| Index: third_party/sqlite/sqlite-src-3080704/src/vdbeaux.c
|
| diff --git a/third_party/sqlite/sqlite-src-3080704/src/vdbeaux.c b/third_party/sqlite/sqlite-src-3080704/src/vdbeaux.c
|
| deleted file mode 100644
|
| index c0018bb71cae5d486e5e94f90963d3ce509dc16e..0000000000000000000000000000000000000000
|
| --- a/third_party/sqlite/sqlite-src-3080704/src/vdbeaux.c
|
| +++ /dev/null
|
| @@ -1,4079 +0,0 @@
|
| -/*
|
| -** 2003 September 6
|
| -**
|
| -** The author disclaims copyright to this source code. In place of
|
| -** a legal notice, here is a blessing:
|
| -**
|
| -** May you do good and not evil.
|
| -** May you find forgiveness for yourself and forgive others.
|
| -** May you share freely, never taking more than you give.
|
| -**
|
| -*************************************************************************
|
| -** This file contains code used for creating, destroying, and populating
|
| -** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.)
|
| -*/
|
| -#include "sqliteInt.h"
|
| -#include "vdbeInt.h"
|
| -
|
| -/*
|
| -** Create a new virtual database engine.
|
| -*/
|
| -Vdbe *sqlite3VdbeCreate(Parse *pParse){
|
| - sqlite3 *db = pParse->db;
|
| - Vdbe *p;
|
| - p = sqlite3DbMallocZero(db, sizeof(Vdbe) );
|
| - if( p==0 ) return 0;
|
| - p->db = db;
|
| - if( db->pVdbe ){
|
| - db->pVdbe->pPrev = p;
|
| - }
|
| - p->pNext = db->pVdbe;
|
| - p->pPrev = 0;
|
| - db->pVdbe = p;
|
| - p->magic = VDBE_MAGIC_INIT;
|
| - p->pParse = pParse;
|
| - assert( pParse->aLabel==0 );
|
| - assert( pParse->nLabel==0 );
|
| - assert( pParse->nOpAlloc==0 );
|
| - return p;
|
| -}
|
| -
|
| -/*
|
| -** Remember the SQL string for a prepared statement.
|
| -*/
|
| -void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n, int isPrepareV2){
|
| - assert( isPrepareV2==1 || isPrepareV2==0 );
|
| - if( p==0 ) return;
|
| -#if defined(SQLITE_OMIT_TRACE) && !defined(SQLITE_ENABLE_SQLLOG)
|
| - if( !isPrepareV2 ) return;
|
| -#endif
|
| - assert( p->zSql==0 );
|
| - p->zSql = sqlite3DbStrNDup(p->db, z, n);
|
| - p->isPrepareV2 = (u8)isPrepareV2;
|
| -}
|
| -
|
| -/*
|
| -** Return the SQL associated with a prepared statement
|
| -*/
|
| -const char *sqlite3_sql(sqlite3_stmt *pStmt){
|
| - Vdbe *p = (Vdbe *)pStmt;
|
| - return (p && p->isPrepareV2) ? p->zSql : 0;
|
| -}
|
| -
|
| -/*
|
| -** Swap all content between two VDBE structures.
|
| -*/
|
| -void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){
|
| - Vdbe tmp, *pTmp;
|
| - char *zTmp;
|
| - tmp = *pA;
|
| - *pA = *pB;
|
| - *pB = tmp;
|
| - pTmp = pA->pNext;
|
| - pA->pNext = pB->pNext;
|
| - pB->pNext = pTmp;
|
| - pTmp = pA->pPrev;
|
| - pA->pPrev = pB->pPrev;
|
| - pB->pPrev = pTmp;
|
| - zTmp = pA->zSql;
|
| - pA->zSql = pB->zSql;
|
| - pB->zSql = zTmp;
|
| - pB->isPrepareV2 = pA->isPrepareV2;
|
| -}
|
| -
|
| -/*
|
| -** Resize the Vdbe.aOp array so that it is at least nOp elements larger
|
| -** than its current size. nOp is guaranteed to be less than or equal
|
| -** to 1024/sizeof(Op).
|
| -**
|
| -** If an out-of-memory error occurs while resizing the array, return
|
| -** SQLITE_NOMEM. In this case Vdbe.aOp and Parse.nOpAlloc remain
|
| -** unchanged (this is so that any opcodes already allocated can be
|
| -** correctly deallocated along with the rest of the Vdbe).
|
| -*/
|
| -static int growOpArray(Vdbe *v, int nOp){
|
| - VdbeOp *pNew;
|
| - Parse *p = v->pParse;
|
| -
|
| - /* The SQLITE_TEST_REALLOC_STRESS compile-time option is designed to force
|
| - ** more frequent reallocs and hence provide more opportunities for
|
| - ** simulated OOM faults. SQLITE_TEST_REALLOC_STRESS is generally used
|
| - ** during testing only. With SQLITE_TEST_REALLOC_STRESS grow the op array
|
| - ** by the minimum* amount required until the size reaches 512. Normal
|
| - ** operation (without SQLITE_TEST_REALLOC_STRESS) is to double the current
|
| - ** size of the op array or add 1KB of space, whichever is smaller. */
|
| -#ifdef SQLITE_TEST_REALLOC_STRESS
|
| - int nNew = (p->nOpAlloc>=512 ? p->nOpAlloc*2 : p->nOpAlloc+nOp);
|
| -#else
|
| - int nNew = (p->nOpAlloc ? p->nOpAlloc*2 : (int)(1024/sizeof(Op)));
|
| - UNUSED_PARAMETER(nOp);
|
| -#endif
|
| -
|
| - assert( nOp<=(1024/sizeof(Op)) );
|
| - assert( nNew>=(p->nOpAlloc+nOp) );
|
| - pNew = sqlite3DbRealloc(p->db, v->aOp, nNew*sizeof(Op));
|
| - if( pNew ){
|
| - p->nOpAlloc = sqlite3DbMallocSize(p->db, pNew)/sizeof(Op);
|
| - v->aOp = pNew;
|
| - }
|
| - return (pNew ? SQLITE_OK : SQLITE_NOMEM);
|
| -}
|
| -
|
| -#ifdef SQLITE_DEBUG
|
| -/* This routine is just a convenient place to set a breakpoint that will
|
| -** fire after each opcode is inserted and displayed using
|
| -** "PRAGMA vdbe_addoptrace=on".
|
| -*/
|
| -static void test_addop_breakpoint(void){
|
| - static int n = 0;
|
| - n++;
|
| -}
|
| -#endif
|
| -
|
| -/*
|
| -** Add a new instruction to the list of instructions current in the
|
| -** VDBE. Return the address of the new instruction.
|
| -**
|
| -** Parameters:
|
| -**
|
| -** p Pointer to the VDBE
|
| -**
|
| -** op The opcode for this instruction
|
| -**
|
| -** p1, p2, p3 Operands
|
| -**
|
| -** Use the sqlite3VdbeResolveLabel() function to fix an address and
|
| -** the sqlite3VdbeChangeP4() function to change the value of the P4
|
| -** operand.
|
| -*/
|
| -int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){
|
| - int i;
|
| - VdbeOp *pOp;
|
| -
|
| - i = p->nOp;
|
| - assert( p->magic==VDBE_MAGIC_INIT );
|
| - assert( op>0 && op<0xff );
|
| - if( p->pParse->nOpAlloc<=i ){
|
| - if( growOpArray(p, 1) ){
|
| - return 1;
|
| - }
|
| - }
|
| - p->nOp++;
|
| - pOp = &p->aOp[i];
|
| - pOp->opcode = (u8)op;
|
| - pOp->p5 = 0;
|
| - pOp->p1 = p1;
|
| - pOp->p2 = p2;
|
| - pOp->p3 = p3;
|
| - pOp->p4.p = 0;
|
| - pOp->p4type = P4_NOTUSED;
|
| -#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
|
| - pOp->zComment = 0;
|
| -#endif
|
| -#ifdef SQLITE_DEBUG
|
| - if( p->db->flags & SQLITE_VdbeAddopTrace ){
|
| - int jj, kk;
|
| - Parse *pParse = p->pParse;
|
| - for(jj=kk=0; jj<SQLITE_N_COLCACHE; jj++){
|
| - struct yColCache *x = pParse->aColCache + jj;
|
| - if( x->iLevel>pParse->iCacheLevel || x->iReg==0 ) continue;
|
| - printf(" r[%d]={%d:%d}", x->iReg, x->iTable, x->iColumn);
|
| - kk++;
|
| - }
|
| - if( kk ) printf("\n");
|
| - sqlite3VdbePrintOp(0, i, &p->aOp[i]);
|
| - test_addop_breakpoint();
|
| - }
|
| -#endif
|
| -#ifdef VDBE_PROFILE
|
| - pOp->cycles = 0;
|
| - pOp->cnt = 0;
|
| -#endif
|
| -#ifdef SQLITE_VDBE_COVERAGE
|
| - pOp->iSrcLine = 0;
|
| -#endif
|
| - return i;
|
| -}
|
| -int sqlite3VdbeAddOp0(Vdbe *p, int op){
|
| - return sqlite3VdbeAddOp3(p, op, 0, 0, 0);
|
| -}
|
| -int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){
|
| - return sqlite3VdbeAddOp3(p, op, p1, 0, 0);
|
| -}
|
| -int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){
|
| - return sqlite3VdbeAddOp3(p, op, p1, p2, 0);
|
| -}
|
| -
|
| -
|
| -/*
|
| -** Add an opcode that includes the p4 value as a pointer.
|
| -*/
|
| -int sqlite3VdbeAddOp4(
|
| - Vdbe *p, /* Add the opcode to this VM */
|
| - int op, /* The new opcode */
|
| - int p1, /* The P1 operand */
|
| - int p2, /* The P2 operand */
|
| - int p3, /* The P3 operand */
|
| - const char *zP4, /* The P4 operand */
|
| - int p4type /* P4 operand type */
|
| -){
|
| - int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
|
| - sqlite3VdbeChangeP4(p, addr, zP4, p4type);
|
| - return addr;
|
| -}
|
| -
|
| -/*
|
| -** Add an OP_ParseSchema opcode. This routine is broken out from
|
| -** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees
|
| -** as having been used.
|
| -**
|
| -** The zWhere string must have been obtained from sqlite3_malloc().
|
| -** This routine will take ownership of the allocated memory.
|
| -*/
|
| -void sqlite3VdbeAddParseSchemaOp(Vdbe *p, int iDb, char *zWhere){
|
| - int j;
|
| - int addr = sqlite3VdbeAddOp3(p, OP_ParseSchema, iDb, 0, 0);
|
| - sqlite3VdbeChangeP4(p, addr, zWhere, P4_DYNAMIC);
|
| - for(j=0; j<p->db->nDb; j++) sqlite3VdbeUsesBtree(p, j);
|
| -}
|
| -
|
| -/*
|
| -** Add an opcode that includes the p4 value as an integer.
|
| -*/
|
| -int sqlite3VdbeAddOp4Int(
|
| - Vdbe *p, /* Add the opcode to this VM */
|
| - int op, /* The new opcode */
|
| - int p1, /* The P1 operand */
|
| - int p2, /* The P2 operand */
|
| - int p3, /* The P3 operand */
|
| - int p4 /* The P4 operand as an integer */
|
| -){
|
| - int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
|
| - sqlite3VdbeChangeP4(p, addr, SQLITE_INT_TO_PTR(p4), P4_INT32);
|
| - return addr;
|
| -}
|
| -
|
| -/*
|
| -** Create a new symbolic label for an instruction that has yet to be
|
| -** coded. The symbolic label is really just a negative number. The
|
| -** label can be used as the P2 value of an operation. Later, when
|
| -** the label is resolved to a specific address, the VDBE will scan
|
| -** through its operation list and change all values of P2 which match
|
| -** the label into the resolved address.
|
| -**
|
| -** The VDBE knows that a P2 value is a label because labels are
|
| -** always negative and P2 values are suppose to be non-negative.
|
| -** Hence, a negative P2 value is a label that has yet to be resolved.
|
| -**
|
| -** Zero is returned if a malloc() fails.
|
| -*/
|
| -int sqlite3VdbeMakeLabel(Vdbe *v){
|
| - Parse *p = v->pParse;
|
| - int i = p->nLabel++;
|
| - assert( v->magic==VDBE_MAGIC_INIT );
|
| - if( (i & (i-1))==0 ){
|
| - p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel,
|
| - (i*2+1)*sizeof(p->aLabel[0]));
|
| - }
|
| - if( p->aLabel ){
|
| - p->aLabel[i] = -1;
|
| - }
|
| - return -1-i;
|
| -}
|
| -
|
| -/*
|
| -** Resolve label "x" to be the address of the next instruction to
|
| -** be inserted. The parameter "x" must have been obtained from
|
| -** a prior call to sqlite3VdbeMakeLabel().
|
| -*/
|
| -void sqlite3VdbeResolveLabel(Vdbe *v, int x){
|
| - Parse *p = v->pParse;
|
| - int j = -1-x;
|
| - assert( v->magic==VDBE_MAGIC_INIT );
|
| - assert( j<p->nLabel );
|
| - if( ALWAYS(j>=0) && p->aLabel ){
|
| - p->aLabel[j] = v->nOp;
|
| - }
|
| - p->iFixedOp = v->nOp - 1;
|
| -}
|
| -
|
| -/*
|
| -** Mark the VDBE as one that can only be run one time.
|
| -*/
|
| -void sqlite3VdbeRunOnlyOnce(Vdbe *p){
|
| - p->runOnlyOnce = 1;
|
| -}
|
| -
|
| -#ifdef SQLITE_DEBUG /* sqlite3AssertMayAbort() logic */
|
| -
|
| -/*
|
| -** The following type and function are used to iterate through all opcodes
|
| -** in a Vdbe main program and each of the sub-programs (triggers) it may
|
| -** invoke directly or indirectly. It should be used as follows:
|
| -**
|
| -** Op *pOp;
|
| -** VdbeOpIter sIter;
|
| -**
|
| -** memset(&sIter, 0, sizeof(sIter));
|
| -** sIter.v = v; // v is of type Vdbe*
|
| -** while( (pOp = opIterNext(&sIter)) ){
|
| -** // Do something with pOp
|
| -** }
|
| -** sqlite3DbFree(v->db, sIter.apSub);
|
| -**
|
| -*/
|
| -typedef struct VdbeOpIter VdbeOpIter;
|
| -struct VdbeOpIter {
|
| - Vdbe *v; /* Vdbe to iterate through the opcodes of */
|
| - SubProgram **apSub; /* Array of subprograms */
|
| - int nSub; /* Number of entries in apSub */
|
| - int iAddr; /* Address of next instruction to return */
|
| - int iSub; /* 0 = main program, 1 = first sub-program etc. */
|
| -};
|
| -static Op *opIterNext(VdbeOpIter *p){
|
| - Vdbe *v = p->v;
|
| - Op *pRet = 0;
|
| - Op *aOp;
|
| - int nOp;
|
| -
|
| - if( p->iSub<=p->nSub ){
|
| -
|
| - if( p->iSub==0 ){
|
| - aOp = v->aOp;
|
| - nOp = v->nOp;
|
| - }else{
|
| - aOp = p->apSub[p->iSub-1]->aOp;
|
| - nOp = p->apSub[p->iSub-1]->nOp;
|
| - }
|
| - assert( p->iAddr<nOp );
|
| -
|
| - pRet = &aOp[p->iAddr];
|
| - p->iAddr++;
|
| - if( p->iAddr==nOp ){
|
| - p->iSub++;
|
| - p->iAddr = 0;
|
| - }
|
| -
|
| - if( pRet->p4type==P4_SUBPROGRAM ){
|
| - int nByte = (p->nSub+1)*sizeof(SubProgram*);
|
| - int j;
|
| - for(j=0; j<p->nSub; j++){
|
| - if( p->apSub[j]==pRet->p4.pProgram ) break;
|
| - }
|
| - if( j==p->nSub ){
|
| - p->apSub = sqlite3DbReallocOrFree(v->db, p->apSub, nByte);
|
| - if( !p->apSub ){
|
| - pRet = 0;
|
| - }else{
|
| - p->apSub[p->nSub++] = pRet->p4.pProgram;
|
| - }
|
| - }
|
| - }
|
| - }
|
| -
|
| - return pRet;
|
| -}
|
| -
|
| -/*
|
| -** Check if the program stored in the VM associated with pParse may
|
| -** throw an ABORT exception (causing the statement, but not entire transaction
|
| -** to be rolled back). This condition is true if the main program or any
|
| -** sub-programs contains any of the following:
|
| -**
|
| -** * OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
|
| -** * OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
|
| -** * OP_Destroy
|
| -** * OP_VUpdate
|
| -** * OP_VRename
|
| -** * OP_FkCounter with P2==0 (immediate foreign key constraint)
|
| -**
|
| -** Then check that the value of Parse.mayAbort is true if an
|
| -** ABORT may be thrown, or false otherwise. Return true if it does
|
| -** match, or false otherwise. This function is intended to be used as
|
| -** part of an assert statement in the compiler. Similar to:
|
| -**
|
| -** assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) );
|
| -*/
|
| -int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){
|
| - int hasAbort = 0;
|
| - Op *pOp;
|
| - VdbeOpIter sIter;
|
| - memset(&sIter, 0, sizeof(sIter));
|
| - sIter.v = v;
|
| -
|
| - while( (pOp = opIterNext(&sIter))!=0 ){
|
| - int opcode = pOp->opcode;
|
| - if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename
|
| -#ifndef SQLITE_OMIT_FOREIGN_KEY
|
| - || (opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1)
|
| -#endif
|
| - || ((opcode==OP_Halt || opcode==OP_HaltIfNull)
|
| - && ((pOp->p1&0xff)==SQLITE_CONSTRAINT && pOp->p2==OE_Abort))
|
| - ){
|
| - hasAbort = 1;
|
| - break;
|
| - }
|
| - }
|
| - sqlite3DbFree(v->db, sIter.apSub);
|
| -
|
| - /* Return true if hasAbort==mayAbort. Or if a malloc failure occurred.
|
| - ** If malloc failed, then the while() loop above may not have iterated
|
| - ** through all opcodes and hasAbort may be set incorrectly. Return
|
| - ** true for this case to prevent the assert() in the callers frame
|
| - ** from failing. */
|
| - return ( v->db->mallocFailed || hasAbort==mayAbort );
|
| -}
|
| -#endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */
|
| -
|
| -/*
|
| -** Loop through the program looking for P2 values that are negative
|
| -** on jump instructions. Each such value is a label. Resolve the
|
| -** label by setting the P2 value to its correct non-zero value.
|
| -**
|
| -** This routine is called once after all opcodes have been inserted.
|
| -**
|
| -** Variable *pMaxFuncArgs is set to the maximum value of any P2 argument
|
| -** to an OP_Function, OP_AggStep or OP_VFilter opcode. This is used by
|
| -** sqlite3VdbeMakeReady() to size the Vdbe.apArg[] array.
|
| -**
|
| -** The Op.opflags field is set on all opcodes.
|
| -*/
|
| -static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){
|
| - int i;
|
| - int nMaxArgs = *pMaxFuncArgs;
|
| - Op *pOp;
|
| - Parse *pParse = p->pParse;
|
| - int *aLabel = pParse->aLabel;
|
| - p->readOnly = 1;
|
| - p->bIsReader = 0;
|
| - for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){
|
| - u8 opcode = pOp->opcode;
|
| -
|
| - /* NOTE: Be sure to update mkopcodeh.awk when adding or removing
|
| - ** cases from this switch! */
|
| - switch( opcode ){
|
| - case OP_Function:
|
| - case OP_AggStep: {
|
| - if( pOp->p5>nMaxArgs ) nMaxArgs = pOp->p5;
|
| - break;
|
| - }
|
| - case OP_Transaction: {
|
| - if( pOp->p2!=0 ) p->readOnly = 0;
|
| - /* fall thru */
|
| - }
|
| - case OP_AutoCommit:
|
| - case OP_Savepoint: {
|
| - p->bIsReader = 1;
|
| - break;
|
| - }
|
| -#ifndef SQLITE_OMIT_WAL
|
| - case OP_Checkpoint:
|
| -#endif
|
| - case OP_Vacuum:
|
| - case OP_JournalMode: {
|
| - p->readOnly = 0;
|
| - p->bIsReader = 1;
|
| - break;
|
| - }
|
| -#ifndef SQLITE_OMIT_VIRTUALTABLE
|
| - case OP_VUpdate: {
|
| - if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2;
|
| - break;
|
| - }
|
| - case OP_VFilter: {
|
| - int n;
|
| - assert( p->nOp - i >= 3 );
|
| - assert( pOp[-1].opcode==OP_Integer );
|
| - n = pOp[-1].p1;
|
| - if( n>nMaxArgs ) nMaxArgs = n;
|
| - break;
|
| - }
|
| -#endif
|
| - case OP_Next:
|
| - case OP_NextIfOpen:
|
| - case OP_SorterNext: {
|
| - pOp->p4.xAdvance = sqlite3BtreeNext;
|
| - pOp->p4type = P4_ADVANCE;
|
| - break;
|
| - }
|
| - case OP_Prev:
|
| - case OP_PrevIfOpen: {
|
| - pOp->p4.xAdvance = sqlite3BtreePrevious;
|
| - pOp->p4type = P4_ADVANCE;
|
| - break;
|
| - }
|
| - }
|
| -
|
| - pOp->opflags = sqlite3OpcodeProperty[opcode];
|
| - if( (pOp->opflags & OPFLG_JUMP)!=0 && pOp->p2<0 ){
|
| - assert( -1-pOp->p2<pParse->nLabel );
|
| - pOp->p2 = aLabel[-1-pOp->p2];
|
| - }
|
| - }
|
| - sqlite3DbFree(p->db, pParse->aLabel);
|
| - pParse->aLabel = 0;
|
| - pParse->nLabel = 0;
|
| - *pMaxFuncArgs = nMaxArgs;
|
| - assert( p->bIsReader!=0 || DbMaskAllZero(p->btreeMask) );
|
| -}
|
| -
|
| -/*
|
| -** Return the address of the next instruction to be inserted.
