3.7.8, inclusive, and unless SQLite is compiled |
-** with SQLITE_ENABLE_STAT2. The sqlite_stat2 table is deprecated. |
-** The sqlite_stat2 table is superseded by sqlite_stat3, which is only |
-** created and used by SQLite versions 3.7.9 and later and with |
-** SQLITE_ENABLE_STAT3 defined. The functionality of sqlite_stat3 |
-** is a superset of sqlite_stat2. The sqlite_stat4 is an enhanced |
-** version of sqlite_stat3 and is only available when compiled with |
-** SQLITE_ENABLE_STAT4 and in SQLite versions 3.8.1 and later. It is |
-** not possible to enable both STAT3 and STAT4 at the same time. If they |
-** are both enabled, then STAT4 takes precedence. |
-** |
-** For most applications, sqlite_stat1 provides all the statistics required |
-** for the query planner to make good choices. |
-** |
-** Format of sqlite_stat1: |
-** |
-** There is normally one row per index, with the index identified by the |
-** name in the idx column. The tbl column is the name of the table to |
-** which the index belongs. In each such row, the stat column will be |
-** a string consisting of a list of integers. The first integer in this |
-** list is the number of rows in the index. (This is the same as the |
-** number of rows in the table, except for partial indices.) The second |
-** integer is the average number of rows in the index that have the same |
-** value in the first column of the index. The third integer is the average |
-** number of rows in the index that have the same value for the first two |
-** columns. The N-th integer (for N>1) is the average number of rows in |
-** the index which have the same value for the first N-1 columns. For |
-** a K-column index, there will be K+1 integers in the stat column. If |
-** the index is unique, then the last integer will be 1. |
-** |
-** The list of integers in the stat column can optionally be followed |
-** by the keyword "unordered". The "unordered" keyword, if it is present, |
-** must be separated from the last integer by a single space. If the |
-** "unordered" keyword is present, then the query planner assumes that |
-** the index is unordered and will not use the index for a range query. |
-** |
-** If the sqlite_stat1.idx column is NULL, then the sqlite_stat1.stat |
-** column contains a single integer which is the (estimated) number of |
-** rows in the table identified by sqlite_stat1.tbl. |
-** |
-** Format of sqlite_stat2: |
-** |
-** The sqlite_stat2 is only created and is only used if SQLite is compiled |
-** with SQLITE_ENABLE_STAT2 and if the SQLite version number is between |
-** 3.6.18 and 3.7.8. The "stat2" table contains additional information |
-** about the distribution of keys within an index. The index is identified by |
-** the "idx" column and the "tbl" column is the name of the table to which |
-** the index belongs. There are usually 10 rows in the sqlite_stat2 |
-** table for each index. |
-** |
-** The sqlite_stat2 entries for an index that have sampleno between 0 and 9 |
-** inclusive are samples of the left-most key value in the index taken at |
-** evenly spaced points along the index. Let the number of samples be S |
-** (10 in the standard build) and let C be the number of rows in the index. |
-** Then the sampled rows are given by: |
-** |
-** rownumber = (i*C*2 + C)/(S*2) |
-** |
-** For i between 0 and S-1. Conceptually, the index space is divided into |
-** S uniform buckets and the samples are the middle row from each bucket. |
-** |
-** The format for sqlite_stat2 is recorded here for legacy reference. This |
-** version of SQLite does not support sqlite_stat2. It neither reads nor |
-** writes the sqlite_stat2 table. This version of SQLite only supports |
-** sqlite_stat3. |
-** |
-** Format for sqlite_stat3: |
-** |
-** The sqlite_stat3 format is a subset of sqlite_stat4. Hence, the |
-** sqlite_stat4 format will be described first. Further information |
-** about sqlite_stat3 follows the sqlite_stat4 description. |
-** |
-** Format for sqlite_stat4: |
-** |
-** As with sqlite_stat2, the sqlite_stat4 table contains histogram data |
-** to aid the query planner in choosing good indices based on the values |
-** that indexed columns are compared against in the WHERE clauses of |
-** queries. |
-** |
-** The sqlite_stat4 table contains multiple entries for each index. |
-** The idx column names the index and the tbl column is the table of the |
-** index. If the idx and tbl columns are the same, then the sample is |
-** of the INTEGER PRIMARY KEY. The sample column is a blob which is the |
-** binary encoding of a key from the index. The nEq column is a |
-** list of integers. The first integer is the approximate number |
-** of entries in the index whose left-most column exactly matches |
-** the left-most column of the sample. The second integer in nEq |
-** is the approximate number of entries in the index where the |
-** first two columns match the first two columns of the sample. |
-** And so forth. nLt is another list of integers that show the approximate |
-** number of entries that are strictly less than the sample. The first |
-** integer in nLt contains the number of entries in the index where the |
-** left-most column is less than the left-most column of the sample. |
-** The K-th integer in the nLt entry is the number of index entries |
-** where the first K columns are less than the first K columns of the |
-** sample. The nDLt column is like nLt except that it contains the |
-** number of distinct entries in the index that are less than the |
-** sample. |
-** |
-** There can be an arbitrary number of sqlite_stat4 entries per index. |
-** The ANALYZE command will typically generate sqlite_stat4 tables |
-** that contain between 10 and 40 samples which are distributed across |
-** the key space, though not uniformly, and which include samples with |
-** large nEq values. |
-** |
-** Format for sqlite_stat3 redux: |
-** |
-** The sqlite_stat3 table is like sqlite_stat4 except that it only |
-** looks at the left-most column of the index. The sqlite_stat3.sample |
-** column contains the actual value of the left-most column instead |
-** of a blob encoding of the complete index key as is found in |
-** sqlite_stat4.sample. The nEq, nLt, and nDLt entries of sqlite_stat3 |
-** all contain just a single integer which is the same as the first |
-** integer in the equivalent columns in sqlite_stat4. |
-*/ |
-#ifndef SQLITE_OMIT_ANALYZE |
-#include "sqliteInt.h" |
- |
-#if defined(SQLITE_ENABLE_STAT4) |
-# define IsStat4 1 |
-# define IsStat3 0 |
-#elif defined(SQLITE_ENABLE_STAT3) |
-# define IsStat4 0 |
-# define IsStat3 1 |
-#else |
-# define IsStat4 0 |
-# define IsStat3 0 |
-# undef SQLITE_STAT4_SAMPLES |
-# define SQLITE_STAT4_SAMPLES 1 |
-#endif |
-#define IsStat34 (IsStat3+IsStat4) /* 1 for STAT3 or STAT4. 0 otherwise */ |
- |
-/* |
-** This routine generates code that opens the sqlite_statN tables. |
-** The sqlite_stat1 table is always relevant. sqlite_stat2 is now |
-** obsolete. sqlite_stat3 and sqlite_stat4 are only opened when |
-** appropriate compile-time options are provided. |
-** |
-** If the sqlite_statN tables do not previously exist, it is created. |
-** |
-** Argument zWhere may be a pointer to a buffer containing a table name, |
-** or it may be a NULL pointer. If it is not NULL, then all entries in |
-** the sqlite_statN tables associated with the named table are deleted. |
-** If zWhere==0, then code is generated to delete all stat table entries. |
-*/ |
-static void openStatTable( |
- Parse *pParse, /* Parsing context */ |
- int iDb, /* The database we are looking in */ |
- int iStatCur, /* Open the sqlite_stat1 table on this cursor */ |
- const char *zWhere, /* Delete entries for this table or index */ |
- const char *zWhereType /* Either "tbl" or "idx" */ |
-){ |
- static const struct { |
- const char *zName; |
- const char *zCols; |
- } aTable[] = { |
- { "sqlite_stat1", "tbl,idx,stat" }, |
-#if defined(SQLITE_ENABLE_STAT4) |
- { "sqlite_stat4", "tbl,idx,neq,nlt,ndlt,sample" }, |
- { "sqlite_stat3", 0 }, |
-#elif defined(SQLITE_ENABLE_STAT3) |
