Index: third_party/sqlite/sqlite-src-3080704/src/btree.c |
diff --git a/third_party/sqlite/sqlite-src-3080704/src/btree.c b/third_party/sqlite/sqlite-src-3080704/src/btree.c |
deleted file mode 100644 |
index 7ea66e0d3be94e88c344f06b969bffafc69ecd0c..0000000000000000000000000000000000000000 |
--- a/third_party/sqlite/sqlite-src-3080704/src/btree.c |
+++ /dev/null |
@@ -1,8711 +0,0 @@ |
-/* |
-** 2004 April 6 |
-** |
-** The author disclaims copyright to this source code. In place of |
-** a legal notice, here is a blessing: |
-** |
-** May you do good and not evil. |
-** May you find forgiveness for yourself and forgive others. |
-** May you share freely, never taking more than you give. |
-** |
-************************************************************************* |
-** This file implements an external (disk-based) database using BTrees. |
-** See the header comment on "btreeInt.h" for additional information. |
-** Including a description of file format and an overview of operation. |
-*/ |
-#include "btreeInt.h" |
- |
-/* |
-** The header string that appears at the beginning of every |
-** SQLite database. |
-*/ |
-static const char zMagicHeader[] = SQLITE_FILE_HEADER; |
- |
-/* |
-** Set this global variable to 1 to enable tracing using the TRACE |
-** macro. |
-*/ |
-#if 0 |
-int sqlite3BtreeTrace=1; /* True to enable tracing */ |
-# define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);} |
-#else |
-# define TRACE(X) |
-#endif |
- |
-/* |
-** Extract a 2-byte big-endian integer from an array of unsigned bytes. |
-** But if the value is zero, make it 65536. |
-** |
-** This routine is used to extract the "offset to cell content area" value |
-** from the header of a btree page. If the page size is 65536 and the page |
-** is empty, the offset should be 65536, but the 2-byte value stores zero. |
-** This routine makes the necessary adjustment to 65536. |
-*/ |
-#define get2byteNotZero(X) (((((int)get2byte(X))-1)&0xffff)+1) |
- |
-/* |
-** Values passed as the 5th argument to allocateBtreePage() |
-*/ |
-#define BTALLOC_ANY 0 /* Allocate any page */ |
-#define BTALLOC_EXACT 1 /* Allocate exact page if possible */ |
-#define BTALLOC_LE 2 /* Allocate any page <= the parameter */ |
- |
-/* |
-** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not |
-** defined, or 0 if it is. For example: |
-** |
-** bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum); |
-*/ |
-#ifndef SQLITE_OMIT_AUTOVACUUM |
-#define IfNotOmitAV(expr) (expr) |
-#else |
-#define IfNotOmitAV(expr) 0 |
-#endif |
- |
-#ifndef SQLITE_OMIT_SHARED_CACHE |
-/* |
-** A list of BtShared objects that are eligible for participation |
-** in shared cache. This variable has file scope during normal builds, |
-** but the test harness needs to access it so we make it global for |
-** test builds. |
-** |
-** Access to this variable is protected by SQLITE_MUTEX_STATIC_MASTER. |
-*/ |
-#ifdef SQLITE_TEST |
-BtShared *SQLITE_WSD sqlite3SharedCacheList = 0; |
-#else |
-static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0; |
-#endif |
-#endif /* SQLITE_OMIT_SHARED_CACHE */ |
- |
-#ifndef SQLITE_OMIT_SHARED_CACHE |
-/* |
-** Enable or disable the shared pager and schema features. |
-** |
-** This routine has no effect on existing database connections. |
-** The shared cache setting effects only future calls to |
-** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2(). |
-*/ |
-int sqlite3_enable_shared_cache(int enable){ |
- sqlite3GlobalConfig.sharedCacheEnabled = enable; |
- return SQLITE_OK; |
-} |
-#endif |
- |
- |
- |
-#ifdef SQLITE_OMIT_SHARED_CACHE |
- /* |
- ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(), |
- ** and clearAllSharedCacheTableLocks() |
- ** manipulate entries in the BtShared.pLock linked list used to store |
- ** shared-cache table level locks. If the library is compiled with the |
- ** shared-cache feature disabled, then there is only ever one user |
- ** of each BtShared structure and so this locking is not necessary. |
- ** So define the lock related functions as no-ops. |
- */ |
- #define querySharedCacheTableLock(a,b,c) SQLITE_OK |
- #define setSharedCacheTableLock(a,b,c) SQLITE_OK |
- #define clearAllSharedCacheTableLocks(a) |
- #define downgradeAllSharedCacheTableLocks(a) |
- #define hasSharedCacheTableLock(a,b,c,d) 1 |
- #define hasReadConflicts(a, b) 0 |
-#endif |
- |
-#ifndef SQLITE_OMIT_SHARED_CACHE |
- |
-#ifdef SQLITE_DEBUG |
-/* |
-**** This function is only used as part of an assert() statement. *** |
-** |
-** Check to see if pBtree holds the required locks to read or write to the |
-** table with root page iRoot. Return 1 if it does and 0 if not. |
-** |
-** For example, when writing to a table with root-page iRoot via |
-** Btree connection pBtree: |
-** |
-** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) ); |
-** |
-** When writing to an index that resides in a sharable database, the |
-** caller should have first obtained a lock specifying the root page of |
-** the corresponding table. This makes things a bit more complicated, |
-** as this module treats each table as a separate structure. To determine |
-** the table corresponding to the index being written, this |
-** function has to search through the database schema. |
-** |
-** Instead of a lock on the table/index rooted at page iRoot, the caller may |
-** hold a write-lock on the schema table (root page 1). This is also |
-** acceptable. |
-*/ |
-static int hasSharedCacheTableLock( |
- Btree *pBtree, /* Handle that must hold lock */ |
- Pgno iRoot, /* Root page of b-tree */ |
- int isIndex, /* True if iRoot is the root of an index b-tree */ |
- int eLockType /* Required lock type (READ_LOCK or WRITE_LOCK) */ |
-){ |
- Schema *pSchema = (Schema *)pBtree->pBt->pSchema; |
- Pgno iTab = 0; |
- BtLock *pLock; |
- |
- /* If this database is not shareable, or if the client is reading |
- ** and has the read-uncommitted flag set, then no lock is required. |
- ** Return true immediately. |
- */ |
- if( (pBtree->sharable==0) |
- || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommitted)) |
- ){ |
- return 1; |
- } |
- |
- /* If the client is reading or writing an index and the schema is |
- ** not loaded, then it is too difficult to actually check to see if |
- ** the correct locks are held. So do not bother - just return true. |
- ** This case does not come up very often anyhow. |
- */ |
- if( isIndex && (!pSchema || (pSchema->schemaFlags&DB_SchemaLoaded)==0) ){ |
- return 1; |
- } |
- |
- /* Figure out the root-page that the lock should be held on. For table |
- ** b-trees, this is just the root page of the b-tree being read or |
- ** written. For index b-trees, it is the root page of the associated |
- ** table. */ |
- if( isIndex ){ |
- HashElem *p; |
- for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){ |
- Index *pIdx = (Index *)sqliteHashData(p); |
- if( pIdx->tnum==(int)iRoot ){ |
- iTab = pIdx->pTable->tnum; |
- } |
- } |
- }else{ |
- iTab = iRoot; |
- } |
- |
- /* Search for the required lock. Either a write-lock on root-page iTab, a |
- ** write-lock on the schema table, or (if the client is reading) a |
- ** read-lock on iTab will suffice. Return 1 if any of these are found. */ |
- for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){ |
- if( pLock->pBtree==pBtree |
- && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1)) |
- && pLock->eLock>=eLockType |
- ){ |
- return 1; |
- } |
- } |
- |
- /* Failed to find the required lock. */ |
- return 0; |
-} |
-#endif /* SQLITE_DEBUG */ |
- |
-#ifdef SQLITE_DEBUG |
-/* |
-**** This function may be used as part of assert() statements only. **** |
-** |
-** Return true if it would be illegal for pBtree to write into the |
-** table or index rooted at iRoot because other shared connections are |
-** simultaneously reading that same table or index. |
-** |
-** It is illegal for pBtree to write if some other Btree object that |
-** shares the same BtShared object is currently reading or writing |
-** the iRoot table. Except, if the other Btree object has the |
-** read-uncommitted flag set, then it is OK for the other object to |
-** have a read cursor. |
-** |
-** For example, before writing to any part of the table or index |
-** rooted at page iRoot, one should call: |
-** |
-** assert( !hasReadConflicts(pBtree, iRoot) ); |
-*/ |
-static int hasReadConflicts(Btree *pBtree, Pgno iRoot){ |
- BtCursor *p; |
- for(p=pBtree->pBt->pCursor; p; p=p->pNext){ |
- if( p->pgnoRoot==iRoot |
- && p->pBtree!=pBtree |
- && 0==(p->pBtree->db->flags & SQLITE_ReadUncommitted) |
- ){ |
- return 1; |
- } |
- } |
- return 0; |
-} |
-#endif /* #ifdef SQLITE_DEBUG */ |
- |
-/* |
-** Query to see if Btree handle p may obtain a lock of type eLock |
-** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return |
-** SQLITE_OK if the lock may be obtained (by calling |
-** setSharedCacheTableLock()), or SQLITE_LOCKED if not. |
-*/ |
-static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){ |
- BtShared *pBt = p->pBt; |
- BtLock *pIter; |
- |
- assert( sqlite3BtreeHoldsMutex(p) ); |
- assert( eLock==READ_LOCK || eLock==WRITE_LOCK ); |
- assert( p->db!=0 ); |
- assert( !(p->db->flags&SQLITE_ReadUncommitted)||eLock==WRITE_LOCK||iTab==1 ); |
- |
- /* If requesting a write-lock, then the Btree must have an open write |
- ** transaction on this file. And, obviously, for this to be so there |
- ** must be an open write transaction on the file itself. |
- */ |
- assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) ); |
- assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE ); |
- |
- /* This routine is a no-op if the shared-cache is not enabled */ |
- if( !p->sharable ){ |
- return SQLITE_OK; |
- } |
- |
- /* If some other connection is holding an exclusive lock, the |
- ** requested lock may not be obtained. |
- */ |
- if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){ |
- sqlite3ConnectionBlocked(p->db, pBt->pWriter->db); |
- return SQLITE_LOCKED_SHAREDCACHE; |
- } |
- |
- for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){ |
- /* The condition (pIter->eLock!=eLock) in the following if(...) |
- ** statement is a simplification of: |
- ** |
- ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK) |
- ** |
- ** since we know that if eLock==WRITE_LOCK, then no other connection |
- ** may hold a WRITE_LOCK on any table in this file (since there can |
- ** only be a single writer). |
- */ |
- assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK ); |
- assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK); |
- if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){ |
- sqlite3ConnectionBlocked(p->db, pIter->pBtree->db); |
- if( eLock==WRITE_LOCK ){ |
- assert( p==pBt->pWriter ); |
- pBt->btsFlags |= BTS_PENDING; |
- } |
- return SQLITE_LOCKED_SHAREDCACHE; |
- } |
- } |
- return SQLITE_OK; |
-} |
-#endif /* !SQLITE_OMIT_SHARED_CACHE */ |
- |
-#ifndef SQLITE_OMIT_SHARED_CACHE |
-/* |
-** Add a lock on the table with root-page iTable to the shared-btree used |
-** by Btree handle p. Parameter eLock must be either READ_LOCK or |
-** WRITE_LOCK. |
-** |
-** This function assumes the following: |
-** |
-** (a) The specified Btree object p is connected to a sharable |
-** database (one with the BtShared.sharable flag set), and |
-** |
-** (b) No other Btree objects hold a lock that conflicts |
-** with the requested lock (i.e. querySharedCacheTableLock() has |
-** already been called and returned SQLITE_OK). |
-** |
-** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM |
-** is returned if a malloc attempt fails. |
-*/ |
-static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){ |
- BtShared *pBt = p->pBt; |
- BtLock *pLock = 0; |
- BtLock *pIter; |
- |
- assert( sqlite3BtreeHoldsMutex(p) ); |
- assert( eLock==READ_LOCK || eLock==WRITE_LOCK ); |
- assert( p->db!=0 ); |
- |
- /* A connection with the read-uncommitted flag set will never try to |
- ** obtain a read-lock using this function. The only read-lock obtained |
- ** by a connection in read-uncommitted mode is on the sqlite_master |
- ** table, and that lock is obtained in BtreeBeginTrans(). */ |
- assert( 0==(p->db->flags&SQLITE_ReadUncommitted) || eLock==WRITE_LOCK ); |
- |
- /* This function should only be called on a sharable b-tree after it |
- ** has been determined that no other b-tree holds a conflicting lock. */ |
- assert( p->sharable ); |
- assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) ); |
- |
- /* First search the list for an existing lock on this table. */ |
- for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){ |
- if( pIter->iTable==iTable && pIter->pBtree==p ){ |
- pLock = pIter; |
- break; |
- } |
- } |
- |
- /* If the above search did not find a BtLock struct associating Btree p |
- ** with table iTable, allocate one and link it into the list. |
- */ |
- if( !pLock ){ |
- pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock)); |
- if( !pLock ){ |
- return SQLITE_NOMEM; |
- } |
- pLock->iTable = iTable; |
- pLock->pBtree = p; |
- pLock->pNext = pBt->pLock; |
- pBt->pLock = pLock; |
- } |
- |
- /* Set the BtLock.eLock variable to the maximum of the current lock |
- ** and the requested lock. This means if a write-lock was already held |
- ** and a read-lock requested, we don't incorrectly downgrade the lock. |
- */ |
- assert( WRITE_LOCK>READ_LOCK ); |
- if( eLock>pLock->eLock ){ |
- pLock->eLock = eLock; |
- } |
- |
- return SQLITE_OK; |
-} |
-#endif /* !SQLITE_OMIT_SHARED_CACHE */ |
- |
-#ifndef SQLITE_OMIT_SHARED_CACHE |
-/* |
-** Release all the table locks (locks obtained via calls to |
-** the setSharedCacheTableLock() procedure) held by Btree object p. |
-** |
-** This function assumes that Btree p has an open read or write |
-** transaction. If it does not, then the BTS_PENDING flag |
-** may be incorrectly cleared. |
-*/ |
-static void clearAllSharedCacheTableLocks(Btree *p){ |
- BtShared *pBt = p->pBt; |
- BtLock **ppIter = &pBt->pLock; |
- |
- assert( sqlite3BtreeHoldsMutex(p) ); |
- assert( p->sharable || 0==*ppIter ); |
- assert( p->inTrans>0 ); |
- |
- while( *ppIter ){ |
- BtLock *pLock = *ppIter; |
- assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree ); |
- assert( pLock->pBtree->inTrans>=pLock->eLock ); |
- if( pLock->pBtree==p ){ |
- *ppIter = pLock->pNext; |
- assert( pLock->iTable!=1 || pLock==&p->lock ); |
- if( pLock->iTable!=1 ){ |
- sqlite3_free(pLock); |
- } |
- }else{ |
- ppIter = &pLock->pNext; |
- } |
- } |
- |
- assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter ); |
- if( pBt->pWriter==p ){ |
- pBt->pWriter = 0; |
- pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING); |
- }else if( pBt->nTransaction==2 ){ |
- /* This function is called when Btree p is concluding its |
- ** transaction. If there currently exists a writer, and p is not |
- ** that writer, then the number of locks held by connections other |
- ** than the writer must be about to drop to zero. In this case |
- ** set the BTS_PENDING flag to 0. |
- ** |
- ** If there is not currently a writer, then BTS_PENDING must |
- ** be zero already. So this next line is harmless in that case. |
- */ |
- pBt->btsFlags &= ~BTS_PENDING; |
- } |
-} |
- |
-/* |
-** This function changes all write-locks held by Btree p into read-locks. |
-*/ |
-static void downgradeAllSharedCacheTableLocks(Btree *p){ |
- BtShared *pBt = p->pBt; |
- if( pBt->pWriter==p ){ |
- BtLock *pLock; |
- pBt->pWriter = 0; |
- pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING); |
- for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){ |
- assert( pLock->eLock==READ_LOCK || pLock->pBtree==p ); |
- pLock->eLock = READ_LOCK; |
- } |
- } |
-} |
- |
-#endif /* SQLITE_OMIT_SHARED_CACHE */ |
- |
-static void releasePage(MemPage *pPage); /* Forward reference */ |
- |
-/* |
-***** This routine is used inside of assert() only **** |
-** |
-** Verify that the cursor holds the mutex on its BtShared |
-*/ |
-#ifdef SQLITE_DEBUG |
-static int cursorHoldsMutex(BtCursor *p){ |
- return sqlite3_mutex_held(p->pBt->mutex); |
-} |
-#endif |
- |
-/* |
-** Invalidate the overflow cache of the cursor passed as the first argument. |
-** on the shared btree structure pBt. |
-*/ |
-#define invalidateOverflowCache(pCur) (pCur->curFlags &= ~BTCF_ValidOvfl) |
- |
-/* |
-** Invalidate the overflow page-list cache for all cursors opened |
-** on the shared btree structure pBt. |
-*/ |
-static void invalidateAllOverflowCache(BtShared *pBt){ |
- BtCursor *p; |
- assert( sqlite3_mutex_held(pBt->mutex) ); |
- for(p=pBt->pCursor; p; p=p->pNext){ |
- invalidateOverflowCache(p); |
- } |
-} |
- |
-#ifndef SQLITE_OMIT_INCRBLOB |
-/* |
-** This function is called before modifying the contents of a table |
-** to invalidate any incrblob cursors that are open on the |
-** row or one of the rows being modified. |
-** |
-** If argument isClearTable is true, then the entire contents of the |
-** table is about to be deleted. In this case invalidate all incrblob |
-** cursors open on any row within the table with root-page pgnoRoot. |
-** |
-** Otherwise, if argument isClearTable is false, then the row with |
-** rowid iRow is being replaced or deleted. In this case invalidate |
-** only those incrblob cursors open on that specific row. |
-*/ |
-static void invalidateIncrblobCursors( |
- Btree *pBtree, /* The database file to check */ |
- i64 iRow, /* The rowid that might be changing */ |
- int isClearTable /* True if all rows are being deleted */ |
-){ |
- BtCursor *p; |
- BtShared *pBt = pBtree->pBt; |
- assert( sqlite3BtreeHoldsMutex(pBtree) ); |
- for(p=pBt->pCursor; p; p=p->pNext){ |
- if( (p->curFlags & BTCF_Incrblob)!=0 |
- && (isClearTable || p->info.nKey==iRow) |
- ){ |
- p->eState = CURSOR_INVALID; |
- } |
- } |
-} |
- |
-#else |
- /* Stub function when INCRBLOB is omitted */ |
- #define invalidateIncrblobCursors(x,y,z) |
-#endif /* SQLITE_OMIT_INCRBLOB */ |
- |
-/* |
-** Set bit pgno of the BtShared.pHasContent bitvec. This is called |
-** when a page that previously contained data becomes a free-list leaf |
-** page. |
-** |
-** The BtShared.pHasContent bitvec exists to work around an obscure |
-** bug caused by the interaction of two useful IO optimizations surrounding |
-** free-list leaf pages: |
-** |
-** 1) When all data is deleted from a page and the page becomes |
-** a free-list leaf page, the page is not written to the database |
-** (as free-list leaf pages contain no meaningful data). Sometimes |
-** such a page is not even journalled (as it will not be modified, |
-** why bother journalling it?). |
-** |
-** 2) When a free-list leaf page is reused, its content is not read |
-** from the database or written to the journal file (why should it |
-** be, if it is not at all meaningful?). |
-** |
-** By themselves, these optimizations work fine and provide a handy |
-** performance boost to bulk delete or insert operations. However, if |
-** a page is moved to the free-list and then reused within the same |
-** transaction, a problem comes up. If the page is not journalled when |
-** it is moved to the free-list and it is also not journalled when it |
-** is extracted from the free-list and reused, then the original data |
-** may be lost. In the event of a rollback, it may not be possible |
-** to restore the database to its original configuration. |
-** |
-** The solution is the BtShared.pHasContent bitvec. Whenever a page is |
-** moved to become a free-list leaf page, the corresponding bit is |
-** set in the bitvec. Whenever a leaf page is extracted from the free-list, |
-** optimization 2 above is omitted if the corresponding bit is already |
-** set in BtShared.pHasContent. The contents of the bitvec are cleared |
-** at the end of every transaction. |
-*/ |
-static int btreeSetHasContent(BtShared *pBt, Pgno pgno){ |
- int rc = SQLITE_OK; |
- if( !pBt->pHasContent ){ |
- assert( pgno<=pBt->nPage ); |
- pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage); |
- if( !pBt->pHasContent ){ |
- rc = SQLITE_NOMEM; |
- } |
- } |
- if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){ |
- rc = sqlite3BitvecSet(pBt->pHasContent, pgno); |
- } |
- return rc; |
-} |
- |
-/* |
-** Query the BtShared.pHasContent vector. |
-** |
-** This function is called when a free-list leaf page is removed from the |
-** free-list for reuse. It returns false if it is safe to retrieve the |
-** page from the pager layer with the 'no-content' flag set. True otherwise. |
-*/ |
-static int btreeGetHasContent(BtShared *pBt, Pgno pgno){ |
- Bitvec *p = pBt->pHasContent; |
- return (p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTest(p, pgno))); |
-} |
- |
-/* |
-** Clear (destroy) the BtShared.pHasContent bitvec. This should be |
-** invoked at the conclusion of each write-transaction. |
-*/ |
-static void btreeClearHasContent(BtShared *pBt){ |
- sqlite3BitvecDestroy(pBt->pHasContent); |
- pBt->pHasContent = 0; |
-} |
- |
-/* |
-** Release all of the apPage[] pages for a cursor. |
-*/ |
-static void btreeReleaseAllCursorPages(BtCursor *pCur){ |
- int i; |
- for(i=0; i<=pCur->iPage; i++){ |
- releasePage(pCur->apPage[i]); |
- pCur->apPage[i] = 0; |
- } |
- pCur->iPage = -1; |
-} |
- |
- |
-/* |
-** Save the current cursor position in the variables BtCursor.nKey |
-** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK. |
-** |
-** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID) |
-** prior to calling this routine. |
-*/ |
-static int saveCursorPosition(BtCursor *pCur){ |
- int rc; |
- |
- assert( CURSOR_VALID==pCur->eState ); |
- assert( 0==pCur->pKey ); |
- assert( cursorHoldsMutex(pCur) ); |
- |
- rc = sqlite3BtreeKeySize(pCur, &pCur->nKey); |
- assert( rc==SQLITE_OK ); /* KeySize() cannot fail */ |
- |