|
| -*/
|
| -int sqlite3VdbeCurrentAddr(Vdbe *p){
|
| - assert( p->magic==VDBE_MAGIC_INIT );
|
| - return p->nOp;
|
| -}
|
| -
|
| -/*
|
| -** This function returns a pointer to the array of opcodes associated with
|
| -** the Vdbe passed as the first argument. It is the callers responsibility
|
| -** to arrange for the returned array to be eventually freed using the
|
| -** vdbeFreeOpArray() function.
|
| -**
|
| -** Before returning, *pnOp is set to the number of entries in the returned
|
| -** array. Also, *pnMaxArg is set to the larger of its current value and
|
| -** the number of entries in the Vdbe.apArg[] array required to execute the
|
| -** returned program.
|
| -*/
|
| -VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){
|
| - VdbeOp *aOp = p->aOp;
|
| - assert( aOp && !p->db->mallocFailed );
|
| -
|
| - /* Check that sqlite3VdbeUsesBtree() was not called on this VM */
|
| - assert( DbMaskAllZero(p->btreeMask) );
|
| -
|
| - resolveP2Values(p, pnMaxArg);
|
| - *pnOp = p->nOp;
|
| - p->aOp = 0;
|
| - return aOp;
|
| -}
|
| -
|
| -/*
|
| -** Add a whole list of operations to the operation stack. Return the
|
| -** address of the first operation added.
|
| -*/
|
| -int sqlite3VdbeAddOpList(Vdbe *p, int nOp, VdbeOpList const *aOp, int iLineno){
|
| - int addr;
|
| - assert( p->magic==VDBE_MAGIC_INIT );
|
| - if( p->nOp + nOp > p->pParse->nOpAlloc && growOpArray(p, nOp) ){
|
| - return 0;
|
| - }
|
| - addr = p->nOp;
|
| - if( ALWAYS(nOp>0) ){
|
| - int i;
|
| - VdbeOpList const *pIn = aOp;
|
| - for(i=0; i<nOp; i++, pIn++){
|
| - int p2 = pIn->p2;
|
| - VdbeOp *pOut = &p->aOp[i+addr];
|
| - pOut->opcode = pIn->opcode;
|
| - pOut->p1 = pIn->p1;
|
| - if( p2<0 ){
|
| - assert( sqlite3OpcodeProperty[pOut->opcode] & OPFLG_JUMP );
|
| - pOut->p2 = addr + ADDR(p2);
|
| - }else{
|
| - pOut->p2 = p2;
|
| - }
|
| - pOut->p3 = pIn->p3;
|
| - pOut->p4type = P4_NOTUSED;
|
| - pOut->p4.p = 0;
|
| - pOut->p5 = 0;
|
| -#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
|
| - pOut->zComment = 0;
|
| -#endif
|
| -#ifdef SQLITE_VDBE_COVERAGE
|
| - pOut->iSrcLine = iLineno+i;
|
| -#else
|
| - (void)iLineno;
|
| -#endif
|
| -#ifdef SQLITE_DEBUG
|
| - if( p->db->flags & SQLITE_VdbeAddopTrace ){
|
| - sqlite3VdbePrintOp(0, i+addr, &p->aOp[i+addr]);
|
| - }
|
| -#endif
|
| - }
|
| - p->nOp += nOp;
|
| - }
|
| - return addr;
|
| -}
|
| -
|
| -/*
|
| -** Change the value of the P1 operand for a specific instruction.
|
| -** This routine is useful when a large program is loaded from a
|
| -** static array using sqlite3VdbeAddOpList but we want to make a
|
| -** few minor changes to the program.
|
| -*/
|
| -void sqlite3VdbeChangeP1(Vdbe *p, u32 addr, int val){
|
| - assert( p!=0 );
|
| - if( ((u32)p->nOp)>addr ){
|
| - p->aOp[addr].p1 = val;
|
| - }
|
| -}
|
| -
|
| -/*
|
| -** Change the value of the P2 operand for a specific instruction.
|
| -** This routine is useful for setting a jump destination.
|
| -*/
|
| -void sqlite3VdbeChangeP2(Vdbe *p, u32 addr, int val){
|
| - assert( p!=0 );
|
| - if( ((u32)p->nOp)>addr ){
|
| - p->aOp[addr].p2 = val;
|
| - }
|
| -}
|
| -
|
| -/*
|
| -** Change the value of the P3 operand for a specific instruction.
|
| -*/
|
| -void sqlite3VdbeChangeP3(Vdbe *p, u32 addr, int val){
|
| - assert( p!=0 );
|
| - if( ((u32)p->nOp)>addr ){
|
| - p->aOp[addr].p3 = val;
|
| - }
|
| -}
|
| -
|
| -/*
|
| -** Change the value of the P5 operand for the most recently
|
| -** added operation.
|
| -*/
|
| -void sqlite3VdbeChangeP5(Vdbe *p, u8 val){
|
| - assert( p!=0 );
|
| - if( p->aOp ){
|
| - assert( p->nOp>0 );
|
| - p->aOp[p->nOp-1].p5 = val;
|
| - }
|
| -}
|
| -
|
| -/*
|
| -** Change the P2 operand of instruction addr so that it points to
|
| -** the address of the next instruction to be coded.
|
| -*/
|
| -void sqlite3VdbeJumpHere(Vdbe *p, int addr){
|
| - sqlite3VdbeChangeP2(p, addr, p->nOp);
|
| - p->pParse->iFixedOp = p->nOp - 1;
|
| -}
|
| -
|
| -
|
| -/*
|
| -** If the input FuncDef structure is ephemeral, then free it. If
|
| -** the FuncDef is not ephermal, then do nothing.
|
| -*/
|
| -static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){
|
| - if( ALWAYS(pDef) && (pDef->funcFlags & SQLITE_FUNC_EPHEM)!=0 ){
|
| - sqlite3DbFree(db, pDef);
|
| - }
|
| -}
|
| -
|
| -static void vdbeFreeOpArray(sqlite3 *, Op *, int);
|
| -
|
| -/*
|
| -** Delete a P4 value if necessary.
|
| -*/
|
| -static void freeP4(sqlite3 *db, int p4type, void *p4){
|
| - if( p4 ){
|
| - assert( db );
|
| - switch( p4type ){
|
| - case P4_REAL:
|
| - case P4_INT64:
|
| - case P4_DYNAMIC:
|
| - case P4_INTARRAY: {
|
| - sqlite3DbFree(db, p4);
|
| - break;
|
| - }
|
| - case P4_KEYINFO: {
|
| - if( db->pnBytesFreed==0 ) sqlite3KeyInfoUnref((KeyInfo*)p4);
|
| - break;
|
| - }
|
| - case P4_MPRINTF: {
|
| - if( db->pnBytesFreed==0 ) sqlite3_free(p4);
|
| - break;
|
| - }
|
| - case P4_FUNCDEF: {
|
| - freeEphemeralFunction(db, (FuncDef*)p4);
|
| - break;
|
| - }
|
| - case P4_MEM: {
|
| - if( db->pnBytesFreed==0 ){
|
| - sqlite3ValueFree((sqlite3_value*)p4);
|
| - }else{
|
| - Mem *p = (Mem*)p4;
|
| - if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc);
|
| - sqlite3DbFree(db, p);
|
| - }
|
| - break;
|
| - }
|
| - case P4_VTAB : {
|
| - if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4);
|
| - break;
|
| - }
|
| - }
|
| - }
|
| -}
|
| -
|
| -/*
|
| -** Free the space allocated for aOp and any p4 values allocated for the
|
| -** opcodes contained within. If aOp is not NULL it is assumed to contain
|
| -** nOp entries.
|
| -*/
|
| -static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){
|
| - if( aOp ){
|
| - Op *pOp;
|
| - for(pOp=aOp; pOp<&aOp[nOp]; pOp++){
|
| - freeP4(db, pOp->p4type, pOp->p4.p);
|
| -#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
|
| - sqlite3DbFree(db, pOp->zComment);
|
| -#endif
|
| - }
|
| - }
|
| - sqlite3DbFree(db, aOp);
|
| -}
|
| -
|
| -/*
|
| -** Link the SubProgram object passed as the second argument into the linked
|
| -** list at Vdbe.pSubProgram. This list is used to delete all sub-program
|
| -** objects when the VM is no longer required.
|
| -*/
|
| -void sqlite3VdbeLinkSubProgram(Vdbe *pVdbe, SubProgram *p){
|
| - p->pNext = pVdbe->pProgram;
|
| - pVdbe->pProgram = p;
|
| -}
|
| -
|
| -/*
|
| -** Change the opcode at addr into OP_Noop
|
| -*/
|
| -void sqlite3VdbeChangeToNoop(Vdbe *p, int addr){
|
| - if( addr<p->nOp ){
|
| - VdbeOp *pOp = &p->aOp[addr];
|
| - sqlite3 *db = p->db;
|
| - freeP4(db, pOp->p4type, pOp->p4.p);
|
| - memset(pOp, 0, sizeof(pOp[0]));
|
| - pOp->opcode = OP_Noop;
|
| - if( addr==p->nOp-1 ) p->nOp--;
|
| - }
|
| -}
|
| -
|
| -/*
|
| -** If the last opcode is "op" and it is not a jump destination,
|
| -** then remove it. Return true if and only if an opcode was removed.
|
| -*/
|
| -int sqlite3VdbeDeletePriorOpcode(Vdbe *p, u8 op){
|
| - if( (p->nOp-1)>(p->pParse->iFixedOp) && p->aOp[p->nOp-1].opcode==op ){
|
| - sqlite3VdbeChangeToNoop(p, p->nOp-1);
|
| - return 1;
|
| - }else{
|
| - return 0;
|
| - }
|
| -}
|
| -
|
| -/*
|
| -** Change the value of the P4 operand for a specific instruction.
|
| -** This routine is useful when a large program is loaded from a
|
| -** static array using sqlite3VdbeAddOpList but we want to make a
|
| -** few minor changes to the program.
|
| -**
|
| -** If n>=0 then the P4 operand is dynamic, meaning that a copy of
|
| -** the string is made into memory obtained from sqlite3_malloc().
|
| -** A value of n==0 means copy bytes of zP4 up to and including the
|
| -** first null byte. If n>0 then copy n+1 bytes of zP4.
|
| -**
|
| -** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points
|
| -** to a string or structure that is guaranteed to exist for the lifetime of
|
| -** the Vdbe. In these cases we can just copy the pointer.
|
| -**
|
| -** If addr<0 then change P4 on the most recently inserted instruction.
|
| -*/
|
| -void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){
|
| - Op *pOp;
|
| - sqlite3 *db;
|
| - assert( p!=0 );
|
| - db = p->db;
|
| - assert( p->magic==VDBE_MAGIC_INIT );
|
| - if( p->aOp==0 || db->mallocFailed ){
|
| - if( n!=P4_VTAB ){
|
| - freeP4(db, n, (void*)*(char**)&zP4);
|
| - }
|
| - return;
|
| - }
|
| - assert( p->nOp>0 );
|
| - assert( addr<p->nOp );
|
| - if( addr<0 ){
|
| - addr = p->nOp - 1;
|
| - }
|
| - pOp = &p->aOp[addr];
|
| - assert( pOp->p4type==P4_NOTUSED
|
| - || pOp->p4type==P4_INT32
|
| - || pOp->p4type==P4_KEYINFO );
|
| - freeP4(db, pOp->p4type, pOp->p4.p);
|
| - pOp->p4.p = 0;
|
| - if( n==P4_INT32 ){
|
| - /* Note: this cast is safe, because the origin data point was an int
|
| - ** that was cast to a (const char *). */
|
| - pOp->p4.i = SQLITE_PTR_TO_INT(zP4);
|
| - pOp->p4type = P4_INT32;
|
| - }else if( zP4==0 ){
|
| - pOp->p4.p = 0;
|
| - pOp->p4type = P4_NOTUSED;
|
| - }else if( n==P4_KEYINFO ){
|
| - pOp->p4.p = (void*)zP4;
|
| - pOp->p4type = P4_KEYINFO;
|
| - }else if( n==P4_VTAB ){
|
| - pOp->p4.p = (void*)zP4;
|
| - pOp->p4type = P4_VTAB;
|
| - sqlite3VtabLock((VTable *)zP4);
|
| - assert( ((VTable *)zP4)->db==p->db );
|
| - }else if( n<0 ){
|
| - pOp->p4.p = (void*)zP4;
|
| - pOp->p4type = (signed char)n;
|
| - }else{
|
| - if( n==0 ) n = sqlite3Strlen30(zP4);
|
| - pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n);
|
| - pOp->p4type = P4_DYNAMIC;
|
| - }
|
| -}
|
| -
|
| -/*
|
| -** Set the P4 on the most recently added opcode to the KeyInfo for the
|
| -** index given.
|
| -*/
|
| -void sqlite3VdbeSetP4KeyInfo(Parse *pParse, Index *pIdx){
|
| - Vdbe *v = pParse->pVdbe;
|
| - assert( v!=0 );
|
| - assert( pIdx!=0 );
|
| - sqlite3VdbeChangeP4(v, -1, (char*)sqlite3KeyInfoOfIndex(pParse, pIdx),
|
| - P4_KEYINFO);
|
| -}
|
| -
|
| -#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
|
| -/*
|
| -** Change the comment on the most recently coded instruction. Or
|
| -** insert a No-op and add the comment to that new instruction. This
|
| -** makes the code easier to read during debugging. None of this happens
|
| -** in a production build.
|
| -*/
|
| -static void vdbeVComment(Vdbe *p, const char *zFormat, va_list ap){
|
| - assert( p->nOp>0 || p->aOp==0 );
|
| - assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed );
|
| - if( p->nOp ){
|
| - assert( p->aOp );
|
| - sqlite3DbFree(p->db, p->aOp[p->nOp-1].zComment);
|
| - p->aOp[p->nOp-1].zComment = sqlite3VMPrintf(p->db, zFormat, ap);
|
| - }
|
| -}
|
| -void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){
|
| - va_list ap;
|
| - if( p ){
|
| - va_start(ap, zFormat);
|
| - vdbeVComment(p, zFormat, ap);
|
| - va_end(ap);
|
| - }
|
| -}
|
| -void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){
|
| - va_list ap;
|
| - if( p ){
|
| - sqlite3VdbeAddOp0(p, OP_Noop);
|
| - va_start(ap, zFormat);
|
| - vdbeVComment(p, zFormat, ap);
|
| - va_end(ap);
|
| - }
|
| -}
|
| -#endif /* NDEBUG */
|
| -
|
| -#ifdef SQLITE_VDBE_COVERAGE
|
| -/*
|
| -** Set the value if the iSrcLine field for the previously coded instruction.
|
| -*/
|
| -void sqlite3VdbeSetLineNumber(Vdbe *v, int iLine){
|
| - sqlite3VdbeGetOp(v,-1)->iSrcLine = iLine;
|
| -}
|
| -#endif /* SQLITE_VDBE_COVERAGE */
|
| -
|
| -/*
|
| -** Return the opcode for a given address. If the address is -1, then
|
| -** return the most recently inserted opcode.
|
| -**
|
| -** If a memory allocation error has occurred prior to the calling of this
|
| -** routine, then a pointer to a dummy VdbeOp will be returned. That opcode
|
| -** is readable but not writable, though it is cast to a writable value.
|
| -** The return of a dummy opcode allows the call to continue functioning
|
| -** after an OOM fault without having to check to see if the return from
|
| -** this routine is a valid pointer. But because the dummy.opcode is 0,
|
| -** dummy will never be written to. This is verified by code inspection and
|
| -** by running with Valgrind.
|
| -*/
|
| -VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){
|
| - /* C89 specifies that the constant "dummy" will be initialized to all
|
| - ** zeros, which is correct. MSVC generates a warning, nevertheless. */
|
| - static VdbeOp dummy; /* Ignore the MSVC warning about no initializer */
|
| - assert( p->magic==VDBE_MAGIC_INIT );
|
| - if( addr<0 ){
|
| - addr = p->nOp - 1;
|
| - }
|
| - assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed );
|
| - if( p->db->mallocFailed ){
|
| - return (VdbeOp*)&dummy;
|
| - }else{
|
| - return &p->aOp[addr];
|
| - }
|
| -}
|
| -
|
| -#if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS)
|
| -/*
|
| -** Return an integer value for one of the parameters to the opcode pOp
|
| -** determined by character c.
|
| -*/
|
| -static int translateP(char c, const Op *pOp){
|
| - if( c=='1' ) return pOp->p1;
|
| - if( c=='2' ) return pOp->p2;
|
| - if( c=='3' ) return pOp->p3;
|
| - if( c=='4' ) return pOp->p4.i;
|
| - return pOp->p5;
|
| -}
|
| -
|
| -/*
|
| -** Compute a string for the "comment" field of a VDBE opcode listing.
|
| -**
|
| -** The Synopsis: field in comments in the vdbe.c source file gets converted
|
| -** to an extra string that is appended to the sqlite3OpcodeName(). In the
|
| -** absence of other comments, this synopsis becomes the comment on the opcode.
|
| -** Some translation occurs:
|
| -**
|
| -** "PX" -> "r[X]"
|
| -** "PX@PY" -> "r[X..X+Y-1]" or "r[x]" if y is 0 or 1
|
| -** "PX@PY+1" -> "r[X..X+Y]" or "r[x]" if y is 0
|
| -** "PY..PY" -> "r[X..Y]" or "r[x]" if y<=x
|
| -*/
|
| -static int displayComment(
|
| - const Op *pOp, /* The opcode to be commented */
|
| - const char *zP4, /* Previously obtained value for P4 */
|
| - char *zTemp, /* Write result here */
|
| - int nTemp /* Space available in zTemp[] */
|
| -){
|
| - const char *zOpName;
|
| - const char *zSynopsis;
|
| - int nOpName;
|
| - int ii, jj;
|
| - zOpName = sqlite3OpcodeName(pOp->opcode);
|
| - nOpName = sqlite3Strlen30(zOpName);
|
| - if( zOpName[nOpName+1] ){
|
| - int seenCom = 0;
|
| - char c;
|
| - zSynopsis = zOpName += nOpName + 1;
|
| - for(ii=jj=0; jj<nTemp-1 && (c = zSynopsis[ii])!=0; ii++){
|
| - if( c=='P' ){
|
| - c = zSynopsis[++ii];
|
| - if( c=='4' ){
|
| - sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", zP4);
|
| - }else if( c=='X' ){
|
| - sqlite3_snprintf(nTemp-jj, zTemp+jj, "%s", pOp->zComment);
|
| - seenCom = 1;
|
| - }else{
|
| - int v1 = translateP(c, pOp);
|
| - int v2;
|
| - sqlite3_snprintf(nTemp-jj, zTemp+jj, "%d", v1);
|
| - if( strncmp(zSynopsis+ii+1, "@P", 2)==0 ){
|
| - ii += 3;
|
| - jj += sqlite3Strlen30(zTemp+jj);
|
| - v2 = translateP(zSynopsis[ii], pOp);
|
| - if( strncmp(zSynopsis+ii+1,"+1",2)==0 ){
|
| - ii += 2;
|
| - v2++;
|
| - }
|
| - if( v2>1 ){
|
| - sqlite3_snprintf(nTemp-jj, zTemp+jj, "..%d", v1+v2-1);
|
| - }
|
| - }else if( strncmp(zSynopsis+ii+1, "..P3", 4)==0 && pOp->p3==0 ){
|
| - ii += 4;
|
| - }
|
| - }
|
| - jj += sqlite3Strlen30(zTemp+jj);
|
| - }else{
|
| - zTemp[jj++] = c;
|
| - }
|
| - }
|
| - if( !seenCom && jj<nTemp-5 && pOp->zComment ){
|
| - sqlite3_snprintf(nTemp-jj, zTemp+jj, "; %s", pOp->zComment);
|
| - jj += sqlite3Strlen30(zTemp+jj);
|
| - }
|
| - if( jj<nTemp ) zTemp[jj] = 0;
|
| - }else if( pOp->zComment ){
|
| - sqlite3_snprintf(nTemp, zTemp, "%s", pOp->zComment);
|
| - jj = sqlite3Strlen30(zTemp);
|
| - }else{
|
| - zTemp[0] = 0;
|
| - jj = 0;
|
| - }
|
| - return jj;
|
| -}
|
| -#endif /* SQLITE_DEBUG */
|
| -
|
| -
|
| -#if !defined(SQLITE_OMIT_EXPLAIN) || !defined(NDEBUG) \
|
| - || defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
|
| -/*
|
| -** Compute a string that describes the P4 parameter for an opcode.
|
| -** Use zTemp for any required temporary buffer space.