- { "sqlite_stat3", "tbl,idx,neq,nlt,ndlt,sample" }, |
- { "sqlite_stat4", 0 }, |
-#else |
- { "sqlite_stat3", 0 }, |
- { "sqlite_stat4", 0 }, |
-#endif |
- }; |
- int i; |
- sqlite3 *db = pParse->db; |
- Db *pDb; |
- Vdbe *v = sqlite3GetVdbe(pParse); |
- int aRoot[ArraySize(aTable)]; |
- u8 aCreateTbl[ArraySize(aTable)]; |
- |
- if( v==0 ) return; |
- assert( sqlite3BtreeHoldsAllMutexes(db) ); |
- assert( sqlite3VdbeDb(v)==db ); |
- pDb = &db->aDb[iDb]; |
- |
- /* Create new statistic tables if they do not exist, or clear them |
- ** if they do already exist. |
- */ |
- for(i=0; i<ArraySize(aTable); i++){ |
- const char *zTab = aTable[i].zName; |
- Table *pStat; |
- if( (pStat = sqlite3FindTable(db, zTab, pDb->zName))==0 ){ |
- if( aTable[i].zCols ){ |
- /* The sqlite_statN table does not exist. Create it. Note that a |
- ** side-effect of the CREATE TABLE statement is to leave the rootpage |
- ** of the new table in register pParse->regRoot. This is important |
- ** because the OpenWrite opcode below will be needing it. */ |
- sqlite3NestedParse(pParse, |
- "CREATE TABLE %Q.%s(%s)", pDb->zName, zTab, aTable[i].zCols |
- ); |
- aRoot[i] = pParse->regRoot; |
- aCreateTbl[i] = OPFLAG_P2ISREG; |
- } |
- }else{ |
- /* The table already exists. If zWhere is not NULL, delete all entries |
- ** associated with the table zWhere. If zWhere is NULL, delete the |
- ** entire contents of the table. */ |
- aRoot[i] = pStat->tnum; |
- aCreateTbl[i] = 0; |
- sqlite3TableLock(pParse, iDb, aRoot[i], 1, zTab); |
- if( zWhere ){ |
- sqlite3NestedParse(pParse, |
- "DELETE FROM %Q.%s WHERE %s=%Q", |
- pDb->zName, zTab, zWhereType, zWhere |
- ); |
- }else{ |
- /* The sqlite_stat[134] table already exists. Delete all rows. */ |
- sqlite3VdbeAddOp2(v, OP_Clear, aRoot[i], iDb); |
- } |
- } |
- } |
- |
- /* Open the sqlite_stat[134] tables for writing. */ |
- for(i=0; aTable[i].zCols; i++){ |
- assert( i<ArraySize(aTable) ); |
- sqlite3VdbeAddOp4Int(v, OP_OpenWrite, iStatCur+i, aRoot[i], iDb, 3); |
- sqlite3VdbeChangeP5(v, aCreateTbl[i]); |
- VdbeComment((v, aTable[i].zName)); |
- } |
-} |
- |
-/* |
-** Recommended number of samples for sqlite_stat4 |
-*/ |
-#ifndef SQLITE_STAT4_SAMPLES |
-# define SQLITE_STAT4_SAMPLES 24 |
-#endif |
- |
-/* |
-** Three SQL functions - stat_init(), stat_push(), and stat_get() - |
-** share an instance of the following structure to hold their state |
-** information. |
-*/ |
-typedef struct Stat4Accum Stat4Accum; |
-typedef struct Stat4Sample Stat4Sample; |
-struct Stat4Sample { |
- tRowcnt *anEq; /* sqlite_stat4.nEq */ |
- tRowcnt *anDLt; /* sqlite_stat4.nDLt */ |
-#ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
- tRowcnt *anLt; /* sqlite_stat4.nLt */ |
- union { |
- i64 iRowid; /* Rowid in main table of the key */ |
- u8 *aRowid; /* Key for WITHOUT ROWID tables */ |
- } u; |
- u32 nRowid; /* Sizeof aRowid[] */ |
- u8 isPSample; /* True if a periodic sample */ |
- int iCol; /* If !isPSample, the reason for inclusion */ |
- u32 iHash; /* Tiebreaker hash */ |
-#endif |
-}; |
-struct Stat4Accum { |
- tRowcnt nRow; /* Number of rows in the entire table */ |
- tRowcnt nPSample; /* How often to do a periodic sample */ |
- int nCol; /* Number of columns in index + pk/rowid */ |
- int nKeyCol; /* Number of index columns w/o the pk/rowid */ |
- int mxSample; /* Maximum number of samples to accumulate */ |
- Stat4Sample current; /* Current row as a Stat4Sample */ |
- u32 iPrn; /* Pseudo-random number used for sampling */ |
- Stat4Sample *aBest; /* Array of nCol best samples */ |
- int iMin; /* Index in a[] of entry with minimum score */ |
- int nSample; /* Current number of samples */ |
- int iGet; /* Index of current sample accessed by stat_get() */ |
- Stat4Sample *a; /* Array of mxSample Stat4Sample objects */ |
- sqlite3 *db; /* Database connection, for malloc() */ |
-}; |
- |
-/* Reclaim memory used by a Stat4Sample |
-*/ |
-#ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
-static void sampleClear(sqlite3 *db, Stat4Sample *p){ |
- assert( db!=0 ); |
- if( p->nRowid ){ |
- sqlite3DbFree(db, p->u.aRowid); |
- p->nRowid = 0; |
- } |
-} |
-#endif |
- |
-/* Initialize the BLOB value of a ROWID |
-*/ |
-#ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
-static void sampleSetRowid(sqlite3 *db, Stat4Sample *p, int n, const u8 *pData){ |
- assert( db!=0 ); |
- if( p->nRowid ) sqlite3DbFree(db, p->u.aRowid); |
- p->u.aRowid = sqlite3DbMallocRaw(db, n); |
- if( p->u.aRowid ){ |
- p->nRowid = n; |
- memcpy(p->u.aRowid, pData, n); |
- }else{ |
- p->nRowid = 0; |
- } |
-} |
-#endif |
- |
-/* Initialize the INTEGER value of a ROWID. |
-*/ |
-#ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
-static void sampleSetRowidInt64(sqlite3 *db, Stat4Sample *p, i64 iRowid){ |
- assert( db!=0 ); |
- if( p->nRowid ) sqlite3DbFree(db, p->u.aRowid); |
- p->nRowid = 0; |
- p->u.iRowid = iRowid; |
-} |
-#endif |
- |
- |
-/* |
-** Copy the contents of object (*pFrom) into (*pTo). |
-*/ |
-#ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
-static void sampleCopy(Stat4Accum *p, Stat4Sample *pTo, Stat4Sample *pFrom){ |
- pTo->isPSample = pFrom->isPSample; |
- pTo->iCol = pFrom->iCol; |
- pTo->iHash = pFrom->iHash; |
- memcpy(pTo->anEq, pFrom->anEq, sizeof(tRowcnt)*p->nCol); |
- memcpy(pTo->anLt, pFrom->anLt, sizeof(tRowcnt)*p->nCol); |
- memcpy(pTo->anDLt, pFrom->anDLt, sizeof(tRowcnt)*p->nCol); |
- if( pFrom->nRowid ){ |
- sampleSetRowid(p->db, pTo, pFrom->nRowid, pFrom->u.aRowid); |
- }else{ |
- sampleSetRowidInt64(p->db, pTo, pFrom->u.iRowid); |
- } |
-} |
-#endif |
- |
-/* |
-** Reclaim all memory of a Stat4Accum structure. |
-*/ |
-static void stat4Destructor(void *pOld){ |
- Stat4Accum *p = (Stat4Accum*)pOld; |
-#ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
- int i; |
- for(i=0; i<p->nCol; i++) sampleClear(p->db, p->aBest+i); |
- for(i=0; i<p->mxSample; i++) sampleClear(p->db, p->a+i); |
- sampleClear(p->db, &p->current); |
-#endif |
- sqlite3DbFree(p->db, p); |
-} |
- |
-/* |
-** Implementation of the stat_init(N,K,C) SQL function. The three parameters |
-** are: |
-** N: The number of columns in the index including the rowid/pk (note 1) |
-** K: The number of columns in the index excluding the rowid/pk. |
-** C: The number of rows in the index (note 2) |
-** |
-** Note 1: In the special case of the covering index that implements a |
-** WITHOUT ROWID table, N is the number of PRIMARY KEY columns, not the |
-** total number of columns in the table. |
-** |
-** Note 2: C is only used for STAT3 and STAT4. |
-** |
-** For indexes on ordinary rowid tables, N==K+1. But for indexes on |
-** WITHOUT ROWID tables, N=K+P where P is the number of columns in the |
-** PRIMARY KEY of the table. The covering index that implements the |
-** original WITHOUT ROWID table as N==K as a special case. |
-** |
-** This routine allocates the Stat4Accum object in heap memory. The return |
-** value is a pointer to the Stat4Accum object. The datatype of the |
-** return value is BLOB, but it is really just a pointer to the Stat4Accum |
-** object. |
-*/ |
-static void statInit( |
- sqlite3_context *context, |
- int argc, |
- sqlite3_value **argv |
-){ |
- Stat4Accum *p; |
- int nCol; /* Number of columns in index being sampled */ |
- int nKeyCol; /* Number of key columns */ |
- int nColUp; /* nCol rounded up for alignment */ |
- int n; /* Bytes of space to allocate */ |
- sqlite3 *db; /* Database connection */ |
-#ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
- int mxSample = SQLITE_STAT4_SAMPLES; |
-#endif |
- |
- /* Decode the three function arguments */ |
- UNUSED_PARAMETER(argc); |
- nCol = sqlite3_value_int(argv[0]); |
- assert( nCol>0 ); |
- nColUp = sizeof(tRowcnt)<8 ? (nCol+1)&~1 : nCol; |
- nKeyCol = sqlite3_value_int(argv[1]); |
- assert( nKeyCol<=nCol ); |
- assert( nKeyCol>0 ); |
- |
- /* Allocate the space required for the Stat4Accum object */ |
- n = sizeof(*p) |
- + sizeof(tRowcnt)*nColUp /* Stat4Accum.anEq */ |
- + sizeof(tRowcnt)*nColUp /* Stat4Accum.anDLt */ |
-#ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