- /* If this is an intKey table, then the above call to BtreeKeySize() |
- ** stores the integer key in pCur->nKey. In this case this value is |
- ** all that is required. Otherwise, if pCur is not open on an intKey |
- ** table, then malloc space for and store the pCur->nKey bytes of key |
- ** data. |
- */ |
- if( 0==pCur->apPage[0]->intKey ){ |
- void *pKey = sqlite3Malloc( pCur->nKey ); |
- if( pKey ){ |
- rc = sqlite3BtreeKey(pCur, 0, (int)pCur->nKey, pKey); |
- if( rc==SQLITE_OK ){ |
- pCur->pKey = pKey; |
- }else{ |
- sqlite3_free(pKey); |
- } |
- }else{ |
- rc = SQLITE_NOMEM; |
- } |
- } |
- assert( !pCur->apPage[0]->intKey || !pCur->pKey ); |
- |
- if( rc==SQLITE_OK ){ |
- btreeReleaseAllCursorPages(pCur); |
- pCur->eState = CURSOR_REQUIRESEEK; |
- } |
- |
- invalidateOverflowCache(pCur); |
- return rc; |
-} |
- |
-/* Forward reference */ |
-static int SQLITE_NOINLINE saveCursorsOnList(BtCursor*,Pgno,BtCursor*); |
- |
-/* |
-** Save the positions of all cursors (except pExcept) that are open on |
-** the table with root-page iRoot. "Saving the cursor position" means that |
-** the location in the btree is remembered in such a way that it can be |
-** moved back to the same spot after the btree has been modified. This |
-** routine is called just before cursor pExcept is used to modify the |
-** table, for example in BtreeDelete() or BtreeInsert(). |
-** |
-** Implementation note: This routine merely checks to see if any cursors |
-** need to be saved. It calls out to saveCursorsOnList() in the (unusual) |
-** event that cursors are in need to being saved. |
-*/ |
-static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){ |
- BtCursor *p; |
- assert( sqlite3_mutex_held(pBt->mutex) ); |
- assert( pExcept==0 || pExcept->pBt==pBt ); |
- for(p=pBt->pCursor; p; p=p->pNext){ |
- if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ) break; |
- } |
- return p ? saveCursorsOnList(p, iRoot, pExcept) : SQLITE_OK; |
-} |
- |
-/* This helper routine to saveAllCursors does the actual work of saving |
-** the cursors if and when a cursor is found that actually requires saving. |
-** The common case is that no cursors need to be saved, so this routine is |
-** broken out from its caller to avoid unnecessary stack pointer movement. |
-*/ |
-static int SQLITE_NOINLINE saveCursorsOnList( |
- BtCursor *p, /* The first cursor that needs saving */ |
- Pgno iRoot, /* Only save cursor with this iRoot. Save all if zero */ |
- BtCursor *pExcept /* Do not save this cursor */ |
-){ |
- do{ |
- if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){ |
- if( p->eState==CURSOR_VALID ){ |
- int rc = saveCursorPosition(p); |
- if( SQLITE_OK!=rc ){ |
- return rc; |
- } |
- }else{ |
- testcase( p->iPage>0 ); |
- btreeReleaseAllCursorPages(p); |
- } |
- } |
- p = p->pNext; |
- }while( p ); |
- return SQLITE_OK; |
-} |
- |
-/* |
-** Clear the current cursor position. |
-*/ |
-void sqlite3BtreeClearCursor(BtCursor *pCur){ |
- assert( cursorHoldsMutex(pCur) ); |
- sqlite3_free(pCur->pKey); |
- pCur->pKey = 0; |
- pCur->eState = CURSOR_INVALID; |
-} |
- |
-/* |
-** In this version of BtreeMoveto, pKey is a packed index record |
-** such as is generated by the OP_MakeRecord opcode. Unpack the |
-** record and then call BtreeMovetoUnpacked() to do the work. |
-*/ |
-static int btreeMoveto( |
- BtCursor *pCur, /* Cursor open on the btree to be searched */ |
- const void *pKey, /* Packed key if the btree is an index */ |
- i64 nKey, /* Integer key for tables. Size of pKey for indices */ |
- int bias, /* Bias search to the high end */ |
- int *pRes /* Write search results here */ |
-){ |
- int rc; /* Status code */ |
- UnpackedRecord *pIdxKey; /* Unpacked index key */ |
- char aSpace[200]; /* Temp space for pIdxKey - to avoid a malloc */ |
- char *pFree = 0; |
- |
- if( pKey ){ |
- assert( nKey==(i64)(int)nKey ); |
- pIdxKey = sqlite3VdbeAllocUnpackedRecord( |
- pCur->pKeyInfo, aSpace, sizeof(aSpace), &pFree |
- ); |
- if( pIdxKey==0 ) return SQLITE_NOMEM; |
- sqlite3VdbeRecordUnpack(pCur->pKeyInfo, (int)nKey, pKey, pIdxKey); |
- if( pIdxKey->nField==0 ){ |
- sqlite3DbFree(pCur->pKeyInfo->db, pFree); |
- return SQLITE_CORRUPT_BKPT; |
- } |
- }else{ |
- pIdxKey = 0; |
- } |
- rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes); |
- if( pFree ){ |
- sqlite3DbFree(pCur->pKeyInfo->db, pFree); |
- } |
- return rc; |
-} |
- |
-/* |
-** Restore the cursor to the position it was in (or as close to as possible) |
-** when saveCursorPosition() was called. Note that this call deletes the |
-** saved position info stored by saveCursorPosition(), so there can be |
-** at most one effective restoreCursorPosition() call after each |
-** saveCursorPosition(). |
-*/ |
-static int btreeRestoreCursorPosition(BtCursor *pCur){ |
- int rc; |
- assert( cursorHoldsMutex(pCur) ); |
- assert( pCur->eState>=CURSOR_REQUIRESEEK ); |
- if( pCur->eState==CURSOR_FAULT ){ |
- return pCur->skipNext; |
- } |
- pCur->eState = CURSOR_INVALID; |
- rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &pCur->skipNext); |
- if( rc==SQLITE_OK ){ |
- sqlite3_free(pCur->pKey); |
- pCur->pKey = 0; |
- assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID ); |
- if( pCur->skipNext && pCur->eState==CURSOR_VALID ){ |
- pCur->eState = CURSOR_SKIPNEXT; |
- } |
- } |
- return rc; |
-} |
- |
-#define restoreCursorPosition(p) \ |
- (p->eState>=CURSOR_REQUIRESEEK ? \ |
- btreeRestoreCursorPosition(p) : \ |
- SQLITE_OK) |
- |
-/* |
-** Determine whether or not a cursor has moved from the position where |
-** it was last placed, or has been invalidated for any other reason. |
-** Cursors can move when the row they are pointing at is deleted out |
-** from under them, for example. Cursor might also move if a btree |
-** is rebalanced. |
-** |
-** Calling this routine with a NULL cursor pointer returns false. |
-** |
-** Use the separate sqlite3BtreeCursorRestore() routine to restore a cursor |
-** back to where it ought to be if this routine returns true. |
-*/ |
-int sqlite3BtreeCursorHasMoved(BtCursor *pCur){ |
- return pCur->eState!=CURSOR_VALID; |
-} |
- |
-/* |
-** This routine restores a cursor back to its original position after it |
-** has been moved by some outside activity (such as a btree rebalance or |
-** a row having been deleted out from under the cursor). |
-** |
-** On success, the *pDifferentRow parameter is false if the cursor is left |
-** pointing at exactly the same row. *pDifferntRow is the row the cursor |
-** was pointing to has been deleted, forcing the cursor to point to some |
-** nearby row. |
-** |
-** This routine should only be called for a cursor that just returned |
-** TRUE from sqlite3BtreeCursorHasMoved(). |
-*/ |
-int sqlite3BtreeCursorRestore(BtCursor *pCur, int *pDifferentRow){ |
- int rc; |
- |
- assert( pCur!=0 ); |
- assert( pCur->eState!=CURSOR_VALID ); |
- rc = restoreCursorPosition(pCur); |
- if( rc ){ |
- *pDifferentRow = 1; |
- return rc; |
- } |
- if( pCur->eState!=CURSOR_VALID || NEVER(pCur->skipNext!=0) ){ |
- *pDifferentRow = 1; |
- }else{ |
- *pDifferentRow = 0; |
- } |
- return SQLITE_OK; |
-} |
- |
-#ifndef SQLITE_OMIT_AUTOVACUUM |
-/* |
-** Given a page number of a regular database page, return the page |
-** number for the pointer-map page that contains the entry for the |
-** input page number. |
-** |
-** Return 0 (not a valid page) for pgno==1 since there is |
-** no pointer map associated with page 1. The integrity_check logic |
-** requires that ptrmapPageno(*,1)!=1. |
-*/ |
-static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){ |
- int nPagesPerMapPage; |
- Pgno iPtrMap, ret; |
- assert( sqlite3_mutex_held(pBt->mutex) ); |
- if( pgno<2 ) return 0; |
- nPagesPerMapPage = (pBt->usableSize/5)+1; |
- iPtrMap = (pgno-2)/nPagesPerMapPage; |
- ret = (iPtrMap*nPagesPerMapPage) + 2; |
- if( ret==PENDING_BYTE_PAGE(pBt) ){ |
- ret++; |
- } |
- return ret; |
-} |
- |
-/* |
-** Write an entry into the pointer map. |
-** |
-** This routine updates the pointer map entry for page number 'key' |
-** so that it maps to type 'eType' and parent page number 'pgno'. |
-** |
-** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is |
-** a no-op. If an error occurs, the appropriate error code is written |
-** into *pRC. |
-*/ |
-static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){ |
- DbPage *pDbPage; /* The pointer map page */ |
- u8 *pPtrmap; /* The pointer map data */ |
- Pgno iPtrmap; /* The pointer map page number */ |
- int offset; /* Offset in pointer map page */ |
- int rc; /* Return code from subfunctions */ |
- |
- if( *pRC ) return; |
- |
- assert( sqlite3_mutex_held(pBt->mutex) ); |
- /* The master-journal page number must never be used as a pointer map page */ |
- assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) ); |
- |
- assert( pBt->autoVacuum ); |
- if( key==0 ){ |
- *pRC = SQLITE_CORRUPT_BKPT; |
- return; |
- } |
- iPtrmap = PTRMAP_PAGENO(pBt, key); |
- rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage); |
- if( rc!=SQLITE_OK ){ |
- *pRC = rc; |
- return; |
- } |
- offset = PTRMAP_PTROFFSET(iPtrmap, key); |
- if( offset<0 ){ |
- *pRC = SQLITE_CORRUPT_BKPT; |
- goto ptrmap_exit; |
- } |
- assert( offset <= (int)pBt->usableSize-5 ); |
- pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage); |
- |
- if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){ |
- TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent)); |
- *pRC= rc = sqlite3PagerWrite(pDbPage); |
- if( rc==SQLITE_OK ){ |
- pPtrmap[offset] = eType; |
- put4byte(&pPtrmap[offset+1], parent); |
- } |
- } |
- |
-ptrmap_exit: |
- sqlite3PagerUnref(pDbPage); |
-} |
- |
-/* |
-** Read an entry from the pointer map. |
-** |
-** This routine retrieves the pointer map entry for page 'key', writing |
-** the type and parent page number to *pEType and *pPgno respectively. |
-** An error code is returned if something goes wrong, otherwise SQLITE_OK. |
-*/ |
-static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){ |
- DbPage *pDbPage; /* The pointer map page */ |
- int iPtrmap; /* Pointer map page index */ |
- u8 *pPtrmap; /* Pointer map page data */ |
- int offset; /* Offset of entry in pointer map */ |
- int rc; |
- |
- assert( sqlite3_mutex_held(pBt->mutex) ); |
- |
- iPtrmap = PTRMAP_PAGENO(pBt, key); |
- rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage); |
- if( rc!=0 ){ |
- return rc; |
- } |
- pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage); |
- |
- offset = PTRMAP_PTROFFSET(iPtrmap, key); |
- if( offset<0 ){ |
- sqlite3PagerUnref(pDbPage); |
- return SQLITE_CORRUPT_BKPT; |
- } |
- assert( offset <= (int)pBt->usableSize-5 ); |
- assert( pEType!=0 ); |
- *pEType = pPtrmap[offset]; |
- if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]); |
- |
- sqlite3PagerUnref(pDbPage); |
- if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_BKPT; |
- return SQLITE_OK; |
-} |
- |
-#else /* if defined SQLITE_OMIT_AUTOVACUUM */ |
- #define ptrmapPut(w,x,y,z,rc) |
- #define ptrmapGet(w,x,y,z) SQLITE_OK |
- #define ptrmapPutOvflPtr(x, y, rc) |
-#endif |
- |
-/* |
-** Given a btree page and a cell index (0 means the first cell on |
-** the page, 1 means the second cell, and so forth) return a pointer |
-** to the cell content. |
-** |
-** This routine works only for pages that do not contain overflow cells. |
-*/ |
-#define findCell(P,I) \ |
- ((P)->aData + ((P)->maskPage & get2byte(&(P)->aCellIdx[2*(I)]))) |
-#define findCellv2(D,M,O,I) (D+(M&get2byte(D+(O+2*(I))))) |
- |
- |
-/* |
-** This a more complex version of findCell() that works for |
-** pages that do contain overflow cells. |
-*/ |
-static u8 *findOverflowCell(MemPage *pPage, int iCell){ |
- int i; |
- assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
- for(i=pPage->nOverflow-1; i>=0; i--){ |
- int k; |
- k = pPage->aiOvfl[i]; |
- if( k<=iCell ){ |
- if( k==iCell ){ |
- return pPage->apOvfl[i]; |
- } |
- iCell--; |
- } |
- } |
- return findCell(pPage, iCell); |
-} |
- |
-/* |
-** Parse a cell content block and fill in the CellInfo structure. There |
-** are two versions of this function. btreeParseCell() takes a |
-** cell index as the second argument and btreeParseCellPtr() |
-** takes a pointer to the body of the cell as its second argument. |
-*/ |
-static void btreeParseCellPtr( |
- MemPage *pPage, /* Page containing the cell */ |
- u8 *pCell, /* Pointer to the cell text. */ |
- CellInfo *pInfo /* Fill in this structure */ |
-){ |
- u8 *pIter; /* For scanning through pCell */ |
- u32 nPayload; /* Number of bytes of cell payload */ |
- |
- assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
- assert( pPage->leaf==0 || pPage->leaf==1 ); |
- if( pPage->intKeyLeaf ){ |
- assert( pPage->childPtrSize==0 ); |
- pIter = pCell + getVarint32(pCell, nPayload); |
- pIter += getVarint(pIter, (u64*)&pInfo->nKey); |
- }else if( pPage->noPayload ){ |
- assert( pPage->childPtrSize==4 ); |
- pInfo->nSize = 4 + getVarint(&pCell[4], (u64*)&pInfo->nKey); |
- pInfo->nPayload = 0; |
- pInfo->nLocal = 0; |
- pInfo->iOverflow = 0; |
- pInfo->pPayload = 0; |
- return; |
- }else{ |
- pIter = pCell + pPage->childPtrSize; |
- pIter += getVarint32(pIter, nPayload); |
- pInfo->nKey = nPayload; |
- } |
- pInfo->nPayload = nPayload; |
- pInfo->pPayload = pIter; |
- testcase( nPayload==pPage->maxLocal ); |
- testcase( nPayload==pPage->maxLocal+1 ); |
- if( nPayload<=pPage->maxLocal ){ |
- /* This is the (easy) common case where the entire payload fits |
- ** on the local page. No overflow is required. |
- */ |
- pInfo->nSize = nPayload + (u16)(pIter - pCell); |
- if( pInfo->nSize<4 ) pInfo->nSize = 4; |
- pInfo->nLocal = (u16)nPayload; |
- pInfo->iOverflow = 0; |
- }else{ |
- /* If the payload will not fit completely on the local page, we have |
- ** to decide how much to store locally and how much to spill onto |
- ** overflow pages. The strategy is to minimize the amount of unused |
- ** space on overflow pages while keeping the amount of local storage |
- ** in between minLocal and maxLocal. |
- ** |
- ** Warning: changing the way overflow payload is distributed in any |
- ** way will result in an incompatible file format. |
- */ |
- int minLocal; /* Minimum amount of payload held locally */ |
- int maxLocal; /* Maximum amount of payload held locally */ |
- int surplus; /* Overflow payload available for local storage */ |
- |
- minLocal = pPage->minLocal; |
- maxLocal = pPage->maxLocal; |
- surplus = minLocal + (nPayload - minLocal)%(pPage->pBt->usableSize - 4); |
- testcase( surplus==maxLocal ); |
- testcase( surplus==maxLocal+1 ); |
- if( surplus <= maxLocal ){ |
- pInfo->nLocal = (u16)surplus; |
- }else{ |
- pInfo->nLocal = (u16)minLocal; |
- } |
- pInfo->iOverflow = (u16)(&pInfo->pPayload[pInfo->nLocal] - pCell); |
- pInfo->nSize = pInfo->iOverflow + 4; |
- } |
-} |
-static void btreeParseCell( |
- MemPage *pPage, /* Page containing the cell */ |
- int iCell, /* The cell index. First cell is 0 */ |
- CellInfo *pInfo /* Fill in this structure */ |
-){ |
- btreeParseCellPtr(pPage, findCell(pPage, iCell), pInfo); |
-} |
- |
-/* |
-** Compute the total number of bytes that a Cell needs in the cell |
-** data area of the btree-page. The return number includes the cell |
-** data header and the local payload, but not any overflow page or |
-** the space used by the cell pointer. |
-*/ |
-static u16 cellSizePtr(MemPage *pPage, u8 *pCell){ |
- u8 *pIter = pCell + pPage->childPtrSize; /* For looping over bytes of pCell */ |
- u8 *pEnd; /* End mark for a varint */ |
- u32 nSize; /* Size value to return */ |
- |
-#ifdef SQLITE_DEBUG |
- /* The value returned by this function should always be the same as |
- ** the (CellInfo.nSize) value found by doing a full parse of the |
- ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of |
- ** this function verifies that this invariant is not violated. */ |
- CellInfo debuginfo; |
- btreeParseCellPtr(pPage, pCell, &debuginfo); |
-#endif |
- |
- if( pPage->noPayload ){ |
- pEnd = &pIter[9]; |
- while( (*pIter++)&0x80 && pIter<pEnd ); |
- assert( pPage->childPtrSize==4 ); |
- return (u16)(pIter - pCell); |
- } |
- nSize = *pIter; |
- if( nSize>=0x80 ){ |
- pEnd = &pIter[9]; |
- nSize &= 0x7f; |
- do{ |
- nSize = (nSize<<7) | (*++pIter & 0x7f); |
- }while( *(pIter)>=0x80 && pIter<pEnd ); |
- } |
- pIter++; |
- if( pPage->intKey ){ |
- /* pIter now points at the 64-bit integer key value, a variable length |
- ** integer. The following block moves pIter to point at the first byte |
- ** past the end of the key value. */ |
- pEnd = &pIter[9]; |
- while( (*pIter++)&0x80 && pIter<pEnd ); |
- } |
- testcase( nSize==pPage->maxLocal ); |
- testcase( nSize==pPage->maxLocal+1 ); |
- if( nSize<=pPage->maxLocal ){ |
- nSize += (u32)(pIter - pCell); |
- if( nSize<4 ) nSize = 4; |
- }else{ |
- int minLocal = pPage->minLocal; |
- nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4); |
- testcase( nSize==pPage->maxLocal ); |
- testcase( nSize==pPage->maxLocal+1 ); |
- if( nSize>pPage->maxLocal ){ |
- nSize = minLocal; |
- } |
- nSize += 4 + (u16)(pIter - pCell); |
- } |
- assert( nSize==debuginfo.nSize || CORRUPT_DB ); |
- return (u16)nSize; |
-} |
- |
-#ifdef SQLITE_DEBUG |
-/* This variation on cellSizePtr() is used inside of assert() statements |
-** only. */ |
-static u16 cellSize(MemPage *pPage, int iCell){ |
- return cellSizePtr(pPage, findCell(pPage, iCell)); |
-} |
-#endif |
- |
-#ifndef SQLITE_OMIT_AUTOVACUUM |
-/* |
-** If the cell pCell, part of page pPage contains a pointer |
-** to an overflow page, insert an entry into the pointer-map |
-** for the overflow page. |
-*/ |
-static void ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell, int *pRC){ |
- CellInfo info; |
- if( *pRC ) return; |
- assert( pCell!=0 ); |
- btreeParseCellPtr(pPage, pCell, &info); |
- if( info.iOverflow ){ |
- Pgno ovfl = get4byte(&pCell[info.iOverflow]); |
- ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC); |
- } |
-} |
-#endif |
- |
- |
-/* |
-** Defragment the page given. All Cells are moved to the |
-** end of the page and all free space is collected into one |
-** big FreeBlk that occurs in between the header and cell |
-** pointer array and the cell content area. |
-*/ |
-static int defragmentPage(MemPage *pPage){ |
- int i; /* Loop counter */ |
- int pc; /* Address of the i-th cell */ |
- int hdr; /* Offset to the page header */ |
- int size; /* Size of a cell */ |
- int usableSize; /* Number of usable bytes on a page */ |
- int cellOffset; /* Offset to the cell pointer array */ |
- int cbrk; /* Offset to the cell content area */ |
- int nCell; /* Number of cells on the page */ |
- unsigned char *data; /* The page data */ |
- unsigned char *temp; /* Temp area for cell content */ |
- int iCellFirst; /* First allowable cell index */ |
- int iCellLast; /* Last possible cell index */ |
- |
- |
- assert( sqlite3PagerIswriteable(pPage->pDbPage) ); |
- assert( pPage->pBt!=0 ); |
- assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE ); |
- assert( pPage->nOverflow==0 ); |
- assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
- temp = sqlite3PagerTempSpace(pPage->pBt->pPager); |
- data = pPage->aData; |
- hdr = pPage->hdrOffset; |
- cellOffset = pPage->cellOffset; |
- nCell = pPage->nCell; |
- assert( nCell==get2byte(&data[hdr+3]) ); |
- usableSize = pPage->pBt->usableSize; |
- cbrk = get2byte(&data[hdr+5]); |
- memcpy(&temp[cbrk], &data[cbrk], usableSize - cbrk); |
- cbrk = usableSize; |
- iCellFirst = cellOffset + 2*nCell; |
- iCellLast = usableSize - 4; |
- for(i=0; i<nCell; i++){ |
- u8 *pAddr; /* The i-th cell pointer */ |
- pAddr = &data[cellOffset + i*2]; |
- pc = get2byte(pAddr); |
- testcase( pc==iCellFirst ); |
- testcase( pc==iCellLast ); |
-#if !defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK) |
- /* These conditions have already been verified in btreeInitPage() |
- ** if SQLITE_ENABLE_OVERSIZE_CELL_CHECK is defined |
- */ |
- if( pc<iCellFirst || pc>iCellLast ){ |
- return SQLITE_CORRUPT_BKPT; |
- } |
-#endif |
- assert( pc>=iCellFirst && pc<=iCellLast ); |
- size = cellSizePtr(pPage, &temp[pc]); |
- cbrk -= size; |
-#if defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK) |
- if( cbrk<iCellFirst ){ |
- return SQLITE_CORRUPT_BKPT; |
- } |
-#else |
- if( cbrk<iCellFirst || pc+size>usableSize ){ |
- return SQLITE_CORRUPT_BKPT; |
- } |
-#endif |
- assert( cbrk+size<=usableSize && cbrk>=iCellFirst ); |
- testcase( cbrk+size==usableSize ); |
- testcase( pc+size==usableSize ); |
- memcpy(&data[cbrk], &temp[pc], size); |
- put2byte(pAddr, cbrk); |
- } |
- assert( cbrk>=iCellFirst ); |
- put2byte(&data[hdr+5], cbrk); |
- data[hdr+1] = 0; |
- data[hdr+2] = 0; |
- data[hdr+7] = 0; |
- memset(&data[iCellFirst], 0, cbrk-iCellFirst); |
- assert( sqlite3PagerIswriteable(pPage->pDbPage) ); |
- if( cbrk-iCellFirst!=pPage->nFree ){ |
- return SQLITE_CORRUPT_BKPT; |
- } |
- return SQLITE_OK; |
-} |
- |
-/* |
-** Allocate nByte bytes of space from within the B-Tree page passed |
-** as the first argument. Write into *pIdx the index into pPage->aData[] |
-** of the first byte of allocated space. Return either SQLITE_OK or |
-** an error code (usually SQLITE_CORRUPT). |
-** |
-** The caller guarantees that there is sufficient space to make the |
-** allocation. This routine might need to defragment in order to bring |
-** all the space together, however. This routine will avoid using |
-** the first two bytes past the cell pointer area since presumably this |
-** allocation is being made in order to insert a new cell, so we will |
-** also end up needing a new cell pointer. |
-*/ |
-static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){ |
- const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */ |
- u8 * const data = pPage->aData; /* Local cache of pPage->aData */ |