|
| -*/
|
| -static char *displayP4(Op *pOp, char *zTemp, int nTemp){
|
| - char *zP4 = zTemp;
|
| - assert( nTemp>=20 );
|
| - switch( pOp->p4type ){
|
| - case P4_KEYINFO: {
|
| - int i, j;
|
| - KeyInfo *pKeyInfo = pOp->p4.pKeyInfo;
|
| - assert( pKeyInfo->aSortOrder!=0 );
|
| - sqlite3_snprintf(nTemp, zTemp, "k(%d", pKeyInfo->nField);
|
| - i = sqlite3Strlen30(zTemp);
|
| - for(j=0; j<pKeyInfo->nField; j++){
|
| - CollSeq *pColl = pKeyInfo->aColl[j];
|
| - const char *zColl = pColl ? pColl->zName : "nil";
|
| - int n = sqlite3Strlen30(zColl);
|
| - if( n==6 && memcmp(zColl,"BINARY",6)==0 ){
|
| - zColl = "B";
|
| - n = 1;
|
| - }
|
| - if( i+n>nTemp-6 ){
|
| - memcpy(&zTemp[i],",...",4);
|
| - break;
|
| - }
|
| - zTemp[i++] = ',';
|
| - if( pKeyInfo->aSortOrder[j] ){
|
| - zTemp[i++] = '-';
|
| - }
|
| - memcpy(&zTemp[i], zColl, n+1);
|
| - i += n;
|
| - }
|
| - zTemp[i++] = ')';
|
| - zTemp[i] = 0;
|
| - assert( i<nTemp );
|
| - break;
|
| - }
|
| - case P4_COLLSEQ: {
|
| - CollSeq *pColl = pOp->p4.pColl;
|
| - sqlite3_snprintf(nTemp, zTemp, "(%.20s)", pColl->zName);
|
| - break;
|
| - }
|
| - case P4_FUNCDEF: {
|
| - FuncDef *pDef = pOp->p4.pFunc;
|
| - sqlite3_snprintf(nTemp, zTemp, "%s(%d)", pDef->zName, pDef->nArg);
|
| - break;
|
| - }
|
| - case P4_INT64: {
|
| - sqlite3_snprintf(nTemp, zTemp, "%lld", *pOp->p4.pI64);
|
| - break;
|
| - }
|
| - case P4_INT32: {
|
| - sqlite3_snprintf(nTemp, zTemp, "%d", pOp->p4.i);
|
| - break;
|
| - }
|
| - case P4_REAL: {
|
| - sqlite3_snprintf(nTemp, zTemp, "%.16g", *pOp->p4.pReal);
|
| - break;
|
| - }
|
| - case P4_MEM: {
|
| - Mem *pMem = pOp->p4.pMem;
|
| - if( pMem->flags & MEM_Str ){
|
| - zP4 = pMem->z;
|
| - }else if( pMem->flags & MEM_Int ){
|
| - sqlite3_snprintf(nTemp, zTemp, "%lld", pMem->u.i);
|
| - }else if( pMem->flags & MEM_Real ){
|
| - sqlite3_snprintf(nTemp, zTemp, "%.16g", pMem->u.r);
|
| - }else if( pMem->flags & MEM_Null ){
|
| - sqlite3_snprintf(nTemp, zTemp, "NULL");
|
| - }else{
|
| - assert( pMem->flags & MEM_Blob );
|
| - zP4 = "(blob)";
|
| - }
|
| - break;
|
| - }
|
| -#ifndef SQLITE_OMIT_VIRTUALTABLE
|
| - case P4_VTAB: {
|
| - sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab;
|
| - sqlite3_snprintf(nTemp, zTemp, "vtab:%p:%p", pVtab, pVtab->pModule);
|
| - break;
|
| - }
|
| -#endif
|
| - case P4_INTARRAY: {
|
| - sqlite3_snprintf(nTemp, zTemp, "intarray");
|
| - break;
|
| - }
|
| - case P4_SUBPROGRAM: {
|
| - sqlite3_snprintf(nTemp, zTemp, "program");
|
| - break;
|
| - }
|
| - case P4_ADVANCE: {
|
| - zTemp[0] = 0;
|
| - break;
|
| - }
|
| - default: {
|
| - zP4 = pOp->p4.z;
|
| - if( zP4==0 ){
|
| - zP4 = zTemp;
|
| - zTemp[0] = 0;
|
| - }
|
| - }
|
| - }
|
| - assert( zP4!=0 );
|
| - return zP4;
|
| -}
|
| -#endif
|
| -
|
| -/*
|
| -** Declare to the Vdbe that the BTree object at db->aDb[i] is used.
|
| -**
|
| -** The prepared statements need to know in advance the complete set of
|
| -** attached databases that will be use. A mask of these databases
|
| -** is maintained in p->btreeMask. The p->lockMask value is the subset of
|
| -** p->btreeMask of databases that will require a lock.
|
| -*/
|
| -void sqlite3VdbeUsesBtree(Vdbe *p, int i){
|
| - assert( i>=0 && i<p->db->nDb && i<(int)sizeof(yDbMask)*8 );
|
| - assert( i<(int)sizeof(p->btreeMask)*8 );
|
| - DbMaskSet(p->btreeMask, i);
|
| - if( i!=1 && sqlite3BtreeSharable(p->db->aDb[i].pBt) ){
|
| - DbMaskSet(p->lockMask, i);
|
| - }
|
| -}
|
| -
|
| -#if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0
|
| -/*
|
| -** If SQLite is compiled to support shared-cache mode and to be threadsafe,
|
| -** this routine obtains the mutex associated with each BtShared structure
|
| -** that may be accessed by the VM passed as an argument. In doing so it also
|
| -** sets the BtShared.db member of each of the BtShared structures, ensuring
|
| -** that the correct busy-handler callback is invoked if required.
|
| -**
|
| -** If SQLite is not threadsafe but does support shared-cache mode, then
|
| -** sqlite3BtreeEnter() is invoked to set the BtShared.db variables
|
| -** of all of BtShared structures accessible via the database handle
|
| -** associated with the VM.
|
| -**
|
| -** If SQLite is not threadsafe and does not support shared-cache mode, this
|
| -** function is a no-op.
|
| -**
|
| -** The p->btreeMask field is a bitmask of all btrees that the prepared
|
| -** statement p will ever use. Let N be the number of bits in p->btreeMask
|
| -** corresponding to btrees that use shared cache. Then the runtime of
|
| -** this routine is N*N. But as N is rarely more than 1, this should not
|
| -** be a problem.
|
| -*/
|
| -void sqlite3VdbeEnter(Vdbe *p){
|
| - int i;
|
| - sqlite3 *db;
|
| - Db *aDb;
|
| - int nDb;
|
| - if( DbMaskAllZero(p->lockMask) ) return; /* The common case */
|
| - db = p->db;
|
| - aDb = db->aDb;
|
| - nDb = db->nDb;
|
| - for(i=0; i<nDb; i++){
|
| - if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){
|
| - sqlite3BtreeEnter(aDb[i].pBt);
|
| - }
|
| - }
|
| -}
|
| -#endif
|
| -
|
| -#if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0
|
| -/*
|
| -** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter().
|
| -*/
|
| -void sqlite3VdbeLeave(Vdbe *p){
|
| - int i;
|
| - sqlite3 *db;
|
| - Db *aDb;
|
| - int nDb;
|
| - if( DbMaskAllZero(p->lockMask) ) return; /* The common case */
|
| - db = p->db;
|
| - aDb = db->aDb;
|
| - nDb = db->nDb;
|
| - for(i=0; i<nDb; i++){
|
| - if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){
|
| - sqlite3BtreeLeave(aDb[i].pBt);
|
| - }
|
| - }
|
| -}
|
| -#endif
|
| -
|
| -#if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
|
| -/*
|
| -** Print a single opcode. This routine is used for debugging only.
|
| -*/
|
| -void sqlite3VdbePrintOp(FILE *pOut, int pc, Op *pOp){
|
| - char *zP4;
|
| - char zPtr[50];
|
| - char zCom[100];
|
| - static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-13s %.2X %s\n";
|
| - if( pOut==0 ) pOut = stdout;
|
| - zP4 = displayP4(pOp, zPtr, sizeof(zPtr));
|
| -#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
|
| - displayComment(pOp, zP4, zCom, sizeof(zCom));
|
| -#else
|
| - zCom[0] = 0;
|
| -#endif
|
| - /* NB: The sqlite3OpcodeName() function is implemented by code created
|
| - ** by the mkopcodeh.awk and mkopcodec.awk scripts which extract the
|
| - ** information from the vdbe.c source text */
|
| - fprintf(pOut, zFormat1, pc,
|
| - sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, zP4, pOp->p5,
|
| - zCom
|
| - );
|
| - fflush(pOut);
|
| -}
|
| -#endif
|
| -
|
| -/*
|
| -** Release an array of N Mem elements
|
| -*/
|
| -static void releaseMemArray(Mem *p, int N){
|
| - if( p && N ){
|
| - Mem *pEnd = &p[N];
|
| - sqlite3 *db = p->db;
|
| - u8 malloc_failed = db->mallocFailed;
|
| - if( db->pnBytesFreed ){
|
| - do{
|
| - if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc);
|
| - }while( (++p)<pEnd );
|
| - return;
|
| - }
|
| - do{
|
| - assert( (&p[1])==pEnd || p[0].db==p[1].db );
|
| - assert( sqlite3VdbeCheckMemInvariants(p) );
|
| -
|
| - /* This block is really an inlined version of sqlite3VdbeMemRelease()
|
| - ** that takes advantage of the fact that the memory cell value is
|
| - ** being set to NULL after releasing any dynamic resources.
|
| - **
|
| - ** The justification for duplicating code is that according to
|
| - ** callgrind, this causes a certain test case to hit the CPU 4.7
|
| - ** percent less (x86 linux, gcc version 4.1.2, -O6) than if
|
| - ** sqlite3MemRelease() were called from here. With -O2, this jumps
|
| - ** to 6.6 percent. The test case is inserting 1000 rows into a table
|
| - ** with no indexes using a single prepared INSERT statement, bind()
|
| - ** and reset(). Inserts are grouped into a transaction.
|
| - */
|
| - testcase( p->flags & MEM_Agg );
|
| - testcase( p->flags & MEM_Dyn );
|
| - testcase( p->flags & MEM_Frame );
|
| - testcase( p->flags & MEM_RowSet );
|
| - if( p->flags&(MEM_Agg|MEM_Dyn|MEM_Frame|MEM_RowSet) ){
|
| - sqlite3VdbeMemRelease(p);
|
| - }else if( p->szMalloc ){
|
| - sqlite3DbFree(db, p->zMalloc);
|
| - p->szMalloc = 0;
|
| - }
|
| -
|
| - p->flags = MEM_Undefined;
|
| - }while( (++p)<pEnd );
|
| - db->mallocFailed = malloc_failed;
|
| - }
|
| -}
|
| -
|
| -/*
|
| -** Delete a VdbeFrame object and its contents. VdbeFrame objects are
|
| -** allocated by the OP_Program opcode in sqlite3VdbeExec().
|
| -*/
|
| -void sqlite3VdbeFrameDelete(VdbeFrame *p){
|
| - int i;
|
| - Mem *aMem = VdbeFrameMem(p);
|
| - VdbeCursor **apCsr = (VdbeCursor **)&aMem[p->nChildMem];
|
| - for(i=0; i<p->nChildCsr; i++){
|
| - sqlite3VdbeFreeCursor(p->v, apCsr[i]);
|
| - }
|
| - releaseMemArray(aMem, p->nChildMem);
|
| - sqlite3DbFree(p->v->db, p);
|
| -}
|
| -
|
| -#ifndef SQLITE_OMIT_EXPLAIN
|
| -/*
|
| -** Give a listing of the program in the virtual machine.
|
| -**
|
| -** The interface is the same as sqlite3VdbeExec(). But instead of
|
| -** running the code, it invokes the callback once for each instruction.
|
| -** This feature is used to implement "EXPLAIN".
|
| -**
|
| -** When p->explain==1, each instruction is listed. When
|
| -** p->explain==2, only OP_Explain instructions are listed and these
|
| -** are shown in a different format. p->explain==2 is used to implement
|
| -** EXPLAIN QUERY PLAN.
|
| -**
|
| -** When p->explain==1, first the main program is listed, then each of
|
| -** the trigger subprograms are listed one by one.
|
| -*/
|
| -int sqlite3VdbeList(
|
| - Vdbe *p /* The VDBE */
|
| -){
|
| - int nRow; /* Stop when row count reaches this */
|
| - int nSub = 0; /* Number of sub-vdbes seen so far */
|
| - SubProgram **apSub = 0; /* Array of sub-vdbes */
|
| - Mem *pSub = 0; /* Memory cell hold array of subprogs */
|
| - sqlite3 *db = p->db; /* The database connection */
|
| - int i; /* Loop counter */
|
| - int rc = SQLITE_OK; /* Return code */
|
| - Mem *pMem = &p->aMem[1]; /* First Mem of result set */
|
| -
|
| - assert( p->explain );
|
| - assert( p->magic==VDBE_MAGIC_RUN );
|
| - assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM );
|
| -
|
| - /* Even though this opcode does not use dynamic strings for
|
| - ** the result, result columns may become dynamic if the user calls
|
| - ** sqlite3_column_text16(), causing a translation to UTF-16 encoding.
|
| - */
|
| - releaseMemArray(pMem, 8);
|
| - p->pResultSet = 0;
|
| -
|
| - if( p->rc==SQLITE_NOMEM ){
|
| - /* This happens if a malloc() inside a call to sqlite3_column_text() or
|
| - ** sqlite3_column_text16() failed. */
|
| - db->mallocFailed = 1;
|
| - return SQLITE_ERROR;
|
| - }
|
| -
|
| - /* When the number of output rows reaches nRow, that means the
|
| - ** listing has finished and sqlite3_step() should return SQLITE_DONE.
|
| - ** nRow is the sum of the number of rows in the main program, plus
|
| - ** the sum of the number of rows in all trigger subprograms encountered
|
| - ** so far. The nRow value will increase as new trigger subprograms are
|
| - ** encountered, but p->pc will eventually catch up to nRow.
|
| - */
|
| - nRow = p->nOp;
|
| - if( p->explain==1 ){
|
| - /* The first 8 memory cells are used for the result set. So we will
|
| - ** commandeer the 9th cell to use as storage for an array of pointers
|
| - ** to trigger subprograms. The VDBE is guaranteed to have at least 9
|
| - ** cells. */
|
| - assert( p->nMem>9 );
|
| - pSub = &p->aMem[9];
|
| - if( pSub->flags&MEM_Blob ){
|
| - /* On the first call to sqlite3_step(), pSub will hold a NULL. It is
|
| - ** initialized to a BLOB by the P4_SUBPROGRAM processing logic below */
|
| - nSub = pSub->n/sizeof(Vdbe*);
|
| - apSub = (SubProgram **)pSub->z;
|
| - }
|
| - for(i=0; i<nSub; i++){
|
| - nRow += apSub[i]->nOp;
|
| - }
|
| - }
|
| -
|
| - do{
|
| - i = p->pc++;
|
| - }while( i<nRow && p->explain==2 && p->aOp[i].opcode!=OP_Explain );
|
| - if( i>=nRow ){
|
| - p->rc = SQLITE_OK;
|
| - rc = SQLITE_DONE;
|
| - }else if( db->u1.isInterrupted ){
|
| - p->rc = SQLITE_INTERRUPT;
|
| - rc = SQLITE_ERROR;
|
| - sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(p->rc));
|
| - }else{
|
| - char *zP4;
|
| - Op *pOp;
|
| - if( i<p->nOp ){
|
| - /* The output line number is small enough that we are still in the
|
| - ** main program. */
|
| - pOp = &p->aOp[i];
|
| - }else{
|
| - /* We are currently listing subprograms. Figure out which one and
|
| - ** pick up the appropriate opcode. */
|
| - int j;
|
| - i -= p->nOp;
|
| - for(j=0; i>=apSub[j]->nOp; j++){
|
| - i -= apSub[j]->nOp;
|
| - }
|
| - pOp = &apSub[j]->aOp[i];
|
| - }
|
| - if( p->explain==1 ){
|
| - pMem->flags = MEM_Int;
|
| - pMem->u.i = i; /* Program counter */
|
| - pMem++;
|
| -
|
| - pMem->flags = MEM_Static|MEM_Str|MEM_Term;
|
| - pMem->z = (char*)sqlite3OpcodeName(pOp->opcode); /* Opcode */
|
| - assert( pMem->z!=0 );
|
| - pMem->n = sqlite3Strlen30(pMem->z);
|
| - pMem->enc = SQLITE_UTF8;
|
| - pMem++;
|
| -
|
| - /* When an OP_Program opcode is encounter (the only opcode that has
|
| - ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms
|
| - ** kept in p->aMem[9].z to hold the new program - assuming this subprogram
|
| - ** has not already been seen.
|
| - */
|
| - if( pOp->p4type==P4_SUBPROGRAM ){
|
| - int nByte = (nSub+1)*sizeof(SubProgram*);
|
| - int j;
|
| - for(j=0; j<nSub; j++){
|
| - if( apSub[j]==pOp->p4.pProgram ) break;
|
| - }
|
| - if( j==nSub && SQLITE_OK==sqlite3VdbeMemGrow(pSub, nByte, nSub!=0) ){
|
| - apSub = (SubProgram **)pSub->z;
|
| - apSub[nSub++] = pOp->p4.pProgram;
|
| - pSub->flags |= MEM_Blob;
|
| - pSub->n = nSub*sizeof(SubProgram*);
|
| - }
|
| - }
|
| - }
|
| -
|
| - pMem->flags = MEM_Int;
|
| - pMem->u.i = pOp->p1; /* P1 */
|
| - pMem++;
|
| -
|
| - pMem->flags = MEM_Int;
|
| - pMem->u.i = pOp->p2; /* P2 */
|
| - pMem++;
|
| -
|
| - pMem->flags = MEM_Int;
|
| - pMem->u.i = pOp->p3; /* P3 */
|
| - pMem++;
|
| -
|
| - if( sqlite3VdbeMemClearAndResize(pMem, 32) ){ /* P4 */
|
| - assert( p->db->mallocFailed );
|
| - return SQLITE_ERROR;
|
| - }
|
| - pMem->flags = MEM_Str|MEM_Term;
|
| - zP4 = displayP4(pOp, pMem->z, 32);
|
| - if( zP4!=pMem->z ){
|
| - sqlite3VdbeMemSetStr(pMem, zP4, -1, SQLITE_UTF8, 0);
|
| - }else{
|
| - assert( pMem->z!=0 );
|
| - pMem->n = sqlite3Strlen30(pMem->z);
|
| - pMem->enc = SQLITE_UTF8;
|
| - }
|
| - pMem++;
|
| -
|
| - if( p->explain==1 ){
|
| - if( sqlite3VdbeMemClearAndResize(pMem, 4) ){
|
| - assert( p->db->mallocFailed );
|
| - return SQLITE_ERROR;
|
| - }
|
| - pMem->flags = MEM_Str|MEM_Term;
|
| - pMem->n = 2;
|
| - sqlite3_snprintf(3, pMem->z, "%.2x", pOp->p5); /* P5 */
|
| - pMem->enc = SQLITE_UTF8;
|
| - pMem++;
|
| -
|
| -#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
|
| - if( sqlite3VdbeMemClearAndResize(pMem, 500) ){
|
| - assert( p->db->mallocFailed );
|
| - return SQLITE_ERROR;
|
| - }
|
| - pMem->flags = MEM_Str|MEM_Term;
|
| - pMem->n = displayComment(pOp, zP4, pMem->z, 500);
|
| - pMem->enc = SQLITE_UTF8;
|
| -#else
|
| - pMem->flags = MEM_Null; /* Comment */
|
| -#endif
|
| - }
|
| -
|
| - p->nResColumn = 8 - 4*(p->explain-1);
|
| - p->pResultSet = &p->aMem[1];
|
| - p->rc = SQLITE_OK;
|
| - rc = SQLITE_ROW;
|
| - }
|
| - return rc;
|
| -}
|
| -#endif /* SQLITE_OMIT_EXPLAIN */
|
| -
|
| -#ifdef SQLITE_DEBUG
|
| -/*
|
| -** Print the SQL that was used to generate a VDBE program.
|
| -*/
|
| -void sqlite3VdbePrintSql(Vdbe *p){
|
| - const char *z = 0;
|
| - if( p->zSql ){
|
| - z = p->zSql;
|
| - }else if( p->nOp>=1 ){
|
| - const VdbeOp *pOp = &p->aOp[0];
|
| - if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){
|
| - z = pOp->p4.z;
|
| - while( sqlite3Isspace(*z) ) z++;
|
| - }
|
| - }
|
| - if( z ) printf("SQL: [%s]\n", z);
|
| -}
|
| -#endif
|
| -
|
| -#if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE)
|
| -/*
|
| -** Print an IOTRACE message showing SQL content.
|
| -*/
|
| -void sqlite3VdbeIOTraceSql(Vdbe *p){
|
| - int nOp = p->nOp;
|
| - VdbeOp *pOp;
|
| - if( sqlite3IoTrace==0 ) return;
|
| - if( nOp<1 ) return;
|
| - pOp = &p->aOp[0];
|
| - if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){
|
| - int i, j;
|
| - char z[1000];
|
| - sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z);
|
| - for(i=0; sqlite3Isspace(z[i]); i++){}
|
| - for(j=0; z[i]; i++){
|
| - if( sqlite3Isspace(z[i]) ){
|
| - if( z[i-1]!=' ' ){
|
| - z[j++] = ' ';
|
| - }
|
| - }else{
|
| - z[j++] = z[i];
|
| - }
|
| - }
|
| - z[j] = 0;
|
| - sqlite3IoTrace("SQL %s\n", z);
|
| - }
|
| -}
|
| -#endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */
|
| -
|
| -/*
|
| -** Allocate space from a fixed size buffer and return a pointer to
|
| -** that space. If insufficient space is available, return NULL.
|
| -**
|
| -** The pBuf parameter is the initial value of a pointer which will
|
| -** receive the new memory. pBuf is normally NULL. If pBuf is not
|
| -** NULL, it means that memory space has already been allocated and that
|
| -** this routine should not allocate any new memory. When pBuf is not
|
| -** NULL simply return pBuf. Only allocate new memory space when pBuf
|
| -** is NULL.
|
| -**
|
| -** nByte is the number of bytes of space needed.
|
| -**
|
| -** *ppFrom points to available space and pEnd points to the end of the
|
| -** available space. When space is allocated, *ppFrom is advanced past
|
| -** the end of the allocated space.
|
| -**
|
| -** *pnByte is a counter of the number of bytes of space that have failed
|
| -** to allocate. If there is insufficient space in *ppFrom to satisfy the
|
| -** request, then increment *pnByte by the amount of the request.