- + sizeof(tRowcnt)*nColUp /* Stat4Accum.anLt */ |
- + sizeof(Stat4Sample)*(nCol+mxSample) /* Stat4Accum.aBest[], a[] */ |
- + sizeof(tRowcnt)*3*nColUp*(nCol+mxSample) |
-#endif |
- ; |
- db = sqlite3_context_db_handle(context); |
- p = sqlite3DbMallocZero(db, n); |
- if( p==0 ){ |
- sqlite3_result_error_nomem(context); |
- return; |
- } |
- |
- p->db = db; |
- p->nRow = 0; |
- p->nCol = nCol; |
- p->nKeyCol = nKeyCol; |
- p->current.anDLt = (tRowcnt*)&p[1]; |
- p->current.anEq = &p->current.anDLt[nColUp]; |
- |
-#ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
- { |
- u8 *pSpace; /* Allocated space not yet assigned */ |
- int i; /* Used to iterate through p->aSample[] */ |
- |
- p->iGet = -1; |
- p->mxSample = mxSample; |
- p->nPSample = (tRowcnt)(sqlite3_value_int64(argv[2])/(mxSample/3+1) + 1); |
- p->current.anLt = &p->current.anEq[nColUp]; |
- p->iPrn = nCol*0x689e962d ^ sqlite3_value_int(argv[2])*0xd0944565; |
- |
- /* Set up the Stat4Accum.a[] and aBest[] arrays */ |
- p->a = (struct Stat4Sample*)&p->current.anLt[nColUp]; |
- p->aBest = &p->a[mxSample]; |
- pSpace = (u8*)(&p->a[mxSample+nCol]); |
- for(i=0; i<(mxSample+nCol); i++){ |
- p->a[i].anEq = (tRowcnt *)pSpace; pSpace += (sizeof(tRowcnt) * nColUp); |
- p->a[i].anLt = (tRowcnt *)pSpace; pSpace += (sizeof(tRowcnt) * nColUp); |
- p->a[i].anDLt = (tRowcnt *)pSpace; pSpace += (sizeof(tRowcnt) * nColUp); |
- } |
- assert( (pSpace - (u8*)p)==n ); |
- |
- for(i=0; i<nCol; i++){ |
- p->aBest[i].iCol = i; |
- } |
- } |
-#endif |
- |
- /* Return a pointer to the allocated object to the caller. Note that |
- ** only the pointer (the 2nd parameter) matters. The size of the object |
- ** (given by the 3rd parameter) is never used and can be any positive |
- ** value. */ |
- sqlite3_result_blob(context, p, sizeof(*p), stat4Destructor); |
-} |
-static const FuncDef statInitFuncdef = { |
- 2+IsStat34, /* nArg */ |
- SQLITE_UTF8, /* funcFlags */ |
- 0, /* pUserData */ |
- 0, /* pNext */ |
- statInit, /* xFunc */ |
- 0, /* xStep */ |
- 0, /* xFinalize */ |
- "stat_init", /* zName */ |
- 0, /* pHash */ |
- 0 /* pDestructor */ |
-}; |
- |
-#ifdef SQLITE_ENABLE_STAT4 |
-/* |
-** pNew and pOld are both candidate non-periodic samples selected for |
-** the same column (pNew->iCol==pOld->iCol). Ignoring this column and |
-** considering only any trailing columns and the sample hash value, this |
-** function returns true if sample pNew is to be preferred over pOld. |
-** In other words, if we assume that the cardinalities of the selected |
-** column for pNew and pOld are equal, is pNew to be preferred over pOld. |
-** |
-** This function assumes that for each argument sample, the contents of |
-** the anEq[] array from pSample->anEq[pSample->iCol+1] onwards are valid. |
-*/ |
-static int sampleIsBetterPost( |
- Stat4Accum *pAccum, |
- Stat4Sample *pNew, |
- Stat4Sample *pOld |
-){ |
- int nCol = pAccum->nCol; |
- int i; |
- assert( pNew->iCol==pOld->iCol ); |
- for(i=pNew->iCol+1; i<nCol; i++){ |
- if( pNew->anEq[i]>pOld->anEq[i] ) return 1; |
- if( pNew->anEq[i]<pOld->anEq[i] ) return 0; |
- } |
- if( pNew->iHash>pOld->iHash ) return 1; |
- return 0; |
-} |
-#endif |
- |
-#ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
-/* |
-** Return true if pNew is to be preferred over pOld. |
-** |
-** This function assumes that for each argument sample, the contents of |
-** the anEq[] array from pSample->anEq[pSample->iCol] onwards are valid. |
-*/ |
-static int sampleIsBetter( |
- Stat4Accum *pAccum, |
- Stat4Sample *pNew, |
- Stat4Sample *pOld |
-){ |
- tRowcnt nEqNew = pNew->anEq[pNew->iCol]; |
- tRowcnt nEqOld = pOld->anEq[pOld->iCol]; |
- |
- assert( pOld->isPSample==0 && pNew->isPSample==0 ); |
- assert( IsStat4 || (pNew->iCol==0 && pOld->iCol==0) ); |
- |
- if( (nEqNew>nEqOld) ) return 1; |
-#ifdef SQLITE_ENABLE_STAT4 |
- if( nEqNew==nEqOld ){ |
- if( pNew->iCol<pOld->iCol ) return 1; |
- return (pNew->iCol==pOld->iCol && sampleIsBetterPost(pAccum, pNew, pOld)); |
- } |
- return 0; |
-#else |
- return (nEqNew==nEqOld && pNew->iHash>pOld->iHash); |
-#endif |
-} |
- |
-/* |
-** Copy the contents of sample *pNew into the p->a[] array. If necessary, |
-** remove the least desirable sample from p->a[] to make room. |
-*/ |
-static void sampleInsert(Stat4Accum *p, Stat4Sample *pNew, int nEqZero){ |
- Stat4Sample *pSample = 0; |
- int i; |
- |
- assert( IsStat4 || nEqZero==0 ); |
- |
-#ifdef SQLITE_ENABLE_STAT4 |
- if( pNew->isPSample==0 ){ |
- Stat4Sample *pUpgrade = 0; |
- assert( pNew->anEq[pNew->iCol]>0 ); |
- |
- /* This sample is being added because the prefix that ends in column |
- ** iCol occurs many times in the table. However, if we have already |
- ** added a sample that shares this prefix, there is no need to add |
- ** this one. Instead, upgrade the priority of the highest priority |
- ** existing sample that shares this prefix. */ |
- for(i=p->nSample-1; i>=0; i--){ |
- Stat4Sample *pOld = &p->a[i]; |
- if( pOld->anEq[pNew->iCol]==0 ){ |
- if( pOld->isPSample ) return; |
- assert( pOld->iCol>pNew->iCol ); |
- assert( sampleIsBetter(p, pNew, pOld) ); |
- if( pUpgrade==0 || sampleIsBetter(p, pOld, pUpgrade) ){ |
- pUpgrade = pOld; |
- } |
- } |
- } |
- if( pUpgrade ){ |
- pUpgrade->iCol = pNew->iCol; |
- pUpgrade->anEq[pUpgrade->iCol] = pNew->anEq[pUpgrade->iCol]; |
- goto find_new_min; |
- } |
- } |
-#endif |
- |
- /* If necessary, remove sample iMin to make room for the new sample. */ |
- if( p->nSample>=p->mxSample ){ |
- Stat4Sample *pMin = &p->a[p->iMin]; |
- tRowcnt *anEq = pMin->anEq; |
- tRowcnt *anLt = pMin->anLt; |
- tRowcnt *anDLt = pMin->anDLt; |
- sampleClear(p->db, pMin); |
- memmove(pMin, &pMin[1], sizeof(p->a[0])*(p->nSample-p->iMin-1)); |
- pSample = &p->a[p->nSample-1]; |
- pSample->nRowid = 0; |
- pSample->anEq = anEq; |
- pSample->anDLt = anDLt; |
- pSample->anLt = anLt; |
- p->nSample = p->mxSample-1; |
- } |
- |
- /* The "rows less-than" for the rowid column must be greater than that |
- ** for the last sample in the p->a[] array. Otherwise, the samples would |
- ** be out of order. */ |
-#ifdef SQLITE_ENABLE_STAT4 |
- assert( p->nSample==0 |
- || pNew->anLt[p->nCol-1] > p->a[p->nSample-1].anLt[p->nCol-1] ); |
-#endif |
- |
- /* Insert the new sample */ |
- pSample = &p->a[p->nSample]; |
- sampleCopy(p, pSample, pNew); |
- p->nSample++; |
- |
- /* Zero the first nEqZero entries in the anEq[] array. */ |
- memset(pSample->anEq, 0, sizeof(tRowcnt)*nEqZero); |
- |
-#ifdef SQLITE_ENABLE_STAT4 |
- find_new_min: |
-#endif |
- if( p->nSample>=p->mxSample ){ |
- int iMin = -1; |
- for(i=0; i<p->mxSample; i++){ |
- if( p->a[i].isPSample ) continue; |
- if( iMin<0 || sampleIsBetter(p, &p->a[iMin], &p->a[i]) ){ |
- iMin = i; |
- } |
- } |
- assert( iMin>=0 ); |
- p->iMin = iMin; |
- } |
-} |
-#endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ |
- |
-/* |
-** Field iChng of the index being scanned has changed. So at this point |
-** p->current contains a sample that reflects the previous row of the |
-** index. The value of anEq[iChng] and subsequent anEq[] elements are |
-** correct at this point. |
-*/ |
-static void samplePushPrevious(Stat4Accum *p, int iChng){ |
-#ifdef SQLITE_ENABLE_STAT4 |
- int i; |
- |
- /* Check if any samples from the aBest[] array should be pushed |
- ** into IndexSample.a[] at this point. */ |
- for(i=(p->nCol-2); i>=iChng; i--){ |
- Stat4Sample *pBest = &p->aBest[i]; |
- pBest->anEq[i] = p->current.anEq[i]; |
- if( p->nSample<p->mxSample || sampleIsBetter(p, pBest, &p->a[p->iMin]) ){ |
- sampleInsert(p, pBest, i); |
- } |
- } |
- |
- /* Update the anEq[] fields of any samples already collected. */ |
- for(i=p->nSample-1; i>=0; i--){ |
- int j; |
- for(j=iChng; j<p->nCol; j++){ |
- if( p->a[i].anEq[j]==0 ) p->a[i].anEq[j] = p->current.anEq[j]; |
- } |
- } |
-#endif |
- |
-#if defined(SQLITE_ENABLE_STAT3) && !defined(SQLITE_ENABLE_STAT4) |
- if( iChng==0 ){ |
- tRowcnt nLt = p->current.anLt[0]; |
- tRowcnt nEq = p->current.anEq[0]; |
- |
- /* Check if this is to be a periodic sample. If so, add it. */ |
- if( (nLt/p->nPSample)!=(nLt+nEq)/p->nPSample ){ |