- int top; /* First byte of cell content area */ |
- int gap; /* First byte of gap between cell pointers and cell content */ |
- int rc; /* Integer return code */ |
- int usableSize; /* Usable size of the page */ |
- |
- assert( sqlite3PagerIswriteable(pPage->pDbPage) ); |
- assert( pPage->pBt ); |
- assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
- assert( nByte>=0 ); /* Minimum cell size is 4 */ |
- assert( pPage->nFree>=nByte ); |
- assert( pPage->nOverflow==0 ); |
- usableSize = pPage->pBt->usableSize; |
- assert( nByte < usableSize-8 ); |
- |
- assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf ); |
- gap = pPage->cellOffset + 2*pPage->nCell; |
- assert( gap<=65536 ); |
- top = get2byte(&data[hdr+5]); |
- if( gap>top ){ |
- if( top==0 ){ |
- top = 65536; |
- }else{ |
- return SQLITE_CORRUPT_BKPT; |
- } |
- } |
- |
- /* If there is enough space between gap and top for one more cell pointer |
- ** array entry offset, and if the freelist is not empty, then search the |
- ** freelist looking for a free slot big enough to satisfy the request. |
- */ |
- testcase( gap+2==top ); |
- testcase( gap+1==top ); |
- testcase( gap==top ); |
- if( gap+2<=top && (data[hdr+1] || data[hdr+2]) ){ |
- int pc, addr; |
- for(addr=hdr+1; (pc = get2byte(&data[addr]))>0; addr=pc){ |
- int size; /* Size of the free slot */ |
- if( pc>usableSize-4 || pc<addr+4 ){ |
- return SQLITE_CORRUPT_BKPT; |
- } |
- size = get2byte(&data[pc+2]); |
- if( size>=nByte ){ |
- int x = size - nByte; |
- testcase( x==4 ); |
- testcase( x==3 ); |
- if( x<4 ){ |
- if( data[hdr+7]>=60 ) goto defragment_page; |
- /* Remove the slot from the free-list. Update the number of |
- ** fragmented bytes within the page. */ |
- memcpy(&data[addr], &data[pc], 2); |
- data[hdr+7] += (u8)x; |
- }else if( size+pc > usableSize ){ |
- return SQLITE_CORRUPT_BKPT; |
- }else{ |
- /* The slot remains on the free-list. Reduce its size to account |
- ** for the portion used by the new allocation. */ |
- put2byte(&data[pc+2], x); |
- } |
- *pIdx = pc + x; |
- return SQLITE_OK; |
- } |
- } |
- } |
- |
- /* The request could not be fulfilled using a freelist slot. Check |
- ** to see if defragmentation is necessary. |
- */ |
- testcase( gap+2+nByte==top ); |
- if( gap+2+nByte>top ){ |
-defragment_page: |
- testcase( pPage->nCell==0 ); |
- rc = defragmentPage(pPage); |
- if( rc ) return rc; |
- top = get2byteNotZero(&data[hdr+5]); |
- assert( gap+nByte<=top ); |
- } |
- |
- |
- /* Allocate memory from the gap in between the cell pointer array |
- ** and the cell content area. The btreeInitPage() call has already |
- ** validated the freelist. Given that the freelist is valid, there |
- ** is no way that the allocation can extend off the end of the page. |
- ** The assert() below verifies the previous sentence. |
- */ |
- top -= nByte; |
- put2byte(&data[hdr+5], top); |
- assert( top+nByte <= (int)pPage->pBt->usableSize ); |
- *pIdx = top; |
- return SQLITE_OK; |
-} |
- |
-/* |
-** Return a section of the pPage->aData to the freelist. |
-** The first byte of the new free block is pPage->aData[iStart] |
-** and the size of the block is iSize bytes. |
-** |
-** Adjacent freeblocks are coalesced. |
-** |
-** Note that even though the freeblock list was checked by btreeInitPage(), |
-** that routine will not detect overlap between cells or freeblocks. Nor |
-** does it detect cells or freeblocks that encrouch into the reserved bytes |
-** at the end of the page. So do additional corruption checks inside this |
-** routine and return SQLITE_CORRUPT if any problems are found. |
-*/ |
-static int freeSpace(MemPage *pPage, u16 iStart, u16 iSize){ |
- u16 iPtr; /* Address of ptr to next freeblock */ |
- u16 iFreeBlk; /* Address of the next freeblock */ |
- u8 hdr; /* Page header size. 0 or 100 */ |
- u8 nFrag = 0; /* Reduction in fragmentation */ |
- u16 iOrigSize = iSize; /* Original value of iSize */ |
- u32 iLast = pPage->pBt->usableSize-4; /* Largest possible freeblock offset */ |
- u32 iEnd = iStart + iSize; /* First byte past the iStart buffer */ |
- unsigned char *data = pPage->aData; /* Page content */ |
- |
- assert( pPage->pBt!=0 ); |
- assert( sqlite3PagerIswriteable(pPage->pDbPage) ); |
- assert( iStart>=pPage->hdrOffset+6+pPage->childPtrSize ); |
- assert( iEnd <= pPage->pBt->usableSize ); |
- assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
- assert( iSize>=4 ); /* Minimum cell size is 4 */ |
- assert( iStart<=iLast ); |
- |
- /* Overwrite deleted information with zeros when the secure_delete |
- ** option is enabled */ |
- if( pPage->pBt->btsFlags & BTS_SECURE_DELETE ){ |
- memset(&data[iStart], 0, iSize); |
- } |
- |
- /* The list of freeblocks must be in ascending order. Find the |
- ** spot on the list where iStart should be inserted. |
- */ |
- hdr = pPage->hdrOffset; |
- iPtr = hdr + 1; |
- if( data[iPtr+1]==0 && data[iPtr]==0 ){ |
- iFreeBlk = 0; /* Shortcut for the case when the freelist is empty */ |
- }else{ |
- while( (iFreeBlk = get2byte(&data[iPtr]))>0 && iFreeBlk<iStart ){ |
- if( iFreeBlk<iPtr+4 ) return SQLITE_CORRUPT_BKPT; |
- iPtr = iFreeBlk; |
- } |
- if( iFreeBlk>iLast ) return SQLITE_CORRUPT_BKPT; |
- assert( iFreeBlk>iPtr || iFreeBlk==0 ); |
- |
- /* At this point: |
- ** iFreeBlk: First freeblock after iStart, or zero if none |
- ** iPtr: The address of a pointer iFreeBlk |
- ** |
- ** Check to see if iFreeBlk should be coalesced onto the end of iStart. |
- */ |
- if( iFreeBlk && iEnd+3>=iFreeBlk ){ |
- nFrag = iFreeBlk - iEnd; |
- if( iEnd>iFreeBlk ) return SQLITE_CORRUPT_BKPT; |
- iEnd = iFreeBlk + get2byte(&data[iFreeBlk+2]); |
- iSize = iEnd - iStart; |
- iFreeBlk = get2byte(&data[iFreeBlk]); |
- } |
- |
- /* If iPtr is another freeblock (that is, if iPtr is not the freelist |
- ** pointer in the page header) then check to see if iStart should be |
- ** coalesced onto the end of iPtr. |
- */ |
- if( iPtr>hdr+1 ){ |
- int iPtrEnd = iPtr + get2byte(&data[iPtr+2]); |
- if( iPtrEnd+3>=iStart ){ |
- if( iPtrEnd>iStart ) return SQLITE_CORRUPT_BKPT; |
- nFrag += iStart - iPtrEnd; |
- iSize = iEnd - iPtr; |
- iStart = iPtr; |
- } |
- } |
- if( nFrag>data[hdr+7] ) return SQLITE_CORRUPT_BKPT; |
- data[hdr+7] -= nFrag; |
- } |
- if( iStart==get2byte(&data[hdr+5]) ){ |
- /* The new freeblock is at the beginning of the cell content area, |
- ** so just extend the cell content area rather than create another |
- ** freelist entry */ |
- if( iPtr!=hdr+1 ) return SQLITE_CORRUPT_BKPT; |
- put2byte(&data[hdr+1], iFreeBlk); |
- put2byte(&data[hdr+5], iEnd); |
- }else{ |
- /* Insert the new freeblock into the freelist */ |
- put2byte(&data[iPtr], iStart); |
- put2byte(&data[iStart], iFreeBlk); |
- put2byte(&data[iStart+2], iSize); |
- } |
- pPage->nFree += iOrigSize; |
- return SQLITE_OK; |
-} |
- |
-/* |
-** Decode the flags byte (the first byte of the header) for a page |
-** and initialize fields of the MemPage structure accordingly. |
-** |
-** Only the following combinations are supported. Anything different |
-** indicates a corrupt database files: |
-** |
-** PTF_ZERODATA |
-** PTF_ZERODATA | PTF_LEAF |
-** PTF_LEAFDATA | PTF_INTKEY |
-** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF |
-*/ |
-static int decodeFlags(MemPage *pPage, int flagByte){ |
- BtShared *pBt; /* A copy of pPage->pBt */ |
- |
- assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) ); |
- assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
- pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 ); |
- flagByte &= ~PTF_LEAF; |
- pPage->childPtrSize = 4-4*pPage->leaf; |
- pBt = pPage->pBt; |
- if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){ |
- pPage->intKey = 1; |
- pPage->intKeyLeaf = pPage->leaf; |
- pPage->noPayload = !pPage->leaf; |
- pPage->maxLocal = pBt->maxLeaf; |
- pPage->minLocal = pBt->minLeaf; |
- }else if( flagByte==PTF_ZERODATA ){ |
- pPage->intKey = 0; |
- pPage->intKeyLeaf = 0; |
- pPage->noPayload = 0; |
- pPage->maxLocal = pBt->maxLocal; |
- pPage->minLocal = pBt->minLocal; |
- }else{ |
- return SQLITE_CORRUPT_BKPT; |
- } |
- pPage->max1bytePayload = pBt->max1bytePayload; |
- return SQLITE_OK; |
-} |
- |
-/* |
-** Initialize the auxiliary information for a disk block. |
-** |
-** Return SQLITE_OK on success. If we see that the page does |
-** not contain a well-formed database page, then return |
-** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not |
-** guarantee that the page is well-formed. It only shows that |
-** we failed to detect any corruption. |
-*/ |
-static int btreeInitPage(MemPage *pPage){ |
- |
- assert( pPage->pBt!=0 ); |
- assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
- assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) ); |
- assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) ); |
- assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) ); |
- |
- if( !pPage->isInit ){ |
- u16 pc; /* Address of a freeblock within pPage->aData[] */ |
- u8 hdr; /* Offset to beginning of page header */ |
- u8 *data; /* Equal to pPage->aData */ |
- BtShared *pBt; /* The main btree structure */ |
- int usableSize; /* Amount of usable space on each page */ |
- u16 cellOffset; /* Offset from start of page to first cell pointer */ |
- int nFree; /* Number of unused bytes on the page */ |
- int top; /* First byte of the cell content area */ |
- int iCellFirst; /* First allowable cell or freeblock offset */ |
- int iCellLast; /* Last possible cell or freeblock offset */ |
- |
- pBt = pPage->pBt; |
- |
- hdr = pPage->hdrOffset; |
- data = pPage->aData; |
- if( decodeFlags(pPage, data[hdr]) ) return SQLITE_CORRUPT_BKPT; |
- assert( pBt->pageSize>=512 && pBt->pageSize<=65536 ); |
- pPage->maskPage = (u16)(pBt->pageSize - 1); |
- pPage->nOverflow = 0; |
- usableSize = pBt->usableSize; |
- pPage->cellOffset = cellOffset = hdr + 12 - 4*pPage->leaf; |
- pPage->aDataEnd = &data[usableSize]; |
- pPage->aCellIdx = &data[cellOffset]; |
- top = get2byteNotZero(&data[hdr+5]); |
- pPage->nCell = get2byte(&data[hdr+3]); |
- if( pPage->nCell>MX_CELL(pBt) ){ |
- /* To many cells for a single page. The page must be corrupt */ |
- return SQLITE_CORRUPT_BKPT; |
- } |
- testcase( pPage->nCell==MX_CELL(pBt) ); |
- |
- /* A malformed database page might cause us to read past the end |
- ** of page when parsing a cell. |
- ** |
- ** The following block of code checks early to see if a cell extends |
- ** past the end of a page boundary and causes SQLITE_CORRUPT to be |
- ** returned if it does. |
- */ |
- iCellFirst = cellOffset + 2*pPage->nCell; |
- iCellLast = usableSize - 4; |
-#if defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK) |
- { |
- int i; /* Index into the cell pointer array */ |
- int sz; /* Size of a cell */ |
- |
- if( !pPage->leaf ) iCellLast--; |
- for(i=0; i<pPage->nCell; i++){ |
- pc = get2byte(&data[cellOffset+i*2]); |
- testcase( pc==iCellFirst ); |
- testcase( pc==iCellLast ); |
- if( pc<iCellFirst || pc>iCellLast ){ |
- return SQLITE_CORRUPT_BKPT; |
- } |
- sz = cellSizePtr(pPage, &data[pc]); |
- testcase( pc+sz==usableSize ); |
- if( pc+sz>usableSize ){ |
- return SQLITE_CORRUPT_BKPT; |
- } |
- } |
- if( !pPage->leaf ) iCellLast++; |
- } |
-#endif |
- |
- /* Compute the total free space on the page */ |
- pc = get2byte(&data[hdr+1]); |
- nFree = data[hdr+7] + top; |
- while( pc>0 ){ |
- u16 next, size; |
- if( pc<iCellFirst || pc>iCellLast ){ |
- /* Start of free block is off the page */ |
- return SQLITE_CORRUPT_BKPT; |
- } |
- next = get2byte(&data[pc]); |
- size = get2byte(&data[pc+2]); |
- if( (next>0 && next<=pc+size+3) || pc+size>usableSize ){ |
- /* Free blocks must be in ascending order. And the last byte of |
- ** the free-block must lie on the database page. */ |
- return SQLITE_CORRUPT_BKPT; |
- } |
- nFree = nFree + size; |
- pc = next; |
- } |
- |
- /* At this point, nFree contains the sum of the offset to the start |
- ** of the cell-content area plus the number of free bytes within |
- ** the cell-content area. If this is greater than the usable-size |
- ** of the page, then the page must be corrupted. This check also |
- ** serves to verify that the offset to the start of the cell-content |
- ** area, according to the page header, lies within the page. |
- */ |
- if( nFree>usableSize ){ |
- return SQLITE_CORRUPT_BKPT; |
- } |
- pPage->nFree = (u16)(nFree - iCellFirst); |
- pPage->isInit = 1; |
- } |
- return SQLITE_OK; |
-} |
- |
-/* |
-** Set up a raw page so that it looks like a database page holding |
-** no entries. |
-*/ |
-static void zeroPage(MemPage *pPage, int flags){ |
- unsigned char *data = pPage->aData; |
- BtShared *pBt = pPage->pBt; |
- u8 hdr = pPage->hdrOffset; |
- u16 first; |
- |
- assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno ); |
- assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage ); |
- assert( sqlite3PagerGetData(pPage->pDbPage) == data ); |
- assert( sqlite3PagerIswriteable(pPage->pDbPage) ); |
- assert( sqlite3_mutex_held(pBt->mutex) ); |
- if( pBt->btsFlags & BTS_SECURE_DELETE ){ |
- memset(&data[hdr], 0, pBt->usableSize - hdr); |
- } |
- data[hdr] = (char)flags; |
- first = hdr + ((flags&PTF_LEAF)==0 ? 12 : 8); |
- memset(&data[hdr+1], 0, 4); |
- data[hdr+7] = 0; |
- put2byte(&data[hdr+5], pBt->usableSize); |
- pPage->nFree = (u16)(pBt->usableSize - first); |
- decodeFlags(pPage, flags); |
- pPage->cellOffset = first; |
- pPage->aDataEnd = &data[pBt->usableSize]; |
- pPage->aCellIdx = &data[first]; |
- pPage->nOverflow = 0; |
- assert( pBt->pageSize>=512 && pBt->pageSize<=65536 ); |
- pPage->maskPage = (u16)(pBt->pageSize - 1); |
- pPage->nCell = 0; |
- pPage->isInit = 1; |
-} |
- |
- |
-/* |
-** Convert a DbPage obtained from the pager into a MemPage used by |
-** the btree layer. |
-*/ |
-static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){ |
- MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage); |
- pPage->aData = sqlite3PagerGetData(pDbPage); |
- pPage->pDbPage = pDbPage; |
- pPage->pBt = pBt; |
- pPage->pgno = pgno; |
- pPage->hdrOffset = pPage->pgno==1 ? 100 : 0; |
- return pPage; |
-} |
- |
-/* |
-** Get a page from the pager. Initialize the MemPage.pBt and |
-** MemPage.aData elements if needed. |
-** |
-** If the noContent flag is set, it means that we do not care about |
-** the content of the page at this time. So do not go to the disk |
-** to fetch the content. Just fill in the content with zeros for now. |
-** If in the future we call sqlite3PagerWrite() on this page, that |
-** means we have started to be concerned about content and the disk |
-** read should occur at that point. |
-*/ |
-static int btreeGetPage( |
- BtShared *pBt, /* The btree */ |
- Pgno pgno, /* Number of the page to fetch */ |
- MemPage **ppPage, /* Return the page in this parameter */ |
- int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */ |
-){ |
- int rc; |
- DbPage *pDbPage; |
- |
- assert( flags==0 || flags==PAGER_GET_NOCONTENT || flags==PAGER_GET_READONLY ); |
- assert( sqlite3_mutex_held(pBt->mutex) ); |
- rc = sqlite3PagerAcquire(pBt->pPager, pgno, (DbPage**)&pDbPage, flags); |
- if( rc ) return rc; |
- *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt); |
- return SQLITE_OK; |
-} |
- |
-/* |
-** Retrieve a page from the pager cache. If the requested page is not |
-** already in the pager cache return NULL. Initialize the MemPage.pBt and |
-** MemPage.aData elements if needed. |
-*/ |
-static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){ |
- DbPage *pDbPage; |
- assert( sqlite3_mutex_held(pBt->mutex) ); |
- pDbPage = sqlite3PagerLookup(pBt->pPager, pgno); |
- if( pDbPage ){ |
- return btreePageFromDbPage(pDbPage, pgno, pBt); |
- } |
- return 0; |
-} |
- |
-/* |
-** Return the size of the database file in pages. If there is any kind of |
-** error, return ((unsigned int)-1). |
-*/ |
-static Pgno btreePagecount(BtShared *pBt){ |
- return pBt->nPage; |
-} |
-u32 sqlite3BtreeLastPage(Btree *p){ |
- assert( sqlite3BtreeHoldsMutex(p) ); |
- assert( ((p->pBt->nPage)&0x8000000)==0 ); |
- return btreePagecount(p->pBt); |
-} |
- |
-/* |
-** Get a page from the pager and initialize it. This routine is just a |
-** convenience wrapper around separate calls to btreeGetPage() and |
-** btreeInitPage(). |
-** |
-** If an error occurs, then the value *ppPage is set to is undefined. It |
-** may remain unchanged, or it may be set to an invalid value. |
-*/ |
-static int getAndInitPage( |
- BtShared *pBt, /* The database file */ |
- Pgno pgno, /* Number of the page to get */ |
- MemPage **ppPage, /* Write the page pointer here */ |
- int bReadonly /* PAGER_GET_READONLY or 0 */ |
-){ |
- int rc; |
- assert( sqlite3_mutex_held(pBt->mutex) ); |
- assert( bReadonly==PAGER_GET_READONLY || bReadonly==0 ); |
- |
- if( pgno>btreePagecount(pBt) ){ |
- rc = SQLITE_CORRUPT_BKPT; |
- }else{ |
- rc = btreeGetPage(pBt, pgno, ppPage, bReadonly); |
- if( rc==SQLITE_OK && (*ppPage)->isInit==0 ){ |
- rc = btreeInitPage(*ppPage); |
- if( rc!=SQLITE_OK ){ |
- releasePage(*ppPage); |
- } |
- } |
- } |
- |
- testcase( pgno==0 ); |
- assert( pgno!=0 || rc==SQLITE_CORRUPT ); |
- return rc; |
-} |
- |
-/* |
-** Release a MemPage. This should be called once for each prior |
-** call to btreeGetPage. |
-*/ |
-static void releasePage(MemPage *pPage){ |
- if( pPage ){ |
- assert( pPage->aData ); |
- assert( pPage->pBt ); |
- assert( pPage->pDbPage!=0 ); |
- assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage ); |
- assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData ); |
- assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
- sqlite3PagerUnrefNotNull(pPage->pDbPage); |
- } |
-} |
- |
-/* |
-** During a rollback, when the pager reloads information into the cache |
-** so that the cache is restored to its original state at the start of |
-** the transaction, for each page restored this routine is called. |
-** |
-** This routine needs to reset the extra data section at the end of the |
-** page to agree with the restored data. |
-*/ |
-static void pageReinit(DbPage *pData){ |
- MemPage *pPage; |
- pPage = (MemPage *)sqlite3PagerGetExtra(pData); |
- assert( sqlite3PagerPageRefcount(pData)>0 ); |
- if( pPage->isInit ){ |
- assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
- pPage->isInit = 0; |
- if( sqlite3PagerPageRefcount(pData)>1 ){ |
- /* pPage might not be a btree page; it might be an overflow page |
- ** or ptrmap page or a free page. In those cases, the following |
- ** call to btreeInitPage() will likely return SQLITE_CORRUPT. |
- ** But no harm is done by this. And it is very important that |
- ** btreeInitPage() be called on every btree page so we make |
- ** the call for every page that comes in for re-initing. */ |
- btreeInitPage(pPage); |
- } |
- } |
-} |
- |
-/* |
-** Invoke the busy handler for a btree. |
-*/ |
-static int btreeInvokeBusyHandler(void *pArg){ |
- BtShared *pBt = (BtShared*)pArg; |
- assert( pBt->db ); |
- assert( sqlite3_mutex_held(pBt->db->mutex) ); |
- return sqlite3InvokeBusyHandler(&pBt->db->busyHandler); |
-} |
- |
-/* |
-** Open a database file. |
-** |
-** zFilename is the name of the database file. If zFilename is NULL |
-** then an ephemeral database is created. The ephemeral database might |
-** be exclusively in memory, or it might use a disk-based memory cache. |
-** Either way, the ephemeral database will be automatically deleted |
-** when sqlite3BtreeClose() is called. |
-** |
-** If zFilename is ":memory:" then an in-memory database is created |
-** that is automatically destroyed when it is closed. |
-** |
-** The "flags" parameter is a bitmask that might contain bits like |
-** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY. |
-** |
-** If the database is already opened in the same database connection |
-** and we are in shared cache mode, then the open will fail with an |
-** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared |
-** objects in the same database connection since doing so will lead |
-** to problems with locking. |
-*/ |
-int sqlite3BtreeOpen( |
- sqlite3_vfs *pVfs, /* VFS to use for this b-tree */ |
- const char *zFilename, /* Name of the file containing the BTree database */ |
- sqlite3 *db, /* Associated database handle */ |
- Btree **ppBtree, /* Pointer to new Btree object written here */ |
- int flags, /* Options */ |
- int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */ |
-){ |
- BtShared *pBt = 0; /* Shared part of btree structure */ |
- Btree *p; /* Handle to return */ |
- sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */ |
- int rc = SQLITE_OK; /* Result code from this function */ |
- u8 nReserve; /* Byte of unused space on each page */ |
- unsigned char zDbHeader[100]; /* Database header content */ |
- |
- /* True if opening an ephemeral, temporary database */ |
- const int isTempDb = zFilename==0 || zFilename[0]==0; |
- |
- /* Set the variable isMemdb to true for an in-memory database, or |
- ** false for a file-based database. |
- */ |
-#ifdef SQLITE_OMIT_MEMORYDB |
- const int isMemdb = 0; |
-#else |
- const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0) |
- || (isTempDb && sqlite3TempInMemory(db)) |
- || (vfsFlags & SQLITE_OPEN_MEMORY)!=0; |
-#endif |
- |
- assert( db!=0 ); |
- assert( pVfs!=0 ); |
- assert( sqlite3_mutex_held(db->mutex) ); |
- assert( (flags&0xff)==flags ); /* flags fit in 8 bits */ |
- |
- /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */ |
- assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 ); |
- |
- /* A BTREE_SINGLE database is always a temporary and/or ephemeral */ |
- assert( (flags & BTREE_SINGLE)==0 || isTempDb ); |
- |
- if( isMemdb ){ |
- flags |= BTREE_MEMORY; |
- } |
- if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){ |
- vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB; |