|
| -*/
|
| -static void *allocSpace(
|
| - void *pBuf, /* Where return pointer will be stored */
|
| - int nByte, /* Number of bytes to allocate */
|
| - u8 **ppFrom, /* IN/OUT: Allocate from *ppFrom */
|
| - u8 *pEnd, /* Pointer to 1 byte past the end of *ppFrom buffer */
|
| - int *pnByte /* If allocation cannot be made, increment *pnByte */
|
| -){
|
| - assert( EIGHT_BYTE_ALIGNMENT(*ppFrom) );
|
| - if( pBuf ) return pBuf;
|
| - nByte = ROUND8(nByte);
|
| - if( &(*ppFrom)[nByte] <= pEnd ){
|
| - pBuf = (void*)*ppFrom;
|
| - *ppFrom += nByte;
|
| - }else{
|
| - *pnByte += nByte;
|
| - }
|
| - return pBuf;
|
| -}
|
| -
|
| -/*
|
| -** Rewind the VDBE back to the beginning in preparation for
|
| -** running it.
|
| -*/
|
| -void sqlite3VdbeRewind(Vdbe *p){
|
| -#if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
|
| - int i;
|
| -#endif
|
| - assert( p!=0 );
|
| - assert( p->magic==VDBE_MAGIC_INIT );
|
| -
|
| - /* There should be at least one opcode.
|
| - */
|
| - assert( p->nOp>0 );
|
| -
|
| - /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. */
|
| - p->magic = VDBE_MAGIC_RUN;
|
| -
|
| -#ifdef SQLITE_DEBUG
|
| - for(i=1; i<p->nMem; i++){
|
| - assert( p->aMem[i].db==p->db );
|
| - }
|
| -#endif
|
| - p->pc = -1;
|
| - p->rc = SQLITE_OK;
|
| - p->errorAction = OE_Abort;
|
| - p->magic = VDBE_MAGIC_RUN;
|
| - p->nChange = 0;
|
| - p->cacheCtr = 1;
|
| - p->minWriteFileFormat = 255;
|
| - p->iStatement = 0;
|
| - p->nFkConstraint = 0;
|
| -#ifdef VDBE_PROFILE
|
| - for(i=0; i<p->nOp; i++){
|
| - p->aOp[i].cnt = 0;
|
| - p->aOp[i].cycles = 0;
|
| - }
|
| -#endif
|
| -}
|
| -
|
| -/*
|
| -** Prepare a virtual machine for execution for the first time after
|
| -** creating the virtual machine. This involves things such
|
| -** as allocating registers and initializing the program counter.
|
| -** After the VDBE has be prepped, it can be executed by one or more
|
| -** calls to sqlite3VdbeExec().
|
| -**
|
| -** This function may be called exactly once on each virtual machine.
|
| -** After this routine is called the VM has been "packaged" and is ready
|
| -** to run. After this routine is called, further calls to
|
| -** sqlite3VdbeAddOp() functions are prohibited. This routine disconnects
|
| -** the Vdbe from the Parse object that helped generate it so that the
|
| -** the Vdbe becomes an independent entity and the Parse object can be
|
| -** destroyed.
|
| -**
|
| -** Use the sqlite3VdbeRewind() procedure to restore a virtual machine back
|
| -** to its initial state after it has been run.
|
| -*/
|
| -void sqlite3VdbeMakeReady(
|
| - Vdbe *p, /* The VDBE */
|
| - Parse *pParse /* Parsing context */
|
| -){
|
| - sqlite3 *db; /* The database connection */
|
| - int nVar; /* Number of parameters */
|
| - int nMem; /* Number of VM memory registers */
|
| - int nCursor; /* Number of cursors required */
|
| - int nArg; /* Number of arguments in subprograms */
|
| - int nOnce; /* Number of OP_Once instructions */
|
| - int n; /* Loop counter */
|
| - u8 *zCsr; /* Memory available for allocation */
|
| - u8 *zEnd; /* First byte past allocated memory */
|
| - int nByte; /* How much extra memory is needed */
|
| -
|
| - assert( p!=0 );
|
| - assert( p->nOp>0 );
|
| - assert( pParse!=0 );
|
| - assert( p->magic==VDBE_MAGIC_INIT );
|
| - assert( pParse==p->pParse );
|
| - db = p->db;
|
| - assert( db->mallocFailed==0 );
|
| - nVar = pParse->nVar;
|
| - nMem = pParse->nMem;
|
| - nCursor = pParse->nTab;
|
| - nArg = pParse->nMaxArg;
|
| - nOnce = pParse->nOnce;
|
| - if( nOnce==0 ) nOnce = 1; /* Ensure at least one byte in p->aOnceFlag[] */
|
| -
|
| - /* For each cursor required, also allocate a memory cell. Memory
|
| - ** cells (nMem+1-nCursor)..nMem, inclusive, will never be used by
|
| - ** the vdbe program. Instead they are used to allocate space for
|
| - ** VdbeCursor/BtCursor structures. The blob of memory associated with
|
| - ** cursor 0 is stored in memory cell nMem. Memory cell (nMem-1)
|
| - ** stores the blob of memory associated with cursor 1, etc.
|
| - **
|
| - ** See also: allocateCursor().
|
| - */
|
| - nMem += nCursor;
|
| -
|
| - /* Allocate space for memory registers, SQL variables, VDBE cursors and
|
| - ** an array to marshal SQL function arguments in.
|
| - */
|
| - zCsr = (u8*)&p->aOp[p->nOp]; /* Memory avaliable for allocation */
|
| - zEnd = (u8*)&p->aOp[pParse->nOpAlloc]; /* First byte past end of zCsr[] */
|
| -
|
| - resolveP2Values(p, &nArg);
|
| - p->usesStmtJournal = (u8)(pParse->isMultiWrite && pParse->mayAbort);
|
| - if( pParse->explain && nMem<10 ){
|
| - nMem = 10;
|
| - }
|
| - memset(zCsr, 0, zEnd-zCsr);
|
| - zCsr += (zCsr - (u8*)0)&7;
|
| - assert( EIGHT_BYTE_ALIGNMENT(zCsr) );
|
| - p->expired = 0;
|
| -
|
| - /* Memory for registers, parameters, cursor, etc, is allocated in two
|
| - ** passes. On the first pass, we try to reuse unused space at the
|
| - ** end of the opcode array. If we are unable to satisfy all memory
|
| - ** requirements by reusing the opcode array tail, then the second
|
| - ** pass will fill in the rest using a fresh allocation.
|
| - **
|
| - ** This two-pass approach that reuses as much memory as possible from
|
| - ** the leftover space at the end of the opcode array can significantly
|
| - ** reduce the amount of memory held by a prepared statement.
|
| - */
|
| - do {
|
| - nByte = 0;
|
| - p->aMem = allocSpace(p->aMem, nMem*sizeof(Mem), &zCsr, zEnd, &nByte);
|
| - p->aVar = allocSpace(p->aVar, nVar*sizeof(Mem), &zCsr, zEnd, &nByte);
|
| - p->apArg = allocSpace(p->apArg, nArg*sizeof(Mem*), &zCsr, zEnd, &nByte);
|
| - p->azVar = allocSpace(p->azVar, nVar*sizeof(char*), &zCsr, zEnd, &nByte);
|
| - p->apCsr = allocSpace(p->apCsr, nCursor*sizeof(VdbeCursor*),
|
| - &zCsr, zEnd, &nByte);
|
| - p->aOnceFlag = allocSpace(p->aOnceFlag, nOnce, &zCsr, zEnd, &nByte);
|
| - if( nByte ){
|
| - p->pFree = sqlite3DbMallocZero(db, nByte);
|
| - }
|
| - zCsr = p->pFree;
|
| - zEnd = &zCsr[nByte];
|
| - }while( nByte && !db->mallocFailed );
|
| -
|
| - p->nCursor = nCursor;
|
| - p->nOnceFlag = nOnce;
|
| - if( p->aVar ){
|
| - p->nVar = (ynVar)nVar;
|
| - for(n=0; n<nVar; n++){
|
| - p->aVar[n].flags = MEM_Null;
|
| - p->aVar[n].db = db;
|
| - }
|
| - }
|
| - if( p->azVar ){
|
| - p->nzVar = pParse->nzVar;
|
| - memcpy(p->azVar, pParse->azVar, p->nzVar*sizeof(p->azVar[0]));
|
| - memset(pParse->azVar, 0, pParse->nzVar*sizeof(pParse->azVar[0]));
|
| - }
|
| - if( p->aMem ){
|
| - p->aMem--; /* aMem[] goes from 1..nMem */
|
| - p->nMem = nMem; /* not from 0..nMem-1 */
|
| - for(n=1; n<=nMem; n++){
|
| - p->aMem[n].flags = MEM_Undefined;
|
| - p->aMem[n].db = db;
|
| - }
|
| - }
|
| - p->explain = pParse->explain;
|
| - sqlite3VdbeRewind(p);
|
| -}
|
| -
|
| -/*
|
| -** Close a VDBE cursor and release all the resources that cursor
|
| -** happens to hold.
|
| -*/
|
| -void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){
|
| - if( pCx==0 ){
|
| - return;
|
| - }
|
| - sqlite3VdbeSorterClose(p->db, pCx);
|
| - if( pCx->pBt ){
|
| - sqlite3BtreeClose(pCx->pBt);
|
| - /* The pCx->pCursor will be close automatically, if it exists, by
|
| - ** the call above. */
|
| - }else if( pCx->pCursor ){
|
| - sqlite3BtreeCloseCursor(pCx->pCursor);
|
| - }
|
| -#ifndef SQLITE_OMIT_VIRTUALTABLE
|
| - else if( pCx->pVtabCursor ){
|
| - sqlite3_vtab_cursor *pVtabCursor = pCx->pVtabCursor;
|
| - const sqlite3_module *pModule = pVtabCursor->pVtab->pModule;
|
| - p->inVtabMethod = 1;
|
| - pModule->xClose(pVtabCursor);
|
| - p->inVtabMethod = 0;
|
| - }
|
| -#endif
|
| -}
|
| -
|
| -/*
|
| -** Copy the values stored in the VdbeFrame structure to its Vdbe. This
|
| -** is used, for example, when a trigger sub-program is halted to restore
|
| -** control to the main program.
|
| -*/
|
| -int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){
|
| - Vdbe *v = pFrame->v;
|
| - v->aOnceFlag = pFrame->aOnceFlag;
|
| - v->nOnceFlag = pFrame->nOnceFlag;
|
| - v->aOp = pFrame->aOp;
|
| - v->nOp = pFrame->nOp;
|
| - v->aMem = pFrame->aMem;
|
| - v->nMem = pFrame->nMem;
|
| - v->apCsr = pFrame->apCsr;
|
| - v->nCursor = pFrame->nCursor;
|
| - v->db->lastRowid = pFrame->lastRowid;
|
| - v->nChange = pFrame->nChange;
|
| - return pFrame->pc;
|
| -}
|
| -
|
| -/*
|
| -** Close all cursors.
|
| -**
|
| -** Also release any dynamic memory held by the VM in the Vdbe.aMem memory
|
| -** cell array. This is necessary as the memory cell array may contain
|
| -** pointers to VdbeFrame objects, which may in turn contain pointers to
|
| -** open cursors.
|
| -*/
|
| -static void closeAllCursors(Vdbe *p){
|
| - if( p->pFrame ){
|
| - VdbeFrame *pFrame;
|
| - for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
|
| - sqlite3VdbeFrameRestore(pFrame);
|
| - p->pFrame = 0;
|
| - p->nFrame = 0;
|
| - }
|
| - assert( p->nFrame==0 );
|
| -
|
| - if( p->apCsr ){
|
| - int i;
|
| - for(i=0; i<p->nCursor; i++){
|
| - VdbeCursor *pC = p->apCsr[i];
|
| - if( pC ){
|
| - sqlite3VdbeFreeCursor(p, pC);
|
| - p->apCsr[i] = 0;
|
| - }
|
| - }
|
| - }
|
| - if( p->aMem ){
|
| - releaseMemArray(&p->aMem[1], p->nMem);
|
| - }
|
| - while( p->pDelFrame ){
|
| - VdbeFrame *pDel = p->pDelFrame;
|
| - p->pDelFrame = pDel->pParent;
|
| - sqlite3VdbeFrameDelete(pDel);
|
| - }
|
| -
|
| - /* Delete any auxdata allocations made by the VM */
|
| - if( p->pAuxData ) sqlite3VdbeDeleteAuxData(p, -1, 0);
|
| - assert( p->pAuxData==0 );
|
| -}
|
| -
|
| -/*
|
| -** Clean up the VM after a single run.
|
| -*/
|
| -static void Cleanup(Vdbe *p){
|
| - sqlite3 *db = p->db;
|
| -
|
| -#ifdef SQLITE_DEBUG
|
| - /* Execute assert() statements to ensure that the Vdbe.apCsr[] and
|
| - ** Vdbe.aMem[] arrays have already been cleaned up. */
|
| - int i;
|
| - if( p->apCsr ) for(i=0; i<p->nCursor; i++) assert( p->apCsr[i]==0 );
|
| - if( p->aMem ){
|
| - for(i=1; i<=p->nMem; i++) assert( p->aMem[i].flags==MEM_Undefined );
|
| - }
|
| -#endif
|
| -
|
| - sqlite3DbFree(db, p->zErrMsg);
|
| - p->zErrMsg = 0;
|
| - p->pResultSet = 0;
|
| -}
|
| -
|
| -/*
|
| -** Set the number of result columns that will be returned by this SQL
|
| -** statement. This is now set at compile time, rather than during
|
| -** execution of the vdbe program so that sqlite3_column_count() can
|
| -** be called on an SQL statement before sqlite3_step().
|
| -*/
|
| -void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){
|
| - Mem *pColName;
|
| - int n;
|
| - sqlite3 *db = p->db;
|
| -
|
| - releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
|
| - sqlite3DbFree(db, p->aColName);
|
| - n = nResColumn*COLNAME_N;
|
| - p->nResColumn = (u16)nResColumn;
|
| - p->aColName = pColName = (Mem*)sqlite3DbMallocZero(db, sizeof(Mem)*n );
|
| - if( p->aColName==0 ) return;
|
| - while( n-- > 0 ){
|
| - pColName->flags = MEM_Null;
|
| - pColName->db = p->db;
|
| - pColName++;
|
| - }
|
| -}
|
| -
|
| -/*
|
| -** Set the name of the idx'th column to be returned by the SQL statement.
|
| -** zName must be a pointer to a nul terminated string.
|
| -**
|
| -** This call must be made after a call to sqlite3VdbeSetNumCols().
|
| -**
|
| -** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC
|
| -** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed
|
| -** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed.
|
| -*/
|
| -int sqlite3VdbeSetColName(
|
| - Vdbe *p, /* Vdbe being configured */
|
| - int idx, /* Index of column zName applies to */
|
| - int var, /* One of the COLNAME_* constants */
|
| - const char *zName, /* Pointer to buffer containing name */
|
| - void (*xDel)(void*) /* Memory management strategy for zName */
|
| -){
|
| - int rc;
|
| - Mem *pColName;
|
| - assert( idx<p->nResColumn );
|
| - assert( var<COLNAME_N );
|
| - if( p->db->mallocFailed ){
|
| - assert( !zName || xDel!=SQLITE_DYNAMIC );
|
| - return SQLITE_NOMEM;
|
| - }
|
| - assert( p->aColName!=0 );
|
| - pColName = &(p->aColName[idx+var*p->nResColumn]);
|
| - rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, xDel);
|
| - assert( rc!=0 || !zName || (pColName->flags&MEM_Term)!=0 );
|
| - return rc;
|
| -}
|
| -
|
| -/*
|
| -** A read or write transaction may or may not be active on database handle
|
| -** db. If a transaction is active, commit it. If there is a
|
| -** write-transaction spanning more than one database file, this routine
|
| -** takes care of the master journal trickery.
|
| -*/
|
| -static int vdbeCommit(sqlite3 *db, Vdbe *p){
|
| - int i;
|
| - int nTrans = 0; /* Number of databases with an active write-transaction */
|
| - int rc = SQLITE_OK;
|
| - int needXcommit = 0;
|
| -
|
| -#ifdef SQLITE_OMIT_VIRTUALTABLE
|
| - /* With this option, sqlite3VtabSync() is defined to be simply
|
| - ** SQLITE_OK so p is not used.
|
| - */
|
| - UNUSED_PARAMETER(p);
|
| -#endif
|
| -
|
| - /* Before doing anything else, call the xSync() callback for any
|
| - ** virtual module tables written in this transaction. This has to
|
| - ** be done before determining whether a master journal file is
|
| - ** required, as an xSync() callback may add an attached database
|
| - ** to the transaction.
|
| - */
|
| - rc = sqlite3VtabSync(db, p);
|
| -
|
| - /* This loop determines (a) if the commit hook should be invoked and
|
| - ** (b) how many database files have open write transactions, not
|
| - ** including the temp database. (b) is important because if more than
|
| - ** one database file has an open write transaction, a master journal
|
| - ** file is required for an atomic commit.
|
| - */
|
| - for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
|
| - Btree *pBt = db->aDb[i].pBt;
|
| - if( sqlite3BtreeIsInTrans(pBt) ){
|
| - needXcommit = 1;
|
| - if( i!=1 ) nTrans++;
|
| - sqlite3BtreeEnter(pBt);
|
| - rc = sqlite3PagerExclusiveLock(sqlite3BtreePager(pBt));
|
| - sqlite3BtreeLeave(pBt);
|
| - }
|
| - }
|
| - if( rc!=SQLITE_OK ){
|
| - return rc;
|
| - }
|
| -
|
| - /* If there are any write-transactions at all, invoke the commit hook */
|
| - if( needXcommit && db->xCommitCallback ){
|
| - rc = db->xCommitCallback(db->pCommitArg);
|
| - if( rc ){
|
| - return SQLITE_CONSTRAINT_COMMITHOOK;
|
| - }
|
| - }
|
| -
|
| - /* The simple case - no more than one database file (not counting the
|
| - ** TEMP database) has a transaction active. There is no need for the
|
| - ** master-journal.
|
| - **
|
| - ** If the return value of sqlite3BtreeGetFilename() is a zero length
|
| - ** string, it means the main database is :memory: or a temp file. In
|
| - ** that case we do not support atomic multi-file commits, so use the
|
| - ** simple case then too.
|
| - */
|
| - if( 0==sqlite3Strlen30(sqlite3BtreeGetFilename(db->aDb[0].pBt))
|
| - || nTrans<=1
|
| - ){
|
| - for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
|
| - Btree *pBt = db->aDb[i].pBt;
|
| - if( pBt ){
|
| - rc = sqlite3BtreeCommitPhaseOne(pBt, 0);
|
| - }
|
| - }
|
| -
|
| - /* Do the commit only if all databases successfully complete phase 1.
|
| - ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an
|
| - ** IO error while deleting or truncating a journal file. It is unlikely,
|
| - ** but could happen. In this case abandon processing and return the error.
|
| - */
|
| - for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
|
| - Btree *pBt = db->aDb[i].pBt;
|
| - if( pBt ){
|
| - rc = sqlite3BtreeCommitPhaseTwo(pBt, 0);
|
| - }
|
| - }
|
| - if( rc==SQLITE_OK ){
|
| - sqlite3VtabCommit(db);
|
| - }
|
| - }
|
| -
|
| - /* The complex case - There is a multi-file write-transaction active.
|
| - ** This requires a master journal file to ensure the transaction is
|
| - ** committed atomically.
|
| - */
|
| -#ifndef SQLITE_OMIT_DISKIO
|
| - else{
|
| - sqlite3_vfs *pVfs = db->pVfs;
|
| - int needSync = 0;
|
| - char *zMaster = 0; /* File-name for the master journal */
|
| - char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt);
|
| - sqlite3_file *pMaster = 0;
|
| - i64 offset = 0;
|
| - int res;
|
| - int retryCount = 0;
|
| - int nMainFile;
|
| -
|
| - /* Select a master journal file name */
|
| - nMainFile = sqlite3Strlen30(zMainFile);
|
| - zMaster = sqlite3MPrintf(db, "%s-mjXXXXXX9XXz", zMainFile);
|
| - if( zMaster==0 ) return SQLITE_NOMEM;
|
| - do {
|
| - u32 iRandom;
|
| - if( retryCount ){
|
| - if( retryCount>100 ){
|
| - sqlite3_log(SQLITE_FULL, "MJ delete: %s", zMaster);
|
| - sqlite3OsDelete(pVfs, zMaster, 0);
|
| - break;
|
| - }else if( retryCount==1 ){
|
| - sqlite3_log(SQLITE_FULL, "MJ collide: %s", zMaster);
|
| - }
|
| - }
|
| - retryCount++;
|
| - sqlite3_randomness(sizeof(iRandom), &iRandom);
|
| - sqlite3_snprintf(13, &zMaster[nMainFile], "-mj%06X9%02X",
|
| - (iRandom>>8)&0xffffff, iRandom&0xff);
|
| - /* The antipenultimate character of the master journal name must
|
| - ** be "9" to avoid name collisions when using 8+3 filenames. */
|
| - assert( zMaster[sqlite3Strlen30(zMaster)-3]=='9' );
|
| - sqlite3FileSuffix3(zMainFile, zMaster);
|
| - rc = sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS, &res);
|
| - }while( rc==SQLITE_OK && res );
|
| - if( rc==SQLITE_OK ){
|
| - /* Open the master journal. */
|
| - rc = sqlite3OsOpenMalloc(pVfs, zMaster, &pMaster,
|
| - SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|
|
| - SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_MASTER_JOURNAL, 0
|
| - );
|
| - }
|
| - if( rc!=SQLITE_OK ){
|
| - sqlite3DbFree(db, zMaster);
|
| - return rc;
|
| - }
|
| -
|
| - /* Write the name of each database file in the transaction into the new
|
| - ** master journal file. If an error occurs at this point close
|
| - ** and delete the master journal file. All the individual journal files
|
| - ** still have 'null' as the master journal pointer, so they will roll
|
| - ** back independently if a failure occurs.