- p->current.isPSample = 1; |
- sampleInsert(p, &p->current, 0); |
- p->current.isPSample = 0; |
- }else |
- |
- /* Or if it is a non-periodic sample. Add it in this case too. */ |
- if( p->nSample<p->mxSample |
- || sampleIsBetter(p, &p->current, &p->a[p->iMin]) |
- ){ |
- sampleInsert(p, &p->current, 0); |
- } |
- } |
-#endif |
- |
-#ifndef SQLITE_ENABLE_STAT3_OR_STAT4 |
- UNUSED_PARAMETER( p ); |
- UNUSED_PARAMETER( iChng ); |
-#endif |
-} |
- |
-/* |
-** Implementation of the stat_push SQL function: stat_push(P,C,R) |
-** Arguments: |
-** |
-** P Pointer to the Stat4Accum object created by stat_init() |
-** C Index of left-most column to differ from previous row |
-** R Rowid for the current row. Might be a key record for |
-** WITHOUT ROWID tables. |
-** |
-** This SQL function always returns NULL. It's purpose it to accumulate |
-** statistical data and/or samples in the Stat4Accum object about the |
-** index being analyzed. The stat_get() SQL function will later be used to |
-** extract relevant information for constructing the sqlite_statN tables. |
-** |
-** The R parameter is only used for STAT3 and STAT4 |
-*/ |
-static void statPush( |
- sqlite3_context *context, |
- int argc, |
- sqlite3_value **argv |
-){ |
- int i; |
- |
- /* The three function arguments */ |
- Stat4Accum *p = (Stat4Accum*)sqlite3_value_blob(argv[0]); |
- int iChng = sqlite3_value_int(argv[1]); |
- |
- UNUSED_PARAMETER( argc ); |
- UNUSED_PARAMETER( context ); |
- assert( p->nCol>0 ); |
- assert( iChng<p->nCol ); |
- |
- if( p->nRow==0 ){ |
- /* This is the first call to this function. Do initialization. */ |
- for(i=0; i<p->nCol; i++) p->current.anEq[i] = 1; |
- }else{ |
- /* Second and subsequent calls get processed here */ |
- samplePushPrevious(p, iChng); |
- |
- /* Update anDLt[], anLt[] and anEq[] to reflect the values that apply |
- ** to the current row of the index. */ |
- for(i=0; i<iChng; i++){ |
- p->current.anEq[i]++; |
- } |
- for(i=iChng; i<p->nCol; i++){ |
- p->current.anDLt[i]++; |
-#ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
- p->current.anLt[i] += p->current.anEq[i]; |
-#endif |
- p->current.anEq[i] = 1; |
- } |
- } |
- p->nRow++; |
-#ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
- if( sqlite3_value_type(argv[2])==SQLITE_INTEGER ){ |
- sampleSetRowidInt64(p->db, &p->current, sqlite3_value_int64(argv[2])); |
- }else{ |
- sampleSetRowid(p->db, &p->current, sqlite3_value_bytes(argv[2]), |
- sqlite3_value_blob(argv[2])); |
- } |
- p->current.iHash = p->iPrn = p->iPrn*1103515245 + 12345; |
-#endif |
- |
-#ifdef SQLITE_ENABLE_STAT4 |
- { |
- tRowcnt nLt = p->current.anLt[p->nCol-1]; |
- |
- /* Check if this is to be a periodic sample. If so, add it. */ |
- if( (nLt/p->nPSample)!=(nLt+1)/p->nPSample ){ |
- p->current.isPSample = 1; |
- p->current.iCol = 0; |
- sampleInsert(p, &p->current, p->nCol-1); |
- p->current.isPSample = 0; |
- } |
- |
- /* Update the aBest[] array. */ |
- for(i=0; i<(p->nCol-1); i++){ |
- p->current.iCol = i; |
- if( i>=iChng || sampleIsBetterPost(p, &p->current, &p->aBest[i]) ){ |
- sampleCopy(p, &p->aBest[i], &p->current); |
- } |
- } |
- } |
-#endif |
-} |
-static const FuncDef statPushFuncdef = { |
- 2+IsStat34, /* nArg */ |
- SQLITE_UTF8, /* funcFlags */ |
- 0, /* pUserData */ |
- 0, /* pNext */ |
- statPush, /* xFunc */ |
- 0, /* xStep */ |
- 0, /* xFinalize */ |
- "stat_push", /* zName */ |
- 0, /* pHash */ |
- 0 /* pDestructor */ |
-}; |
- |
-#define STAT_GET_STAT1 0 /* "stat" column of stat1 table */ |
-#define STAT_GET_ROWID 1 /* "rowid" column of stat[34] entry */ |
-#define STAT_GET_NEQ 2 /* "neq" column of stat[34] entry */ |
-#define STAT_GET_NLT 3 /* "nlt" column of stat[34] entry */ |
-#define STAT_GET_NDLT 4 /* "ndlt" column of stat[34] entry */ |
- |
-/* |
-** Implementation of the stat_get(P,J) SQL function. This routine is |
-** used to query statistical information that has been gathered into |
-** the Stat4Accum object by prior calls to stat_push(). The P parameter |
-** has type BLOB but it is really just a pointer to the Stat4Accum object. |
-** The content to returned is determined by the parameter J |
-** which is one of the STAT_GET_xxxx values defined above. |
-** |
-** If neither STAT3 nor STAT4 are enabled, then J is always |
-** STAT_GET_STAT1 and is hence omitted and this routine becomes |
-** a one-parameter function, stat_get(P), that always returns the |
-** stat1 table entry information. |
-*/ |
-static void statGet( |
- sqlite3_context *context, |
- int argc, |
- sqlite3_value **argv |
-){ |
- Stat4Accum *p = (Stat4Accum*)sqlite3_value_blob(argv[0]); |
-#ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
- /* STAT3 and STAT4 have a parameter on this routine. */ |
- int eCall = sqlite3_value_int(argv[1]); |
- assert( argc==2 ); |
- assert( eCall==STAT_GET_STAT1 || eCall==STAT_GET_NEQ |
- || eCall==STAT_GET_ROWID || eCall==STAT_GET_NLT |
- || eCall==STAT_GET_NDLT |
- ); |
- if( eCall==STAT_GET_STAT1 ) |
-#else |
- assert( argc==1 ); |
-#endif |
- { |
- /* Return the value to store in the "stat" column of the sqlite_stat1 |
- ** table for this index. |
- ** |
- ** The value is a string composed of a list of integers describing |
- ** the index. The first integer in the list is the total number of |
- ** entries in the index. There is one additional integer in the list |
- ** for each indexed column. This additional integer is an estimate of |
- ** the number of rows matched by a stabbing query on the index using |
- ** a key with the corresponding number of fields. In other words, |
- ** if the index is on columns (a,b) and the sqlite_stat1 value is |
- ** "100 10 2", then SQLite estimates that: |
- ** |
- ** * the index contains 100 rows, |
- ** * "WHERE a=?" matches 10 rows, and |
- ** * "WHERE a=? AND b=?" matches 2 rows. |
- ** |
- ** If D is the count of distinct values and K is the total number of |
- ** rows, then each estimate is computed as: |
- ** |
- ** I = (K+D-1)/D |
- */ |
- char *z; |
- int i; |
- |
- char *zRet = sqlite3MallocZero( (p->nKeyCol+1)*25 ); |
- if( zRet==0 ){ |
- sqlite3_result_error_nomem(context); |
- return; |
- } |
- |
- sqlite3_snprintf(24, zRet, "%llu", (u64)p->nRow); |
- z = zRet + sqlite3Strlen30(zRet); |
- for(i=0; i<p->nKeyCol; i++){ |
- u64 nDistinct = p->current.anDLt[i] + 1; |
- u64 iVal = (p->nRow + nDistinct - 1) / nDistinct; |
- sqlite3_snprintf(24, z, " %llu", iVal); |
- z += sqlite3Strlen30(z); |
- assert( p->current.anEq[i] ); |
- } |
- assert( z[0]=='\0' && z>zRet ); |
- |
- sqlite3_result_text(context, zRet, -1, sqlite3_free); |
- } |
-#ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
- else if( eCall==STAT_GET_ROWID ){ |
- if( p->iGet<0 ){ |
- samplePushPrevious(p, 0); |
- p->iGet = 0; |
- } |
- if( p->iGet<p->nSample ){ |
- Stat4Sample *pS = p->a + p->iGet; |
- if( pS->nRowid==0 ){ |
- sqlite3_result_int64(context, pS->u.iRowid); |
- }else{ |
- sqlite3_result_blob(context, pS->u.aRowid, pS->nRowid, |
- SQLITE_TRANSIENT); |
- } |
- } |
- }else{ |
- tRowcnt *aCnt = 0; |
- |
- assert( p->iGet<p->nSample ); |
- switch( eCall ){ |
- case STAT_GET_NEQ: aCnt = p->a[p->iGet].anEq; break; |
- case STAT_GET_NLT: aCnt = p->a[p->iGet].anLt; break; |
- default: { |
- aCnt = p->a[p->iGet].anDLt; |
- p->iGet++; |
- break; |
- } |
- } |
- |
- if( IsStat3 ){ |
- sqlite3_result_int64(context, (i64)aCnt[0]); |
- }else{ |
- char *zRet = sqlite3MallocZero(p->nCol * 25); |
- if( zRet==0 ){ |
- sqlite3_result_error_nomem(context); |
- }else{ |
- int i; |
- char *z = zRet; |
- for(i=0; i<p->nCol; i++){ |
- sqlite3_snprintf(24, z, "%llu ", (u64)aCnt[i]); |
- z += sqlite3Strlen30(z); |
- } |
- assert( z[0]=='\0' && z>zRet ); |
- z[-1] = '\0'; |
- sqlite3_result_text(context, zRet, -1, sqlite3_free); |
- } |
- } |
- } |
-#endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ |
-#ifndef SQLITE_DEBUG |
- UNUSED_PARAMETER( argc ); |
-#endif |
-} |
-static const FuncDef statGetFuncdef = { |
- 1+IsStat34, /* nArg */ |
- SQLITE_UTF8, /* funcFlags */ |
- 0, /* pUserData */ |
- 0, /* pNext */ |
- statGet, /* xFunc */ |
- 0, /* xStep */ |
- 0, /* xFinalize */ |