- } |
- p = sqlite3MallocZero(sizeof(Btree)); |
- if( !p ){ |
- return SQLITE_NOMEM; |
- } |
- p->inTrans = TRANS_NONE; |
- p->db = db; |
-#ifndef SQLITE_OMIT_SHARED_CACHE |
- p->lock.pBtree = p; |
- p->lock.iTable = 1; |
-#endif |
- |
-#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO) |
- /* |
- ** If this Btree is a candidate for shared cache, try to find an |
- ** existing BtShared object that we can share with |
- */ |
- if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){ |
- if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){ |
- int nFullPathname = pVfs->mxPathname+1; |
- char *zFullPathname = sqlite3Malloc(nFullPathname); |
- MUTEX_LOGIC( sqlite3_mutex *mutexShared; ) |
- p->sharable = 1; |
- if( !zFullPathname ){ |
- sqlite3_free(p); |
- return SQLITE_NOMEM; |
- } |
- if( isMemdb ){ |
- memcpy(zFullPathname, zFilename, sqlite3Strlen30(zFilename)+1); |
- }else{ |
- rc = sqlite3OsFullPathname(pVfs, zFilename, |
- nFullPathname, zFullPathname); |
- if( rc ){ |
- sqlite3_free(zFullPathname); |
- sqlite3_free(p); |
- return rc; |
- } |
- } |
-#if SQLITE_THREADSAFE |
- mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN); |
- sqlite3_mutex_enter(mutexOpen); |
- mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); |
- sqlite3_mutex_enter(mutexShared); |
-#endif |
- for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){ |
- assert( pBt->nRef>0 ); |
- if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager, 0)) |
- && sqlite3PagerVfs(pBt->pPager)==pVfs ){ |
- int iDb; |
- for(iDb=db->nDb-1; iDb>=0; iDb--){ |
- Btree *pExisting = db->aDb[iDb].pBt; |
- if( pExisting && pExisting->pBt==pBt ){ |
- sqlite3_mutex_leave(mutexShared); |
- sqlite3_mutex_leave(mutexOpen); |
- sqlite3_free(zFullPathname); |
- sqlite3_free(p); |
- return SQLITE_CONSTRAINT; |
- } |
- } |
- p->pBt = pBt; |
- pBt->nRef++; |
- break; |
- } |
- } |
- sqlite3_mutex_leave(mutexShared); |
- sqlite3_free(zFullPathname); |
- } |
-#ifdef SQLITE_DEBUG |
- else{ |
- /* In debug mode, we mark all persistent databases as sharable |
- ** even when they are not. This exercises the locking code and |
- ** gives more opportunity for asserts(sqlite3_mutex_held()) |
- ** statements to find locking problems. |
- */ |
- p->sharable = 1; |
- } |
-#endif |
- } |
-#endif |
- if( pBt==0 ){ |
- /* |
- ** The following asserts make sure that structures used by the btree are |
- ** the right size. This is to guard against size changes that result |
- ** when compiling on a different architecture. |
- */ |
- assert( sizeof(i64)==8 || sizeof(i64)==4 ); |
- assert( sizeof(u64)==8 || sizeof(u64)==4 ); |
- assert( sizeof(u32)==4 ); |
- assert( sizeof(u16)==2 ); |
- assert( sizeof(Pgno)==4 ); |
- |
- pBt = sqlite3MallocZero( sizeof(*pBt) ); |
- if( pBt==0 ){ |
- rc = SQLITE_NOMEM; |
- goto btree_open_out; |
- } |
- rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename, |
- EXTRA_SIZE, flags, vfsFlags, pageReinit); |
- if( rc==SQLITE_OK ){ |
- sqlite3PagerSetMmapLimit(pBt->pPager, db->szMmap); |
- rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader); |
- } |
- if( rc!=SQLITE_OK ){ |
- goto btree_open_out; |
- } |
- pBt->openFlags = (u8)flags; |
- pBt->db = db; |
- sqlite3PagerSetBusyhandler(pBt->pPager, btreeInvokeBusyHandler, pBt); |
- p->pBt = pBt; |
- |
- pBt->pCursor = 0; |
- pBt->pPage1 = 0; |
- if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY; |
-#ifdef SQLITE_SECURE_DELETE |
- pBt->btsFlags |= BTS_SECURE_DELETE; |
-#endif |
- pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16); |
- if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE |
- || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){ |
- pBt->pageSize = 0; |
-#ifndef SQLITE_OMIT_AUTOVACUUM |
- /* If the magic name ":memory:" will create an in-memory database, then |
- ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if |
- ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if |
- ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a |
- ** regular file-name. In this case the auto-vacuum applies as per normal. |
- */ |
- if( zFilename && !isMemdb ){ |
- pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0); |
- pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0); |
- } |
-#endif |
- nReserve = 0; |
- }else{ |
- nReserve = zDbHeader[20]; |
- pBt->btsFlags |= BTS_PAGESIZE_FIXED; |
-#ifndef SQLITE_OMIT_AUTOVACUUM |
- pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0); |
- pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0); |
-#endif |
- } |
- rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve); |
- if( rc ) goto btree_open_out; |
- pBt->usableSize = pBt->pageSize - nReserve; |
- assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */ |
- |
-#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO) |
- /* Add the new BtShared object to the linked list sharable BtShareds. |
- */ |
- if( p->sharable ){ |
- MUTEX_LOGIC( sqlite3_mutex *mutexShared; ) |
- pBt->nRef = 1; |
- MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);) |
- if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){ |
- pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST); |
- if( pBt->mutex==0 ){ |
- rc = SQLITE_NOMEM; |
- db->mallocFailed = 0; |
- goto btree_open_out; |
- } |
- } |
- sqlite3_mutex_enter(mutexShared); |
- pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList); |
- GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt; |
- sqlite3_mutex_leave(mutexShared); |
- } |
-#endif |
- } |
- |
-#if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO) |
- /* If the new Btree uses a sharable pBtShared, then link the new |
- ** Btree into the list of all sharable Btrees for the same connection. |
- ** The list is kept in ascending order by pBt address. |
- */ |
- if( p->sharable ){ |
- int i; |
- Btree *pSib; |
- for(i=0; i<db->nDb; i++){ |
- if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){ |
- while( pSib->pPrev ){ pSib = pSib->pPrev; } |
- if( p->pBt<pSib->pBt ){ |
- p->pNext = pSib; |
- p->pPrev = 0; |
- pSib->pPrev = p; |
- }else{ |
- while( pSib->pNext && pSib->pNext->pBt<p->pBt ){ |
- pSib = pSib->pNext; |
- } |
- p->pNext = pSib->pNext; |
- p->pPrev = pSib; |
- if( p->pNext ){ |
- p->pNext->pPrev = p; |
- } |
- pSib->pNext = p; |
- } |
- break; |
- } |
- } |
- } |
-#endif |
- *ppBtree = p; |
- |
-btree_open_out: |
- if( rc!=SQLITE_OK ){ |
- if( pBt && pBt->pPager ){ |
- sqlite3PagerClose(pBt->pPager); |
- } |
- sqlite3_free(pBt); |
- sqlite3_free(p); |
- *ppBtree = 0; |
- }else{ |
- /* If the B-Tree was successfully opened, set the pager-cache size to the |
- ** default value. Except, when opening on an existing shared pager-cache, |
- ** do not change the pager-cache size. |
- */ |
- if( sqlite3BtreeSchema(p, 0, 0)==0 ){ |
- sqlite3PagerSetCachesize(p->pBt->pPager, SQLITE_DEFAULT_CACHE_SIZE); |
- } |
- } |
- if( mutexOpen ){ |
- assert( sqlite3_mutex_held(mutexOpen) ); |
- sqlite3_mutex_leave(mutexOpen); |
- } |
- return rc; |
-} |
- |
-/* |
-** Decrement the BtShared.nRef counter. When it reaches zero, |
-** remove the BtShared structure from the sharing list. Return |
-** true if the BtShared.nRef counter reaches zero and return |
-** false if it is still positive. |
-*/ |
-static int removeFromSharingList(BtShared *pBt){ |
-#ifndef SQLITE_OMIT_SHARED_CACHE |
- MUTEX_LOGIC( sqlite3_mutex *pMaster; ) |
- BtShared *pList; |
- int removed = 0; |
- |
- assert( sqlite3_mutex_notheld(pBt->mutex) ); |
- MUTEX_LOGIC( pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); ) |
- sqlite3_mutex_enter(pMaster); |
- pBt->nRef--; |
- if( pBt->nRef<=0 ){ |
- if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){ |
- GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext; |
- }else{ |
- pList = GLOBAL(BtShared*,sqlite3SharedCacheList); |
- while( ALWAYS(pList) && pList->pNext!=pBt ){ |
- pList=pList->pNext; |
- } |
- if( ALWAYS(pList) ){ |
- pList->pNext = pBt->pNext; |
- } |
- } |
- if( SQLITE_THREADSAFE ){ |
- sqlite3_mutex_free(pBt->mutex); |
- } |
- removed = 1; |
- } |
- sqlite3_mutex_leave(pMaster); |
- return removed; |
-#else |
- return 1; |
-#endif |
-} |
- |
-/* |
-** Make sure pBt->pTmpSpace points to an allocation of |
-** MX_CELL_SIZE(pBt) bytes with a 4-byte prefix for a left-child |
-** pointer. |
-*/ |
-static void allocateTempSpace(BtShared *pBt){ |
- if( !pBt->pTmpSpace ){ |
- pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize ); |
- |
- /* One of the uses of pBt->pTmpSpace is to format cells before |
- ** inserting them into a leaf page (function fillInCell()). If |
- ** a cell is less than 4 bytes in size, it is rounded up to 4 bytes |
- ** by the various routines that manipulate binary cells. Which |
- ** can mean that fillInCell() only initializes the first 2 or 3 |
- ** bytes of pTmpSpace, but that the first 4 bytes are copied from |
- ** it into a database page. This is not actually a problem, but it |
- ** does cause a valgrind error when the 1 or 2 bytes of unitialized |
- ** data is passed to system call write(). So to avoid this error, |
- ** zero the first 4 bytes of temp space here. |
- ** |
- ** Also: Provide four bytes of initialized space before the |
- ** beginning of pTmpSpace as an area available to prepend the |
- ** left-child pointer to the beginning of a cell. |
- */ |
- if( pBt->pTmpSpace ){ |
- memset(pBt->pTmpSpace, 0, 8); |
- pBt->pTmpSpace += 4; |
- } |
- } |
-} |
- |
-/* |
-** Free the pBt->pTmpSpace allocation |
-*/ |
-static void freeTempSpace(BtShared *pBt){ |
- if( pBt->pTmpSpace ){ |
- pBt->pTmpSpace -= 4; |
- sqlite3PageFree(pBt->pTmpSpace); |
- pBt->pTmpSpace = 0; |
- } |
-} |
- |
-/* |
-** Close an open database and invalidate all cursors. |
-*/ |
-int sqlite3BtreeClose(Btree *p){ |
- BtShared *pBt = p->pBt; |
- BtCursor *pCur; |
- |
- /* Close all cursors opened via this handle. */ |
- assert( sqlite3_mutex_held(p->db->mutex) ); |
- sqlite3BtreeEnter(p); |
- pCur = pBt->pCursor; |
- while( pCur ){ |
- BtCursor *pTmp = pCur; |
- pCur = pCur->pNext; |
- if( pTmp->pBtree==p ){ |
- sqlite3BtreeCloseCursor(pTmp); |
- } |
- } |
- |
- /* Rollback any active transaction and free the handle structure. |
- ** The call to sqlite3BtreeRollback() drops any table-locks held by |
- ** this handle. |
- */ |
- sqlite3BtreeRollback(p, SQLITE_OK, 0); |
- sqlite3BtreeLeave(p); |
- |
- /* If there are still other outstanding references to the shared-btree |
- ** structure, return now. The remainder of this procedure cleans |
- ** up the shared-btree. |
- */ |
- assert( p->wantToLock==0 && p->locked==0 ); |
- if( !p->sharable || removeFromSharingList(pBt) ){ |
- /* The pBt is no longer on the sharing list, so we can access |
- ** it without having to hold the mutex. |
- ** |
- ** Clean out and delete the BtShared object. |
- */ |
- assert( !pBt->pCursor ); |
- sqlite3PagerClose(pBt->pPager); |
- if( pBt->xFreeSchema && pBt->pSchema ){ |
- pBt->xFreeSchema(pBt->pSchema); |
- } |
- sqlite3DbFree(0, pBt->pSchema); |
- freeTempSpace(pBt); |
- sqlite3_free(pBt); |
- } |
- |
-#ifndef SQLITE_OMIT_SHARED_CACHE |
- assert( p->wantToLock==0 ); |
- assert( p->locked==0 ); |
- if( p->pPrev ) p->pPrev->pNext = p->pNext; |
- if( p->pNext ) p->pNext->pPrev = p->pPrev; |
-#endif |
- |
- sqlite3_free(p); |
- return SQLITE_OK; |
-} |
- |
-/* |
-** Change the limit on the number of pages allowed in the cache. |
-** |
-** The maximum number of cache pages is set to the absolute |
-** value of mxPage. If mxPage is negative, the pager will |
-** operate asynchronously - it will not stop to do fsync()s |
-** to insure data is written to the disk surface before |
-** continuing. Transactions still work if synchronous is off, |
-** and the database cannot be corrupted if this program |
-** crashes. But if the operating system crashes or there is |
-** an abrupt power failure when synchronous is off, the database |
-** could be left in an inconsistent and unrecoverable state. |
-** Synchronous is on by default so database corruption is not |
-** normally a worry. |
-*/ |
-int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){ |
- BtShared *pBt = p->pBt; |
- assert( sqlite3_mutex_held(p->db->mutex) ); |
- sqlite3BtreeEnter(p); |
- sqlite3PagerSetCachesize(pBt->pPager, mxPage); |
- sqlite3BtreeLeave(p); |
- return SQLITE_OK; |
-} |
- |
-#if SQLITE_MAX_MMAP_SIZE>0 |
-/* |
-** Change the limit on the amount of the database file that may be |
-** memory mapped. |
-*/ |
-int sqlite3BtreeSetMmapLimit(Btree *p, sqlite3_int64 szMmap){ |
- BtShared *pBt = p->pBt; |
- assert( sqlite3_mutex_held(p->db->mutex) ); |
- sqlite3BtreeEnter(p); |
- sqlite3PagerSetMmapLimit(pBt->pPager, szMmap); |
- sqlite3BtreeLeave(p); |
- return SQLITE_OK; |
-} |
-#endif /* SQLITE_MAX_MMAP_SIZE>0 */ |
- |
-/* |
-** Change the way data is synced to disk in order to increase or decrease |
-** how well the database resists damage due to OS crashes and power |
-** failures. Level 1 is the same as asynchronous (no syncs() occur and |
-** there is a high probability of damage) Level 2 is the default. There |
-** is a very low but non-zero probability of damage. Level 3 reduces the |
-** probability of damage to near zero but with a write performance reduction. |
-*/ |
-#ifndef SQLITE_OMIT_PAGER_PRAGMAS |
-int sqlite3BtreeSetPagerFlags( |
- Btree *p, /* The btree to set the safety level on */ |
- unsigned pgFlags /* Various PAGER_* flags */ |
-){ |
- BtShared *pBt = p->pBt; |
- assert( sqlite3_mutex_held(p->db->mutex) ); |
- sqlite3BtreeEnter(p); |
- sqlite3PagerSetFlags(pBt->pPager, pgFlags); |
- sqlite3BtreeLeave(p); |
- return SQLITE_OK; |
-} |
-#endif |
- |
-/* |
-** Return TRUE if the given btree is set to safety level 1. In other |
-** words, return TRUE if no sync() occurs on the disk files. |
-*/ |
-int sqlite3BtreeSyncDisabled(Btree *p){ |
- BtShared *pBt = p->pBt; |
- int rc; |
- assert( sqlite3_mutex_held(p->db->mutex) ); |
- sqlite3BtreeEnter(p); |
- assert( pBt && pBt->pPager ); |
- rc = sqlite3PagerNosync(pBt->pPager); |
- sqlite3BtreeLeave(p); |
- return rc; |
-} |
- |
-/* |
-** Change the default pages size and the number of reserved bytes per page. |
-** Or, if the page size has already been fixed, return SQLITE_READONLY |
-** without changing anything. |
-** |
-** The page size must be a power of 2 between 512 and 65536. If the page |
-** size supplied does not meet this constraint then the page size is not |
-** changed. |
-** |
-** Page sizes are constrained to be a power of two so that the region |
-** of the database file used for locking (beginning at PENDING_BYTE, |
-** the first byte past the 1GB boundary, 0x40000000) needs to occur |
-** at the beginning of a page. |
-** |
-** If parameter nReserve is less than zero, then the number of reserved |
-** bytes per page is left unchanged. |
-** |
-** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size |
-** and autovacuum mode can no longer be changed. |
-*/ |
-int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){ |
- int rc = SQLITE_OK; |
- BtShared *pBt = p->pBt; |
- assert( nReserve>=-1 && nReserve<=255 ); |
- sqlite3BtreeEnter(p); |
- if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){ |
- sqlite3BtreeLeave(p); |
- return SQLITE_READONLY; |
- } |
- if( nReserve<0 ){ |
- nReserve = pBt->pageSize - pBt->usableSize; |
- } |
- assert( nReserve>=0 && nReserve<=255 ); |
- if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE && |
- ((pageSize-1)&pageSize)==0 ){ |
- assert( (pageSize & 7)==0 ); |
- assert( !pBt->pPage1 && !pBt->pCursor ); |
- pBt->pageSize = (u32)pageSize; |
- freeTempSpace(pBt); |
- } |
- rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve); |
- pBt->usableSize = pBt->pageSize - (u16)nReserve; |
- if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED; |
- sqlite3BtreeLeave(p); |
- return rc; |
-} |
- |
-/* |
-** Return the currently defined page size |
-*/ |
-int sqlite3BtreeGetPageSize(Btree *p){ |
- return p->pBt->pageSize; |
-} |
- |
-#if defined(SQLITE_HAS_CODEC) || defined(SQLITE_DEBUG) |
-/* |
-** This function is similar to sqlite3BtreeGetReserve(), except that it |
-** may only be called if it is guaranteed that the b-tree mutex is already |
-** held. |
-** |
-** This is useful in one special case in the backup API code where it is |
-** known that the shared b-tree mutex is held, but the mutex on the |
-** database handle that owns *p is not. In this case if sqlite3BtreeEnter() |
-** were to be called, it might collide with some other operation on the |
-** database handle that owns *p, causing undefined behavior. |
-*/ |
-int sqlite3BtreeGetReserveNoMutex(Btree *p){ |
- assert( sqlite3_mutex_held(p->pBt->mutex) ); |
- return p->pBt->pageSize - p->pBt->usableSize; |
-} |
-#endif /* SQLITE_HAS_CODEC || SQLITE_DEBUG */ |
- |
-#if !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM) |
-/* |
-** Return the number of bytes of space at the end of every page that |
-** are intentually left unused. This is the "reserved" space that is |
-** sometimes used by extensions. |
-*/ |
-int sqlite3BtreeGetReserve(Btree *p){ |
- int n; |
- sqlite3BtreeEnter(p); |
- n = p->pBt->pageSize - p->pBt->usableSize; |
- sqlite3BtreeLeave(p); |
- return n; |
-} |
- |
-/* |
-** Set the maximum page count for a database if mxPage is positive. |
-** No changes are made if mxPage is 0 or negative. |
-** Regardless of the value of mxPage, return the maximum page count. |
-*/ |
-int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){ |
- int n; |
- sqlite3BtreeEnter(p); |
- n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage); |
- sqlite3BtreeLeave(p); |
- return n; |
-} |
- |
-/* |
-** Set the BTS_SECURE_DELETE flag if newFlag is 0 or 1. If newFlag is -1, |
-** then make no changes. Always return the value of the BTS_SECURE_DELETE |
-** setting after the change. |
-*/ |
-int sqlite3BtreeSecureDelete(Btree *p, int newFlag){ |
- int b; |
- if( p==0 ) return 0; |
- sqlite3BtreeEnter(p); |
- if( newFlag>=0 ){ |
- p->pBt->btsFlags &= ~BTS_SECURE_DELETE; |
- if( newFlag ) p->pBt->btsFlags |= BTS_SECURE_DELETE; |
- } |
- b = (p->pBt->btsFlags & BTS_SECURE_DELETE)!=0; |
- sqlite3BtreeLeave(p); |
- return b; |
-} |
-#endif /* !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM) */ |
- |
-/* |
-** Change the 'auto-vacuum' property of the database. If the 'autoVacuum' |
-** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it |
-** is disabled. The default value for the auto-vacuum property is |
-** determined by the SQLITE_DEFAULT_AUTOVACUUM macro. |
-*/ |
-int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){ |
-#ifdef SQLITE_OMIT_AUTOVACUUM |
- return SQLITE_READONLY; |
-#else |
- BtShared *pBt = p->pBt; |
- int rc = SQLITE_OK; |
- u8 av = (u8)autoVacuum; |
- |
- sqlite3BtreeEnter(p); |
- if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){ |
- rc = SQLITE_READONLY; |
- }else{ |
- pBt->autoVacuum = av ?1:0; |
- pBt->incrVacuum = av==2 ?1:0; |
- } |
- sqlite3BtreeLeave(p); |
- return rc; |
-#endif |
-} |
- |
-/* |
-** Return the value of the 'auto-vacuum' property. If auto-vacuum is |
-** enabled 1 is returned. Otherwise 0. |
-*/ |
-int sqlite3BtreeGetAutoVacuum(Btree *p){ |
-#ifdef SQLITE_OMIT_AUTOVACUUM |
- return BTREE_AUTOVACUUM_NONE; |
-#else |
- int rc; |
- sqlite3BtreeEnter(p); |
- rc = ( |
- (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE: |
- (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL: |
- BTREE_AUTOVACUUM_INCR |
- ); |
- sqlite3BtreeLeave(p); |
- return rc; |
-#endif |
-} |
- |
- |
-/* |
-** Get a reference to pPage1 of the database file. This will |
-** also acquire a readlock on that file. |
-** |
-** SQLITE_OK is returned on success. If the file is not a |
-** well-formed database file, then SQLITE_CORRUPT is returned. |
-** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM |
-** is returned if we run out of memory. |
-*/ |
-static int lockBtree(BtShared *pBt){ |
- int rc; /* Result code from subfunctions */ |
- MemPage *pPage1; /* Page 1 of the database file */ |
- int nPage; /* Number of pages in the database */ |
- int nPageFile = 0; /* Number of pages in the database file */ |
- int nPageHeader; /* Number of pages in the database according to hdr */ |
- |
- assert( sqlite3_mutex_held(pBt->mutex) ); |
- assert( pBt->pPage1==0 ); |
- rc = sqlite3PagerSharedLock(pBt->pPager); |
- if( rc!=SQLITE_OK ) return rc; |
- rc = btreeGetPage(pBt, 1, &pPage1, 0); |
- if( rc!=SQLITE_OK ) return rc; |
- |
- /* Do some checking to help insure the file we opened really is |
- ** a valid database file. |
- */ |
- nPage = nPageHeader = get4byte(28+(u8*)pPage1->aData); |
- sqlite3PagerPagecount(pBt->pPager, &nPageFile); |
- if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){ |
- nPage = nPageFile; |
- } |
- if( nPage>0 ){ |
- u32 pageSize; |
- u32 usableSize; |
- u8 *page1 = pPage1->aData; |
- rc = SQLITE_NOTADB; |
- if( memcmp(page1, zMagicHeader, 16)!=0 ){ |
- goto page1_init_failed; |
- } |
- |
-#ifdef SQLITE_OMIT_WAL |
- if( page1[18]>1 ){ |
- pBt->btsFlags |= BTS_READ_ONLY; |
- } |
- if( page1[19]>1 ){ |
- goto page1_init_failed; |
- } |
-#else |
- if( page1[18]>2 ){ |
- pBt->btsFlags |= BTS_READ_ONLY; |
- } |
- if( page1[19]>2 ){ |
- goto page1_init_failed; |
- } |
- |
- /* If the write version is set to 2, this database should be accessed |
- ** in WAL mode. If the log is not already open, open it now. Then |
- ** return SQLITE_OK and return without populating BtShared.pPage1. |
- ** The caller detects this and calls this function again. This is |
- ** required as the version of page 1 currently in the page1 buffer |
- ** may not be the latest version - there may be a newer one in the log |
- ** file. |
- */ |
- if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){ |
- int isOpen = 0; |
- rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen); |
- if( rc!=SQLITE_OK ){ |
- goto page1_init_failed; |
- }else if( isOpen==0 ){ |
- releasePage(pPage1); |
- return SQLITE_OK; |
- } |
- rc = SQLITE_NOTADB; |
- } |
-#endif |
- |
- /* The maximum embedded fraction must be exactly 25%. And the minimum |
- ** embedded fraction must be 12.5% for both leaf-data and non-leaf-data. |
- ** The original design allowed these amounts to vary, but as of |
- ** version 3.6.0, we require them to be fixed. |
- */ |
- if( memcmp(&page1[21], "\100\040\040",3)!=0 ){ |
- goto page1_init_failed; |
- } |
- pageSize = (page1[16]<<8) | (page1[17]<<16); |
- if( ((pageSize-1)&pageSize)!=0 |
- || pageSize>SQLITE_MAX_PAGE_SIZE |
- || pageSize<=256 |
- ){ |
- goto page1_init_failed; |
- } |
- assert( (pageSize & 7)==0 ); |
- usableSize = pageSize - page1[20]; |
- if( (u32)pageSize!=pBt->pageSize ){ |
- /* After reading the first page of the database assuming a page size |
- ** of BtShared.pageSize, we have discovered that the page-size is |
- ** actually pageSize. Unlock the database, leave pBt->pPage1 at |
- ** zero and return SQLITE_OK. The caller will call this function |
- ** again with the correct page-size. |
- */ |
- releasePage(pPage1); |
- pBt->usableSize = usableSize; |
- pBt->pageSize = pageSize; |
- freeTempSpace(pBt); |
- rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, |
- pageSize-usableSize); |
- return rc; |
- } |
- if( (pBt->db->flags & SQLITE_RecoveryMode)==0 && nPage>nPageFile ){ |
- rc = SQLITE_CORRUPT_BKPT; |
- goto page1_init_failed; |
- } |
- if( usableSize<480 ){ |
- goto page1_init_failed; |
- } |
- pBt->pageSize = pageSize; |
- pBt->usableSize = usableSize; |
-#ifndef SQLITE_OMIT_AUTOVACUUM |
- pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0); |
- pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0); |
-#endif |
- } |
- |
- /* maxLocal is the maximum amount of payload to store locally for |
- ** a cell. Make sure it is small enough so that at least minFanout |
- ** cells can will fit on one page. We assume a 10-byte page header. |
- ** Besides the payload, the cell must store: |
- ** 2-byte pointer to the cell |
- ** 4-byte child pointer |
- ** 9-byte nKey value |
- ** 4-byte nData value |
- ** 4-byte overflow page pointer |
- ** So a cell consists of a 2-byte pointer, a header which is as much as |
- ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow |
- ** page pointer. |
- */ |
- pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23); |
- pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23); |
- pBt->maxLeaf = (u16)(pBt->usableSize - 35); |
- pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23); |
- if( pBt->maxLocal>127 ){ |
- pBt->max1bytePayload = 127; |
- }else{ |
- pBt->max1bytePayload = (u8)pBt->maxLocal; |
- } |
- assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) ); |
- pBt->pPage1 = pPage1; |
- pBt->nPage = nPage; |
- return SQLITE_OK; |
- |
-page1_init_failed: |
- releasePage(pPage1); |
- pBt->pPage1 = 0; |
- return rc; |
-} |
- |
-#ifndef NDEBUG |
-/* |
-** Return the number of cursors open on pBt. This is for use |
-** in assert() expressions, so it is only compiled if NDEBUG is not |
-** defined. |
-** |
-** Only write cursors are counted if wrOnly is true. If wrOnly is |
-** false then all cursors are counted. |
-** |
-** For the purposes of this routine, a cursor is any cursor that |
-** is capable of reading or writing to the database. Cursors that |
-** have been tripped into the CURSOR_FAULT state are not counted. |
-*/ |
-static int countValidCursors(BtShared *pBt, int wrOnly){ |
- BtCursor *pCur; |
- int r = 0; |
- for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){ |
- if( (wrOnly==0 || (pCur->curFlags & BTCF_WriteFlag)!=0) |
- && pCur->eState!=CURSOR_FAULT ) r++; |
- } |
- return r; |
-} |
-#endif |
- |
-/* |
-** If there are no outstanding cursors and we are not in the middle |
-** of a transaction but there is a read lock on the database, then |
-** this routine unrefs the first page of the database file which |
-** has the effect of releasing the read lock. |
-** |
-** If there is a transaction in progress, this routine is a no-op. |
-*/ |
-static void unlockBtreeIfUnused(BtShared *pBt){ |
- assert( sqlite3_mutex_held(pBt->mutex) ); |
- assert( countValidCursors(pBt,0)==0 || pBt->inTransaction>TRANS_NONE ); |
- if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){ |
- MemPage *pPage1 = pBt->pPage1; |
- assert( pPage1->aData ); |
- assert( sqlite3PagerRefcount(pBt->pPager)==1 ); |
- pBt->pPage1 = 0; |
- releasePage(pPage1); |
- } |
-} |
- |
-/* |
-** If pBt points to an empty file then convert that empty file |
-** into a new empty database by initializing the first page of |
-** the database. |
-*/ |
-static int newDatabase(BtShared *pBt){ |
- MemPage *pP1; |
- unsigned char *data; |
- int rc; |
- |
- assert( sqlite3_mutex_held(pBt->mutex) ); |
- if( pBt->nPage>0 ){ |
- return SQLITE_OK; |
- } |
- pP1 = pBt->pPage1; |
- assert( pP1!=0 ); |
- data = pP1->aData; |
- rc = sqlite3PagerWrite(pP1->pDbPage); |
- if( rc ) return rc; |
- memcpy(data, zMagicHeader, sizeof(zMagicHeader)); |
- assert( sizeof(zMagicHeader)==16 ); |
- data[16] = (u8)((pBt->pageSize>>8)&0xff); |
- data[17] = (u8)((pBt->pageSize>>16)&0xff); |
- data[18] = 1; |
- data[19] = 1; |
- assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize); |
- data[20] = (u8)(pBt->pageSize - pBt->usableSize); |
- data[21] = 64; |
- data[22] = 32; |
- data[23] = 32; |
- memset(&data[24], 0, 100-24); |
- zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA ); |
- pBt->btsFlags |= BTS_PAGESIZE_FIXED; |
-#ifndef SQLITE_OMIT_AUTOVACUUM |
- assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 ); |
- assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 ); |
- put4byte(&data[36 + 4*4], pBt->autoVacuum); |
- put4byte(&data[36 + 7*4], pBt->incrVacuum); |
-#endif |
- pBt->nPage = 1; |
- data[31] = 1; |
- return SQLITE_OK; |
-} |
- |
-/* |
-** Initialize the first page of the database file (creating a database |
-** consisting of a single page and no schema objects). Return SQLITE_OK |
-** if successful, or an SQLite error code otherwise. |
-*/ |
-int sqlite3BtreeNewDb(Btree *p){ |
- int rc; |
- sqlite3BtreeEnter(p); |
- p->pBt->nPage = 0; |
- rc = newDatabase(p->pBt); |
- sqlite3BtreeLeave(p); |
- return rc; |
-} |
- |
-/* |
-** Attempt to start a new transaction. A write-transaction |
-** is started if the second argument is nonzero, otherwise a read- |
-** transaction. If the second argument is 2 or more and exclusive |
-** transaction is started, meaning that no other process is allowed |
-** to access the database. A preexisting transaction may not be |
-** upgraded to exclusive by calling this routine a second time - the |
-** exclusivity flag only works for a new transaction. |
-** |
-** A write-transaction must be started before attempting any |
-** changes to the database. None of the following routines |
-** will work unless a transaction is started first: |
-** |
-** sqlite3BtreeCreateTable() |
-** sqlite3BtreeCreateIndex() |
-** sqlite3BtreeClearTable() |
-** sqlite3BtreeDropTable() |
-** sqlite3BtreeInsert() |
-** sqlite3BtreeDelete() |
-** sqlite3BtreeUpdateMeta() |
-** |
-** If an initial attempt to acquire the lock fails because of lock contention |
-** and the database was previously unlocked, then invoke the busy handler |
-** if there is one. But if there was previously a read-lock, do not |
-** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is |
-** returned when there is already a read-lock in order to avoid a deadlock. |
-** |
-** Suppose there are two processes A and B. A has a read lock and B has |
-** a reserved lock. B tries to promote to exclusive but is blocked because |
-** of A's read lock. A tries to promote to reserved but is blocked by B. |
-** One or the other of the two processes must give way or there can be |
-** no progress. By returning SQLITE_BUSY and not invoking the busy callback |
-** when A already has a read lock, we encourage A to give up and let B |
-** proceed. |
-*/ |
-int sqlite3BtreeBeginTrans(Btree *p, int wrflag){ |
- sqlite3 *pBlock = 0; |
- BtShared *pBt = p->pBt; |
- int rc = SQLITE_OK; |
- |
- sqlite3BtreeEnter(p); |
- btreeIntegrity(p); |
- |
- /* If the btree is already in a write-transaction, or it |
- ** is already in a read-transaction and a read-transaction |
- ** is requested, this is a no-op. |
- */ |
- if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){ |
- goto trans_begun; |
- } |
- assert( pBt->inTransaction==TRANS_WRITE || IfNotOmitAV(pBt->bDoTruncate)==0 ); |
- |
- /* Write transactions are not possible on a read-only database */ |
- if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){ |
- rc = SQLITE_READONLY; |
- goto trans_begun; |
- } |
- |
-#ifndef SQLITE_OMIT_SHARED_CACHE |
- /* If another database handle has already opened a write transaction |
- ** on this shared-btree structure and a second write transaction is |
- ** requested, return SQLITE_LOCKED. |
- */ |
- if( (wrflag && pBt->inTransaction==TRANS_WRITE) |
- || (pBt->btsFlags & BTS_PENDING)!=0 |
- ){ |
- pBlock = pBt->pWriter->db; |
- }else if( wrflag>1 ){ |
- BtLock *pIter; |
- for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){ |
- if( pIter->pBtree!=p ){ |
- pBlock = pIter->pBtree->db; |
- break; |
- } |
- } |
- } |
- if( pBlock ){ |
- sqlite3ConnectionBlocked(p->db, pBlock); |
- rc = SQLITE_LOCKED_SHAREDCACHE; |
- goto trans_begun; |
- } |
-#endif |
- |
- /* Any read-only or read-write transaction implies a read-lock on |
- ** page 1. So if some other shared-cache client already has a write-lock |
- ** on page 1, the transaction cannot be opened. */ |
- rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK); |
- if( SQLITE_OK!=rc ) goto trans_begun; |
- |
- pBt->btsFlags &= ~BTS_INITIALLY_EMPTY; |
- if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY; |
- do { |
- /* Call lockBtree() until either pBt->pPage1 is populated or |
- ** lockBtree() returns something other than SQLITE_OK. lockBtree() |
- ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after |
- ** reading page 1 it discovers that the page-size of the database |
- ** file is not pBt->pageSize. In this case lockBtree() will update |
- ** pBt->pageSize to the page-size of the file on disk. |
- */ |
- while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) ); |
- |
- if( rc==SQLITE_OK && wrflag ){ |
- if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){ |
- rc = SQLITE_READONLY; |
- }else{ |
- rc = sqlite3PagerBegin(pBt->pPager,wrflag>1,sqlite3TempInMemory(p->db)); |
- if( rc==SQLITE_OK ){ |
- rc = newDatabase(pBt); |
- } |
- } |
- } |
- |
- if( rc!=SQLITE_OK ){ |
- unlockBtreeIfUnused(pBt); |
- } |
- }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE && |
- btreeInvokeBusyHandler(pBt) ); |
- |
- if( rc==SQLITE_OK ){ |
- if( p->inTrans==TRANS_NONE ){ |
- pBt->nTransaction++; |
-#ifndef SQLITE_OMIT_SHARED_CACHE |
- if( p->sharable ){ |
- assert( p->lock.pBtree==p && p->lock.iTable==1 ); |
- p->lock.eLock = READ_LOCK; |
- p->lock.pNext = pBt->pLock; |
- pBt->pLock = &p->lock; |
- } |
-#endif |
- } |
- p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ); |
- if( p->inTrans>pBt->inTransaction ){ |
- pBt->inTransaction = p->inTrans; |
- } |
- if( wrflag ){ |
- MemPage *pPage1 = pBt->pPage1; |
-#ifndef SQLITE_OMIT_SHARED_CACHE |
- assert( !pBt->pWriter ); |
- pBt->pWriter = p; |
- pBt->btsFlags &= ~BTS_EXCLUSIVE; |
- if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE; |
-#endif |
- |
- /* If the db-size header field is incorrect (as it may be if an old |
- ** client has been writing the database file), update it now. Doing |
- ** this sooner rather than later means the database size can safely |
- ** re-read the database size from page 1 if a savepoint or transaction |
- ** rollback occurs within the transaction. |
- */ |
- if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){ |
- rc = sqlite3PagerWrite(pPage1->pDbPage); |
- if( rc==SQLITE_OK ){ |
- put4byte(&pPage1->aData[28], pBt->nPage); |
- } |
- } |
- } |
- } |
- |
- |
-trans_begun: |
- if( rc==SQLITE_OK && wrflag ){ |
- /* This call makes sure that the pager has the correct number of |
- ** open savepoints. If the second parameter is greater than 0 and |
- ** the sub-journal is not already open, then it will be opened here. |
- */ |
- rc = sqlite3PagerOpenSavepoint(pBt->pPager, p->db->nSavepoint); |
- } |
- |
- btreeIntegrity(p); |
- sqlite3BtreeLeave(p); |
- return rc; |
-} |
- |
-#ifndef SQLITE_OMIT_AUTOVACUUM |
- |
-/* |
-** Set the pointer-map entries for all children of page pPage. Also, if |
-** pPage contains cells that point to overflow pages, set the pointer |
-** map entries for the overflow pages as well. |
-*/ |
-static int setChildPtrmaps(MemPage *pPage){ |
- int i; /* Counter variable */ |
- int nCell; /* Number of cells in page pPage */ |
- int rc; /* Return code */ |
- BtShared *pBt = pPage->pBt; |
- u8 isInitOrig = pPage->isInit; |
- Pgno pgno = pPage->pgno; |
- |
- assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
- rc = btreeInitPage(pPage); |
- if( rc!=SQLITE_OK ){ |
- goto set_child_ptrmaps_out; |
- } |
- nCell = pPage->nCell; |
- |
- for(i=0; i<nCell; i++){ |
- u8 *pCell = findCell(pPage, i); |
- |
- ptrmapPutOvflPtr(pPage, pCell, &rc); |
- |
- if( !pPage->leaf ){ |
- Pgno childPgno = get4byte(pCell); |
- ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc); |
- } |
- } |
- |
- if( !pPage->leaf ){ |
- Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]); |
- ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc); |
- } |
- |
-set_child_ptrmaps_out: |
- pPage->isInit = isInitOrig; |
- return rc; |
-} |
- |
-/* |
-** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so |
-** that it points to iTo. Parameter eType describes the type of pointer to |
-** be modified, as follows: |
-** |
-** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child |
-** page of pPage. |
-** |
-** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow |
-** page pointed to by one of the cells on pPage. |
-** |
-** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next |
-** overflow page in the list. |
-*/ |
-static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){ |
- assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
- assert( sqlite3PagerIswriteable(pPage->pDbPage) ); |
- if( eType==PTRMAP_OVERFLOW2 ){ |
- /* The pointer is always the first 4 bytes of the page in this case. */ |
- if( get4byte(pPage->aData)!=iFrom ){ |
- return SQLITE_CORRUPT_BKPT; |
- } |
- put4byte(pPage->aData, iTo); |
- }else{ |
- u8 isInitOrig = pPage->isInit; |
- int i; |
- int nCell; |
- |
- btreeInitPage(pPage); |
- nCell = pPage->nCell; |
- |
- for(i=0; i<nCell; i++){ |
- u8 *pCell = findCell(pPage, i); |
- if( eType==PTRMAP_OVERFLOW1 ){ |
- CellInfo info; |
- btreeParseCellPtr(pPage, pCell, &info); |
- if( info.iOverflow |
- && pCell+info.iOverflow+3<=pPage->aData+pPage->maskPage |
- && iFrom==get4byte(&pCell[info.iOverflow]) |
- ){ |
- put4byte(&pCell[info.iOverflow], iTo); |
- break; |
- } |
- }else{ |
- if( get4byte(pCell)==iFrom ){ |
- put4byte(pCell, iTo); |
- break; |
- } |
- } |
- } |
- |
- if( i==nCell ){ |
- if( eType!=PTRMAP_BTREE || |
- get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){ |
- return SQLITE_CORRUPT_BKPT; |
- } |
- put4byte(&pPage->aData[pPage->hdrOffset+8], iTo); |
- } |
- |
- pPage->isInit = isInitOrig; |
- } |
- return SQLITE_OK; |
-} |
- |
- |
-/* |
-** Move the open database page pDbPage to location iFreePage in the |
-** database. The pDbPage reference remains valid. |
-** |
-** The isCommit flag indicates that there is no need to remember that |
-** the journal needs to be sync()ed before database page pDbPage->pgno |
-** can be written to. The caller has already promised not to write to that |
-** page. |
-*/ |
-static int relocatePage( |
- BtShared *pBt, /* Btree */ |
- MemPage *pDbPage, /* Open page to move */ |
- u8 eType, /* Pointer map 'type' entry for pDbPage */ |
- Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */ |
- Pgno iFreePage, /* The location to move pDbPage to */ |
- int isCommit /* isCommit flag passed to sqlite3PagerMovepage */ |
-){ |
- MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */ |
- Pgno iDbPage = pDbPage->pgno; |
- Pager *pPager = pBt->pPager; |
- int rc; |
- |
- assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 || |
- eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ); |
- assert( sqlite3_mutex_held(pBt->mutex) ); |
- assert( pDbPage->pBt==pBt ); |
- |
- /* Move page iDbPage from its current location to page number iFreePage */ |
- TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n", |
- iDbPage, iFreePage, iPtrPage, eType)); |
- rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit); |
- if( rc!=SQLITE_OK ){ |
- return rc; |
- } |
- pDbPage->pgno = iFreePage; |
- |
- /* If pDbPage was a btree-page, then it may have child pages and/or cells |
- ** that point to overflow pages. The pointer map entries for all these |
- ** pages need to be changed. |
- ** |
- ** If pDbPage is an overflow page, then the first 4 bytes may store a |
- ** pointer to a subsequent overflow page. If this is the case, then |
- ** the pointer map needs to be updated for the subsequent overflow page. |
- */ |
- if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){ |
- rc = setChildPtrmaps(pDbPage); |
- if( rc!=SQLITE_OK ){ |
- return rc; |
- } |
- }else{ |
- Pgno nextOvfl = get4byte(pDbPage->aData); |
- if( nextOvfl!=0 ){ |
- ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc); |
- if( rc!=SQLITE_OK ){ |
- return rc; |
- } |
- } |
- } |
- |
- /* Fix the database pointer on page iPtrPage that pointed at iDbPage so |
- ** that it points at iFreePage. Also fix the pointer map entry for |
- ** iPtrPage. |
- */ |
- if( eType!=PTRMAP_ROOTPAGE ){ |
- rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0); |
- if( rc!=SQLITE_OK ){ |
- return rc; |
- } |
- rc = sqlite3PagerWrite(pPtrPage->pDbPage); |
- if( rc!=SQLITE_OK ){ |
- releasePage(pPtrPage); |
- return rc; |
- } |
- rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType); |
- releasePage(pPtrPage); |
- if( rc==SQLITE_OK ){ |
- ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc); |
- } |
- } |
- return rc; |
-} |
- |
-/* Forward declaration required by incrVacuumStep(). */ |
-static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8); |
- |
-/* |
-** Perform a single step of an incremental-vacuum. If successful, return |
-** SQLITE_OK. If there is no work to do (and therefore no point in |
-** calling this function again), return SQLITE_DONE. Or, if an error |
-** occurs, return some other error code. |
-** |
-** More specifically, this function attempts to re-organize the database so |
-** that the last page of the file currently in use is no longer in use. |
-** |
-** Parameter nFin is the number of pages that this database would contain |
-** were this function called until it returns SQLITE_DONE. |
-** |
-** If the bCommit parameter is non-zero, this function assumes that the |
-** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE |
-** or an error. bCommit is passed true for an auto-vacuum-on-commit |
-** operation, or false for an incremental vacuum. |
-*/ |
-static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg, int bCommit){ |
- Pgno nFreeList; /* Number of pages still on the free-list */ |
- int rc; |
- |
- assert( sqlite3_mutex_held(pBt->mutex) ); |
- assert( iLastPg>nFin ); |
- |
- if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){ |
- u8 eType; |
- Pgno iPtrPage; |
- |
- nFreeList = get4byte(&pBt->pPage1->aData[36]); |
- if( nFreeList==0 ){ |
- return SQLITE_DONE; |
- } |
- |
- rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage); |
- if( rc!=SQLITE_OK ){ |
- return rc; |
- } |
- if( eType==PTRMAP_ROOTPAGE ){ |
- return SQLITE_CORRUPT_BKPT; |
- } |
- |
- if( eType==PTRMAP_FREEPAGE ){ |
- if( bCommit==0 ){ |
- /* Remove the page from the files free-list. This is not required |
- ** if bCommit is non-zero. In that case, the free-list will be |
- ** truncated to zero after this function returns, so it doesn't |
- ** matter if it still contains some garbage entries. |
- */ |
- Pgno iFreePg; |
- MemPage *pFreePg; |
- rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, BTALLOC_EXACT); |
- if( rc!=SQLITE_OK ){ |
- return rc; |
- } |
- assert( iFreePg==iLastPg ); |
- releasePage(pFreePg); |
- } |
- } else { |
- Pgno iFreePg; /* Index of free page to move pLastPg to */ |
- MemPage *pLastPg; |
- u8 eMode = BTALLOC_ANY; /* Mode parameter for allocateBtreePage() */ |
- Pgno iNear = 0; /* nearby parameter for allocateBtreePage() */ |
- |
- rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0); |
- if( rc!=SQLITE_OK ){ |
- return rc; |
- } |
- |
- /* If bCommit is zero, this loop runs exactly once and page pLastPg |
- ** is swapped with the first free page pulled off the free list. |
- ** |
- ** On the other hand, if bCommit is greater than zero, then keep |
- ** looping until a free-page located within the first nFin pages |
- ** of the file is found. |
- */ |
- if( bCommit==0 ){ |
- eMode = BTALLOC_LE; |
- iNear = nFin; |
- } |
- do { |
- MemPage *pFreePg; |
- rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iNear, eMode); |
- if( rc!=SQLITE_OK ){ |
- releasePage(pLastPg); |
- return rc; |
- } |
- releasePage(pFreePg); |
- }while( bCommit && iFreePg>nFin ); |
- assert( iFreePg<iLastPg ); |
- |
- rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, bCommit); |
- releasePage(pLastPg); |
- if( rc!=SQLITE_OK ){ |
- return rc; |
- } |
- } |
- } |
- |
- if( bCommit==0 ){ |
- do { |
- iLastPg--; |