|
| - */
|
| - for(i=0; i<db->nDb; i++){
|
| - Btree *pBt = db->aDb[i].pBt;
|
| - if( sqlite3BtreeIsInTrans(pBt) ){
|
| - char const *zFile = sqlite3BtreeGetJournalname(pBt);
|
| - if( zFile==0 ){
|
| - continue; /* Ignore TEMP and :memory: databases */
|
| - }
|
| - assert( zFile[0]!=0 );
|
| - if( !needSync && !sqlite3BtreeSyncDisabled(pBt) ){
|
| - needSync = 1;
|
| - }
|
| - rc = sqlite3OsWrite(pMaster, zFile, sqlite3Strlen30(zFile)+1, offset);
|
| - offset += sqlite3Strlen30(zFile)+1;
|
| - if( rc!=SQLITE_OK ){
|
| - sqlite3OsCloseFree(pMaster);
|
| - sqlite3OsDelete(pVfs, zMaster, 0);
|
| - sqlite3DbFree(db, zMaster);
|
| - return rc;
|
| - }
|
| - }
|
| - }
|
| -
|
| - /* Sync the master journal file. If the IOCAP_SEQUENTIAL device
|
| - ** flag is set this is not required.
|
| - */
|
| - if( needSync
|
| - && 0==(sqlite3OsDeviceCharacteristics(pMaster)&SQLITE_IOCAP_SEQUENTIAL)
|
| - && SQLITE_OK!=(rc = sqlite3OsSync(pMaster, SQLITE_SYNC_NORMAL))
|
| - ){
|
| - sqlite3OsCloseFree(pMaster);
|
| - sqlite3OsDelete(pVfs, zMaster, 0);
|
| - sqlite3DbFree(db, zMaster);
|
| - return rc;
|
| - }
|
| -
|
| - /* Sync all the db files involved in the transaction. The same call
|
| - ** sets the master journal pointer in each individual journal. If
|
| - ** an error occurs here, do not delete the master journal file.
|
| - **
|
| - ** If the error occurs during the first call to
|
| - ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the
|
| - ** master journal file will be orphaned. But we cannot delete it,
|
| - ** in case the master journal file name was written into the journal
|
| - ** file before the failure occurred.
|
| - */
|
| - for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
|
| - Btree *pBt = db->aDb[i].pBt;
|
| - if( pBt ){
|
| - rc = sqlite3BtreeCommitPhaseOne(pBt, zMaster);
|
| - }
|
| - }
|
| - sqlite3OsCloseFree(pMaster);
|
| - assert( rc!=SQLITE_BUSY );
|
| - if( rc!=SQLITE_OK ){
|
| - sqlite3DbFree(db, zMaster);
|
| - return rc;
|
| - }
|
| -
|
| - /* Delete the master journal file. This commits the transaction. After
|
| - ** doing this the directory is synced again before any individual
|
| - ** transaction files are deleted.
|
| - */
|
| - rc = sqlite3OsDelete(pVfs, zMaster, 1);
|
| - sqlite3DbFree(db, zMaster);
|
| - zMaster = 0;
|
| - if( rc ){
|
| - return rc;
|
| - }
|
| -
|
| - /* All files and directories have already been synced, so the following
|
| - ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and
|
| - ** deleting or truncating journals. If something goes wrong while
|
| - ** this is happening we don't really care. The integrity of the
|
| - ** transaction is already guaranteed, but some stray 'cold' journals
|
| - ** may be lying around. Returning an error code won't help matters.
|
| - */
|
| - disable_simulated_io_errors();
|
| - sqlite3BeginBenignMalloc();
|
| - for(i=0; i<db->nDb; i++){
|
| - Btree *pBt = db->aDb[i].pBt;
|
| - if( pBt ){
|
| - sqlite3BtreeCommitPhaseTwo(pBt, 1);
|
| - }
|
| - }
|
| - sqlite3EndBenignMalloc();
|
| - enable_simulated_io_errors();
|
| -
|
| - sqlite3VtabCommit(db);
|
| - }
|
| -#endif
|
| -
|
| - return rc;
|
| -}
|
| -
|
| -/*
|
| -** This routine checks that the sqlite3.nVdbeActive count variable
|
| -** matches the number of vdbe's in the list sqlite3.pVdbe that are
|
| -** currently active. An assertion fails if the two counts do not match.
|
| -** This is an internal self-check only - it is not an essential processing
|
| -** step.
|
| -**
|
| -** This is a no-op if NDEBUG is defined.
|
| -*/
|
| -#ifndef NDEBUG
|
| -static void checkActiveVdbeCnt(sqlite3 *db){
|
| - Vdbe *p;
|
| - int cnt = 0;
|
| - int nWrite = 0;
|
| - int nRead = 0;
|
| - p = db->pVdbe;
|
| - while( p ){
|
| - if( sqlite3_stmt_busy((sqlite3_stmt*)p) ){
|
| - cnt++;
|
| - if( p->readOnly==0 ) nWrite++;
|
| - if( p->bIsReader ) nRead++;
|
| - }
|
| - p = p->pNext;
|
| - }
|
| - assert( cnt==db->nVdbeActive );
|
| - assert( nWrite==db->nVdbeWrite );
|
| - assert( nRead==db->nVdbeRead );
|
| -}
|
| -#else
|
| -#define checkActiveVdbeCnt(x)
|
| -#endif
|
| -
|
| -/*
|
| -** If the Vdbe passed as the first argument opened a statement-transaction,
|
| -** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or
|
| -** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement
|
| -** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the
|
| -** statement transaction is committed.
|
| -**
|
| -** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned.
|
| -** Otherwise SQLITE_OK.
|
| -*/
|
| -int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){
|
| - sqlite3 *const db = p->db;
|
| - int rc = SQLITE_OK;
|
| -
|
| - /* If p->iStatement is greater than zero, then this Vdbe opened a
|
| - ** statement transaction that should be closed here. The only exception
|
| - ** is that an IO error may have occurred, causing an emergency rollback.
|
| - ** In this case (db->nStatement==0), and there is nothing to do.
|
| - */
|
| - if( db->nStatement && p->iStatement ){
|
| - int i;
|
| - const int iSavepoint = p->iStatement-1;
|
| -
|
| - assert( eOp==SAVEPOINT_ROLLBACK || eOp==SAVEPOINT_RELEASE);
|
| - assert( db->nStatement>0 );
|
| - assert( p->iStatement==(db->nStatement+db->nSavepoint) );
|
| -
|
| - for(i=0; i<db->nDb; i++){
|
| - int rc2 = SQLITE_OK;
|
| - Btree *pBt = db->aDb[i].pBt;
|
| - if( pBt ){
|
| - if( eOp==SAVEPOINT_ROLLBACK ){
|
| - rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_ROLLBACK, iSavepoint);
|
| - }
|
| - if( rc2==SQLITE_OK ){
|
| - rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_RELEASE, iSavepoint);
|
| - }
|
| - if( rc==SQLITE_OK ){
|
| - rc = rc2;
|
| - }
|
| - }
|
| - }
|
| - db->nStatement--;
|
| - p->iStatement = 0;
|
| -
|
| - if( rc==SQLITE_OK ){
|
| - if( eOp==SAVEPOINT_ROLLBACK ){
|
| - rc = sqlite3VtabSavepoint(db, SAVEPOINT_ROLLBACK, iSavepoint);
|
| - }
|
| - if( rc==SQLITE_OK ){
|
| - rc = sqlite3VtabSavepoint(db, SAVEPOINT_RELEASE, iSavepoint);
|
| - }
|
| - }
|
| -
|
| - /* If the statement transaction is being rolled back, also restore the
|
| - ** database handles deferred constraint counter to the value it had when
|
| - ** the statement transaction was opened. */
|
| - if( eOp==SAVEPOINT_ROLLBACK ){
|
| - db->nDeferredCons = p->nStmtDefCons;
|
| - db->nDeferredImmCons = p->nStmtDefImmCons;
|
| - }
|
| - }
|
| - return rc;
|
| -}
|
| -
|
| -/*
|
| -** This function is called when a transaction opened by the database
|
| -** handle associated with the VM passed as an argument is about to be
|
| -** committed. If there are outstanding deferred foreign key constraint
|
| -** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK.
|
| -**
|
| -** If there are outstanding FK violations and this function returns
|
| -** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT_FOREIGNKEY
|
| -** and write an error message to it. Then return SQLITE_ERROR.
|
| -*/
|
| -#ifndef SQLITE_OMIT_FOREIGN_KEY
|
| -int sqlite3VdbeCheckFk(Vdbe *p, int deferred){
|
| - sqlite3 *db = p->db;
|
| - if( (deferred && (db->nDeferredCons+db->nDeferredImmCons)>0)
|
| - || (!deferred && p->nFkConstraint>0)
|
| - ){
|
| - p->rc = SQLITE_CONSTRAINT_FOREIGNKEY;
|
| - p->errorAction = OE_Abort;
|
| - sqlite3SetString(&p->zErrMsg, db, "FOREIGN KEY constraint failed");
|
| - return SQLITE_ERROR;
|
| - }
|
| - return SQLITE_OK;
|
| -}
|
| -#endif
|
| -
|
| -/*
|
| -** This routine is called the when a VDBE tries to halt. If the VDBE
|
| -** has made changes and is in autocommit mode, then commit those
|
| -** changes. If a rollback is needed, then do the rollback.
|
| -**
|
| -** This routine is the only way to move the state of a VM from
|
| -** SQLITE_MAGIC_RUN to SQLITE_MAGIC_HALT. It is harmless to
|
| -** call this on a VM that is in the SQLITE_MAGIC_HALT state.
|
| -**
|
| -** Return an error code. If the commit could not complete because of
|
| -** lock contention, return SQLITE_BUSY. If SQLITE_BUSY is returned, it
|
| -** means the close did not happen and needs to be repeated.
|
| -*/
|
| -int sqlite3VdbeHalt(Vdbe *p){
|
| - int rc; /* Used to store transient return codes */
|
| - sqlite3 *db = p->db;
|
| -
|
| - /* This function contains the logic that determines if a statement or
|
| - ** transaction will be committed or rolled back as a result of the
|
| - ** execution of this virtual machine.
|
| - **
|
| - ** If any of the following errors occur:
|
| - **
|
| - ** SQLITE_NOMEM
|
| - ** SQLITE_IOERR
|
| - ** SQLITE_FULL
|
| - ** SQLITE_INTERRUPT
|
| - **
|
| - ** Then the internal cache might have been left in an inconsistent
|
| - ** state. We need to rollback the statement transaction, if there is
|
| - ** one, or the complete transaction if there is no statement transaction.
|
| - */
|
| -
|
| - if( p->db->mallocFailed ){
|
| - p->rc = SQLITE_NOMEM;
|
| - }
|
| - if( p->aOnceFlag ) memset(p->aOnceFlag, 0, p->nOnceFlag);
|
| - closeAllCursors(p);
|
| - if( p->magic!=VDBE_MAGIC_RUN ){
|
| - return SQLITE_OK;
|
| - }
|
| - checkActiveVdbeCnt(db);
|
| -
|
| - /* No commit or rollback needed if the program never started or if the
|
| - ** SQL statement does not read or write a database file. */
|
| - if( p->pc>=0 && p->bIsReader ){
|
| - int mrc; /* Primary error code from p->rc */
|
| - int eStatementOp = 0;
|
| - int isSpecialError; /* Set to true if a 'special' error */
|
| -
|
| - /* Lock all btrees used by the statement */
|
| - sqlite3VdbeEnter(p);
|
| -
|
| - /* Check for one of the special errors */
|
| - mrc = p->rc & 0xff;
|
| - isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR
|
| - || mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL;
|
| - if( isSpecialError ){
|
| - /* If the query was read-only and the error code is SQLITE_INTERRUPT,
|
| - ** no rollback is necessary. Otherwise, at least a savepoint
|
| - ** transaction must be rolled back to restore the database to a
|
| - ** consistent state.
|
| - **
|
| - ** Even if the statement is read-only, it is important to perform
|
| - ** a statement or transaction rollback operation. If the error
|
| - ** occurred while writing to the journal, sub-journal or database
|
| - ** file as part of an effort to free up cache space (see function
|
| - ** pagerStress() in pager.c), the rollback is required to restore
|
| - ** the pager to a consistent state.
|
| - */
|
| - if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){
|
| - if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && p->usesStmtJournal ){
|
| - eStatementOp = SAVEPOINT_ROLLBACK;
|
| - }else{
|
| - /* We are forced to roll back the active transaction. Before doing
|
| - ** so, abort any other statements this handle currently has active.
|
| - */
|
| - sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
|
| - sqlite3CloseSavepoints(db);
|
| - db->autoCommit = 1;
|
| - }
|
| - }
|
| - }
|
| -
|
| - /* Check for immediate foreign key violations. */
|
| - if( p->rc==SQLITE_OK ){
|
| - sqlite3VdbeCheckFk(p, 0);
|
| - }
|
| -
|
| - /* If the auto-commit flag is set and this is the only active writer
|
| - ** VM, then we do either a commit or rollback of the current transaction.
|
| - **
|
| - ** Note: This block also runs if one of the special errors handled
|
| - ** above has occurred.
|
| - */
|
| - if( !sqlite3VtabInSync(db)
|
| - && db->autoCommit
|
| - && db->nVdbeWrite==(p->readOnly==0)
|
| - ){
|
| - if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){
|
| - rc = sqlite3VdbeCheckFk(p, 1);
|
| - if( rc!=SQLITE_OK ){
|
| - if( NEVER(p->readOnly) ){
|
| - sqlite3VdbeLeave(p);
|
| - return SQLITE_ERROR;
|
| - }
|
| - rc = SQLITE_CONSTRAINT_FOREIGNKEY;
|
| - }else{
|
| - /* The auto-commit flag is true, the vdbe program was successful
|
| - ** or hit an 'OR FAIL' constraint and there are no deferred foreign
|
| - ** key constraints to hold up the transaction. This means a commit
|
| - ** is required. */
|
| - rc = vdbeCommit(db, p);
|
| - }
|
| - if( rc==SQLITE_BUSY && p->readOnly ){
|
| - sqlite3VdbeLeave(p);
|
| - return SQLITE_BUSY;
|
| - }else if( rc!=SQLITE_OK ){
|
| - p->rc = rc;
|
| - sqlite3RollbackAll(db, SQLITE_OK);
|
| - }else{
|
| - db->nDeferredCons = 0;
|
| - db->nDeferredImmCons = 0;
|
| - db->flags &= ~SQLITE_DeferFKs;
|
| - sqlite3CommitInternalChanges(db);
|
| - }
|
| - }else{
|
| - sqlite3RollbackAll(db, SQLITE_OK);
|
| - }
|
| - db->nStatement = 0;
|
| - }else if( eStatementOp==0 ){
|
| - if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){
|
| - eStatementOp = SAVEPOINT_RELEASE;
|
| - }else if( p->errorAction==OE_Abort ){
|
| - eStatementOp = SAVEPOINT_ROLLBACK;
|
| - }else{
|
| - sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
|
| - sqlite3CloseSavepoints(db);
|
| - db->autoCommit = 1;
|
| - }
|
| - }
|
| -
|
| - /* If eStatementOp is non-zero, then a statement transaction needs to
|
| - ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to
|
| - ** do so. If this operation returns an error, and the current statement
|
| - ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the
|
| - ** current statement error code.
|
| - */
|
| - if( eStatementOp ){
|
| - rc = sqlite3VdbeCloseStatement(p, eStatementOp);
|
| - if( rc ){
|
| - if( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ){
|
| - p->rc = rc;
|
| - sqlite3DbFree(db, p->zErrMsg);
|
| - p->zErrMsg = 0;
|
| - }
|
| - sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
|
| - sqlite3CloseSavepoints(db);
|
| - db->autoCommit = 1;
|
| - }
|
| - }
|
| -
|
| - /* If this was an INSERT, UPDATE or DELETE and no statement transaction
|
| - ** has been rolled back, update the database connection change-counter.
|
| - */
|
| - if( p->changeCntOn ){
|
| - if( eStatementOp!=SAVEPOINT_ROLLBACK ){
|
| - sqlite3VdbeSetChanges(db, p->nChange);
|
| - }else{
|
| - sqlite3VdbeSetChanges(db, 0);
|
| - }
|
| - p->nChange = 0;
|
| - }
|
| -
|
| - /* Release the locks */
|
| - sqlite3VdbeLeave(p);
|
| - }
|
| -
|
| - /* We have successfully halted and closed the VM. Record this fact. */
|
| - if( p->pc>=0 ){
|
| - db->nVdbeActive--;
|
| - if( !p->readOnly ) db->nVdbeWrite--;
|
| - if( p->bIsReader ) db->nVdbeRead--;
|
| - assert( db->nVdbeActive>=db->nVdbeRead );
|
| - assert( db->nVdbeRead>=db->nVdbeWrite );
|
| - assert( db->nVdbeWrite>=0 );
|
| - }
|
| - p->magic = VDBE_MAGIC_HALT;
|
| - checkActiveVdbeCnt(db);
|
| - if( p->db->mallocFailed ){
|
| - p->rc = SQLITE_NOMEM;
|
| - }
|
| -
|
| - /* If the auto-commit flag is set to true, then any locks that were held
|
| - ** by connection db have now been released. Call sqlite3ConnectionUnlocked()
|
| - ** to invoke any required unlock-notify callbacks.
|
| - */
|
| - if( db->autoCommit ){
|
| - sqlite3ConnectionUnlocked(db);
|
| - }
|
| -
|
| - assert( db->nVdbeActive>0 || db->autoCommit==0 || db->nStatement==0 );
|
| - return (p->rc==SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK);
|
| -}
|
| -
|
| -
|
| -/*
|
| -** Each VDBE holds the result of the most recent sqlite3_step() call
|
| -** in p->rc. This routine sets that result back to SQLITE_OK.
|
| -*/
|
| -void sqlite3VdbeResetStepResult(Vdbe *p){
|
| - p->rc = SQLITE_OK;
|
| -}
|
| -
|
| -/*
|
| -** Copy the error code and error message belonging to the VDBE passed
|
| -** as the first argument to its database handle (so that they will be
|
| -** returned by calls to sqlite3_errcode() and sqlite3_errmsg()).
|
| -**
|
| -** This function does not clear the VDBE error code or message, just
|
| -** copies them to the database handle.
|
| -*/
|
| -int sqlite3VdbeTransferError(Vdbe *p){
|
| - sqlite3 *db = p->db;
|
| - int rc = p->rc;
|
| - if( p->zErrMsg ){
|
| - u8 mallocFailed = db->mallocFailed;
|
| - sqlite3BeginBenignMalloc();
|
| - if( db->pErr==0 ) db->pErr = sqlite3ValueNew(db);
|
| - sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT);
|
| - sqlite3EndBenignMalloc();
|
| - db->mallocFailed = mallocFailed;
|
| - db->errCode = rc;
|
| - }else{
|
| - sqlite3Error(db, rc);
|
| - }
|
| - return rc;
|
| -}
|
| -
|
| -#ifdef SQLITE_ENABLE_SQLLOG
|
| -/*
|
| -** If an SQLITE_CONFIG_SQLLOG hook is registered and the VM has been run,
|
| -** invoke it.
|
| -*/
|
| -static void vdbeInvokeSqllog(Vdbe *v){
|
| - if( sqlite3GlobalConfig.xSqllog && v->rc==SQLITE_OK && v->zSql && v->pc>=0 ){
|
| - char *zExpanded = sqlite3VdbeExpandSql(v, v->zSql);
|
| - assert( v->db->init.busy==0 );
|
| - if( zExpanded ){
|
| - sqlite3GlobalConfig.xSqllog(
|
| - sqlite3GlobalConfig.pSqllogArg, v->db, zExpanded, 1
|
| - );
|
| - sqlite3DbFree(v->db, zExpanded);
|
| - }
|
| - }
|
| -}
|
| -#else
|
| -# define vdbeInvokeSqllog(x)
|
| -#endif
|
| -
|
| -/*
|
| -** Clean up a VDBE after execution but do not delete the VDBE just yet.
|
| -** Write any error messages into *pzErrMsg. Return the result code.
|
| -**
|
| -** After this routine is run, the VDBE should be ready to be executed
|
| -** again.
|
| -**
|
| -** To look at it another way, this routine resets the state of the
|
| -** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to
|
| -** VDBE_MAGIC_INIT.
|
| -*/
|
| -int sqlite3VdbeReset(Vdbe *p){
|
| - sqlite3 *db;
|
| - db = p->db;
|
| -
|
| - /* If the VM did not run to completion or if it encountered an
|
| - ** error, then it might not have been halted properly. So halt
|
| - ** it now.
|
| - */
|
| - sqlite3VdbeHalt(p);
|
| -
|
| - /* If the VDBE has be run even partially, then transfer the error code
|
| - ** and error message from the VDBE into the main database structure. But
|
| - ** if the VDBE has just been set to run but has not actually executed any
|
| - ** instructions yet, leave the main database error information unchanged.
|
| - */
|
| - if( p->pc>=0 ){
|
| - vdbeInvokeSqllog(p);
|
| - sqlite3VdbeTransferError(p);
|
| - sqlite3DbFree(db, p->zErrMsg);
|
| - p->zErrMsg = 0;
|
| - if( p->runOnlyOnce ) p->expired = 1;
|
| - }else if( p->rc && p->expired ){
|
| - /* The expired flag was set on the VDBE before the first call
|
| - ** to sqlite3_step(). For consistency (since sqlite3_step() was
|
| - ** called), set the database error in this case as well.