- "stat_get", /* zName */ |
- 0, /* pHash */ |
- 0 /* pDestructor */ |
-}; |
- |
-static void callStatGet(Vdbe *v, int regStat4, int iParam, int regOut){ |
- assert( regOut!=regStat4 && regOut!=regStat4+1 ); |
-#ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
- sqlite3VdbeAddOp2(v, OP_Integer, iParam, regStat4+1); |
-#elif SQLITE_DEBUG |
- assert( iParam==STAT_GET_STAT1 ); |
-#else |
- UNUSED_PARAMETER( iParam ); |
-#endif |
- sqlite3VdbeAddOp3(v, OP_Function, 0, regStat4, regOut); |
- sqlite3VdbeChangeP4(v, -1, (char*)&statGetFuncdef, P4_FUNCDEF); |
- sqlite3VdbeChangeP5(v, 1 + IsStat34); |
-} |
- |
-/* |
-** Generate code to do an analysis of all indices associated with |
-** a single table. |
-*/ |
-static void analyzeOneTable( |
- Parse *pParse, /* Parser context */ |
- Table *pTab, /* Table whose indices are to be analyzed */ |
- Index *pOnlyIdx, /* If not NULL, only analyze this one index */ |
- int iStatCur, /* Index of VdbeCursor that writes the sqlite_stat1 table */ |
- int iMem, /* Available memory locations begin here */ |
- int iTab /* Next available cursor */ |
-){ |
- sqlite3 *db = pParse->db; /* Database handle */ |
- Index *pIdx; /* An index to being analyzed */ |
- int iIdxCur; /* Cursor open on index being analyzed */ |
- int iTabCur; /* Table cursor */ |
- Vdbe *v; /* The virtual machine being built up */ |
- int i; /* Loop counter */ |
- int jZeroRows = -1; /* Jump from here if number of rows is zero */ |
- int iDb; /* Index of database containing pTab */ |
- u8 needTableCnt = 1; /* True to count the table */ |
- int regNewRowid = iMem++; /* Rowid for the inserted record */ |
- int regStat4 = iMem++; /* Register to hold Stat4Accum object */ |
- int regChng = iMem++; /* Index of changed index field */ |
-#ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
- int regRowid = iMem++; /* Rowid argument passed to stat_push() */ |
-#endif |
- int regTemp = iMem++; /* Temporary use register */ |
- int regTabname = iMem++; /* Register containing table name */ |
- int regIdxname = iMem++; /* Register containing index name */ |
- int regStat1 = iMem++; /* Value for the stat column of sqlite_stat1 */ |
- int regPrev = iMem; /* MUST BE LAST (see below) */ |
- |
- pParse->nMem = MAX(pParse->nMem, iMem); |
- v = sqlite3GetVdbe(pParse); |
- if( v==0 || NEVER(pTab==0) ){ |
- return; |
- } |
- if( pTab->tnum==0 ){ |
- /* Do not gather statistics on views or virtual tables */ |
- return; |
- } |
- if( sqlite3_strnicmp(pTab->zName, "sqlite_", 7)==0 ){ |
- /* Do not gather statistics on system tables */ |
- return; |
- } |
- assert( sqlite3BtreeHoldsAllMutexes(db) ); |
- iDb = sqlite3SchemaToIndex(db, pTab->pSchema); |
- assert( iDb>=0 ); |
- assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); |
-#ifndef SQLITE_OMIT_AUTHORIZATION |
- if( sqlite3AuthCheck(pParse, SQLITE_ANALYZE, pTab->zName, 0, |
- db->aDb[iDb].zName ) ){ |
- return; |
- } |
-#endif |
- |
- /* Establish a read-lock on the table at the shared-cache level. |
- ** Open a read-only cursor on the table. Also allocate a cursor number |
- ** to use for scanning indexes (iIdxCur). No index cursor is opened at |
- ** this time though. */ |
- sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); |
- iTabCur = iTab++; |
- iIdxCur = iTab++; |
- pParse->nTab = MAX(pParse->nTab, iTab); |
- sqlite3OpenTable(pParse, iTabCur, iDb, pTab, OP_OpenRead); |
- sqlite3VdbeAddOp4(v, OP_String8, 0, regTabname, 0, pTab->zName, 0); |
- |
- for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ |
- int nCol; /* Number of columns in pIdx. "N" */ |
- int addrRewind; /* Address of "OP_Rewind iIdxCur" */ |
- int addrNextRow; /* Address of "next_row:" */ |
- const char *zIdxName; /* Name of the index */ |
- int nColTest; /* Number of columns to test for changes */ |
- |
- if( pOnlyIdx && pOnlyIdx!=pIdx ) continue; |
- if( pIdx->pPartIdxWhere==0 ) needTableCnt = 0; |
- if( !HasRowid(pTab) && IsPrimaryKeyIndex(pIdx) ){ |
- nCol = pIdx->nKeyCol; |
- zIdxName = pTab->zName; |
- nColTest = nCol - 1; |
- }else{ |
- nCol = pIdx->nColumn; |
- zIdxName = pIdx->zName; |
- nColTest = pIdx->uniqNotNull ? pIdx->nKeyCol-1 : nCol-1; |
- } |
- |
- /* Populate the register containing the index name. */ |
- sqlite3VdbeAddOp4(v, OP_String8, 0, regIdxname, 0, zIdxName, 0); |
- VdbeComment((v, "Analysis for %s.%s", pTab->zName, zIdxName)); |
- |
- /* |
- ** Pseudo-code for loop that calls stat_push(): |
- ** |
- ** Rewind csr |
- ** if eof(csr) goto end_of_scan; |
- ** regChng = 0 |
- ** goto chng_addr_0; |
- ** |
- ** next_row: |
- ** regChng = 0 |
- ** if( idx(0) != regPrev(0) ) goto chng_addr_0 |
- ** regChng = 1 |
- ** if( idx(1) != regPrev(1) ) goto chng_addr_1 |
- ** ... |
- ** regChng = N |
- ** goto chng_addr_N |
- ** |
- ** chng_addr_0: |
- ** regPrev(0) = idx(0) |
- ** chng_addr_1: |
- ** regPrev(1) = idx(1) |
- ** ... |
- ** |
- ** endDistinctTest: |
- ** regRowid = idx(rowid) |
- ** stat_push(P, regChng, regRowid) |
- ** Next csr |
- ** if !eof(csr) goto next_row; |
- ** |
- ** end_of_scan: |
- */ |
- |
- /* Make sure there are enough memory cells allocated to accommodate |
- ** the regPrev array and a trailing rowid (the rowid slot is required |
- ** when building a record to insert into the sample column of |
- ** the sqlite_stat4 table. */ |
- pParse->nMem = MAX(pParse->nMem, regPrev+nColTest); |
- |
- /* Open a read-only cursor on the index being analyzed. */ |
- assert( iDb==sqlite3SchemaToIndex(db, pIdx->pSchema) ); |
- sqlite3VdbeAddOp3(v, OP_OpenRead, iIdxCur, pIdx->tnum, iDb); |
- sqlite3VdbeSetP4KeyInfo(pParse, pIdx); |
- VdbeComment((v, "%s", pIdx->zName)); |
- |
- /* Invoke the stat_init() function. The arguments are: |
- ** |
- ** (1) the number of columns in the index including the rowid |
- ** (or for a WITHOUT ROWID table, the number of PK columns), |
- ** (2) the number of columns in the key without the rowid/pk |
- ** (3) the number of rows in the index, |
- ** |
- ** |
- ** The third argument is only used for STAT3 and STAT4 |
- */ |
-#ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
- sqlite3VdbeAddOp2(v, OP_Count, iIdxCur, regStat4+3); |
-#endif |
- sqlite3VdbeAddOp2(v, OP_Integer, nCol, regStat4+1); |
- sqlite3VdbeAddOp2(v, OP_Integer, pIdx->nKeyCol, regStat4+2); |
- sqlite3VdbeAddOp3(v, OP_Function, 0, regStat4+1, regStat4); |
- sqlite3VdbeChangeP4(v, -1, (char*)&statInitFuncdef, P4_FUNCDEF); |
- sqlite3VdbeChangeP5(v, 2+IsStat34); |
- |
- /* Implementation of the following: |
- ** |
- ** Rewind csr |
- ** if eof(csr) goto end_of_scan; |
- ** regChng = 0 |
- ** goto next_push_0; |
- ** |
- */ |
- addrRewind = sqlite3VdbeAddOp1(v, OP_Rewind, iIdxCur); |
- VdbeCoverage(v); |
- sqlite3VdbeAddOp2(v, OP_Integer, 0, regChng); |
- addrNextRow = sqlite3VdbeCurrentAddr(v); |
- |
- if( nColTest>0 ){ |
- int endDistinctTest = sqlite3VdbeMakeLabel(v); |
- int *aGotoChng; /* Array of jump instruction addresses */ |
- aGotoChng = sqlite3DbMallocRaw(db, sizeof(int)*nColTest); |
- if( aGotoChng==0 ) continue; |
- |
- /* |
- ** next_row: |
- ** regChng = 0 |
- ** if( idx(0) != regPrev(0) ) goto chng_addr_0 |
- ** regChng = 1 |
- ** if( idx(1) != regPrev(1) ) goto chng_addr_1 |
- ** ... |
- ** regChng = N |
- ** goto endDistinctTest |
- */ |
- sqlite3VdbeAddOp0(v, OP_Goto); |
- addrNextRow = sqlite3VdbeCurrentAddr(v); |
- if( nColTest==1 && pIdx->nKeyCol==1 && IsUniqueIndex(pIdx) ){ |
- /* For a single-column UNIQUE index, once we have found a non-NULL |
- ** row, we know that all the rest will be distinct, so skip |
- ** subsequent distinctness tests. */ |
- sqlite3VdbeAddOp2(v, OP_NotNull, regPrev, endDistinctTest); |
- VdbeCoverage(v); |
- } |
- for(i=0; i<nColTest; i++){ |
- char *pColl = (char*)sqlite3LocateCollSeq(pParse, pIdx->azColl[i]); |
- sqlite3VdbeAddOp2(v, OP_Integer, i, regChng); |
- sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, regTemp); |
- aGotoChng[i] = |
- sqlite3VdbeAddOp4(v, OP_Ne, regTemp, 0, regPrev+i, pColl, P4_COLLSEQ); |
- sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); |
- VdbeCoverage(v); |
- } |
- sqlite3VdbeAddOp2(v, OP_Integer, nColTest, regChng); |