- }while( iLastPg==PENDING_BYTE_PAGE(pBt) || PTRMAP_ISPAGE(pBt, iLastPg) ); |
- pBt->bDoTruncate = 1; |
- pBt->nPage = iLastPg; |
- } |
- return SQLITE_OK; |
-} |
- |
-/* |
-** The database opened by the first argument is an auto-vacuum database |
-** nOrig pages in size containing nFree free pages. Return the expected |
-** size of the database in pages following an auto-vacuum operation. |
-*/ |
-static Pgno finalDbSize(BtShared *pBt, Pgno nOrig, Pgno nFree){ |
- int nEntry; /* Number of entries on one ptrmap page */ |
- Pgno nPtrmap; /* Number of PtrMap pages to be freed */ |
- Pgno nFin; /* Return value */ |
- |
- nEntry = pBt->usableSize/5; |
- nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry; |
- nFin = nOrig - nFree - nPtrmap; |
- if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){ |
- nFin--; |
- } |
- while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){ |
- nFin--; |
- } |
- |
- return nFin; |
-} |
- |
-/* |
-** A write-transaction must be opened before calling this function. |
-** It performs a single unit of work towards an incremental vacuum. |
-** |
-** If the incremental vacuum is finished after this function has run, |
-** SQLITE_DONE is returned. If it is not finished, but no error occurred, |
-** SQLITE_OK is returned. Otherwise an SQLite error code. |
-*/ |
-int sqlite3BtreeIncrVacuum(Btree *p){ |
- int rc; |
- BtShared *pBt = p->pBt; |
- |
- sqlite3BtreeEnter(p); |
- assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE ); |
- if( !pBt->autoVacuum ){ |
- rc = SQLITE_DONE; |
- }else{ |
- Pgno nOrig = btreePagecount(pBt); |
- Pgno nFree = get4byte(&pBt->pPage1->aData[36]); |
- Pgno nFin = finalDbSize(pBt, nOrig, nFree); |
- |
- if( nOrig<nFin ){ |
- rc = SQLITE_CORRUPT_BKPT; |
- }else if( nFree>0 ){ |
- rc = saveAllCursors(pBt, 0, 0); |
- if( rc==SQLITE_OK ){ |
- invalidateAllOverflowCache(pBt); |
- rc = incrVacuumStep(pBt, nFin, nOrig, 0); |
- } |
- if( rc==SQLITE_OK ){ |
- rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); |
- put4byte(&pBt->pPage1->aData[28], pBt->nPage); |
- } |
- }else{ |
- rc = SQLITE_DONE; |
- } |
- } |
- sqlite3BtreeLeave(p); |
- return rc; |
-} |
- |
-/* |
-** This routine is called prior to sqlite3PagerCommit when a transaction |
-** is committed for an auto-vacuum database. |
-** |
-** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages |
-** the database file should be truncated to during the commit process. |
-** i.e. the database has been reorganized so that only the first *pnTrunc |
-** pages are in use. |
-*/ |
-static int autoVacuumCommit(BtShared *pBt){ |
- int rc = SQLITE_OK; |
- Pager *pPager = pBt->pPager; |
- VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager) ); |
- |
- assert( sqlite3_mutex_held(pBt->mutex) ); |
- invalidateAllOverflowCache(pBt); |
- assert(pBt->autoVacuum); |
- if( !pBt->incrVacuum ){ |
- Pgno nFin; /* Number of pages in database after autovacuuming */ |
- Pgno nFree; /* Number of pages on the freelist initially */ |
- Pgno iFree; /* The next page to be freed */ |
- Pgno nOrig; /* Database size before freeing */ |
- |
- nOrig = btreePagecount(pBt); |
- if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){ |
- /* It is not possible to create a database for which the final page |
- ** is either a pointer-map page or the pending-byte page. If one |
- ** is encountered, this indicates corruption. |
- */ |
- return SQLITE_CORRUPT_BKPT; |
- } |
- |
- nFree = get4byte(&pBt->pPage1->aData[36]); |
- nFin = finalDbSize(pBt, nOrig, nFree); |
- if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT; |
- if( nFin<nOrig ){ |
- rc = saveAllCursors(pBt, 0, 0); |
- } |
- for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){ |
- rc = incrVacuumStep(pBt, nFin, iFree, 1); |
- } |
- if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){ |
- rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); |
- put4byte(&pBt->pPage1->aData[32], 0); |
- put4byte(&pBt->pPage1->aData[36], 0); |
- put4byte(&pBt->pPage1->aData[28], nFin); |
- pBt->bDoTruncate = 1; |
- pBt->nPage = nFin; |
- } |
- if( rc!=SQLITE_OK ){ |
- sqlite3PagerRollback(pPager); |
- } |
- } |
- |
- assert( nRef>=sqlite3PagerRefcount(pPager) ); |
- return rc; |
-} |
- |
-#else /* ifndef SQLITE_OMIT_AUTOVACUUM */ |
-# define setChildPtrmaps(x) SQLITE_OK |
-#endif |
- |
-/* |
-** This routine does the first phase of a two-phase commit. This routine |
-** causes a rollback journal to be created (if it does not already exist) |
-** and populated with enough information so that if a power loss occurs |
-** the database can be restored to its original state by playing back |
-** the journal. Then the contents of the journal are flushed out to |
-** the disk. After the journal is safely on oxide, the changes to the |
-** database are written into the database file and flushed to oxide. |
-** At the end of this call, the rollback journal still exists on the |
-** disk and we are still holding all locks, so the transaction has not |
-** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the |
-** commit process. |
-** |
-** This call is a no-op if no write-transaction is currently active on pBt. |
-** |
-** Otherwise, sync the database file for the btree pBt. zMaster points to |
-** the name of a master journal file that should be written into the |
-** individual journal file, or is NULL, indicating no master journal file |
-** (single database transaction). |
-** |
-** When this is called, the master journal should already have been |
-** created, populated with this journal pointer and synced to disk. |
-** |
-** Once this is routine has returned, the only thing required to commit |
-** the write-transaction for this database file is to delete the journal. |
-*/ |
-int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){ |
- int rc = SQLITE_OK; |
- if( p->inTrans==TRANS_WRITE ){ |
- BtShared *pBt = p->pBt; |
- sqlite3BtreeEnter(p); |
-#ifndef SQLITE_OMIT_AUTOVACUUM |
- if( pBt->autoVacuum ){ |
- rc = autoVacuumCommit(pBt); |
- if( rc!=SQLITE_OK ){ |
- sqlite3BtreeLeave(p); |
- return rc; |
- } |
- } |
- if( pBt->bDoTruncate ){ |
- sqlite3PagerTruncateImage(pBt->pPager, pBt->nPage); |
- } |
-#endif |
- rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, 0); |
- sqlite3BtreeLeave(p); |
- } |
- return rc; |
-} |
- |
-/* |
-** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback() |
-** at the conclusion of a transaction. |
-*/ |
-static void btreeEndTransaction(Btree *p){ |
- BtShared *pBt = p->pBt; |
- sqlite3 *db = p->db; |
- assert( sqlite3BtreeHoldsMutex(p) ); |
- |
-#ifndef SQLITE_OMIT_AUTOVACUUM |
- pBt->bDoTruncate = 0; |
-#endif |
- if( p->inTrans>TRANS_NONE && db->nVdbeRead>1 ){ |
- /* If there are other active statements that belong to this database |
- ** handle, downgrade to a read-only transaction. The other statements |
- ** may still be reading from the database. */ |
- downgradeAllSharedCacheTableLocks(p); |
- p->inTrans = TRANS_READ; |
- }else{ |
- /* If the handle had any kind of transaction open, decrement the |
- ** transaction count of the shared btree. If the transaction count |
- ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused() |
- ** call below will unlock the pager. */ |
- if( p->inTrans!=TRANS_NONE ){ |
- clearAllSharedCacheTableLocks(p); |
- pBt->nTransaction--; |
- if( 0==pBt->nTransaction ){ |
- pBt->inTransaction = TRANS_NONE; |
- } |
- } |
- |
- /* Set the current transaction state to TRANS_NONE and unlock the |
- ** pager if this call closed the only read or write transaction. */ |
- p->inTrans = TRANS_NONE; |
- unlockBtreeIfUnused(pBt); |
- } |
- |
- btreeIntegrity(p); |
-} |
- |
-/* |
-** Commit the transaction currently in progress. |
-** |
-** This routine implements the second phase of a 2-phase commit. The |
-** sqlite3BtreeCommitPhaseOne() routine does the first phase and should |
-** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne() |
-** routine did all the work of writing information out to disk and flushing the |
-** contents so that they are written onto the disk platter. All this |
-** routine has to do is delete or truncate or zero the header in the |
-** the rollback journal (which causes the transaction to commit) and |
-** drop locks. |
-** |
-** Normally, if an error occurs while the pager layer is attempting to |
-** finalize the underlying journal file, this function returns an error and |
-** the upper layer will attempt a rollback. However, if the second argument |
-** is non-zero then this b-tree transaction is part of a multi-file |
-** transaction. In this case, the transaction has already been committed |
-** (by deleting a master journal file) and the caller will ignore this |
-** functions return code. So, even if an error occurs in the pager layer, |
-** reset the b-tree objects internal state to indicate that the write |
-** transaction has been closed. This is quite safe, as the pager will have |
-** transitioned to the error state. |
-** |
-** This will release the write lock on the database file. If there |
-** are no active cursors, it also releases the read lock. |
-*/ |
-int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){ |
- |
- if( p->inTrans==TRANS_NONE ) return SQLITE_OK; |
- sqlite3BtreeEnter(p); |
- btreeIntegrity(p); |
- |
- /* If the handle has a write-transaction open, commit the shared-btrees |
- ** transaction and set the shared state to TRANS_READ. |
- */ |
- if( p->inTrans==TRANS_WRITE ){ |
- int rc; |
- BtShared *pBt = p->pBt; |
- assert( pBt->inTransaction==TRANS_WRITE ); |
- assert( pBt->nTransaction>0 ); |
- rc = sqlite3PagerCommitPhaseTwo(pBt->pPager); |
- if( rc!=SQLITE_OK && bCleanup==0 ){ |
- sqlite3BtreeLeave(p); |
- return rc; |
- } |
- pBt->inTransaction = TRANS_READ; |
- btreeClearHasContent(pBt); |
- } |
- |
- btreeEndTransaction(p); |
- sqlite3BtreeLeave(p); |
- return SQLITE_OK; |
-} |
- |
-/* |
-** Do both phases of a commit. |
-*/ |
-int sqlite3BtreeCommit(Btree *p){ |
- int rc; |
- sqlite3BtreeEnter(p); |
- rc = sqlite3BtreeCommitPhaseOne(p, 0); |
- if( rc==SQLITE_OK ){ |
- rc = sqlite3BtreeCommitPhaseTwo(p, 0); |
- } |
- sqlite3BtreeLeave(p); |
- return rc; |
-} |
- |
-/* |
-** This routine sets the state to CURSOR_FAULT and the error |
-** code to errCode for every cursor on any BtShared that pBtree |
-** references. Or if the writeOnly flag is set to 1, then only |
-** trip write cursors and leave read cursors unchanged. |
-** |
-** Every cursor is a candidate to be tripped, including cursors |
-** that belong to other database connections that happen to be |
-** sharing the cache with pBtree. |
-** |
-** This routine gets called when a rollback occurs. If the writeOnly |
-** flag is true, then only write-cursors need be tripped - read-only |
-** cursors save their current positions so that they may continue |
-** following the rollback. Or, if writeOnly is false, all cursors are |
-** tripped. In general, writeOnly is false if the transaction being |
-** rolled back modified the database schema. In this case b-tree root |
-** pages may be moved or deleted from the database altogether, making |
-** it unsafe for read cursors to continue. |
-** |
-** If the writeOnly flag is true and an error is encountered while |
-** saving the current position of a read-only cursor, all cursors, |
-** including all read-cursors are tripped. |
-** |
-** SQLITE_OK is returned if successful, or if an error occurs while |
-** saving a cursor position, an SQLite error code. |
-*/ |
-int sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode, int writeOnly){ |
- BtCursor *p; |
- int rc = SQLITE_OK; |
- |
- assert( (writeOnly==0 || writeOnly==1) && BTCF_WriteFlag==1 ); |
- if( pBtree ){ |
- sqlite3BtreeEnter(pBtree); |
- for(p=pBtree->pBt->pCursor; p; p=p->pNext){ |
- int i; |
- if( writeOnly && (p->curFlags & BTCF_WriteFlag)==0 ){ |
- if( p->eState==CURSOR_VALID ){ |
- rc = saveCursorPosition(p); |
- if( rc!=SQLITE_OK ){ |
- (void)sqlite3BtreeTripAllCursors(pBtree, rc, 0); |
- break; |
- } |
- } |
- }else{ |
- sqlite3BtreeClearCursor(p); |
- p->eState = CURSOR_FAULT; |
- p->skipNext = errCode; |
- } |
- for(i=0; i<=p->iPage; i++){ |
- releasePage(p->apPage[i]); |
- p->apPage[i] = 0; |
- } |
- } |
- sqlite3BtreeLeave(pBtree); |
- } |
- return rc; |
-} |
- |
-/* |
-** Rollback the transaction in progress. |
-** |
-** If tripCode is not SQLITE_OK then cursors will be invalidated (tripped). |
-** Only write cursors are tripped if writeOnly is true but all cursors are |
-** tripped if writeOnly is false. Any attempt to use |
-** a tripped cursor will result in an error. |
-** |
-** This will release the write lock on the database file. If there |
-** are no active cursors, it also releases the read lock. |
-*/ |
-int sqlite3BtreeRollback(Btree *p, int tripCode, int writeOnly){ |
- int rc; |
- BtShared *pBt = p->pBt; |
- MemPage *pPage1; |
- |
- assert( writeOnly==1 || writeOnly==0 ); |
- assert( tripCode==SQLITE_ABORT_ROLLBACK || tripCode==SQLITE_OK ); |
- sqlite3BtreeEnter(p); |
- if( tripCode==SQLITE_OK ){ |
- rc = tripCode = saveAllCursors(pBt, 0, 0); |
- if( rc ) writeOnly = 0; |
- }else{ |
- rc = SQLITE_OK; |
- } |
- if( tripCode ){ |
- int rc2 = sqlite3BtreeTripAllCursors(p, tripCode, writeOnly); |
- assert( rc==SQLITE_OK || (writeOnly==0 && rc2==SQLITE_OK) ); |
- if( rc2!=SQLITE_OK ) rc = rc2; |
- } |
- btreeIntegrity(p); |
- |
- if( p->inTrans==TRANS_WRITE ){ |
- int rc2; |
- |
- assert( TRANS_WRITE==pBt->inTransaction ); |
- rc2 = sqlite3PagerRollback(pBt->pPager); |
- if( rc2!=SQLITE_OK ){ |
- rc = rc2; |
- } |
- |
- /* The rollback may have destroyed the pPage1->aData value. So |
- ** call btreeGetPage() on page 1 again to make |
- ** sure pPage1->aData is set correctly. */ |
- if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){ |
- int nPage = get4byte(28+(u8*)pPage1->aData); |
- testcase( nPage==0 ); |
- if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage); |
- testcase( pBt->nPage!=nPage ); |
- pBt->nPage = nPage; |
- releasePage(pPage1); |
- } |
- assert( countValidCursors(pBt, 1)==0 ); |
- pBt->inTransaction = TRANS_READ; |
- btreeClearHasContent(pBt); |
- } |
- |
- btreeEndTransaction(p); |
- sqlite3BtreeLeave(p); |
- return rc; |
-} |
- |
-/* |
-** Start a statement subtransaction. The subtransaction can be rolled |
-** back independently of the main transaction. You must start a transaction |
-** before starting a subtransaction. The subtransaction is ended automatically |
-** if the main transaction commits or rolls back. |
-** |
-** Statement subtransactions are used around individual SQL statements |
-** that are contained within a BEGIN...COMMIT block. If a constraint |
-** error occurs within the statement, the effect of that one statement |
-** can be rolled back without having to rollback the entire transaction. |
-** |
-** A statement sub-transaction is implemented as an anonymous savepoint. The |
-** value passed as the second parameter is the total number of savepoints, |
-** including the new anonymous savepoint, open on the B-Tree. i.e. if there |
-** are no active savepoints and no other statement-transactions open, |
-** iStatement is 1. This anonymous savepoint can be released or rolled back |
-** using the sqlite3BtreeSavepoint() function. |
-*/ |
-int sqlite3BtreeBeginStmt(Btree *p, int iStatement){ |
- int rc; |
- BtShared *pBt = p->pBt; |
- sqlite3BtreeEnter(p); |
- assert( p->inTrans==TRANS_WRITE ); |
- assert( (pBt->btsFlags & BTS_READ_ONLY)==0 ); |
- assert( iStatement>0 ); |
- assert( iStatement>p->db->nSavepoint ); |
- assert( pBt->inTransaction==TRANS_WRITE ); |
- /* At the pager level, a statement transaction is a savepoint with |
- ** an index greater than all savepoints created explicitly using |
- ** SQL statements. It is illegal to open, release or rollback any |
- ** such savepoints while the statement transaction savepoint is active. |
- */ |
- rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement); |
- sqlite3BtreeLeave(p); |
- return rc; |
-} |
- |
-/* |
-** The second argument to this function, op, is always SAVEPOINT_ROLLBACK |
-** or SAVEPOINT_RELEASE. This function either releases or rolls back the |
-** savepoint identified by parameter iSavepoint, depending on the value |
-** of op. |
-** |
-** Normally, iSavepoint is greater than or equal to zero. However, if op is |
-** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the |
-** contents of the entire transaction are rolled back. This is different |
-** from a normal transaction rollback, as no locks are released and the |
-** transaction remains open. |
-*/ |
-int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){ |
- int rc = SQLITE_OK; |
- if( p && p->inTrans==TRANS_WRITE ){ |
- BtShared *pBt = p->pBt; |
- assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK ); |
- assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) ); |
- sqlite3BtreeEnter(p); |
- rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint); |
- if( rc==SQLITE_OK ){ |
- if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){ |
- pBt->nPage = 0; |
- } |
- rc = newDatabase(pBt); |
- pBt->nPage = get4byte(28 + pBt->pPage1->aData); |
- |
- /* The database size was written into the offset 28 of the header |
- ** when the transaction started, so we know that the value at offset |
- ** 28 is nonzero. */ |
- assert( pBt->nPage>0 ); |
- } |
- sqlite3BtreeLeave(p); |
- } |
- return rc; |
-} |
- |
-/* |
-** Create a new cursor for the BTree whose root is on the page |
-** iTable. If a read-only cursor is requested, it is assumed that |
-** the caller already has at least a read-only transaction open |
-** on the database already. If a write-cursor is requested, then |
-** the caller is assumed to have an open write transaction. |
-** |
-** If wrFlag==0, then the cursor can only be used for reading. |
-** If wrFlag==1, then the cursor can be used for reading or for |
-** writing if other conditions for writing are also met. These |
-** are the conditions that must be met in order for writing to |
-** be allowed: |
-** |
-** 1: The cursor must have been opened with wrFlag==1 |
-** |
-** 2: Other database connections that share the same pager cache |
-** but which are not in the READ_UNCOMMITTED state may not have |
-** cursors open with wrFlag==0 on the same table. Otherwise |
-** the changes made by this write cursor would be visible to |
-** the read cursors in the other database connection. |
-** |
-** 3: The database must be writable (not on read-only media) |
-** |
-** 4: There must be an active transaction. |
-** |
-** No checking is done to make sure that page iTable really is the |
-** root page of a b-tree. If it is not, then the cursor acquired |
-** will not work correctly. |
-** |
-** It is assumed that the sqlite3BtreeCursorZero() has been called |
-** on pCur to initialize the memory space prior to invoking this routine. |
-*/ |
-static int btreeCursor( |
- Btree *p, /* The btree */ |
- int iTable, /* Root page of table to open */ |
- int wrFlag, /* 1 to write. 0 read-only */ |
- struct KeyInfo *pKeyInfo, /* First arg to comparison function */ |
- BtCursor *pCur /* Space for new cursor */ |
-){ |
- BtShared *pBt = p->pBt; /* Shared b-tree handle */ |
- |
- assert( sqlite3BtreeHoldsMutex(p) ); |
- assert( wrFlag==0 || wrFlag==1 ); |
- |
- /* The following assert statements verify that if this is a sharable |
- ** b-tree database, the connection is holding the required table locks, |
- ** and that no other connection has any open cursor that conflicts with |
- ** this lock. */ |
- assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, wrFlag+1) ); |
- assert( wrFlag==0 || !hasReadConflicts(p, iTable) ); |
- |
- /* Assert that the caller has opened the required transaction. */ |
- assert( p->inTrans>TRANS_NONE ); |
- assert( wrFlag==0 || p->inTrans==TRANS_WRITE ); |
- assert( pBt->pPage1 && pBt->pPage1->aData ); |
- |
- if( NEVER(wrFlag && (pBt->btsFlags & BTS_READ_ONLY)!=0) ){ |
- return SQLITE_READONLY; |
- } |
- if( wrFlag ){ |
- allocateTempSpace(pBt); |
- if( pBt->pTmpSpace==0 ) return SQLITE_NOMEM; |
- } |
- if( iTable==1 && btreePagecount(pBt)==0 ){ |
- assert( wrFlag==0 ); |
- iTable = 0; |
- } |
- |
- /* Now that no other errors can occur, finish filling in the BtCursor |
- ** variables and link the cursor into the BtShared list. */ |
- pCur->pgnoRoot = (Pgno)iTable; |
- pCur->iPage = -1; |
- pCur->pKeyInfo = pKeyInfo; |
- pCur->pBtree = p; |
- pCur->pBt = pBt; |
- assert( wrFlag==0 || wrFlag==BTCF_WriteFlag ); |
- pCur->curFlags = wrFlag; |
- pCur->pNext = pBt->pCursor; |
- if( pCur->pNext ){ |
- pCur->pNext->pPrev = pCur; |
- } |
- pBt->pCursor = pCur; |
- pCur->eState = CURSOR_INVALID; |
- return SQLITE_OK; |
-} |
-int sqlite3BtreeCursor( |
- Btree *p, /* The btree */ |
- int iTable, /* Root page of table to open */ |
- int wrFlag, /* 1 to write. 0 read-only */ |
- struct KeyInfo *pKeyInfo, /* First arg to xCompare() */ |
- BtCursor *pCur /* Write new cursor here */ |
-){ |
- int rc; |
- sqlite3BtreeEnter(p); |
- rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur); |
- sqlite3BtreeLeave(p); |
- return rc; |
-} |
- |
-/* |
-** Return the size of a BtCursor object in bytes. |
-** |
-** This interfaces is needed so that users of cursors can preallocate |
-** sufficient storage to hold a cursor. The BtCursor object is opaque |
-** to users so they cannot do the sizeof() themselves - they must call |
-** this routine. |
-*/ |
-int sqlite3BtreeCursorSize(void){ |
- return ROUND8(sizeof(BtCursor)); |
-} |
- |
-/* |
-** Initialize memory that will be converted into a BtCursor object. |
-** |
-** The simple approach here would be to memset() the entire object |
-** to zero. But it turns out that the apPage[] and aiIdx[] arrays |
-** do not need to be zeroed and they are large, so we can save a lot |