|
| - */
|
| - sqlite3ErrorWithMsg(db, p->rc, p->zErrMsg ? "%s" : 0, p->zErrMsg);
|
| - sqlite3DbFree(db, p->zErrMsg);
|
| - p->zErrMsg = 0;
|
| - }
|
| -
|
| - /* Reclaim all memory used by the VDBE
|
| - */
|
| - Cleanup(p);
|
| -
|
| - /* Save profiling information from this VDBE run.
|
| - */
|
| -#ifdef VDBE_PROFILE
|
| - {
|
| - FILE *out = fopen("vdbe_profile.out", "a");
|
| - if( out ){
|
| - int i;
|
| - fprintf(out, "---- ");
|
| - for(i=0; i<p->nOp; i++){
|
| - fprintf(out, "%02x", p->aOp[i].opcode);
|
| - }
|
| - fprintf(out, "\n");
|
| - if( p->zSql ){
|
| - char c, pc = 0;
|
| - fprintf(out, "-- ");
|
| - for(i=0; (c = p->zSql[i])!=0; i++){
|
| - if( pc=='\n' ) fprintf(out, "-- ");
|
| - putc(c, out);
|
| - pc = c;
|
| - }
|
| - if( pc!='\n' ) fprintf(out, "\n");
|
| - }
|
| - for(i=0; i<p->nOp; i++){
|
| - char zHdr[100];
|
| - sqlite3_snprintf(sizeof(zHdr), zHdr, "%6u %12llu %8llu ",
|
| - p->aOp[i].cnt,
|
| - p->aOp[i].cycles,
|
| - p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0
|
| - );
|
| - fprintf(out, "%s", zHdr);
|
| - sqlite3VdbePrintOp(out, i, &p->aOp[i]);
|
| - }
|
| - fclose(out);
|
| - }
|
| - }
|
| -#endif
|
| - p->iCurrentTime = 0;
|
| - p->magic = VDBE_MAGIC_INIT;
|
| - return p->rc & db->errMask;
|
| -}
|
| -
|
| -/*
|
| -** Clean up and delete a VDBE after execution. Return an integer which is
|
| -** the result code. Write any error message text into *pzErrMsg.
|
| -*/
|
| -int sqlite3VdbeFinalize(Vdbe *p){
|
| - int rc = SQLITE_OK;
|
| - if( p->magic==VDBE_MAGIC_RUN || p->magic==VDBE_MAGIC_HALT ){
|
| - rc = sqlite3VdbeReset(p);
|
| - assert( (rc & p->db->errMask)==rc );
|
| - }
|
| - sqlite3VdbeDelete(p);
|
| - return rc;
|
| -}
|
| -
|
| -/*
|
| -** If parameter iOp is less than zero, then invoke the destructor for
|
| -** all auxiliary data pointers currently cached by the VM passed as
|
| -** the first argument.
|
| -**
|
| -** Or, if iOp is greater than or equal to zero, then the destructor is
|
| -** only invoked for those auxiliary data pointers created by the user
|
| -** function invoked by the OP_Function opcode at instruction iOp of
|
| -** VM pVdbe, and only then if:
|
| -**
|
| -** * the associated function parameter is the 32nd or later (counting
|
| -** from left to right), or
|
| -**
|
| -** * the corresponding bit in argument mask is clear (where the first
|
| -** function parameter corresponds to bit 0 etc.).
|
| -*/
|
| -void sqlite3VdbeDeleteAuxData(Vdbe *pVdbe, int iOp, int mask){
|
| - AuxData **pp = &pVdbe->pAuxData;
|
| - while( *pp ){
|
| - AuxData *pAux = *pp;
|
| - if( (iOp<0)
|
| - || (pAux->iOp==iOp && (pAux->iArg>31 || !(mask & MASKBIT32(pAux->iArg))))
|
| - ){
|
| - testcase( pAux->iArg==31 );
|
| - if( pAux->xDelete ){
|
| - pAux->xDelete(pAux->pAux);
|
| - }
|
| - *pp = pAux->pNext;
|
| - sqlite3DbFree(pVdbe->db, pAux);
|
| - }else{
|
| - pp= &pAux->pNext;
|
| - }
|
| - }
|
| -}
|
| -
|
| -/*
|
| -** Free all memory associated with the Vdbe passed as the second argument,
|
| -** except for object itself, which is preserved.
|
| -**
|
| -** The difference between this function and sqlite3VdbeDelete() is that
|
| -** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with
|
| -** the database connection and frees the object itself.
|
| -*/
|
| -void sqlite3VdbeClearObject(sqlite3 *db, Vdbe *p){
|
| - SubProgram *pSub, *pNext;
|
| - int i;
|
| - assert( p->db==0 || p->db==db );
|
| - releaseMemArray(p->aVar, p->nVar);
|
| - releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
|
| - for(pSub=p->pProgram; pSub; pSub=pNext){
|
| - pNext = pSub->pNext;
|
| - vdbeFreeOpArray(db, pSub->aOp, pSub->nOp);
|
| - sqlite3DbFree(db, pSub);
|
| - }
|
| - for(i=p->nzVar-1; i>=0; i--) sqlite3DbFree(db, p->azVar[i]);
|
| - vdbeFreeOpArray(db, p->aOp, p->nOp);
|
| - sqlite3DbFree(db, p->aColName);
|
| - sqlite3DbFree(db, p->zSql);
|
| - sqlite3DbFree(db, p->pFree);
|
| -}
|
| -
|
| -/*
|
| -** Delete an entire VDBE.
|
| -*/
|
| -void sqlite3VdbeDelete(Vdbe *p){
|
| - sqlite3 *db;
|
| -
|
| - if( NEVER(p==0) ) return;
|
| - db = p->db;
|
| - assert( sqlite3_mutex_held(db->mutex) );
|
| - sqlite3VdbeClearObject(db, p);
|
| - if( p->pPrev ){
|
| - p->pPrev->pNext = p->pNext;
|
| - }else{
|
| - assert( db->pVdbe==p );
|
| - db->pVdbe = p->pNext;
|
| - }
|
| - if( p->pNext ){
|
| - p->pNext->pPrev = p->pPrev;
|
| - }
|
| - p->magic = VDBE_MAGIC_DEAD;
|
| - p->db = 0;
|
| - sqlite3DbFree(db, p);
|
| -}
|
| -
|
| -/*
|
| -** The cursor "p" has a pending seek operation that has not yet been
|
| -** carried out. Seek the cursor now. If an error occurs, return
|
| -** the appropriate error code.
|
| -*/
|
| -static int SQLITE_NOINLINE handleDeferredMoveto(VdbeCursor *p){
|
| - int res, rc;
|
| -#ifdef SQLITE_TEST
|
| - extern int sqlite3_search_count;
|
| -#endif
|
| - assert( p->deferredMoveto );
|
| - assert( p->isTable );
|
| - rc = sqlite3BtreeMovetoUnpacked(p->pCursor, 0, p->movetoTarget, 0, &res);
|
| - if( rc ) return rc;
|
| - if( res!=0 ) return SQLITE_CORRUPT_BKPT;
|
| -#ifdef SQLITE_TEST
|
| - sqlite3_search_count++;
|
| -#endif
|
| - p->deferredMoveto = 0;
|
| - p->cacheStatus = CACHE_STALE;
|
| - return SQLITE_OK;
|
| -}
|
| -
|
| -/*
|
| -** Something has moved cursor "p" out of place. Maybe the row it was
|
| -** pointed to was deleted out from under it. Or maybe the btree was
|
| -** rebalanced. Whatever the cause, try to restore "p" to the place it
|
| -** is supposed to be pointing. If the row was deleted out from under the
|
| -** cursor, set the cursor to point to a NULL row.
|
| -*/
|
| -static int SQLITE_NOINLINE handleMovedCursor(VdbeCursor *p){
|
| - int isDifferentRow, rc;
|
| - assert( p->pCursor!=0 );
|
| - assert( sqlite3BtreeCursorHasMoved(p->pCursor) );
|
| - rc = sqlite3BtreeCursorRestore(p->pCursor, &isDifferentRow);
|
| - p->cacheStatus = CACHE_STALE;
|
| - if( isDifferentRow ) p->nullRow = 1;
|
| - return rc;
|
| -}
|
| -
|
| -/*
|
| -** Check to ensure that the cursor is valid. Restore the cursor
|
| -** if need be. Return any I/O error from the restore operation.
|
| -*/
|
| -int sqlite3VdbeCursorRestore(VdbeCursor *p){
|
| - if( sqlite3BtreeCursorHasMoved(p->pCursor) ){
|
| - return handleMovedCursor(p);
|
| - }
|
| - return SQLITE_OK;
|
| -}
|
| -
|
| -/*
|
| -** Make sure the cursor p is ready to read or write the row to which it
|
| -** was last positioned. Return an error code if an OOM fault or I/O error
|
| -** prevents us from positioning the cursor to its correct position.
|
| -**
|
| -** If a MoveTo operation is pending on the given cursor, then do that
|
| -** MoveTo now. If no move is pending, check to see if the row has been
|
| -** deleted out from under the cursor and if it has, mark the row as
|
| -** a NULL row.
|
| -**
|
| -** If the cursor is already pointing to the correct row and that row has
|
| -** not been deleted out from under the cursor, then this routine is a no-op.
|
| -*/
|
| -int sqlite3VdbeCursorMoveto(VdbeCursor *p){
|
| - if( p->deferredMoveto ){
|
| - return handleDeferredMoveto(p);
|
| - }
|
| - if( p->pCursor && sqlite3BtreeCursorHasMoved(p->pCursor) ){
|
| - return handleMovedCursor(p);
|
| - }
|
| - return SQLITE_OK;
|
| -}
|
| -
|
| -/*
|
| -** The following functions:
|
| -**
|
| -** sqlite3VdbeSerialType()
|
| -** sqlite3VdbeSerialTypeLen()
|
| -** sqlite3VdbeSerialLen()
|
| -** sqlite3VdbeSerialPut()
|
| -** sqlite3VdbeSerialGet()
|
| -**
|
| -** encapsulate the code that serializes values for storage in SQLite
|
| -** data and index records. Each serialized value consists of a
|
| -** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned
|
| -** integer, stored as a varint.
|
| -**
|
| -** In an SQLite index record, the serial type is stored directly before
|
| -** the blob of data that it corresponds to. In a table record, all serial
|
| -** types are stored at the start of the record, and the blobs of data at
|
| -** the end. Hence these functions allow the caller to handle the
|
| -** serial-type and data blob separately.
|
| -**
|
| -** The following table describes the various storage classes for data:
|
| -**
|
| -** serial type bytes of data type
|
| -** -------------- --------------- ---------------
|
| -** 0 0 NULL
|
| -** 1 1 signed integer
|
| -** 2 2 signed integer
|
| -** 3 3 signed integer
|
| -** 4 4 signed integer
|
| -** 5 6 signed integer
|
| -** 6 8 signed integer
|
| -** 7 8 IEEE float
|
| -** 8 0 Integer constant 0
|
| -** 9 0 Integer constant 1
|
| -** 10,11 reserved for expansion
|
| -** N>=12 and even (N-12)/2 BLOB
|
| -** N>=13 and odd (N-13)/2 text
|
| -**
|
| -** The 8 and 9 types were added in 3.3.0, file format 4. Prior versions
|
| -** of SQLite will not understand those serial types.
|
| -*/
|
| -
|
| -/*
|
| -** Return the serial-type for the value stored in pMem.
|
| -*/
|
| -u32 sqlite3VdbeSerialType(Mem *pMem, int file_format){
|
| - int flags = pMem->flags;
|
| - u32 n;
|
| -
|
| - if( flags&MEM_Null ){
|
| - return 0;
|
| - }
|
| - if( flags&MEM_Int ){
|
| - /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
|
| -# define MAX_6BYTE ((((i64)0x00008000)<<32)-1)
|
| - i64 i = pMem->u.i;
|
| - u64 u;
|
| - if( i<0 ){
|
| - if( i<(-MAX_6BYTE) ) return 6;
|
| - /* Previous test prevents: u = -(-9223372036854775808) */
|
| - u = -i;
|
| - }else{
|
| - u = i;
|
| - }
|
| - if( u<=127 ){
|
| - return ((i&1)==i && file_format>=4) ? 8+(u32)u : 1;
|
| - }
|
| - if( u<=32767 ) return 2;
|
| - if( u<=8388607 ) return 3;
|
| - if( u<=2147483647 ) return 4;
|
| - if( u<=MAX_6BYTE ) return 5;
|
| - return 6;
|
| - }
|
| - if( flags&MEM_Real ){
|
| - return 7;
|
| - }
|
| - assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) );
|
| - assert( pMem->n>=0 );
|
| - n = (u32)pMem->n;
|
| - if( flags & MEM_Zero ){
|
| - n += pMem->u.nZero;
|
| - }
|
| - return ((n*2) + 12 + ((flags&MEM_Str)!=0));
|
| -}
|
| -
|
| -/*
|
| -** Return the length of the data corresponding to the supplied serial-type.
|
| -*/
|
| -u32 sqlite3VdbeSerialTypeLen(u32 serial_type){
|
| - if( serial_type>=12 ){
|
| - return (serial_type-12)/2;
|
| - }else{
|
| - static const u8 aSize[] = { 0, 1, 2, 3, 4, 6, 8, 8, 0, 0, 0, 0 };
|
| - return aSize[serial_type];
|
| - }
|
| -}
|
| -
|
| -/*
|
| -** If we are on an architecture with mixed-endian floating
|
| -** points (ex: ARM7) then swap the lower 4 bytes with the
|
| -** upper 4 bytes. Return the result.
|
| -**
|
| -** For most architectures, this is a no-op.
|
| -**
|
| -** (later): It is reported to me that the mixed-endian problem
|
| -** on ARM7 is an issue with GCC, not with the ARM7 chip. It seems
|
| -** that early versions of GCC stored the two words of a 64-bit
|
| -** float in the wrong order. And that error has been propagated
|
| -** ever since. The blame is not necessarily with GCC, though.
|
| -** GCC might have just copying the problem from a prior compiler.
|
| -** I am also told that newer versions of GCC that follow a different
|
| -** ABI get the byte order right.
|
| -**
|
| -** Developers using SQLite on an ARM7 should compile and run their
|
| -** application using -DSQLITE_DEBUG=1 at least once. With DEBUG
|
| -** enabled, some asserts below will ensure that the byte order of
|
| -** floating point values is correct.
|
| -**
|
| -** (2007-08-30) Frank van Vugt has studied this problem closely
|
| -** and has send his findings to the SQLite developers. Frank
|
| -** writes that some Linux kernels offer floating point hardware
|
| -** emulation that uses only 32-bit mantissas instead of a full
|
| -** 48-bits as required by the IEEE standard. (This is the
|
| -** CONFIG_FPE_FASTFPE option.) On such systems, floating point
|
| -** byte swapping becomes very complicated. To avoid problems,
|
| -** the necessary byte swapping is carried out using a 64-bit integer
|
| -** rather than a 64-bit float. Frank assures us that the code here
|
| -** works for him. We, the developers, have no way to independently
|
| -** verify this, but Frank seems to know what he is talking about
|
| -** so we trust him.
|
| -*/
|
| -#ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
|
| -static u64 floatSwap(u64 in){
|
| - union {
|
| - u64 r;
|
| - u32 i[2];
|
| - } u;
|
| - u32 t;
|
| -
|
| - u.r = in;
|
| - t = u.i[0];
|
| - u.i[0] = u.i[1];
|
| - u.i[1] = t;
|
| - return u.r;
|
| -}
|
| -# define swapMixedEndianFloat(X) X = floatSwap(X)
|
| -#else
|
| -# define swapMixedEndianFloat(X)
|
| -#endif
|
| -
|
| -/*
|
| -** Write the serialized data blob for the value stored in pMem into
|
| -** buf. It is assumed that the caller has allocated sufficient space.
|
| -** Return the number of bytes written.
|
| -**
|
| -** nBuf is the amount of space left in buf[]. The caller is responsible
|
| -** for allocating enough space to buf[] to hold the entire field, exclusive
|
| -** of the pMem->u.nZero bytes for a MEM_Zero value.
|
| -**
|
| -** Return the number of bytes actually written into buf[]. The number
|
| -** of bytes in the zero-filled tail is included in the return value only
|
| -** if those bytes were zeroed in buf[].
|
| -*/
|
| -u32 sqlite3VdbeSerialPut(u8 *buf, Mem *pMem, u32 serial_type){
|
| - u32 len;
|
| -
|
| - /* Integer and Real */
|
| - if( serial_type<=7 && serial_type>0 ){
|
| - u64 v;
|
| - u32 i;
|
| - if( serial_type==7 ){
|
| - assert( sizeof(v)==sizeof(pMem->u.r) );
|
| - memcpy(&v, &pMem->u.r, sizeof(v));
|
| - swapMixedEndianFloat(v);
|
| - }else{
|
| - v = pMem->u.i;
|
| - }
|
| - len = i = sqlite3VdbeSerialTypeLen(serial_type);
|
| - assert( i>0 );
|
| - do{
|
| - buf[--i] = (u8)(v&0xFF);
|
| - v >>= 8;
|
| - }while( i );
|
| - return len;
|
| - }
|
| -
|
| - /* String or blob */
|
| - if( serial_type>=12 ){
|
| - assert( pMem->n + ((pMem->flags & MEM_Zero)?pMem->u.nZero:0)
|
| - == (int)sqlite3VdbeSerialTypeLen(serial_type) );
|
| - len = pMem->n;
|
| - memcpy(buf, pMem->z, len);
|
| - return len;
|
| - }
|
| -
|
| - /* NULL or constants 0 or 1 */
|
| - return 0;
|
| -}
|
| -
|
| -/* Input "x" is a sequence of unsigned characters that represent a
|
| -** big-endian integer. Return the equivalent native integer
|
| -*/
|
| -#define ONE_BYTE_INT(x) ((i8)(x)[0])
|
| -#define TWO_BYTE_INT(x) (256*(i8)((x)[0])|(x)[1])
|
| -#define THREE_BYTE_INT(x) (65536*(i8)((x)[0])|((x)[1]<<8)|(x)[2])
|
| -#define FOUR_BYTE_UINT(x) (((u32)(x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
|
| -#define FOUR_BYTE_INT(x) (16777216*(i8)((x)[0])|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
|
| -
|
| -/*
|
| -** Deserialize the data blob pointed to by buf as serial type serial_type
|
| -** and store the result in pMem. Return the number of bytes read.
|
| -**
|
| -** This function is implemented as two separate routines for performance.
|
| -** The few cases that require local variables are broken out into a separate
|
| -** routine so that in most cases the overhead of moving the stack pointer
|
| -** is avoided.
|
| -*/
|
| -static u32 SQLITE_NOINLINE serialGet(
|
| - const unsigned char *buf, /* Buffer to deserialize from */
|
| - u32 serial_type, /* Serial type to deserialize */
|
| - Mem *pMem /* Memory cell to write value into */
|
| -){
|
| - u64 x = FOUR_BYTE_UINT(buf);
|
| - u32 y = FOUR_BYTE_UINT(buf+4);
|
| - x = (x<<32) + y;
|
| - if( serial_type==6 ){
|
| - pMem->u.i = *(i64*)&x;
|
| - pMem->flags = MEM_Int;
|
| - testcase( pMem->u.i<0 );
|
| - }else{
|
| -#if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT)
|
| - /* Verify that integers and floating point values use the same
|
| - ** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is
|
| - ** defined that 64-bit floating point values really are mixed
|
| - ** endian.
|
| - */
|
| - static const u64 t1 = ((u64)0x3ff00000)<<32;
|
| - static const double r1 = 1.0;
|
| - u64 t2 = t1;
|
| - swapMixedEndianFloat(t2);
|
| - assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 );
|
| -#endif
|
| - assert( sizeof(x)==8 && sizeof(pMem->u.r)==8 );
|
| - swapMixedEndianFloat(x);
|
| - memcpy(&pMem->u.r, &x, sizeof(x));
|
| - pMem->flags = sqlite3IsNaN(pMem->u.r) ? MEM_Null : MEM_Real;
|
| - }
|
| - return 8;
|
| -}
|
| -u32 sqlite3VdbeSerialGet(
|
| - const unsigned char *buf, /* Buffer to deserialize from */
|
| - u32 serial_type, /* Serial type to deserialize */
|
| - Mem *pMem /* Memory cell to write value into */
|
| -){
|
| - switch( serial_type ){
|
| - case 10: /* Reserved for future use */
|
| - case 11: /* Reserved for future use */
|
| - case 0: { /* NULL */
|
| - pMem->flags = MEM_Null;
|
| - break;
|
| - }
|
| - case 1: { /* 1-byte signed integer */
|
| - pMem->u.i = ONE_BYTE_INT(buf);
|
| - pMem->flags = MEM_Int;
|
| - testcase( pMem->u.i<0 );
|
| - return 1;
|
| - }
|
| - case 2: { /* 2-byte signed integer */
|
| - pMem->u.i = TWO_BYTE_INT(buf);
|
| - pMem->flags = MEM_Int;
|
| - testcase( pMem->u.i<0 );
|
| - return 2;
|
| - }
|
| - case 3: { /* 3-byte signed integer */
|
| - pMem->u.i = THREE_BYTE_INT(buf);
|
| - pMem->flags = MEM_Int;
|
| - testcase( pMem->u.i<0 );
|
| - return 3;
|
| - }
|
| - case 4: { /* 4-byte signed integer */
|
| - pMem->u.i = FOUR_BYTE_INT(buf);
|
| - pMem->flags = MEM_Int;
|
| - testcase( pMem->u.i<0 );
|
| - return 4;
|
| - }
|
| - case 5: { /* 6-byte signed integer */
|
| - pMem->u.i = FOUR_BYTE_UINT(buf+2) + (((i64)1)<<32)*TWO_BYTE_INT(buf);
|
| - pMem->flags = MEM_Int;
|
| - testcase( pMem->u.i<0 );
|
| - return 6;
|
| - }
|
| - case 6: /* 8-byte signed integer */
|
| - case 7: { /* IEEE floating point */
|
| - /* These use local variables, so do them in a separate routine
|
| - ** to avoid having to move the frame pointer in the common case */
|
| - return serialGet(buf,serial_type,pMem);
|
| - }
|
| - case 8: /* Integer 0 */
|
| - case 9: { /* Integer 1 */
|
| - pMem->u.i = serial_type-8;
|
| - pMem->flags = MEM_Int;
|
| - return 0;
|
| - }
|
| - default: {
|
| - static const u16 aFlag[] = { MEM_Blob|MEM_Ephem, MEM_Str|MEM_Ephem };
|
| - pMem->z = (char *)buf;
|
| - pMem->n = (serial_type-12)/2;
|
| - pMem->flags = aFlag[serial_type&1];
|
| - return pMem->n;
|
| - }
|
| - }
|
| - return 0;
|
| -}
|
| -/*
|
| -** This routine is used to allocate sufficient space for an UnpackedRecord
|
| -** structure large enough to be used with sqlite3VdbeRecordUnpack() if
|
| -** the first argument is a pointer to KeyInfo structure pKeyInfo.