- sqlite3VdbeAddOp2(v, OP_Goto, 0, endDistinctTest); |
- |
- |
- /* |
- ** chng_addr_0: |
- ** regPrev(0) = idx(0) |
- ** chng_addr_1: |
- ** regPrev(1) = idx(1) |
- ** ... |
- */ |
- sqlite3VdbeJumpHere(v, addrNextRow-1); |
- for(i=0; i<nColTest; i++){ |
- sqlite3VdbeJumpHere(v, aGotoChng[i]); |
- sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, regPrev+i); |
- } |
- sqlite3VdbeResolveLabel(v, endDistinctTest); |
- sqlite3DbFree(db, aGotoChng); |
- } |
- |
- /* |
- ** chng_addr_N: |
- ** regRowid = idx(rowid) // STAT34 only |
- ** stat_push(P, regChng, regRowid) // 3rd parameter STAT34 only |
- ** Next csr |
- ** if !eof(csr) goto next_row; |
- */ |
-#ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
- assert( regRowid==(regStat4+2) ); |
- if( HasRowid(pTab) ){ |
- sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, regRowid); |
- }else{ |
- Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable); |
- int j, k, regKey; |
- regKey = sqlite3GetTempRange(pParse, pPk->nKeyCol); |
- for(j=0; j<pPk->nKeyCol; j++){ |
- k = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[j]); |
- sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, regKey+j); |
- VdbeComment((v, "%s", pTab->aCol[pPk->aiColumn[j]].zName)); |
- } |
- sqlite3VdbeAddOp3(v, OP_MakeRecord, regKey, pPk->nKeyCol, regRowid); |
- sqlite3ReleaseTempRange(pParse, regKey, pPk->nKeyCol); |
- } |
-#endif |
- assert( regChng==(regStat4+1) ); |
- sqlite3VdbeAddOp3(v, OP_Function, 1, regStat4, regTemp); |
- sqlite3VdbeChangeP4(v, -1, (char*)&statPushFuncdef, P4_FUNCDEF); |
- sqlite3VdbeChangeP5(v, 2+IsStat34); |
- sqlite3VdbeAddOp2(v, OP_Next, iIdxCur, addrNextRow); VdbeCoverage(v); |
- |
- /* Add the entry to the stat1 table. */ |
- callStatGet(v, regStat4, STAT_GET_STAT1, regStat1); |
- assert( "BBB"[0]==SQLITE_AFF_TEXT ); |
- sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regTemp, "BBB", 0); |
- sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regNewRowid); |
- sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regTemp, regNewRowid); |
- sqlite3VdbeChangeP5(v, OPFLAG_APPEND); |
- |
- /* Add the entries to the stat3 or stat4 table. */ |
-#ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
- { |
- int regEq = regStat1; |
- int regLt = regStat1+1; |
- int regDLt = regStat1+2; |
- int regSample = regStat1+3; |
- int regCol = regStat1+4; |
- int regSampleRowid = regCol + nCol; |
- int addrNext; |
- int addrIsNull; |
- u8 seekOp = HasRowid(pTab) ? OP_NotExists : OP_NotFound; |
- |
- pParse->nMem = MAX(pParse->nMem, regCol+nCol); |
- |
- addrNext = sqlite3VdbeCurrentAddr(v); |
- callStatGet(v, regStat4, STAT_GET_ROWID, regSampleRowid); |
- addrIsNull = sqlite3VdbeAddOp1(v, OP_IsNull, regSampleRowid); |
- VdbeCoverage(v); |
- callStatGet(v, regStat4, STAT_GET_NEQ, regEq); |
- callStatGet(v, regStat4, STAT_GET_NLT, regLt); |
- callStatGet(v, regStat4, STAT_GET_NDLT, regDLt); |
- sqlite3VdbeAddOp4Int(v, seekOp, iTabCur, addrNext, regSampleRowid, 0); |
- /* We know that the regSampleRowid row exists because it was read by |
- ** the previous loop. Thus the not-found jump of seekOp will never |
- ** be taken */ |
- VdbeCoverageNeverTaken(v); |
-#ifdef SQLITE_ENABLE_STAT3 |
- sqlite3ExprCodeGetColumnOfTable(v, pTab, iTabCur, |
- pIdx->aiColumn[0], regSample); |
-#else |
- for(i=0; i<nCol; i++){ |
- i16 iCol = pIdx->aiColumn[i]; |
- sqlite3ExprCodeGetColumnOfTable(v, pTab, iTabCur, iCol, regCol+i); |
- } |
- sqlite3VdbeAddOp3(v, OP_MakeRecord, regCol, nCol, regSample); |
-#endif |
- sqlite3VdbeAddOp3(v, OP_MakeRecord, regTabname, 6, regTemp); |
- sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur+1, regNewRowid); |
- sqlite3VdbeAddOp3(v, OP_Insert, iStatCur+1, regTemp, regNewRowid); |
- sqlite3VdbeAddOp2(v, OP_Goto, 1, addrNext); /* P1==1 for end-of-loop */ |
- sqlite3VdbeJumpHere(v, addrIsNull); |
- } |
-#endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ |
- |
- /* End of analysis */ |
- sqlite3VdbeJumpHere(v, addrRewind); |
- } |
- |
- |
- /* Create a single sqlite_stat1 entry containing NULL as the index |
- ** name and the row count as the content. |
- */ |
- if( pOnlyIdx==0 && needTableCnt ){ |
- VdbeComment((v, "%s", pTab->zName)); |
- sqlite3VdbeAddOp2(v, OP_Count, iTabCur, regStat1); |
- jZeroRows = sqlite3VdbeAddOp1(v, OP_IfNot, regStat1); VdbeCoverage(v); |
- sqlite3VdbeAddOp2(v, OP_Null, 0, regIdxname); |
- assert( "BBB"[0]==SQLITE_AFF_TEXT ); |
- sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regTemp, "BBB", 0); |
- sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regNewRowid); |
- sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regTemp, regNewRowid); |
- sqlite3VdbeChangeP5(v, OPFLAG_APPEND); |
- sqlite3VdbeJumpHere(v, jZeroRows); |
- } |
-} |
- |
- |
-/* |
-** Generate code that will cause the most recent index analysis to |
-** be loaded into internal hash tables where is can be used. |
-*/ |
-static void loadAnalysis(Parse *pParse, int iDb){ |
- Vdbe *v = sqlite3GetVdbe(pParse); |
- if( v ){ |
- sqlite3VdbeAddOp1(v, OP_LoadAnalysis, iDb); |
- } |
-} |
- |
-/* |
-** Generate code that will do an analysis of an entire database |
-*/ |
-static void analyzeDatabase(Parse *pParse, int iDb){ |
- sqlite3 *db = pParse->db; |
- Schema *pSchema = db->aDb[iDb].pSchema; /* Schema of database iDb */ |
- HashElem *k; |
- int iStatCur; |
- int iMem; |
- int iTab; |
- |
- sqlite3BeginWriteOperation(pParse, 0, iDb); |
- iStatCur = pParse->nTab; |
- pParse->nTab += 3; |
- openStatTable(pParse, iDb, iStatCur, 0, 0); |
- iMem = pParse->nMem+1; |
- iTab = pParse->nTab; |
- assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); |
- for(k=sqliteHashFirst(&pSchema->tblHash); k; k=sqliteHashNext(k)){ |
- Table *pTab = (Table*)sqliteHashData(k); |
- analyzeOneTable(pParse, pTab, 0, iStatCur, iMem, iTab); |
- } |
- loadAnalysis(pParse, iDb); |
-} |
- |
-/* |
-** Generate code that will do an analysis of a single table in |
-** a database. If pOnlyIdx is not NULL then it is a single index |
-** in pTab that should be analyzed. |
-*/ |
-static void analyzeTable(Parse *pParse, Table *pTab, Index *pOnlyIdx){ |
- int iDb; |
- int iStatCur; |
- |
- assert( pTab!=0 ); |
- assert( sqlite3BtreeHoldsAllMutexes(pParse->db) ); |
- iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); |
- sqlite3BeginWriteOperation(pParse, 0, iDb); |
- iStatCur = pParse->nTab; |
- pParse->nTab += 3; |
- if( pOnlyIdx ){ |
- openStatTable(pParse, iDb, iStatCur, pOnlyIdx->zName, "idx"); |
- }else{ |
- openStatTable(pParse, iDb, iStatCur, pTab->zName, "tbl"); |
- } |
- analyzeOneTable(pParse, pTab, pOnlyIdx, iStatCur,pParse->nMem+1,pParse->nTab); |
- loadAnalysis(pParse, iDb); |
-} |
- |
-/* |
-** Generate code for the ANALYZE command. The parser calls this routine |
-** when it recognizes an ANALYZE command. |
-** |
-** ANALYZE -- 1 |
-** ANALYZE <database> -- 2 |
-** ANALYZE ?<database>.?<tablename> -- 3 |
-** |
-** Form 1 causes all indices in all attached databases to be analyzed. |
-** Form 2 analyzes all indices the single database named. |
-** Form 3 analyzes all indices associated with the named table. |
-*/ |
-void sqlite3Analyze(Parse *pParse, Token *pName1, Token *pName2){ |
- sqlite3 *db = pParse->db; |
- int iDb; |
- int i; |
- char *z, *zDb; |
- Table *pTab; |
- Index *pIdx; |
- Token *pTableName; |
- Vdbe *v; |
- |
- /* Read the database schema. If an error occurs, leave an error message |
- ** and code in pParse and return NULL. */ |
- assert( sqlite3BtreeHoldsAllMutexes(pParse->db) ); |
- if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){ |
- return; |
- } |
- |
- assert( pName2!=0 || pName1==0 ); |
- if( pName1==0 ){ |
- /* Form 1: Analyze everything */ |
- for(i=0; i<db->nDb; i++){ |
- if( i==1 ) continue; /* Do not analyze the TEMP database */ |
- analyzeDatabase(pParse, i); |
- } |
- }else if( pName2->n==0 ){ |
- /* Form 2: Analyze the database or table named */ |
- iDb = sqlite3FindDb(db, pName1); |
- if( iDb>=0 ){ |
- analyzeDatabase(pParse, iDb); |
- }else{ |
- z = sqlite3NameFromToken(db, pName1); |
- if( z ){ |
- if( (pIdx = sqlite3FindIndex(db, z, 0))!=0 ){ |