-** of run-time by skipping the initialization of those elements. |
-*/ |
-void sqlite3BtreeCursorZero(BtCursor *p){ |
- memset(p, 0, offsetof(BtCursor, iPage)); |
-} |
- |
-/* |
-** Close a cursor. The read lock on the database file is released |
-** when the last cursor is closed. |
-*/ |
-int sqlite3BtreeCloseCursor(BtCursor *pCur){ |
- Btree *pBtree = pCur->pBtree; |
- if( pBtree ){ |
- int i; |
- BtShared *pBt = pCur->pBt; |
- sqlite3BtreeEnter(pBtree); |
- sqlite3BtreeClearCursor(pCur); |
- if( pCur->pPrev ){ |
- pCur->pPrev->pNext = pCur->pNext; |
- }else{ |
- pBt->pCursor = pCur->pNext; |
- } |
- if( pCur->pNext ){ |
- pCur->pNext->pPrev = pCur->pPrev; |
- } |
- for(i=0; i<=pCur->iPage; i++){ |
- releasePage(pCur->apPage[i]); |
- } |
- unlockBtreeIfUnused(pBt); |
- sqlite3DbFree(pBtree->db, pCur->aOverflow); |
- /* sqlite3_free(pCur); */ |
- sqlite3BtreeLeave(pBtree); |
- } |
- return SQLITE_OK; |
-} |
- |
-/* |
-** Make sure the BtCursor* given in the argument has a valid |
-** BtCursor.info structure. If it is not already valid, call |
-** btreeParseCell() to fill it in. |
-** |
-** BtCursor.info is a cache of the information in the current cell. |
-** Using this cache reduces the number of calls to btreeParseCell(). |
-** |
-** 2007-06-25: There is a bug in some versions of MSVC that cause the |
-** compiler to crash when getCellInfo() is implemented as a macro. |
-** But there is a measureable speed advantage to using the macro on gcc |
-** (when less compiler optimizations like -Os or -O0 are used and the |
-** compiler is not doing aggressive inlining.) So we use a real function |
-** for MSVC and a macro for everything else. Ticket #2457. |
-*/ |
-#ifndef NDEBUG |
- static void assertCellInfo(BtCursor *pCur){ |
- CellInfo info; |
- int iPage = pCur->iPage; |
- memset(&info, 0, sizeof(info)); |
- btreeParseCell(pCur->apPage[iPage], pCur->aiIdx[iPage], &info); |
- assert( CORRUPT_DB || memcmp(&info, &pCur->info, sizeof(info))==0 ); |
- } |
-#else |
- #define assertCellInfo(x) |
-#endif |
-#ifdef _MSC_VER |
- /* Use a real function in MSVC to work around bugs in that compiler. */ |
- static void getCellInfo(BtCursor *pCur){ |
- if( pCur->info.nSize==0 ){ |
- int iPage = pCur->iPage; |
- btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info); |
- pCur->curFlags |= BTCF_ValidNKey; |
- }else{ |
- assertCellInfo(pCur); |
- } |
- } |
-#else /* if not _MSC_VER */ |
- /* Use a macro in all other compilers so that the function is inlined */ |
-#define getCellInfo(pCur) \ |
- if( pCur->info.nSize==0 ){ \ |
- int iPage = pCur->iPage; \ |
- btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info); \ |
- pCur->curFlags |= BTCF_ValidNKey; \ |
- }else{ \ |
- assertCellInfo(pCur); \ |
- } |
-#endif /* _MSC_VER */ |
- |
-#ifndef NDEBUG /* The next routine used only within assert() statements */ |
-/* |
-** Return true if the given BtCursor is valid. A valid cursor is one |
-** that is currently pointing to a row in a (non-empty) table. |
-** This is a verification routine is used only within assert() statements. |
-*/ |
-int sqlite3BtreeCursorIsValid(BtCursor *pCur){ |
- return pCur && pCur->eState==CURSOR_VALID; |
-} |
-#endif /* NDEBUG */ |
- |
-/* |
-** Set *pSize to the size of the buffer needed to hold the value of |
-** the key for the current entry. If the cursor is not pointing |
-** to a valid entry, *pSize is set to 0. |
-** |
-** For a table with the INTKEY flag set, this routine returns the key |
-** itself, not the number of bytes in the key. |
-** |
-** The caller must position the cursor prior to invoking this routine. |
-** |
-** This routine cannot fail. It always returns SQLITE_OK. |
-*/ |
-int sqlite3BtreeKeySize(BtCursor *pCur, i64 *pSize){ |
- assert( cursorHoldsMutex(pCur) ); |
- assert( pCur->eState==CURSOR_VALID ); |
- getCellInfo(pCur); |
- *pSize = pCur->info.nKey; |
- return SQLITE_OK; |
-} |
- |
-/* |
-** Set *pSize to the number of bytes of data in the entry the |
-** cursor currently points to. |
-** |
-** The caller must guarantee that the cursor is pointing to a non-NULL |
-** valid entry. In other words, the calling procedure must guarantee |
-** that the cursor has Cursor.eState==CURSOR_VALID. |
-** |
-** Failure is not possible. This function always returns SQLITE_OK. |
-** It might just as well be a procedure (returning void) but we continue |
-** to return an integer result code for historical reasons. |
-*/ |
-int sqlite3BtreeDataSize(BtCursor *pCur, u32 *pSize){ |
- assert( cursorHoldsMutex(pCur) ); |
- assert( pCur->eState==CURSOR_VALID ); |
- assert( pCur->apPage[pCur->iPage]->intKeyLeaf==1 ); |
- getCellInfo(pCur); |
- *pSize = pCur->info.nPayload; |
- return SQLITE_OK; |
-} |
- |
-/* |
-** Given the page number of an overflow page in the database (parameter |
-** ovfl), this function finds the page number of the next page in the |
-** linked list of overflow pages. If possible, it uses the auto-vacuum |
-** pointer-map data instead of reading the content of page ovfl to do so. |
-** |
-** If an error occurs an SQLite error code is returned. Otherwise: |
-** |
-** The page number of the next overflow page in the linked list is |
-** written to *pPgnoNext. If page ovfl is the last page in its linked |
-** list, *pPgnoNext is set to zero. |
-** |
-** If ppPage is not NULL, and a reference to the MemPage object corresponding |
-** to page number pOvfl was obtained, then *ppPage is set to point to that |
-** reference. It is the responsibility of the caller to call releasePage() |
-** on *ppPage to free the reference. In no reference was obtained (because |
-** the pointer-map was used to obtain the value for *pPgnoNext), then |
-** *ppPage is set to zero. |
-*/ |
-static int getOverflowPage( |
- BtShared *pBt, /* The database file */ |
- Pgno ovfl, /* Current overflow page number */ |
- MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */ |
- Pgno *pPgnoNext /* OUT: Next overflow page number */ |
-){ |
- Pgno next = 0; |
- MemPage *pPage = 0; |
- int rc = SQLITE_OK; |
- |
- assert( sqlite3_mutex_held(pBt->mutex) ); |
- assert(pPgnoNext); |
- |
-#ifndef SQLITE_OMIT_AUTOVACUUM |
- /* Try to find the next page in the overflow list using the |
- ** autovacuum pointer-map pages. Guess that the next page in |
- ** the overflow list is page number (ovfl+1). If that guess turns |
- ** out to be wrong, fall back to loading the data of page |
- ** number ovfl to determine the next page number. |
- */ |
- if( pBt->autoVacuum ){ |
- Pgno pgno; |
- Pgno iGuess = ovfl+1; |
- u8 eType; |
- |
- while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){ |
- iGuess++; |
- } |
- |
- if( iGuess<=btreePagecount(pBt) ){ |
- rc = ptrmapGet(pBt, iGuess, &eType, &pgno); |
- if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){ |
- next = iGuess; |
- rc = SQLITE_DONE; |
- } |
- } |
- } |
-#endif |
- |
- assert( next==0 || rc==SQLITE_DONE ); |
- if( rc==SQLITE_OK ){ |
- rc = btreeGetPage(pBt, ovfl, &pPage, (ppPage==0) ? PAGER_GET_READONLY : 0); |
- assert( rc==SQLITE_OK || pPage==0 ); |
- if( rc==SQLITE_OK ){ |
- next = get4byte(pPage->aData); |
- } |
- } |
- |
- *pPgnoNext = next; |
- if( ppPage ){ |
- *ppPage = pPage; |
- }else{ |
- releasePage(pPage); |
- } |
- return (rc==SQLITE_DONE ? SQLITE_OK : rc); |
-} |
- |
-/* |
-** Copy data from a buffer to a page, or from a page to a buffer. |
-** |
-** pPayload is a pointer to data stored on database page pDbPage. |
-** If argument eOp is false, then nByte bytes of data are copied |
-** from pPayload to the buffer pointed at by pBuf. If eOp is true, |
-** then sqlite3PagerWrite() is called on pDbPage and nByte bytes |
-** of data are copied from the buffer pBuf to pPayload. |
-** |
-** SQLITE_OK is returned on success, otherwise an error code. |
-*/ |
-static int copyPayload( |
- void *pPayload, /* Pointer to page data */ |
- void *pBuf, /* Pointer to buffer */ |
- int nByte, /* Number of bytes to copy */ |
- int eOp, /* 0 -> copy from page, 1 -> copy to page */ |
- DbPage *pDbPage /* Page containing pPayload */ |
-){ |
- if( eOp ){ |
- /* Copy data from buffer to page (a write operation) */ |
- int rc = sqlite3PagerWrite(pDbPage); |
- if( rc!=SQLITE_OK ){ |
- return rc; |
- } |
- memcpy(pPayload, pBuf, nByte); |
- }else{ |
- /* Copy data from page to buffer (a read operation) */ |
- memcpy(pBuf, pPayload, nByte); |
- } |
- return SQLITE_OK; |
-} |
- |
-/* |
-** This function is used to read or overwrite payload information |
-** for the entry that the pCur cursor is pointing to. The eOp |
-** argument is interpreted as follows: |
-** |
-** 0: The operation is a read. Populate the overflow cache. |
-** 1: The operation is a write. Populate the overflow cache. |
-** 2: The operation is a read. Do not populate the overflow cache. |
-** |
-** A total of "amt" bytes are read or written beginning at "offset". |
-** Data is read to or from the buffer pBuf. |
-** |
-** The content being read or written might appear on the main page |
-** or be scattered out on multiple overflow pages. |
-** |
-** If the current cursor entry uses one or more overflow pages and the |
-** eOp argument is not 2, this function may allocate space for and lazily |
-** populates the overflow page-list cache array (BtCursor.aOverflow). |
-** Subsequent calls use this cache to make seeking to the supplied offset |
-** more efficient. |
-** |
-** Once an overflow page-list cache has been allocated, it may be |
-** invalidated if some other cursor writes to the same table, or if |
-** the cursor is moved to a different row. Additionally, in auto-vacuum |
-** mode, the following events may invalidate an overflow page-list cache. |
-** |
-** * An incremental vacuum, |
-** * A commit in auto_vacuum="full" mode, |
-** * Creating a table (may require moving an overflow page). |
-*/ |
-static int accessPayload( |
- BtCursor *pCur, /* Cursor pointing to entry to read from */ |
- u32 offset, /* Begin reading this far into payload */ |
- u32 amt, /* Read this many bytes */ |
- unsigned char *pBuf, /* Write the bytes into this buffer */ |
- int eOp /* zero to read. non-zero to write. */ |
-){ |
- unsigned char *aPayload; |
- int rc = SQLITE_OK; |
- int iIdx = 0; |
- MemPage *pPage = pCur->apPage[pCur->iPage]; /* Btree page of current entry */ |
- BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */ |
-#ifdef SQLITE_DIRECT_OVERFLOW_READ |
- unsigned char * const pBufStart = pBuf; |
- int bEnd; /* True if reading to end of data */ |
-#endif |
- |
- assert( pPage ); |
- assert( pCur->eState==CURSOR_VALID ); |
- assert( pCur->aiIdx[pCur->iPage]<pPage->nCell ); |
- assert( cursorHoldsMutex(pCur) ); |
- assert( eOp!=2 || offset==0 ); /* Always start from beginning for eOp==2 */ |
- |
- getCellInfo(pCur); |
- aPayload = pCur->info.pPayload; |
-#ifdef SQLITE_DIRECT_OVERFLOW_READ |
- bEnd = offset+amt==pCur->info.nPayload; |
-#endif |
- assert( offset+amt <= pCur->info.nPayload ); |
- |
- if( &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize] ){ |
- /* Trying to read or write past the end of the data is an error */ |
- return SQLITE_CORRUPT_BKPT; |
- } |
- |
- /* Check if data must be read/written to/from the btree page itself. */ |
- if( offset<pCur->info.nLocal ){ |
- int a = amt; |
- if( a+offset>pCur->info.nLocal ){ |
- a = pCur->info.nLocal - offset; |
- } |
- rc = copyPayload(&aPayload[offset], pBuf, a, (eOp & 0x01), pPage->pDbPage); |
- offset = 0; |
- pBuf += a; |
- amt -= a; |
- }else{ |
- offset -= pCur->info.nLocal; |
- } |
- |
- if( rc==SQLITE_OK && amt>0 ){ |
- const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */ |
- Pgno nextPage; |
- |
- nextPage = get4byte(&aPayload[pCur->info.nLocal]); |
- |
- /* If the BtCursor.aOverflow[] has not been allocated, allocate it now. |
- ** Except, do not allocate aOverflow[] for eOp==2. |
- ** |
- ** The aOverflow[] array is sized at one entry for each overflow page |
- ** in the overflow chain. The page number of the first overflow page is |
- ** stored in aOverflow[0], etc. A value of 0 in the aOverflow[] array |
- ** means "not yet known" (the cache is lazily populated). |
- */ |
- if( eOp!=2 && (pCur->curFlags & BTCF_ValidOvfl)==0 ){ |
- int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize; |
- if( nOvfl>pCur->nOvflAlloc ){ |
- Pgno *aNew = (Pgno*)sqlite3DbRealloc( |
- pCur->pBtree->db, pCur->aOverflow, nOvfl*2*sizeof(Pgno) |
- ); |
- if( aNew==0 ){ |
- rc = SQLITE_NOMEM; |
- }else{ |
- pCur->nOvflAlloc = nOvfl*2; |
- pCur->aOverflow = aNew; |
- } |
- } |
- if( rc==SQLITE_OK ){ |
- memset(pCur->aOverflow, 0, nOvfl*sizeof(Pgno)); |
- pCur->curFlags |= BTCF_ValidOvfl; |
- } |
- } |
- |
- /* If the overflow page-list cache has been allocated and the |
- ** entry for the first required overflow page is valid, skip |
- ** directly to it. |
- */ |
- if( (pCur->curFlags & BTCF_ValidOvfl)!=0 |
- && pCur->aOverflow[offset/ovflSize] |
- ){ |
- iIdx = (offset/ovflSize); |
- nextPage = pCur->aOverflow[iIdx]; |
- offset = (offset%ovflSize); |
- } |
- |
- for( ; rc==SQLITE_OK && amt>0 && nextPage; iIdx++){ |
- |
- /* If required, populate the overflow page-list cache. */ |
- if( (pCur->curFlags & BTCF_ValidOvfl)!=0 ){ |
- assert(!pCur->aOverflow[iIdx] || pCur->aOverflow[iIdx]==nextPage); |
- pCur->aOverflow[iIdx] = nextPage; |
- } |
- |
- if( offset>=ovflSize ){ |
- /* The only reason to read this page is to obtain the page |
- ** number for the next page in the overflow chain. The page |
- ** data is not required. So first try to lookup the overflow |
- ** page-list cache, if any, then fall back to the getOverflowPage() |
- ** function. |
- ** |
- ** Note that the aOverflow[] array must be allocated because eOp!=2 |
- ** here. If eOp==2, then offset==0 and this branch is never taken. |
- */ |
- assert( eOp!=2 ); |
- assert( pCur->curFlags & BTCF_ValidOvfl ); |
- if( pCur->aOverflow[iIdx+1] ){ |
- nextPage = pCur->aOverflow[iIdx+1]; |
- }else{ |
- rc = getOverflowPage(pBt, nextPage, 0, &nextPage); |
- } |
- offset -= ovflSize; |
- }else{ |
- /* Need to read this page properly. It contains some of the |
- ** range of data that is being read (eOp==0) or written (eOp!=0). |
- */ |
-#ifdef SQLITE_DIRECT_OVERFLOW_READ |
- sqlite3_file *fd; |
-#endif |
- int a = amt; |
- if( a + offset > ovflSize ){ |
- a = ovflSize - offset; |
- } |
- |
-#ifdef SQLITE_DIRECT_OVERFLOW_READ |
- /* If all the following are true: |
- ** |
- ** 1) this is a read operation, and |
- ** 2) data is required from the start of this overflow page, and |
- ** 3) the database is file-backed, and |
- ** 4) there is no open write-transaction, and |
- ** 5) the database is not a WAL database, |
- ** 6) all data from the page is being read. |
- ** 7) at least 4 bytes have already been read into the output buffer |
- ** |
- ** then data can be read directly from the database file into the |
- ** output buffer, bypassing the page-cache altogether. This speeds |
- ** up loading large records that span many overflow pages. |
- */ |
- if( (eOp&0x01)==0 /* (1) */ |
- && offset==0 /* (2) */ |
- && (bEnd || a==ovflSize) /* (6) */ |
- && pBt->inTransaction==TRANS_READ /* (4) */ |
- && (fd = sqlite3PagerFile(pBt->pPager))->pMethods /* (3) */ |
- && pBt->pPage1->aData[19]==0x01 /* (5) */ |
- && &pBuf[-4]>=pBufStart /* (7) */ |
- ){ |
- u8 aSave[4]; |
- u8 *aWrite = &pBuf[-4]; |
- assert( aWrite>=pBufStart ); /* hence (7) */ |
- memcpy(aSave, aWrite, 4); |
- rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1)); |
- nextPage = get4byte(aWrite); |
- memcpy(aWrite, aSave, 4); |
- }else |
-#endif |
- |
- { |
- DbPage *pDbPage; |
- rc = sqlite3PagerAcquire(pBt->pPager, nextPage, &pDbPage, |
- ((eOp&0x01)==0 ? PAGER_GET_READONLY : 0) |
- ); |
- if( rc==SQLITE_OK ){ |
- aPayload = sqlite3PagerGetData(pDbPage); |
- nextPage = get4byte(aPayload); |
- rc = copyPayload(&aPayload[offset+4], pBuf, a, (eOp&0x01), pDbPage); |
- sqlite3PagerUnref(pDbPage); |
- offset = 0; |
- } |
- } |
- amt -= a; |
- pBuf += a; |
- } |
- } |
- } |
- |
- if( rc==SQLITE_OK && amt>0 ){ |
- return SQLITE_CORRUPT_BKPT; |
- } |
- return rc; |
-} |
- |
-/* |
-** Read part of the key associated with cursor pCur. Exactly |
-** "amt" bytes will be transferred into pBuf[]. The transfer |
-** begins at "offset". |
-** |
-** The caller must ensure that pCur is pointing to a valid row |
-** in the table. |
-** |
-** Return SQLITE_OK on success or an error code if anything goes |
-** wrong. An error is returned if "offset+amt" is larger than |
-** the available payload. |
-*/ |
-int sqlite3BtreeKey(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){ |
- assert( cursorHoldsMutex(pCur) ); |
- assert( pCur->eState==CURSOR_VALID ); |
- assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] ); |
- assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell ); |
- return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0); |
-} |
- |
-/* |
-** Read part of the data associated with cursor pCur. Exactly |
-** "amt" bytes will be transfered into pBuf[]. The transfer |
-** begins at "offset". |
-** |
-** Return SQLITE_OK on success or an error code if anything goes |
-** wrong. An error is returned if "offset+amt" is larger than |
-** the available payload. |
-*/ |
-int sqlite3BtreeData(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){ |
- int rc; |
- |
-#ifndef SQLITE_OMIT_INCRBLOB |
- if ( pCur->eState==CURSOR_INVALID ){ |
- return SQLITE_ABORT; |
- } |
-#endif |
- |
- assert( cursorHoldsMutex(pCur) ); |
- rc = restoreCursorPosition(pCur); |
- if( rc==SQLITE_OK ){ |
- assert( pCur->eState==CURSOR_VALID ); |
- assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] ); |
- assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell ); |
- rc = accessPayload(pCur, offset, amt, pBuf, 0); |
- } |
- return rc; |
-} |
- |
-/* |
-** Return a pointer to payload information from the entry that the |
-** pCur cursor is pointing to. The pointer is to the beginning of |
-** the key if index btrees (pPage->intKey==0) and is the data for |
-** table btrees (pPage->intKey==1). The number of bytes of available |
-** key/data is written into *pAmt. If *pAmt==0, then the value |
-** returned will not be a valid pointer. |
-** |
-** This routine is an optimization. It is common for the entire key |
-** and data to fit on the local page and for there to be no overflow |
-** pages. When that is so, this routine can be used to access the |
-** key and data without making a copy. If the key and/or data spills |
-** onto overflow pages, then accessPayload() must be used to reassemble |
-** the key/data and copy it into a preallocated buffer. |
-** |
-** The pointer returned by this routine looks directly into the cached |
-** page of the database. The data might change or move the next time |
-** any btree routine is called. |
-*/ |
-static const void *fetchPayload( |
- BtCursor *pCur, /* Cursor pointing to entry to read from */ |
- u32 *pAmt /* Write the number of available bytes here */ |
-){ |
- assert( pCur!=0 && pCur->iPage>=0 && pCur->apPage[pCur->iPage]); |
- assert( pCur->eState==CURSOR_VALID ); |
- assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); |
- assert( cursorHoldsMutex(pCur) ); |
- assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell ); |
- assert( pCur->info.nSize>0 ); |
- *pAmt = pCur->info.nLocal; |
- return (void*)pCur->info.pPayload; |
-} |
- |
- |
-/* |
-** For the entry that cursor pCur is point to, return as |
-** many bytes of the key or data as are available on the local |
-** b-tree page. Write the number of available bytes into *pAmt. |
-** |
-** The pointer returned is ephemeral. The key/data may move |
-** or be destroyed on the next call to any Btree routine, |
-** including calls from other threads against the same cache. |
-** Hence, a mutex on the BtShared should be held prior to calling |
-** this routine. |
-** |
-** These routines is used to get quick access to key and data |
-** in the common case where no overflow pages are used. |
-*/ |
-const void *sqlite3BtreeKeyFetch(BtCursor *pCur, u32 *pAmt){ |
- return fetchPayload(pCur, pAmt); |
-} |
-const void *sqlite3BtreeDataFetch(BtCursor *pCur, u32 *pAmt){ |
- return fetchPayload(pCur, pAmt); |
-} |
- |
- |
-/* |
-** Move the cursor down to a new child page. The newPgno argument is the |
-** page number of the child page to move to. |
-** |
-** This function returns SQLITE_CORRUPT if the page-header flags field of |
-** the new child page does not match the flags field of the parent (i.e. |
-** if an intkey page appears to be the parent of a non-intkey page, or |
-** vice-versa). |
-*/ |
-static int moveToChild(BtCursor *pCur, u32 newPgno){ |
- int rc; |
- int i = pCur->iPage; |
- MemPage *pNewPage; |
- BtShared *pBt = pCur->pBt; |
- |
- assert( cursorHoldsMutex(pCur) ); |
- assert( pCur->eState==CURSOR_VALID ); |
- assert( pCur->iPage<BTCURSOR_MAX_DEPTH ); |
- assert( pCur->iPage>=0 ); |
- if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){ |
- return SQLITE_CORRUPT_BKPT; |
- } |
- rc = getAndInitPage(pBt, newPgno, &pNewPage, |
- (pCur->curFlags & BTCF_WriteFlag)==0 ? PAGER_GET_READONLY : 0); |
- if( rc ) return rc; |
- pCur->apPage[i+1] = pNewPage; |
- pCur->aiIdx[i+1] = 0; |
- pCur->iPage++; |
- |
- pCur->info.nSize = 0; |
- pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl); |
- if( pNewPage->nCell<1 || pNewPage->intKey!=pCur->apPage[i]->intKey ){ |
- return SQLITE_CORRUPT_BKPT; |
- } |
- return SQLITE_OK; |
-} |
- |
-#if 0 |
-/* |
-** Page pParent is an internal (non-leaf) tree page. This function |
-** asserts that page number iChild is the left-child if the iIdx'th |
-** cell in page pParent. Or, if iIdx is equal to the total number of |
-** cells in pParent, that page number iChild is the right-child of |