|
| -**
|
| -** The space is either allocated using sqlite3DbMallocRaw() or from within
|
| -** the unaligned buffer passed via the second and third arguments (presumably
|
| -** stack space). If the former, then *ppFree is set to a pointer that should
|
| -** be eventually freed by the caller using sqlite3DbFree(). Or, if the
|
| -** allocation comes from the pSpace/szSpace buffer, *ppFree is set to NULL
|
| -** before returning.
|
| -**
|
| -** If an OOM error occurs, NULL is returned.
|
| -*/
|
| -UnpackedRecord *sqlite3VdbeAllocUnpackedRecord(
|
| - KeyInfo *pKeyInfo, /* Description of the record */
|
| - char *pSpace, /* Unaligned space available */
|
| - int szSpace, /* Size of pSpace[] in bytes */
|
| - char **ppFree /* OUT: Caller should free this pointer */
|
| -){
|
| - UnpackedRecord *p; /* Unpacked record to return */
|
| - int nOff; /* Increment pSpace by nOff to align it */
|
| - int nByte; /* Number of bytes required for *p */
|
| -
|
| - /* We want to shift the pointer pSpace up such that it is 8-byte aligned.
|
| - ** Thus, we need to calculate a value, nOff, between 0 and 7, to shift
|
| - ** it by. If pSpace is already 8-byte aligned, nOff should be zero.
|
| - */
|
| - nOff = (8 - (SQLITE_PTR_TO_INT(pSpace) & 7)) & 7;
|
| - nByte = ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*(pKeyInfo->nField+1);
|
| - if( nByte>szSpace+nOff ){
|
| - p = (UnpackedRecord *)sqlite3DbMallocRaw(pKeyInfo->db, nByte);
|
| - *ppFree = (char *)p;
|
| - if( !p ) return 0;
|
| - }else{
|
| - p = (UnpackedRecord*)&pSpace[nOff];
|
| - *ppFree = 0;
|
| - }
|
| -
|
| - p->aMem = (Mem*)&((char*)p)[ROUND8(sizeof(UnpackedRecord))];
|
| - assert( pKeyInfo->aSortOrder!=0 );
|
| - p->pKeyInfo = pKeyInfo;
|
| - p->nField = pKeyInfo->nField + 1;
|
| - return p;
|
| -}
|
| -
|
| -/*
|
| -** Given the nKey-byte encoding of a record in pKey[], populate the
|
| -** UnpackedRecord structure indicated by the fourth argument with the
|
| -** contents of the decoded record.
|
| -*/
|
| -void sqlite3VdbeRecordUnpack(
|
| - KeyInfo *pKeyInfo, /* Information about the record format */
|
| - int nKey, /* Size of the binary record */
|
| - const void *pKey, /* The binary record */
|
| - UnpackedRecord *p /* Populate this structure before returning. */
|
| -){
|
| - const unsigned char *aKey = (const unsigned char *)pKey;
|
| - int d;
|
| - u32 idx; /* Offset in aKey[] to read from */
|
| - u16 u; /* Unsigned loop counter */
|
| - u32 szHdr;
|
| - Mem *pMem = p->aMem;
|
| -
|
| - p->default_rc = 0;
|
| - assert( EIGHT_BYTE_ALIGNMENT(pMem) );
|
| - idx = getVarint32(aKey, szHdr);
|
| - d = szHdr;
|
| - u = 0;
|
| - while( idx<szHdr && d<=nKey ){
|
| - u32 serial_type;
|
| -
|
| - idx += getVarint32(&aKey[idx], serial_type);
|
| - pMem->enc = pKeyInfo->enc;
|
| - pMem->db = pKeyInfo->db;
|
| - /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */
|
| - pMem->szMalloc = 0;
|
| - d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem);
|
| - pMem++;
|
| - if( (++u)>=p->nField ) break;
|
| - }
|
| - assert( u<=pKeyInfo->nField + 1 );
|
| - p->nField = u;
|
| -}
|
| -
|
| -#if SQLITE_DEBUG
|
| -/*
|
| -** This function compares two index or table record keys in the same way
|
| -** as the sqlite3VdbeRecordCompare() routine. Unlike VdbeRecordCompare(),
|
| -** this function deserializes and compares values using the
|
| -** sqlite3VdbeSerialGet() and sqlite3MemCompare() functions. It is used
|
| -** in assert() statements to ensure that the optimized code in
|
| -** sqlite3VdbeRecordCompare() returns results with these two primitives.
|
| -**
|
| -** Return true if the result of comparison is equivalent to desiredResult.
|
| -** Return false if there is a disagreement.
|
| -*/
|
| -static int vdbeRecordCompareDebug(
|
| - int nKey1, const void *pKey1, /* Left key */
|
| - const UnpackedRecord *pPKey2, /* Right key */
|
| - int desiredResult /* Correct answer */
|
| -){
|
| - u32 d1; /* Offset into aKey[] of next data element */
|
| - u32 idx1; /* Offset into aKey[] of next header element */
|
| - u32 szHdr1; /* Number of bytes in header */
|
| - int i = 0;
|
| - int rc = 0;
|
| - const unsigned char *aKey1 = (const unsigned char *)pKey1;
|
| - KeyInfo *pKeyInfo;
|
| - Mem mem1;
|
| -
|
| - pKeyInfo = pPKey2->pKeyInfo;
|
| - if( pKeyInfo->db==0 ) return 1;
|
| - mem1.enc = pKeyInfo->enc;
|
| - mem1.db = pKeyInfo->db;
|
| - /* mem1.flags = 0; // Will be initialized by sqlite3VdbeSerialGet() */
|
| - VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */
|
| -
|
| - /* Compilers may complain that mem1.u.i is potentially uninitialized.
|
| - ** We could initialize it, as shown here, to silence those complaints.
|
| - ** But in fact, mem1.u.i will never actually be used uninitialized, and doing
|
| - ** the unnecessary initialization has a measurable negative performance
|
| - ** impact, since this routine is a very high runner. And so, we choose
|
| - ** to ignore the compiler warnings and leave this variable uninitialized.
|
| - */
|
| - /* mem1.u.i = 0; // not needed, here to silence compiler warning */
|
| -
|
| - idx1 = getVarint32(aKey1, szHdr1);
|
| - d1 = szHdr1;
|
| - assert( pKeyInfo->nField+pKeyInfo->nXField>=pPKey2->nField || CORRUPT_DB );
|
| - assert( pKeyInfo->aSortOrder!=0 );
|
| - assert( pKeyInfo->nField>0 );
|
| - assert( idx1<=szHdr1 || CORRUPT_DB );
|
| - do{
|
| - u32 serial_type1;
|
| -
|
| - /* Read the serial types for the next element in each key. */
|
| - idx1 += getVarint32( aKey1+idx1, serial_type1 );
|
| -
|
| - /* Verify that there is enough key space remaining to avoid
|
| - ** a buffer overread. The "d1+serial_type1+2" subexpression will
|
| - ** always be greater than or equal to the amount of required key space.
|
| - ** Use that approximation to avoid the more expensive call to
|
| - ** sqlite3VdbeSerialTypeLen() in the common case.
|
| - */
|
| - if( d1+serial_type1+2>(u32)nKey1
|
| - && d1+sqlite3VdbeSerialTypeLen(serial_type1)>(u32)nKey1
|
| - ){
|
| - break;
|
| - }
|
| -
|
| - /* Extract the values to be compared.
|
| - */
|
| - d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1);
|
| -
|
| - /* Do the comparison
|
| - */
|
| - rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i], pKeyInfo->aColl[i]);
|
| - if( rc!=0 ){
|
| - assert( mem1.szMalloc==0 ); /* See comment below */
|
| - if( pKeyInfo->aSortOrder[i] ){
|
| - rc = -rc; /* Invert the result for DESC sort order. */
|
| - }
|
| - goto debugCompareEnd;
|
| - }
|
| - i++;
|
| - }while( idx1<szHdr1 && i<pPKey2->nField );
|
| -
|
| - /* No memory allocation is ever used on mem1. Prove this using
|
| - ** the following assert(). If the assert() fails, it indicates a
|
| - ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1).
|
| - */
|
| - assert( mem1.szMalloc==0 );
|
| -
|
| - /* rc==0 here means that one of the keys ran out of fields and
|
| - ** all the fields up to that point were equal. Return the default_rc
|
| - ** value. */
|
| - rc = pPKey2->default_rc;
|
| -
|
| -debugCompareEnd:
|
| - if( desiredResult==0 && rc==0 ) return 1;
|
| - if( desiredResult<0 && rc<0 ) return 1;
|
| - if( desiredResult>0 && rc>0 ) return 1;
|
| - if( CORRUPT_DB ) return 1;
|
| - if( pKeyInfo->db->mallocFailed ) return 1;
|
| - return 0;
|
| -}
|
| -#endif
|
| -
|
| -/*
|
| -** Both *pMem1 and *pMem2 contain string values. Compare the two values
|
| -** using the collation sequence pColl. As usual, return a negative , zero
|
| -** or positive value if *pMem1 is less than, equal to or greater than
|
| -** *pMem2, respectively. Similar in spirit to "rc = (*pMem1) - (*pMem2);".
|
| -*/
|
| -static int vdbeCompareMemString(
|
| - const Mem *pMem1,
|
| - const Mem *pMem2,
|
| - const CollSeq *pColl,
|
| - u8 *prcErr /* If an OOM occurs, set to SQLITE_NOMEM */
|
| -){
|
| - if( pMem1->enc==pColl->enc ){
|
| - /* The strings are already in the correct encoding. Call the
|
| - ** comparison function directly */
|
| - return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z);
|
| - }else{
|
| - int rc;
|
| - const void *v1, *v2;
|
| - int n1, n2;
|
| - Mem c1;
|
| - Mem c2;
|
| - sqlite3VdbeMemInit(&c1, pMem1->db, MEM_Null);
|
| - sqlite3VdbeMemInit(&c2, pMem1->db, MEM_Null);
|
| - sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem);
|
| - sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem);
|
| - v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc);
|
| - n1 = v1==0 ? 0 : c1.n;
|
| - v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc);
|
| - n2 = v2==0 ? 0 : c2.n;
|
| - rc = pColl->xCmp(pColl->pUser, n1, v1, n2, v2);
|
| - sqlite3VdbeMemRelease(&c1);
|
| - sqlite3VdbeMemRelease(&c2);
|
| - if( (v1==0 || v2==0) && prcErr ) *prcErr = SQLITE_NOMEM;
|
| - return rc;
|
| - }
|
| -}
|
| -
|
| -/*
|
| -** Compare two blobs. Return negative, zero, or positive if the first
|
| -** is less than, equal to, or greater than the second, respectively.
|
| -** If one blob is a prefix of the other, then the shorter is the lessor.
|
| -*/
|
| -static SQLITE_NOINLINE int sqlite3BlobCompare(const Mem *pB1, const Mem *pB2){
|
| - int c = memcmp(pB1->z, pB2->z, pB1->n>pB2->n ? pB2->n : pB1->n);
|
| - if( c ) return c;
|
| - return pB1->n - pB2->n;
|
| -}
|
| -
|
| -
|
| -/*
|
| -** Compare the values contained by the two memory cells, returning
|
| -** negative, zero or positive if pMem1 is less than, equal to, or greater
|
| -** than pMem2. Sorting order is NULL's first, followed by numbers (integers
|
| -** and reals) sorted numerically, followed by text ordered by the collating
|
| -** sequence pColl and finally blob's ordered by memcmp().
|
| -**
|
| -** Two NULL values are considered equal by this function.
|
| -*/
|
| -int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){
|
| - int f1, f2;
|
| - int combined_flags;
|
| -
|
| - f1 = pMem1->flags;
|
| - f2 = pMem2->flags;
|
| - combined_flags = f1|f2;
|
| - assert( (combined_flags & MEM_RowSet)==0 );
|
| -
|
| - /* If one value is NULL, it is less than the other. If both values
|
| - ** are NULL, return 0.
|
| - */
|
| - if( combined_flags&MEM_Null ){
|
| - return (f2&MEM_Null) - (f1&MEM_Null);
|
| - }
|
| -
|
| - /* If one value is a number and the other is not, the number is less.
|
| - ** If both are numbers, compare as reals if one is a real, or as integers
|
| - ** if both values are integers.
|
| - */
|
| - if( combined_flags&(MEM_Int|MEM_Real) ){
|
| - double r1, r2;
|
| - if( (f1 & f2 & MEM_Int)!=0 ){
|
| - if( pMem1->u.i < pMem2->u.i ) return -1;
|
| - if( pMem1->u.i > pMem2->u.i ) return 1;
|
| - return 0;
|
| - }
|
| - if( (f1&MEM_Real)!=0 ){
|
| - r1 = pMem1->u.r;
|
| - }else if( (f1&MEM_Int)!=0 ){
|
| - r1 = (double)pMem1->u.i;
|
| - }else{
|
| - return 1;
|
| - }
|
| - if( (f2&MEM_Real)!=0 ){
|
| - r2 = pMem2->u.r;
|
| - }else if( (f2&MEM_Int)!=0 ){
|
| - r2 = (double)pMem2->u.i;
|
| - }else{
|
| - return -1;
|
| - }
|
| - if( r1<r2 ) return -1;
|
| - if( r1>r2 ) return 1;
|
| - return 0;
|
| - }
|
| -
|
| - /* If one value is a string and the other is a blob, the string is less.
|
| - ** If both are strings, compare using the collating functions.
|
| - */
|
| - if( combined_flags&MEM_Str ){
|
| - if( (f1 & MEM_Str)==0 ){
|
| - return 1;
|
| - }
|
| - if( (f2 & MEM_Str)==0 ){
|
| - return -1;
|
| - }
|
| -
|
| - assert( pMem1->enc==pMem2->enc );
|
| - assert( pMem1->enc==SQLITE_UTF8 ||
|
| - pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE );
|
| -
|
| - /* The collation sequence must be defined at this point, even if
|
| - ** the user deletes the collation sequence after the vdbe program is
|
| - ** compiled (this was not always the case).
|
| - */
|
| - assert( !pColl || pColl->xCmp );
|
| -
|
| - if( pColl ){
|
| - return vdbeCompareMemString(pMem1, pMem2, pColl, 0);
|
| - }
|
| - /* If a NULL pointer was passed as the collate function, fall through
|
| - ** to the blob case and use memcmp(). */
|
| - }
|
| -
|
| - /* Both values must be blobs. Compare using memcmp(). */
|
| - return sqlite3BlobCompare(pMem1, pMem2);
|
| -}
|
| -
|
| -
|
| -/*
|
| -** The first argument passed to this function is a serial-type that
|
| -** corresponds to an integer - all values between 1 and 9 inclusive
|
| -** except 7. The second points to a buffer containing an integer value
|
| -** serialized according to serial_type. This function deserializes
|
| -** and returns the value.
|
| -*/
|
| -static i64 vdbeRecordDecodeInt(u32 serial_type, const u8 *aKey){
|
| - u32 y;
|
| - assert( CORRUPT_DB || (serial_type>=1 && serial_type<=9 && serial_type!=7) );
|
| - switch( serial_type ){
|
| - case 0:
|
| - case 1:
|
| - testcase( aKey[0]&0x80 );
|
| - return ONE_BYTE_INT(aKey);
|
| - case 2:
|
| - testcase( aKey[0]&0x80 );
|
| - return TWO_BYTE_INT(aKey);
|
| - case 3:
|
| - testcase( aKey[0]&0x80 );
|
| - return THREE_BYTE_INT(aKey);
|
| - case 4: {
|
| - testcase( aKey[0]&0x80 );
|
| - y = FOUR_BYTE_UINT(aKey);
|
| - return (i64)*(int*)&y;
|
| - }
|
| - case 5: {
|
| - testcase( aKey[0]&0x80 );
|
| - return FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey);
|
| - }
|
| - case 6: {
|
| - u64 x = FOUR_BYTE_UINT(aKey);
|
| - testcase( aKey[0]&0x80 );
|
| - x = (x<<32) | FOUR_BYTE_UINT(aKey+4);
|
| - return (i64)*(i64*)&x;
|
| - }
|
| - }
|
| -
|
| - return (serial_type - 8);
|
| -}
|
| -
|
| -/*
|
| -** This function compares the two table rows or index records
|
| -** specified by {nKey1, pKey1} and pPKey2. It returns a negative, zero
|
| -** or positive integer if key1 is less than, equal to or
|
| -** greater than key2. The {nKey1, pKey1} key must be a blob
|
| -** created by the OP_MakeRecord opcode of the VDBE. The pPKey2
|
| -** key must be a parsed key such as obtained from
|
| -** sqlite3VdbeParseRecord.
|
| -**
|
| -** If argument bSkip is non-zero, it is assumed that the caller has already
|
| -** determined that the first fields of the keys are equal.
|
| -**
|
| -** Key1 and Key2 do not have to contain the same number of fields. If all
|
| -** fields that appear in both keys are equal, then pPKey2->default_rc is
|
| -** returned.
|
| -**
|
| -** If database corruption is discovered, set pPKey2->errCode to
|
| -** SQLITE_CORRUPT and return 0. If an OOM error is encountered,
|
| -** pPKey2->errCode is set to SQLITE_NOMEM and, if it is not NULL, the
|
| -** malloc-failed flag set on database handle (pPKey2->pKeyInfo->db).