- analyzeTable(pParse, pIdx->pTable, pIdx); |
- }else if( (pTab = sqlite3LocateTable(pParse, 0, z, 0))!=0 ){ |
- analyzeTable(pParse, pTab, 0); |
- } |
- sqlite3DbFree(db, z); |
- } |
- } |
- }else{ |
- /* Form 3: Analyze the fully qualified table name */ |
- iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pTableName); |
- if( iDb>=0 ){ |
- zDb = db->aDb[iDb].zName; |
- z = sqlite3NameFromToken(db, pTableName); |
- if( z ){ |
- if( (pIdx = sqlite3FindIndex(db, z, zDb))!=0 ){ |
- analyzeTable(pParse, pIdx->pTable, pIdx); |
- }else if( (pTab = sqlite3LocateTable(pParse, 0, z, zDb))!=0 ){ |
- analyzeTable(pParse, pTab, 0); |
- } |
- sqlite3DbFree(db, z); |
- } |
- } |
- } |
- v = sqlite3GetVdbe(pParse); |
- if( v ) sqlite3VdbeAddOp0(v, OP_Expire); |
-} |
- |
-/* |
-** Used to pass information from the analyzer reader through to the |
-** callback routine. |
-*/ |
-typedef struct analysisInfo analysisInfo; |
-struct analysisInfo { |
- sqlite3 *db; |
- const char *zDatabase; |
-}; |
- |
-/* |
-** The first argument points to a nul-terminated string containing a |
-** list of space separated integers. Read the first nOut of these into |
-** the array aOut[]. |
-*/ |
-static void decodeIntArray( |
- char *zIntArray, /* String containing int array to decode */ |
- int nOut, /* Number of slots in aOut[] */ |
- tRowcnt *aOut, /* Store integers here */ |
- LogEst *aLog, /* Or, if aOut==0, here */ |
- Index *pIndex /* Handle extra flags for this index, if not NULL */ |
-){ |
- char *z = zIntArray; |
- int c; |
- int i; |
- tRowcnt v; |
- |
-#ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
- if( z==0 ) z = ""; |
-#else |
- assert( z!=0 ); |
-#endif |
- for(i=0; *z && i<nOut; i++){ |
- v = 0; |
- while( (c=z[0])>='0' && c<='9' ){ |
- v = v*10 + c - '0'; |
- z++; |
- } |
-#ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
- if( aOut ) aOut[i] = v; |
- if( aLog ) aLog[i] = sqlite3LogEst(v); |
-#else |
- assert( aOut==0 ); |
- UNUSED_PARAMETER(aOut); |
- assert( aLog!=0 ); |
- aLog[i] = sqlite3LogEst(v); |
-#endif |
- if( *z==' ' ) z++; |
- } |
-#ifndef SQLITE_ENABLE_STAT3_OR_STAT4 |
- assert( pIndex!=0 ); |
-#else |
- if( pIndex ) |
-#endif |
- while( z[0] ){ |
- if( sqlite3_strglob("unordered*", z)==0 ){ |
- pIndex->bUnordered = 1; |
- }else if( sqlite3_strglob("sz=[0-9]*", z)==0 ){ |
- pIndex->szIdxRow = sqlite3LogEst(sqlite3Atoi(z+3)); |
- } |
-#ifdef SQLITE_ENABLE_COSTMULT |
- else if( sqlite3_strglob("costmult=[0-9]*",z)==0 ){ |
- pIndex->pTable->costMult = sqlite3LogEst(sqlite3Atoi(z+9)); |
- } |
-#endif |
- while( z[0]!=0 && z[0]!=' ' ) z++; |
- while( z[0]==' ' ) z++; |
- } |
-} |
- |
-/* |
-** This callback is invoked once for each index when reading the |
-** sqlite_stat1 table. |
-** |
-** argv[0] = name of the table |
-** argv[1] = name of the index (might be NULL) |
-** argv[2] = results of analysis - on integer for each column |
-** |
-** Entries for which argv[1]==NULL simply record the number of rows in |
-** the table. |
-*/ |
-static int analysisLoader(void *pData, int argc, char **argv, char **NotUsed){ |
- analysisInfo *pInfo = (analysisInfo*)pData; |
- Index *pIndex; |
- Table *pTable; |
- const char *z; |
- |
- assert( argc==3 ); |
- UNUSED_PARAMETER2(NotUsed, argc); |
- |
- if( argv==0 || argv[0]==0 || argv[2]==0 ){ |
- return 0; |
- } |
- pTable = sqlite3FindTable(pInfo->db, argv[0], pInfo->zDatabase); |
- if( pTable==0 ){ |
- return 0; |
- } |
- if( argv[1]==0 ){ |
- pIndex = 0; |
- }else if( sqlite3_stricmp(argv[0],argv[1])==0 ){ |
- pIndex = sqlite3PrimaryKeyIndex(pTable); |
- }else{ |
- pIndex = sqlite3FindIndex(pInfo->db, argv[1], pInfo->zDatabase); |
- } |
- z = argv[2]; |
- |
- if( pIndex ){ |
- int nCol = pIndex->nKeyCol+1; |
-#ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
- tRowcnt * const aiRowEst = pIndex->aiRowEst = (tRowcnt*)sqlite3MallocZero( |
- sizeof(tRowcnt) * nCol |
- ); |
- if( aiRowEst==0 ) pInfo->db->mallocFailed = 1; |
-#else |
- tRowcnt * const aiRowEst = 0; |
-#endif |
- pIndex->bUnordered = 0; |
- decodeIntArray((char*)z, nCol, aiRowEst, pIndex->aiRowLogEst, pIndex); |
- if( pIndex->pPartIdxWhere==0 ) pTable->nRowLogEst = pIndex->aiRowLogEst[0]; |
- }else{ |
- Index fakeIdx; |
- fakeIdx.szIdxRow = pTable->szTabRow; |
-#ifdef SQLITE_ENABLE_COSTMULT |
- fakeIdx.pTable = pTable; |
-#endif |
- decodeIntArray((char*)z, 1, 0, &pTable->nRowLogEst, &fakeIdx); |
- pTable->szTabRow = fakeIdx.szIdxRow; |
- } |
- |
- return 0; |
-} |
- |
-/* |
-** If the Index.aSample variable is not NULL, delete the aSample[] array |
-** and its contents. |
-*/ |
-void sqlite3DeleteIndexSamples(sqlite3 *db, Index *pIdx){ |
-#ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
- if( pIdx->aSample ){ |
- int j; |
- for(j=0; j<pIdx->nSample; j++){ |
- IndexSample *p = &pIdx->aSample[j]; |
- sqlite3DbFree(db, p->p); |
- } |
- sqlite3DbFree(db, pIdx->aSample); |
- } |
- if( db && db->pnBytesFreed==0 ){ |
- pIdx->nSample = 0; |
- pIdx->aSample = 0; |
- } |
-#else |
- UNUSED_PARAMETER(db); |
- UNUSED_PARAMETER(pIdx); |
-#endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ |
-} |
- |
-#ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
-/* |
-** Populate the pIdx->aAvgEq[] array based on the samples currently |
-** stored in pIdx->aSample[]. |
-*/ |
-static void initAvgEq(Index *pIdx){ |
- if( pIdx ){ |
- IndexSample *aSample = pIdx->aSample; |
- IndexSample *pFinal = &aSample[pIdx->nSample-1]; |
- int iCol; |
- int nCol = 1; |
- if( pIdx->nSampleCol>1 ){ |
- /* If this is stat4 data, then calculate aAvgEq[] values for all |
- ** sample columns except the last. The last is always set to 1, as |
- ** once the trailing PK fields are considered all index keys are |
- ** unique. */ |
- nCol = pIdx->nSampleCol-1; |
- pIdx->aAvgEq[nCol] = 1; |
- } |
- for(iCol=0; iCol<nCol; iCol++){ |
- int nSample = pIdx->nSample; |
- int i; /* Used to iterate through samples */ |
- tRowcnt sumEq = 0; /* Sum of the nEq values */ |
- tRowcnt avgEq = 0; |
- tRowcnt nRow; /* Number of rows in index */ |
- i64 nSum100 = 0; /* Number of terms contributing to sumEq */ |
- i64 nDist100; /* Number of distinct values in index */ |
- |
- if( !pIdx->aiRowEst || iCol>=pIdx->nKeyCol || pIdx->aiRowEst[iCol+1]==0 ){ |
- nRow = pFinal->anLt[iCol]; |
- nDist100 = (i64)100 * pFinal->anDLt[iCol]; |
- nSample--; |
- }else{ |
- nRow = pIdx->aiRowEst[0]; |
- nDist100 = ((i64)100 * pIdx->aiRowEst[0]) / pIdx->aiRowEst[iCol+1]; |
- } |
- |
- /* Set nSum to the number of distinct (iCol+1) field prefixes that |
- ** occur in the stat4 table for this index. Set sumEq to the sum of |
- ** the nEq values for column iCol for the same set (adding the value |
- ** only once where there exist duplicate prefixes). */ |
- for(i=0; i<nSample; i++){ |
- if( i==(pIdx->nSample-1) |
- || aSample[i].anDLt[iCol]!=aSample[i+1].anDLt[iCol] |
- ){ |
- sumEq += aSample[i].anEq[iCol]; |
- nSum100 += 100; |
- } |
- } |
- |
- if( nDist100>nSum100 ){ |
- avgEq = ((i64)100 * (nRow - sumEq))/(nDist100 - nSum100); |
- } |
- if( avgEq==0 ) avgEq = 1; |
- pIdx->aAvgEq[iCol] = avgEq; |
- } |
- } |
-} |
- |
-/* |
-** Look up an index by name. Or, if the name of a WITHOUT ROWID table |
-** is supplied instead, find the PRIMARY KEY index for that table. |
-*/ |
-static Index *findIndexOrPrimaryKey( |
- sqlite3 *db, |
- const char *zName, |
- const char *zDb |
-){ |
- Index *pIdx = sqlite3FindIndex(db, zName, zDb); |
- if( pIdx==0 ){ |
- Table *pTab = sqlite3FindTable(db, zName, zDb); |
- if( pTab && !HasRowid(pTab) ) pIdx = sqlite3PrimaryKeyIndex(pTab); |
- } |
- return pIdx; |
-} |
- |
-/* |
-** Load the content from either the sqlite_stat4 or sqlite_stat3 table |
-** into the relevant Index.aSample[] arrays. |
-** |
-** Arguments zSql1 and zSql2 must point to SQL statements that return |
-** data equivalent to the following (statements are different for stat3, |
-** see the caller of this function for details): |
-** |
-** zSql1: SELECT idx,count(*) FROM %Q.sqlite_stat4 GROUP BY idx |
-** zSql2: SELECT idx,neq,nlt,ndlt,sample FROM %Q.sqlite_stat4 |
-** |
-** where %Q is replaced with the database name before the SQL is executed. |