|
| -*/
|
| -static int vdbeRecordCompareWithSkip(
|
| - int nKey1, const void *pKey1, /* Left key */
|
| - UnpackedRecord *pPKey2, /* Right key */
|
| - int bSkip /* If true, skip the first field */
|
| -){
|
| - u32 d1; /* Offset into aKey[] of next data element */
|
| - int i; /* Index of next field to compare */
|
| - u32 szHdr1; /* Size of record header in bytes */
|
| - u32 idx1; /* Offset of first type in header */
|
| - int rc = 0; /* Return value */
|
| - Mem *pRhs = pPKey2->aMem; /* Next field of pPKey2 to compare */
|
| - KeyInfo *pKeyInfo = pPKey2->pKeyInfo;
|
| - const unsigned char *aKey1 = (const unsigned char *)pKey1;
|
| - Mem mem1;
|
| -
|
| - /* If bSkip is true, then the caller has already determined that the first
|
| - ** two elements in the keys are equal. Fix the various stack variables so
|
| - ** that this routine begins comparing at the second field. */
|
| - if( bSkip ){
|
| - u32 s1;
|
| - idx1 = 1 + getVarint32(&aKey1[1], s1);
|
| - szHdr1 = aKey1[0];
|
| - d1 = szHdr1 + sqlite3VdbeSerialTypeLen(s1);
|
| - i = 1;
|
| - pRhs++;
|
| - }else{
|
| - idx1 = getVarint32(aKey1, szHdr1);
|
| - d1 = szHdr1;
|
| - if( d1>(unsigned)nKey1 ){
|
| - pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
|
| - return 0; /* Corruption */
|
| - }
|
| - i = 0;
|
| - }
|
| -
|
| - VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */
|
| - assert( pPKey2->pKeyInfo->nField+pPKey2->pKeyInfo->nXField>=pPKey2->nField
|
| - || CORRUPT_DB );
|
| - assert( pPKey2->pKeyInfo->aSortOrder!=0 );
|
| - assert( pPKey2->pKeyInfo->nField>0 );
|
| - assert( idx1<=szHdr1 || CORRUPT_DB );
|
| - do{
|
| - u32 serial_type;
|
| -
|
| - /* RHS is an integer */
|
| - if( pRhs->flags & MEM_Int ){
|
| - serial_type = aKey1[idx1];
|
| - testcase( serial_type==12 );
|
| - if( serial_type>=12 ){
|
| - rc = +1;
|
| - }else if( serial_type==0 ){
|
| - rc = -1;
|
| - }else if( serial_type==7 ){
|
| - double rhs = (double)pRhs->u.i;
|
| - sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
|
| - if( mem1.u.r<rhs ){
|
| - rc = -1;
|
| - }else if( mem1.u.r>rhs ){
|
| - rc = +1;
|
| - }
|
| - }else{
|
| - i64 lhs = vdbeRecordDecodeInt(serial_type, &aKey1[d1]);
|
| - i64 rhs = pRhs->u.i;
|
| - if( lhs<rhs ){
|
| - rc = -1;
|
| - }else if( lhs>rhs ){
|
| - rc = +1;
|
| - }
|
| - }
|
| - }
|
| -
|
| - /* RHS is real */
|
| - else if( pRhs->flags & MEM_Real ){
|
| - serial_type = aKey1[idx1];
|
| - if( serial_type>=12 ){
|
| - rc = +1;
|
| - }else if( serial_type==0 ){
|
| - rc = -1;
|
| - }else{
|
| - double rhs = pRhs->u.r;
|
| - double lhs;
|
| - sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
|
| - if( serial_type==7 ){
|
| - lhs = mem1.u.r;
|
| - }else{
|
| - lhs = (double)mem1.u.i;
|
| - }
|
| - if( lhs<rhs ){
|
| - rc = -1;
|
| - }else if( lhs>rhs ){
|
| - rc = +1;
|
| - }
|
| - }
|
| - }
|
| -
|
| - /* RHS is a string */
|
| - else if( pRhs->flags & MEM_Str ){
|
| - getVarint32(&aKey1[idx1], serial_type);
|
| - testcase( serial_type==12 );
|
| - if( serial_type<12 ){
|
| - rc = -1;
|
| - }else if( !(serial_type & 0x01) ){
|
| - rc = +1;
|
| - }else{
|
| - mem1.n = (serial_type - 12) / 2;
|
| - testcase( (d1+mem1.n)==(unsigned)nKey1 );
|
| - testcase( (d1+mem1.n+1)==(unsigned)nKey1 );
|
| - if( (d1+mem1.n) > (unsigned)nKey1 ){
|
| - pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
|
| - return 0; /* Corruption */
|
| - }else if( pKeyInfo->aColl[i] ){
|
| - mem1.enc = pKeyInfo->enc;
|
| - mem1.db = pKeyInfo->db;
|
| - mem1.flags = MEM_Str;
|
| - mem1.z = (char*)&aKey1[d1];
|
| - rc = vdbeCompareMemString(
|
| - &mem1, pRhs, pKeyInfo->aColl[i], &pPKey2->errCode
|
| - );
|
| - }else{
|
| - int nCmp = MIN(mem1.n, pRhs->n);
|
| - rc = memcmp(&aKey1[d1], pRhs->z, nCmp);
|
| - if( rc==0 ) rc = mem1.n - pRhs->n;
|
| - }
|
| - }
|
| - }
|
| -
|
| - /* RHS is a blob */
|
| - else if( pRhs->flags & MEM_Blob ){
|
| - getVarint32(&aKey1[idx1], serial_type);
|
| - testcase( serial_type==12 );
|
| - if( serial_type<12 || (serial_type & 0x01) ){
|
| - rc = -1;
|
| - }else{
|
| - int nStr = (serial_type - 12) / 2;
|
| - testcase( (d1+nStr)==(unsigned)nKey1 );
|
| - testcase( (d1+nStr+1)==(unsigned)nKey1 );
|
| - if( (d1+nStr) > (unsigned)nKey1 ){
|
| - pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
|
| - return 0; /* Corruption */
|
| - }else{
|
| - int nCmp = MIN(nStr, pRhs->n);
|
| - rc = memcmp(&aKey1[d1], pRhs->z, nCmp);
|
| - if( rc==0 ) rc = nStr - pRhs->n;
|
| - }
|
| - }
|
| - }
|
| -
|
| - /* RHS is null */
|
| - else{
|
| - serial_type = aKey1[idx1];
|
| - rc = (serial_type!=0);
|
| - }
|
| -
|
| - if( rc!=0 ){
|
| - if( pKeyInfo->aSortOrder[i] ){
|
| - rc = -rc;
|
| - }
|
| - assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, rc) );
|
| - assert( mem1.szMalloc==0 ); /* See comment below */
|
| - return rc;
|
| - }
|
| -
|
| - i++;
|
| - pRhs++;
|
| - d1 += sqlite3VdbeSerialTypeLen(serial_type);
|
| - idx1 += sqlite3VarintLen(serial_type);
|
| - }while( idx1<(unsigned)szHdr1 && i<pPKey2->nField && d1<=(unsigned)nKey1 );
|
| -
|
| - /* No memory allocation is ever used on mem1. Prove this using
|
| - ** the following assert(). If the assert() fails, it indicates a
|
| - ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). */
|
| - assert( mem1.szMalloc==0 );
|
| -
|
| - /* rc==0 here means that one or both of the keys ran out of fields and
|
| - ** all the fields up to that point were equal. Return the default_rc
|
| - ** value. */
|
| - assert( CORRUPT_DB
|
| - || vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, pPKey2->default_rc)
|
| - || pKeyInfo->db->mallocFailed
|
| - );
|
| - return pPKey2->default_rc;
|
| -}
|
| -int sqlite3VdbeRecordCompare(
|
| - int nKey1, const void *pKey1, /* Left key */
|
| - UnpackedRecord *pPKey2 /* Right key */
|
| -){
|
| - return vdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 0);
|
| -}
|
| -
|
| -
|
| -/*
|
| -** This function is an optimized version of sqlite3VdbeRecordCompare()
|
| -** that (a) the first field of pPKey2 is an integer, and (b) the
|
| -** size-of-header varint at the start of (pKey1/nKey1) fits in a single
|
| -** byte (i.e. is less than 128).
|
| -**
|
| -** To avoid concerns about buffer overreads, this routine is only used
|
| -** on schemas where the maximum valid header size is 63 bytes or less.
|
| -*/
|
| -static int vdbeRecordCompareInt(
|
| - int nKey1, const void *pKey1, /* Left key */
|
| - UnpackedRecord *pPKey2 /* Right key */
|
| -){
|
| - const u8 *aKey = &((const u8*)pKey1)[*(const u8*)pKey1 & 0x3F];
|
| - int serial_type = ((const u8*)pKey1)[1];
|
| - int res;
|
| - u32 y;
|
| - u64 x;
|
| - i64 v = pPKey2->aMem[0].u.i;
|
| - i64 lhs;
|
| -
|
| - assert( (*(u8*)pKey1)<=0x3F || CORRUPT_DB );
|
| - switch( serial_type ){
|
| - case 1: { /* 1-byte signed integer */
|
| - lhs = ONE_BYTE_INT(aKey);
|
| - testcase( lhs<0 );
|
| - break;
|
| - }
|
| - case 2: { /* 2-byte signed integer */
|
| - lhs = TWO_BYTE_INT(aKey);
|
| - testcase( lhs<0 );
|
| - break;
|
| - }
|
| - case 3: { /* 3-byte signed integer */
|
| - lhs = THREE_BYTE_INT(aKey);
|
| - testcase( lhs<0 );
|
| - break;
|
| - }
|
| - case 4: { /* 4-byte signed integer */
|
| - y = FOUR_BYTE_UINT(aKey);
|
| - lhs = (i64)*(int*)&y;
|
| - testcase( lhs<0 );
|
| - break;
|
| - }
|
| - case 5: { /* 6-byte signed integer */
|
| - lhs = FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey);
|
| - testcase( lhs<0 );
|
| - break;
|
| - }
|
| - case 6: { /* 8-byte signed integer */
|
| - x = FOUR_BYTE_UINT(aKey);
|
| - x = (x<<32) | FOUR_BYTE_UINT(aKey+4);
|
| - lhs = *(i64*)&x;
|
| - testcase( lhs<0 );
|
| - break;
|
| - }
|
| - case 8:
|
| - lhs = 0;
|
| - break;
|
| - case 9:
|
| - lhs = 1;
|
| - break;
|
| -
|
| - /* This case could be removed without changing the results of running
|
| - ** this code. Including it causes gcc to generate a faster switch
|
| - ** statement (since the range of switch targets now starts at zero and
|
| - ** is contiguous) but does not cause any duplicate code to be generated
|
| - ** (as gcc is clever enough to combine the two like cases). Other
|
| - ** compilers might be similar. */
|
| - case 0: case 7:
|
| - return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2);
|
| -
|
| - default:
|
| - return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2);
|
| - }
|
| -
|
| - if( v>lhs ){
|
| - res = pPKey2->r1;
|
| - }else if( v<lhs ){
|
| - res = pPKey2->r2;
|
| - }else if( pPKey2->nField>1 ){
|
| - /* The first fields of the two keys are equal. Compare the trailing
|
| - ** fields. */
|
| - res = vdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1);
|
| - }else{
|
| - /* The first fields of the two keys are equal and there are no trailing
|
| - ** fields. Return pPKey2->default_rc in this case. */
|
| - res = pPKey2->default_rc;
|
| - }
|
| -
|
| - assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) );
|
| - return res;
|
| -}
|
| -
|
| -/*
|
| -** This function is an optimized version of sqlite3VdbeRecordCompare()
|
| -** that (a) the first field of pPKey2 is a string, that (b) the first field
|
| -** uses the collation sequence BINARY and (c) that the size-of-header varint
|
| -** at the start of (pKey1/nKey1) fits in a single byte.
|
| -*/
|
| -static int vdbeRecordCompareString(
|
| - int nKey1, const void *pKey1, /* Left key */
|
| - UnpackedRecord *pPKey2 /* Right key */
|
| -){
|
| - const u8 *aKey1 = (const u8*)pKey1;
|
| - int serial_type;
|
| - int res;
|
| -
|
| - getVarint32(&aKey1[1], serial_type);
|
| - if( serial_type<12 ){
|
| - res = pPKey2->r1; /* (pKey1/nKey1) is a number or a null */
|
| - }else if( !(serial_type & 0x01) ){
|
| - res = pPKey2->r2; /* (pKey1/nKey1) is a blob */
|
| - }else{
|
| - int nCmp;
|
| - int nStr;
|
| - int szHdr = aKey1[0];
|
| -
|
| - nStr = (serial_type-12) / 2;
|
| - if( (szHdr + nStr) > nKey1 ){
|
| - pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
|
| - return 0; /* Corruption */
|
| - }
|
| - nCmp = MIN( pPKey2->aMem[0].n, nStr );
|
| - res = memcmp(&aKey1[szHdr], pPKey2->aMem[0].z, nCmp);
|
| -
|
| - if( res==0 ){
|
| - res = nStr - pPKey2->aMem[0].n;
|
| - if( res==0 ){
|
| - if( pPKey2->nField>1 ){
|
| - res = vdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1);
|
| - }else{
|
| - res = pPKey2->default_rc;
|
| - }
|
| - }else if( res>0 ){
|
| - res = pPKey2->r2;
|
| - }else{
|
| - res = pPKey2->r1;
|
| - }
|
| - }else if( res>0 ){
|
| - res = pPKey2->r2;
|
| - }else{
|
| - res = pPKey2->r1;
|
| - }
|
| - }
|
| -
|
| - assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res)
|
| - || CORRUPT_DB
|
| - || pPKey2->pKeyInfo->db->mallocFailed
|
| - );
|
| - return res;
|
| -}
|
| -
|
| -/*
|
| -** Return a pointer to an sqlite3VdbeRecordCompare() compatible function
|
| -** suitable for comparing serialized records to the unpacked record passed
|
| -** as the only argument.
|
| -*/
|
| -RecordCompare sqlite3VdbeFindCompare(UnpackedRecord *p){
|
| - /* varintRecordCompareInt() and varintRecordCompareString() both assume
|
| - ** that the size-of-header varint that occurs at the start of each record
|
| - ** fits in a single byte (i.e. is 127 or less). varintRecordCompareInt()
|
| - ** also assumes that it is safe to overread a buffer by at least the
|
| - ** maximum possible legal header size plus 8 bytes. Because there is
|
| - ** guaranteed to be at least 74 (but not 136) bytes of padding following each
|
| - ** buffer passed to varintRecordCompareInt() this makes it convenient to
|
| - ** limit the size of the header to 64 bytes in cases where the first field
|
| - ** is an integer.
|
| - **
|
| - ** The easiest way to enforce this limit is to consider only records with
|
| - ** 13 fields or less. If the first field is an integer, the maximum legal
|
| - ** header size is (12*5 + 1 + 1) bytes. */
|
| - if( (p->pKeyInfo->nField + p->pKeyInfo->nXField)<=13 ){
|
| - int flags = p->aMem[0].flags;
|
| - if( p->pKeyInfo->aSortOrder[0] ){
|
| - p->r1 = 1;
|
| - p->r2 = -1;
|
| - }else{
|
| - p->r1 = -1;
|
| - p->r2 = 1;
|
| - }
|
| - if( (flags & MEM_Int) ){
|
| - return vdbeRecordCompareInt;
|
| - }
|
| - testcase( flags & MEM_Real );
|
| - testcase( flags & MEM_Null );
|
| - testcase( flags & MEM_Blob );
|
| - if( (flags & (MEM_Real|MEM_Null|MEM_Blob))==0 && p->pKeyInfo->aColl[0]==0 ){
|
| - assert( flags & MEM_Str );
|
| - return vdbeRecordCompareString;
|
| - }
|
| - }
|
| -
|
| - return sqlite3VdbeRecordCompare;
|
| -}
|
| -
|
| -/*
|
| -** pCur points at an index entry created using the OP_MakeRecord opcode.
|
| -** Read the rowid (the last field in the record) and store it in *rowid.
|
| -** Return SQLITE_OK if everything works, or an error code otherwise.
|
| -**
|
| -** pCur might be pointing to text obtained from a corrupt database file.
|
| -** So the content cannot be trusted. Do appropriate checks on the content.
|
| -*/
|
| -int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){
|
| - i64 nCellKey = 0;
|
| - int rc;
|
| - u32 szHdr; /* Size of the header */
|
| - u32 typeRowid; /* Serial type of the rowid */
|
| - u32 lenRowid; /* Size of the rowid */
|
| - Mem m, v;
|
| -
|
| - /* Get the size of the index entry. Only indices entries of less
|
| - ** than 2GiB are support - anything large must be database corruption.
|
| - ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so
|
| - ** this code can safely assume that nCellKey is 32-bits
|
| - */
|
| - assert( sqlite3BtreeCursorIsValid(pCur) );
|
| - VVA_ONLY(rc =) sqlite3BtreeKeySize(pCur, &nCellKey);
|
| - assert( rc==SQLITE_OK ); /* pCur is always valid so KeySize cannot fail */
|
| - assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey );
|
| -
|
| - /* Read in the complete content of the index entry */
|
| - sqlite3VdbeMemInit(&m, db, 0);
|
| - rc = sqlite3VdbeMemFromBtree(pCur, 0, (u32)nCellKey, 1, &m);
|
| - if( rc ){
|
| - return rc;
|
| - }
|
| -
|
| - /* The index entry must begin with a header size */
|
| - (void)getVarint32((u8*)m.z, szHdr);
|
| - testcase( szHdr==3 );
|
| - testcase( szHdr==m.n );
|
| - if( unlikely(szHdr<3 || (int)szHdr>m.n) ){
|
| - goto idx_rowid_corruption;
|
| - }
|
| -
|
| - /* The last field of the index should be an integer - the ROWID.
|
| - ** Verify that the last entry really is an integer. */
|
| - (void)getVarint32((u8*)&m.z[szHdr-1], typeRowid);
|
| - testcase( typeRowid==1 );
|
| - testcase( typeRowid==2 );
|
| - testcase( typeRowid==3 );
|
| - testcase( typeRowid==4 );
|
| - testcase( typeRowid==5 );
|
| - testcase( typeRowid==6 );
|
| - testcase( typeRowid==8 );
|
| - testcase( typeRowid==9 );
|
| - if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){
|
| - goto idx_rowid_corruption;
|
| - }
|
| - lenRowid = sqlite3VdbeSerialTypeLen(typeRowid);
|
| - testcase( (u32)m.n==szHdr+lenRowid );
|
| - if( unlikely((u32)m.n<szHdr+lenRowid) ){
|
| - goto idx_rowid_corruption;
|
| - }
|
| -
|
| - /* Fetch the integer off the end of the index record */
|
| - sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v);
|
| - *rowid = v.u.i;
|
| - sqlite3VdbeMemRelease(&m);
|
| - return SQLITE_OK;
|
| -
|
| - /* Jump here if database corruption is detected after m has been
|
| - ** allocated. Free the m object and return SQLITE_CORRUPT. */
|
| -idx_rowid_corruption:
|
| - testcase( m.szMalloc!=0 );
|
| - sqlite3VdbeMemRelease(&m);
|
| - return SQLITE_CORRUPT_BKPT;
|
| -}
|
| -
|
| -/*
|
| -** Compare the key of the index entry that cursor pC is pointing to against
|
| -** the key string in pUnpacked. Write into *pRes a number
|
| -** that is negative, zero, or positive if pC is less than, equal to,
|
| -** or greater than pUnpacked. Return SQLITE_OK on success.
|
| -**
|
| -** pUnpacked is either created without a rowid or is truncated so that it
|
| -** omits the rowid at the end. The rowid at the end of the index entry
|
| -** is ignored as well. Hence, this routine only compares the prefixes
|
| -** of the keys prior to the final rowid, not the entire key.
|
| -*/
|
| -int sqlite3VdbeIdxKeyCompare(
|
| - sqlite3 *db, /* Database connection */
|
| - VdbeCursor *pC, /* The cursor to compare against */
|
| - UnpackedRecord *pUnpacked, /* Unpacked version of key */
|
| - int *res /* Write the comparison result here */
|
| -){
|
| - i64 nCellKey = 0;
|
| - int rc;
|
| - BtCursor *pCur = pC->pCursor;
|
| - Mem m;
|
| -
|
| - assert( sqlite3BtreeCursorIsValid(pCur) );
|
| - VVA_ONLY(rc =) sqlite3BtreeKeySize(pCur, &nCellKey);
|
| - assert( rc==SQLITE_OK ); /* pCur is always valid so KeySize cannot fail */
|
| - /* nCellKey will always be between 0 and 0xffffffff because of the way
|
| - ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */
|
| - if( nCellKey<=0 || nCellKey>0x7fffffff ){
|
| - *res = 0;
|
| - return SQLITE_CORRUPT_BKPT;
|
| - }
|
| - sqlite3VdbeMemInit(&m, db, 0);
|
| - rc = sqlite3VdbeMemFromBtree(pC->pCursor, 0, (u32)nCellKey, 1, &m);
|
| - if( rc ){
|
| - return rc;
|
| - }
|
| - *res = sqlite3VdbeRecordCompare(m.n, m.z, pUnpacked);
|
| - sqlite3VdbeMemRelease(&m);
|
| - return SQLITE_OK;
|
| -}
|
| -
|
| -/*
|
| -** This routine sets the value to be returned by subsequent calls to
|
| -** sqlite3_changes() on the database handle 'db'.
|
| -*/
|
| -void sqlite3VdbeSetChanges(sqlite3 *db, int nChange){
|
| - assert( sqlite3_mutex_held(db->mutex) );
|
| - db->nChange = nChange;
|
| - db->nTotalChange += nChange;
|
| -}
|
| -
|
| -/*
|
| -** Set a flag in the vdbe to update the change counter when it is finalised
|
| -** or reset.
|
| -*/
|
| -void sqlite3VdbeCountChanges(Vdbe *v){
|
| - v->changeCntOn = 1;
|
| -}
|
| -
|
| -/*
|
| -** Mark every prepared statement associated with a database connection
|
| -** as expired.
|
| -**
|
| -** An expired statement means that recompilation of the statement is
|
| -** recommend. Statements expire when things happen that make their
|
| -** programs obsolete. Removing user-defined functions or collating
|
| -** sequences, or changing an authorization function are the types of
|
| -** things that make prepared statements obsolete.
|
| -*/
|
| -void sqlite3ExpirePreparedStatements(sqlite3 *db){
|
| - Vdbe *p;
|
| - for(p = db->pVdbe; p; p=p->pNext){
|
| - p->expired = 1;
|
| - }
|
| -}
|
| -
|
| -/*
|
| -** Return the database associated with the Vdbe.
|
| -*/
|
| -sqlite3 *sqlite3VdbeDb(Vdbe *v){
|
| - return v->db;
|
| -}
|
| -
|
| -/*
|
| -** Return a pointer to an sqlite3_value structure containing the value bound
|
| -** parameter iVar of VM v. Except, if the value is an SQL NULL, return
|
| -** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_*
|
| -** constants) to the value before returning it.
|
| -**
|
| -** The returned value must be freed by the caller using sqlite3ValueFree().
|
| -*/
|
| -sqlite3_value *sqlite3VdbeGetBoundValue(Vdbe *v, int iVar, u8 aff){
|
| - assert( iVar>0 );
|
| - if( v ){
|
| - Mem *pMem = &v->aVar[iVar-1];
|
| - if( 0==(pMem->flags & MEM_Null) ){
|
| - sqlite3_value *pRet = sqlite3ValueNew(v->db);
|
| - if( pRet ){
|
| - sqlite3VdbeMemCopy((Mem *)pRet, pMem);
|
| - sqlite3ValueApplyAffinity(pRet, aff, SQLITE_UTF8);
|
| - }
|
| - return pRet;
|
| - }
|
| - }
|
| - return 0;
|
| -}
|
| -
|
| -/*
|
| -** Configure SQL variable iVar so that binding a new value to it signals
|
| -** to sqlite3_reoptimize() that re-preparing the statement may result
|
| -** in a better query plan.
|
| -*/
|
| -void sqlite3VdbeSetVarmask(Vdbe *v, int iVar){
|
| - assert( iVar>0 );
|
| - if( iVar>32 ){
|
| - v->expmask = 0xffffffff;
|
| - }else{
|
| - v->expmask |= ((u32)1 << (iVar-1));
|
| - }
|
| -}
|
| -
|
| -#ifndef SQLITE_OMIT_VIRTUALTABLE
|
| -/*
|
| -** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored
|
| -** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored
|
| -** in memory obtained from sqlite3DbMalloc).
|
| -*/
|
| -void sqlite3VtabImportErrmsg(Vdbe *p, sqlite3_vtab *pVtab){
|
| - sqlite3 *db = p->db;
|
| - sqlite3DbFree(db, p->zErrMsg);
|
| - p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg);
|
| - sqlite3_free(pVtab->zErrMsg);
|
| - pVtab->zErrMsg = 0;
|
| -}
|
| -#endif /* SQLITE_OMIT_VIRTUALTABLE */
|
|
|