-*/ |
-static int loadStatTbl( |
- sqlite3 *db, /* Database handle */ |
- int bStat3, /* Assume single column records only */ |
- const char *zSql1, /* SQL statement 1 (see above) */ |
- const char *zSql2, /* SQL statement 2 (see above) */ |
- const char *zDb /* Database name (e.g. "main") */ |
-){ |
- int rc; /* Result codes from subroutines */ |
- sqlite3_stmt *pStmt = 0; /* An SQL statement being run */ |
- char *zSql; /* Text of the SQL statement */ |
- Index *pPrevIdx = 0; /* Previous index in the loop */ |
- IndexSample *pSample; /* A slot in pIdx->aSample[] */ |
- |
- assert( db->lookaside.bEnabled==0 ); |
- zSql = sqlite3MPrintf(db, zSql1, zDb); |
- if( !zSql ){ |
- return SQLITE_NOMEM; |
- } |
- rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0); |
- sqlite3DbFree(db, zSql); |
- if( rc ) return rc; |
- |
- while( sqlite3_step(pStmt)==SQLITE_ROW ){ |
- int nIdxCol = 1; /* Number of columns in stat4 records */ |
- |
- char *zIndex; /* Index name */ |
- Index *pIdx; /* Pointer to the index object */ |
- int nSample; /* Number of samples */ |
- int nByte; /* Bytes of space required */ |
- int i; /* Bytes of space required */ |
- tRowcnt *pSpace; |
- |
- zIndex = (char *)sqlite3_column_text(pStmt, 0); |
- if( zIndex==0 ) continue; |
- nSample = sqlite3_column_int(pStmt, 1); |
- pIdx = findIndexOrPrimaryKey(db, zIndex, zDb); |
- assert( pIdx==0 || bStat3 || pIdx->nSample==0 ); |
- /* Index.nSample is non-zero at this point if data has already been |
- ** loaded from the stat4 table. In this case ignore stat3 data. */ |
- if( pIdx==0 || pIdx->nSample ) continue; |
- if( bStat3==0 ){ |
- assert( !HasRowid(pIdx->pTable) || pIdx->nColumn==pIdx->nKeyCol+1 ); |
- if( !HasRowid(pIdx->pTable) && IsPrimaryKeyIndex(pIdx) ){ |
- nIdxCol = pIdx->nKeyCol; |
- }else{ |
- nIdxCol = pIdx->nColumn; |
- } |
- } |
- pIdx->nSampleCol = nIdxCol; |
- nByte = sizeof(IndexSample) * nSample; |
- nByte += sizeof(tRowcnt) * nIdxCol * 3 * nSample; |
- nByte += nIdxCol * sizeof(tRowcnt); /* Space for Index.aAvgEq[] */ |
- |
- pIdx->aSample = sqlite3DbMallocZero(db, nByte); |
- if( pIdx->aSample==0 ){ |
- sqlite3_finalize(pStmt); |
- return SQLITE_NOMEM; |
- } |
- pSpace = (tRowcnt*)&pIdx->aSample[nSample]; |
- pIdx->aAvgEq = pSpace; pSpace += nIdxCol; |
- for(i=0; i<nSample; i++){ |
- pIdx->aSample[i].anEq = pSpace; pSpace += nIdxCol; |
- pIdx->aSample[i].anLt = pSpace; pSpace += nIdxCol; |
- pIdx->aSample[i].anDLt = pSpace; pSpace += nIdxCol; |
- } |
- assert( ((u8*)pSpace)-nByte==(u8*)(pIdx->aSample) ); |
- } |
- rc = sqlite3_finalize(pStmt); |
- if( rc ) return rc; |
- |
- zSql = sqlite3MPrintf(db, zSql2, zDb); |
- if( !zSql ){ |
- return SQLITE_NOMEM; |
- } |
- rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0); |
- sqlite3DbFree(db, zSql); |
- if( rc ) return rc; |
- |
- while( sqlite3_step(pStmt)==SQLITE_ROW ){ |
- char *zIndex; /* Index name */ |
- Index *pIdx; /* Pointer to the index object */ |
- int nCol = 1; /* Number of columns in index */ |
- |
- zIndex = (char *)sqlite3_column_text(pStmt, 0); |
- if( zIndex==0 ) continue; |
- pIdx = findIndexOrPrimaryKey(db, zIndex, zDb); |
- if( pIdx==0 ) continue; |
- /* This next condition is true if data has already been loaded from |
- ** the sqlite_stat4 table. In this case ignore stat3 data. */ |
- nCol = pIdx->nSampleCol; |
- if( bStat3 && nCol>1 ) continue; |
- if( pIdx!=pPrevIdx ){ |
- initAvgEq(pPrevIdx); |
- pPrevIdx = pIdx; |
- } |
- pSample = &pIdx->aSample[pIdx->nSample]; |
- decodeIntArray((char*)sqlite3_column_text(pStmt,1),nCol,pSample->anEq,0,0); |
- decodeIntArray((char*)sqlite3_column_text(pStmt,2),nCol,pSample->anLt,0,0); |
- decodeIntArray((char*)sqlite3_column_text(pStmt,3),nCol,pSample->anDLt,0,0); |
- |
- /* Take a copy of the sample. Add two 0x00 bytes the end of the buffer. |
- ** This is in case the sample record is corrupted. In that case, the |
- ** sqlite3VdbeRecordCompare() may read up to two varints past the |
- ** end of the allocated buffer before it realizes it is dealing with |
- ** a corrupt record. Adding the two 0x00 bytes prevents this from causing |
- ** a buffer overread. */ |
- pSample->n = sqlite3_column_bytes(pStmt, 4); |
- pSample->p = sqlite3DbMallocZero(db, pSample->n + 2); |
- if( pSample->p==0 ){ |
- sqlite3_finalize(pStmt); |
- return SQLITE_NOMEM; |
- } |
- memcpy(pSample->p, sqlite3_column_blob(pStmt, 4), pSample->n); |
- pIdx->nSample++; |
- } |
- rc = sqlite3_finalize(pStmt); |
- if( rc==SQLITE_OK ) initAvgEq(pPrevIdx); |
- return rc; |
-} |
- |
-/* |
-** Load content from the sqlite_stat4 and sqlite_stat3 tables into |
-** the Index.aSample[] arrays of all indices. |
-*/ |
-static int loadStat4(sqlite3 *db, const char *zDb){ |
- int rc = SQLITE_OK; /* Result codes from subroutines */ |
- |
- assert( db->lookaside.bEnabled==0 ); |
- if( sqlite3FindTable(db, "sqlite_stat4", zDb) ){ |
- rc = loadStatTbl(db, 0, |
- "SELECT idx,count(*) FROM %Q.sqlite_stat4 GROUP BY idx", |
- "SELECT idx,neq,nlt,ndlt,sample FROM %Q.sqlite_stat4", |
- zDb |
- ); |
- } |
- |
- if( rc==SQLITE_OK && sqlite3FindTable(db, "sqlite_stat3", zDb) ){ |
- rc = loadStatTbl(db, 1, |
- "SELECT idx,count(*) FROM %Q.sqlite_stat3 GROUP BY idx", |
- "SELECT idx,neq,nlt,ndlt,sqlite_record(sample) FROM %Q.sqlite_stat3", |
- zDb |
- ); |
- } |
- |
- return rc; |
-} |
-#endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ |
- |
-/* |
-** Load the content of the sqlite_stat1 and sqlite_stat3/4 tables. The |
-** contents of sqlite_stat1 are used to populate the Index.aiRowEst[] |
-** arrays. The contents of sqlite_stat3/4 are used to populate the |
-** Index.aSample[] arrays. |
-** |
-** If the sqlite_stat1 table is not present in the database, SQLITE_ERROR |
-** is returned. In this case, even if SQLITE_ENABLE_STAT3/4 was defined |
-** during compilation and the sqlite_stat3/4 table is present, no data is |
-** read from it. |
-** |
-** If SQLITE_ENABLE_STAT3/4 was defined during compilation and the |
-** sqlite_stat4 table is not present in the database, SQLITE_ERROR is |
-** returned. However, in this case, data is read from the sqlite_stat1 |
-** table (if it is present) before returning. |
-** |
-** If an OOM error occurs, this function always sets db->mallocFailed. |
-** This means if the caller does not care about other errors, the return |
-** code may be ignored. |
-*/ |
-int sqlite3AnalysisLoad(sqlite3 *db, int iDb){ |
- analysisInfo sInfo; |
- HashElem *i; |
- char *zSql; |
- int rc; |
- |
- assert( iDb>=0 && iDb<db->nDb ); |
- assert( db->aDb[iDb].pBt!=0 ); |
- |
- /* Clear any prior statistics */ |
- assert( sqlite3SchemaMutexHeld(db, iDb, 0) ); |
- for(i=sqliteHashFirst(&db->aDb[iDb].pSchema->idxHash);i;i=sqliteHashNext(i)){ |
- Index *pIdx = sqliteHashData(i); |
- sqlite3DefaultRowEst(pIdx); |
-#ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
- sqlite3DeleteIndexSamples(db, pIdx); |
- pIdx->aSample = 0; |
-#endif |
- } |
- |
- /* Check to make sure the sqlite_stat1 table exists */ |
- sInfo.db = db; |
- sInfo.zDatabase = db->aDb[iDb].zName; |
- if( sqlite3FindTable(db, "sqlite_stat1", sInfo.zDatabase)==0 ){ |
- return SQLITE_ERROR; |
- } |
- |
- /* Load new statistics out of the sqlite_stat1 table */ |
- zSql = sqlite3MPrintf(db, |
- "SELECT tbl,idx,stat FROM %Q.sqlite_stat1", sInfo.zDatabase); |
- if( zSql==0 ){ |
- rc = SQLITE_NOMEM; |
- }else{ |
- rc = sqlite3_exec(db, zSql, analysisLoader, &sInfo, 0); |
- sqlite3DbFree(db, zSql); |
- } |
- |
- |
- /* Load the statistics from the sqlite_stat4 table. */ |
-#ifdef SQLITE_ENABLE_STAT3_OR_STAT4 |
- if( rc==SQLITE_OK ){ |
- int lookasideEnabled = db->lookaside.bEnabled; |
- db->lookaside.bEnabled = 0; |
- rc = loadStat4(db, sInfo.zDatabase); |
- db->lookaside.bEnabled = lookasideEnabled; |
- } |
- for(i=sqliteHashFirst(&db->aDb[iDb].pSchema->idxHash);i;i=sqliteHashNext(i)){ |
- Index *pIdx = sqliteHashData(i); |
- sqlite3_free(pIdx->aiRowEst); |
- pIdx->aiRowEst = 0; |
- } |
-#endif |
- |
- if( rc==SQLITE_NOMEM ){ |
- db->mallocFailed = 1; |
- } |
- return rc; |
-} |
- |
- |
-#endif /* SQLITE_OMIT_ANALYZE */ |