-** the page. |
-*/ |
-static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){ |
- assert( iIdx<=pParent->nCell ); |
- if( iIdx==pParent->nCell ){ |
- assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild ); |
- }else{ |
- assert( get4byte(findCell(pParent, iIdx))==iChild ); |
- } |
-} |
-#else |
-# define assertParentIndex(x,y,z) |
-#endif |
- |
-/* |
-** Move the cursor up to the parent page. |
-** |
-** pCur->idx is set to the cell index that contains the pointer |
-** to the page we are coming from. If we are coming from the |
-** right-most child page then pCur->idx is set to one more than |
-** the largest cell index. |
-*/ |
-static void moveToParent(BtCursor *pCur){ |
- assert( cursorHoldsMutex(pCur) ); |
- assert( pCur->eState==CURSOR_VALID ); |
- assert( pCur->iPage>0 ); |
- assert( pCur->apPage[pCur->iPage] ); |
- |
- /* UPDATE: It is actually possible for the condition tested by the assert |
- ** below to be untrue if the database file is corrupt. This can occur if |
- ** one cursor has modified page pParent while a reference to it is held |
- ** by a second cursor. Which can only happen if a single page is linked |
- ** into more than one b-tree structure in a corrupt database. */ |
-#if 0 |
- assertParentIndex( |
- pCur->apPage[pCur->iPage-1], |
- pCur->aiIdx[pCur->iPage-1], |
- pCur->apPage[pCur->iPage]->pgno |
- ); |
-#endif |
- testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell ); |
- |
- releasePage(pCur->apPage[pCur->iPage]); |
- pCur->iPage--; |
- pCur->info.nSize = 0; |
- pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl); |
-} |
- |
-/* |
-** Move the cursor to point to the root page of its b-tree structure. |
-** |
-** If the table has a virtual root page, then the cursor is moved to point |
-** to the virtual root page instead of the actual root page. A table has a |
-** virtual root page when the actual root page contains no cells and a |
-** single child page. This can only happen with the table rooted at page 1. |
-** |
-** If the b-tree structure is empty, the cursor state is set to |
-** CURSOR_INVALID. Otherwise, the cursor is set to point to the first |
-** cell located on the root (or virtual root) page and the cursor state |
-** is set to CURSOR_VALID. |
-** |
-** If this function returns successfully, it may be assumed that the |
-** page-header flags indicate that the [virtual] root-page is the expected |
-** kind of b-tree page (i.e. if when opening the cursor the caller did not |
-** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D, |
-** indicating a table b-tree, or if the caller did specify a KeyInfo |
-** structure the flags byte is set to 0x02 or 0x0A, indicating an index |
-** b-tree). |
-*/ |
-static int moveToRoot(BtCursor *pCur){ |
- MemPage *pRoot; |
- int rc = SQLITE_OK; |
- |
- assert( cursorHoldsMutex(pCur) ); |
- assert( CURSOR_INVALID < CURSOR_REQUIRESEEK ); |
- assert( CURSOR_VALID < CURSOR_REQUIRESEEK ); |
- assert( CURSOR_FAULT > CURSOR_REQUIRESEEK ); |
- if( pCur->eState>=CURSOR_REQUIRESEEK ){ |
- if( pCur->eState==CURSOR_FAULT ){ |
- assert( pCur->skipNext!=SQLITE_OK ); |
- return pCur->skipNext; |
- } |
- sqlite3BtreeClearCursor(pCur); |
- } |
- |
- if( pCur->iPage>=0 ){ |
- while( pCur->iPage ) releasePage(pCur->apPage[pCur->iPage--]); |
- }else if( pCur->pgnoRoot==0 ){ |
- pCur->eState = CURSOR_INVALID; |
- return SQLITE_OK; |
- }else{ |
- rc = getAndInitPage(pCur->pBtree->pBt, pCur->pgnoRoot, &pCur->apPage[0], |
- (pCur->curFlags & BTCF_WriteFlag)==0 ? PAGER_GET_READONLY : 0); |
- if( rc!=SQLITE_OK ){ |
- pCur->eState = CURSOR_INVALID; |
- return rc; |
- } |
- pCur->iPage = 0; |
- } |
- pRoot = pCur->apPage[0]; |
- assert( pRoot->pgno==pCur->pgnoRoot ); |
- |
- /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor |
- ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is |
- ** NULL, the caller expects a table b-tree. If this is not the case, |
- ** return an SQLITE_CORRUPT error. |
- ** |
- ** Earlier versions of SQLite assumed that this test could not fail |
- ** if the root page was already loaded when this function was called (i.e. |
- ** if pCur->iPage>=0). But this is not so if the database is corrupted |
- ** in such a way that page pRoot is linked into a second b-tree table |
- ** (or the freelist). */ |
- assert( pRoot->intKey==1 || pRoot->intKey==0 ); |
- if( pRoot->isInit==0 || (pCur->pKeyInfo==0)!=pRoot->intKey ){ |
- return SQLITE_CORRUPT_BKPT; |
- } |
- |
- pCur->aiIdx[0] = 0; |
- pCur->info.nSize = 0; |
- pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidNKey|BTCF_ValidOvfl); |
- |
- if( pRoot->nCell>0 ){ |
- pCur->eState = CURSOR_VALID; |
- }else if( !pRoot->leaf ){ |
- Pgno subpage; |
- if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT; |
- subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]); |
- pCur->eState = CURSOR_VALID; |
- rc = moveToChild(pCur, subpage); |
- }else{ |
- pCur->eState = CURSOR_INVALID; |
- } |
- return rc; |
-} |
- |
-/* |
-** Move the cursor down to the left-most leaf entry beneath the |
-** entry to which it is currently pointing. |
-** |
-** The left-most leaf is the one with the smallest key - the first |
-** in ascending order. |
-*/ |
-static int moveToLeftmost(BtCursor *pCur){ |
- Pgno pgno; |
- int rc = SQLITE_OK; |
- MemPage *pPage; |
- |
- assert( cursorHoldsMutex(pCur) ); |
- assert( pCur->eState==CURSOR_VALID ); |
- while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){ |
- assert( pCur->aiIdx[pCur->iPage]<pPage->nCell ); |
- pgno = get4byte(findCell(pPage, pCur->aiIdx[pCur->iPage])); |
- rc = moveToChild(pCur, pgno); |
- } |
- return rc; |
-} |
- |
-/* |
-** Move the cursor down to the right-most leaf entry beneath the |
-** page to which it is currently pointing. Notice the difference |
-** between moveToLeftmost() and moveToRightmost(). moveToLeftmost() |
-** finds the left-most entry beneath the *entry* whereas moveToRightmost() |
-** finds the right-most entry beneath the *page*. |
-** |
-** The right-most entry is the one with the largest key - the last |
-** key in ascending order. |
-*/ |
-static int moveToRightmost(BtCursor *pCur){ |
- Pgno pgno; |
- int rc = SQLITE_OK; |
- MemPage *pPage = 0; |
- |
- assert( cursorHoldsMutex(pCur) ); |
- assert( pCur->eState==CURSOR_VALID ); |
- while( !(pPage = pCur->apPage[pCur->iPage])->leaf ){ |
- pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]); |
- pCur->aiIdx[pCur->iPage] = pPage->nCell; |
- rc = moveToChild(pCur, pgno); |
- if( rc ) return rc; |
- } |
- pCur->aiIdx[pCur->iPage] = pPage->nCell-1; |
- assert( pCur->info.nSize==0 ); |
- assert( (pCur->curFlags & BTCF_ValidNKey)==0 ); |
- return SQLITE_OK; |
-} |
- |
-/* Move the cursor to the first entry in the table. Return SQLITE_OK |
-** on success. Set *pRes to 0 if the cursor actually points to something |
-** or set *pRes to 1 if the table is empty. |
-*/ |
-int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){ |
- int rc; |
- |
- assert( cursorHoldsMutex(pCur) ); |
- assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); |
- rc = moveToRoot(pCur); |
- if( rc==SQLITE_OK ){ |
- if( pCur->eState==CURSOR_INVALID ){ |
- assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 ); |
- *pRes = 1; |
- }else{ |
- assert( pCur->apPage[pCur->iPage]->nCell>0 ); |
- *pRes = 0; |
- rc = moveToLeftmost(pCur); |
- } |
- } |
- return rc; |
-} |
- |
-/* Move the cursor to the last entry in the table. Return SQLITE_OK |
-** on success. Set *pRes to 0 if the cursor actually points to something |
-** or set *pRes to 1 if the table is empty. |
-*/ |
-int sqlite3BtreeLast(BtCursor *pCur, int *pRes){ |
- int rc; |
- |
- assert( cursorHoldsMutex(pCur) ); |
- assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); |
- |
- /* If the cursor already points to the last entry, this is a no-op. */ |
- if( CURSOR_VALID==pCur->eState && (pCur->curFlags & BTCF_AtLast)!=0 ){ |
-#ifdef SQLITE_DEBUG |
- /* This block serves to assert() that the cursor really does point |
- ** to the last entry in the b-tree. */ |
- int ii; |
- for(ii=0; ii<pCur->iPage; ii++){ |
- assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell ); |
- } |
- assert( pCur->aiIdx[pCur->iPage]==pCur->apPage[pCur->iPage]->nCell-1 ); |
- assert( pCur->apPage[pCur->iPage]->leaf ); |
-#endif |
- return SQLITE_OK; |
- } |
- |
- rc = moveToRoot(pCur); |
- if( rc==SQLITE_OK ){ |
- if( CURSOR_INVALID==pCur->eState ){ |
- assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 ); |
- *pRes = 1; |
- }else{ |
- assert( pCur->eState==CURSOR_VALID ); |
- *pRes = 0; |
- rc = moveToRightmost(pCur); |
- if( rc==SQLITE_OK ){ |
- pCur->curFlags |= BTCF_AtLast; |
- }else{ |
- pCur->curFlags &= ~BTCF_AtLast; |
- } |
- |
- } |
- } |
- return rc; |
-} |
- |
-/* Move the cursor so that it points to an entry near the key |
-** specified by pIdxKey or intKey. Return a success code. |
-** |
-** For INTKEY tables, the intKey parameter is used. pIdxKey |
-** must be NULL. For index tables, pIdxKey is used and intKey |
-** is ignored. |
-** |
-** If an exact match is not found, then the cursor is always |
-** left pointing at a leaf page which would hold the entry if it |
-** were present. The cursor might point to an entry that comes |
-** before or after the key. |
-** |
-** An integer is written into *pRes which is the result of |
-** comparing the key with the entry to which the cursor is |
-** pointing. The meaning of the integer written into |
-** *pRes is as follows: |
-** |
-** *pRes<0 The cursor is left pointing at an entry that |
-** is smaller than intKey/pIdxKey or if the table is empty |
-** and the cursor is therefore left point to nothing. |
-** |
-** *pRes==0 The cursor is left pointing at an entry that |
-** exactly matches intKey/pIdxKey. |
-** |
-** *pRes>0 The cursor is left pointing at an entry that |
-** is larger than intKey/pIdxKey. |
-** |
-*/ |
-int sqlite3BtreeMovetoUnpacked( |
- BtCursor *pCur, /* The cursor to be moved */ |
- UnpackedRecord *pIdxKey, /* Unpacked index key */ |
- i64 intKey, /* The table key */ |
- int biasRight, /* If true, bias the search to the high end */ |
- int *pRes /* Write search results here */ |
-){ |
- int rc; |
- RecordCompare xRecordCompare; |
- |
- assert( cursorHoldsMutex(pCur) ); |
- assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) ); |
- assert( pRes ); |
- assert( (pIdxKey==0)==(pCur->pKeyInfo==0) ); |
- |
- /* If the cursor is already positioned at the point we are trying |
- ** to move to, then just return without doing any work */ |
- if( pCur->eState==CURSOR_VALID && (pCur->curFlags & BTCF_ValidNKey)!=0 |
- && pCur->apPage[0]->intKey |
- ){ |
- if( pCur->info.nKey==intKey ){ |
- *pRes = 0; |
- return SQLITE_OK; |
- } |
- if( (pCur->curFlags & BTCF_AtLast)!=0 && pCur->info.nKey<intKey ){ |
- *pRes = -1; |
- return SQLITE_OK; |
- } |
- } |
- |
- if( pIdxKey ){ |
- xRecordCompare = sqlite3VdbeFindCompare(pIdxKey); |
- pIdxKey->errCode = 0; |
- assert( pIdxKey->default_rc==1 |
- || pIdxKey->default_rc==0 |
- || pIdxKey->default_rc==-1 |
- ); |
- }else{ |
- xRecordCompare = 0; /* All keys are integers */ |
- } |
- |
- rc = moveToRoot(pCur); |
- if( rc ){ |
- return rc; |
- } |
- assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage] ); |
- assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->isInit ); |
- assert( pCur->eState==CURSOR_INVALID || pCur->apPage[pCur->iPage]->nCell>0 ); |
- if( pCur->eState==CURSOR_INVALID ){ |
- *pRes = -1; |
- assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 ); |
- return SQLITE_OK; |
- } |
- assert( pCur->apPage[0]->intKey || pIdxKey ); |
- for(;;){ |
- int lwr, upr, idx, c; |
- Pgno chldPg; |
- MemPage *pPage = pCur->apPage[pCur->iPage]; |
- u8 *pCell; /* Pointer to current cell in pPage */ |
- |
- /* pPage->nCell must be greater than zero. If this is the root-page |
- ** the cursor would have been INVALID above and this for(;;) loop |
- ** not run. If this is not the root-page, then the moveToChild() routine |
- ** would have already detected db corruption. Similarly, pPage must |
- ** be the right kind (index or table) of b-tree page. Otherwise |
- ** a moveToChild() or moveToRoot() call would have detected corruption. */ |
- assert( pPage->nCell>0 ); |
- assert( pPage->intKey==(pIdxKey==0) ); |
- lwr = 0; |
- upr = pPage->nCell-1; |
- assert( biasRight==0 || biasRight==1 ); |
- idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */ |
- pCur->aiIdx[pCur->iPage] = (u16)idx; |
- if( xRecordCompare==0 ){ |
- for(;;){ |
- i64 nCellKey; |
- pCell = findCell(pPage, idx) + pPage->childPtrSize; |
- if( pPage->intKeyLeaf ){ |
- while( 0x80 <= *(pCell++) ){ |
- if( pCell>=pPage->aDataEnd ) return SQLITE_CORRUPT_BKPT; |
- } |
- } |
- getVarint(pCell, (u64*)&nCellKey); |
- if( nCellKey<intKey ){ |
- lwr = idx+1; |
- if( lwr>upr ){ c = -1; break; } |
- }else if( nCellKey>intKey ){ |
- upr = idx-1; |
- if( lwr>upr ){ c = +1; break; } |
- }else{ |
- assert( nCellKey==intKey ); |
- pCur->curFlags |= BTCF_ValidNKey; |
- pCur->info.nKey = nCellKey; |
- pCur->aiIdx[pCur->iPage] = (u16)idx; |
- if( !pPage->leaf ){ |
- lwr = idx; |
- goto moveto_next_layer; |
- }else{ |
- *pRes = 0; |
- rc = SQLITE_OK; |
- goto moveto_finish; |
- } |
- } |
- assert( lwr+upr>=0 ); |
- idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2; */ |
- } |
- }else{ |
- for(;;){ |
- int nCell; |
- pCell = findCell(pPage, idx) + pPage->childPtrSize; |
- |
- /* The maximum supported page-size is 65536 bytes. This means that |
- ** the maximum number of record bytes stored on an index B-Tree |
- ** page is less than 16384 bytes and may be stored as a 2-byte |
- ** varint. This information is used to attempt to avoid parsing |
- ** the entire cell by checking for the cases where the record is |
- ** stored entirely within the b-tree page by inspecting the first |
- ** 2 bytes of the cell. |
- */ |
- nCell = pCell[0]; |
- if( nCell<=pPage->max1bytePayload ){ |
- /* This branch runs if the record-size field of the cell is a |
- ** single byte varint and the record fits entirely on the main |
- ** b-tree page. */ |
- testcase( pCell+nCell+1==pPage->aDataEnd ); |
- c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey); |
- }else if( !(pCell[1] & 0x80) |
- && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal |
- ){ |
- /* The record-size field is a 2 byte varint and the record |
- ** fits entirely on the main b-tree page. */ |
- testcase( pCell+nCell+2==pPage->aDataEnd ); |
- c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey); |
- }else{ |
- /* The record flows over onto one or more overflow pages. In |
- ** this case the whole cell needs to be parsed, a buffer allocated |
- ** and accessPayload() used to retrieve the record into the |
- ** buffer before VdbeRecordCompare() can be called. */ |
- void *pCellKey; |
- u8 * const pCellBody = pCell - pPage->childPtrSize; |
- btreeParseCellPtr(pPage, pCellBody, &pCur->info); |
- nCell = (int)pCur->info.nKey; |
- pCellKey = sqlite3Malloc( nCell ); |
- if( pCellKey==0 ){ |
- rc = SQLITE_NOMEM; |
- goto moveto_finish; |
- } |
- pCur->aiIdx[pCur->iPage] = (u16)idx; |
- rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 2); |
- if( rc ){ |
- sqlite3_free(pCellKey); |
- goto moveto_finish; |
- } |
- c = xRecordCompare(nCell, pCellKey, pIdxKey); |
- sqlite3_free(pCellKey); |
- } |
- assert( |
- (pIdxKey->errCode!=SQLITE_CORRUPT || c==0) |
- && (pIdxKey->errCode!=SQLITE_NOMEM || pCur->pBtree->db->mallocFailed) |
- ); |
- if( c<0 ){ |
- lwr = idx+1; |
- }else if( c>0 ){ |
- upr = idx-1; |
- }else{ |
- assert( c==0 ); |
- *pRes = 0; |
- rc = SQLITE_OK; |
- pCur->aiIdx[pCur->iPage] = (u16)idx; |
- if( pIdxKey->errCode ) rc = SQLITE_CORRUPT; |
- goto moveto_finish; |
- } |
- if( lwr>upr ) break; |
- assert( lwr+upr>=0 ); |
- idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2 */ |
- } |
- } |
- assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) ); |
- assert( pPage->isInit ); |
- if( pPage->leaf ){ |
- assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell ); |
- pCur->aiIdx[pCur->iPage] = (u16)idx; |
- *pRes = c; |
- rc = SQLITE_OK; |
- goto moveto_finish; |
- } |
-moveto_next_layer: |
- if( lwr>=pPage->nCell ){ |
- chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]); |
- }else{ |
- chldPg = get4byte(findCell(pPage, lwr)); |
- } |
- pCur->aiIdx[pCur->iPage] = (u16)lwr; |
- rc = moveToChild(pCur, chldPg); |
- if( rc ) break; |
- } |
-moveto_finish: |
- pCur->info.nSize = 0; |
- pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl); |
- return rc; |
-} |
- |
- |
-/* |
-** Return TRUE if the cursor is not pointing at an entry of the table. |
-** |
-** TRUE will be returned after a call to sqlite3BtreeNext() moves |
-** past the last entry in the table or sqlite3BtreePrev() moves past |
-** the first entry. TRUE is also returned if the table is empty. |
-*/ |
-int sqlite3BtreeEof(BtCursor *pCur){ |
- /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries |
- ** have been deleted? This API will need to change to return an error code |
- ** as well as the boolean result value. |
- */ |
- return (CURSOR_VALID!=pCur->eState); |
-} |
- |
-/* |
-** Advance the cursor to the next entry in the database. If |
-** successful then set *pRes=0. If the cursor |
-** was already pointing to the last entry in the database before |
-** this routine was called, then set *pRes=1. |
-** |
-** The main entry point is sqlite3BtreeNext(). That routine is optimized |
-** for the common case of merely incrementing the cell counter BtCursor.aiIdx |
-** to the next cell on the current page. The (slower) btreeNext() helper |
-** routine is called when it is necessary to move to a different page or |
-** to restore the cursor. |
-** |
-** The calling function will set *pRes to 0 or 1. The initial *pRes value |
-** will be 1 if the cursor being stepped corresponds to an SQL index and |
-** if this routine could have been skipped if that SQL index had been |
-** a unique index. Otherwise the caller will have set *pRes to zero. |
-** Zero is the common case. The btree implementation is free to use the |
-** initial *pRes value as a hint to improve performance, but the current |
-** SQLite btree implementation does not. (Note that the comdb2 btree |
-** implementation does use this hint, however.) |
-*/ |
-static SQLITE_NOINLINE int btreeNext(BtCursor *pCur, int *pRes){ |
- int rc; |
- int idx; |
- MemPage *pPage; |
- |
- assert( cursorHoldsMutex(pCur) ); |
- assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID ); |
- assert( *pRes==0 ); |
- if( pCur->eState!=CURSOR_VALID ){ |
- assert( (pCur->curFlags & BTCF_ValidOvfl)==0 ); |
- rc = restoreCursorPosition(pCur); |
- if( rc!=SQLITE_OK ){ |
- return rc; |
- } |
- if( CURSOR_INVALID==pCur->eState ){ |
- *pRes = 1; |
- return SQLITE_OK; |
- } |
- if( pCur->skipNext ){ |
- assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT ); |
- pCur->eState = CURSOR_VALID; |
- if( pCur->skipNext>0 ){ |
- pCur->skipNext = 0; |
- return SQLITE_OK; |
- } |
- pCur->skipNext = 0; |
- } |
- } |
- |
- pPage = pCur->apPage[pCur->iPage]; |
- idx = ++pCur->aiIdx[pCur->iPage]; |
- assert( pPage->isInit ); |
- |
- /* If the database file is corrupt, it is possible for the value of idx |
- ** to be invalid here. This can only occur if a second cursor modifies |
- ** the page while cursor pCur is holding a reference to it. Which can |
- ** only happen if the database is corrupt in such a way as to link the |
- ** page into more than one b-tree structure. */ |
- testcase( idx>pPage->nCell ); |
- |
- if( idx>=pPage->nCell ){ |
- if( !pPage->leaf ){ |
- rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8])); |
- if( rc ) return rc; |
- return moveToLeftmost(pCur); |
- } |
- do{ |
- if( pCur->iPage==0 ){ |
- *pRes = 1; |
- pCur->eState = CURSOR_INVALID; |
- return SQLITE_OK; |
- } |
- moveToParent(pCur); |
- pPage = pCur->apPage[pCur->iPage]; |
- }while( pCur->aiIdx[pCur->iPage]>=pPage->nCell ); |
- if( pPage->intKey ){ |
- return sqlite3BtreeNext(pCur, pRes); |
- }else{ |
- return SQLITE_OK; |
- } |
- } |
- if( pPage->leaf ){ |
- return SQLITE_OK; |
- }else{ |
- return moveToLeftmost(pCur); |
- } |
-} |
-int sqlite3BtreeNext(BtCursor *pCur, int *pRes){ |
- MemPage *pPage; |
- assert( cursorHoldsMutex(pCur) ); |
- assert( pRes!=0 ); |
- assert( *pRes==0 || *pRes==1 ); |
- assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID ); |
- pCur->info.nSize = 0; |
- pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl); |
- *pRes = 0; |
- if( pCur->eState!=CURSOR_VALID ) return btreeNext(pCur, pRes); |
- pPage = pCur->apPage[pCur->iPage]; |
- if( (++pCur->aiIdx[pCur->iPage])>=pPage->nCell ){ |
- pCur->aiIdx[pCur->iPage]--; |
- return btreeNext(pCur, pRes); |
- } |
- if( pPage->leaf ){ |
- return SQLITE_OK; |
- }else{ |
- return moveToLeftmost(pCur); |
- } |
-} |
- |
-/* |
-** Step the cursor to the back to the previous entry in the database. If |
-** successful then set *pRes=0. If the cursor |
-** was already pointing to the first entry in the database before |
-** this routine was called, then set *pRes=1. |
-** |
-** The main entry point is sqlite3BtreePrevious(). That routine is optimized |
-** for the common case of merely decrementing the cell counter BtCursor.aiIdx |
-** to the previous cell on the current page. The (slower) btreePrevious() |
-** helper routine is called when it is necessary to move to a different page |
-** or to restore the cursor. |
-** |
-** The calling function will set *pRes to 0 or 1. The initial *pRes value |
-** will be 1 if the cursor being stepped corresponds to an SQL index and |
-** if this routine could have been skipped if that SQL index had been |
-** a unique index. Otherwise the caller will have set *pRes to zero. |
-** Zero is the common case. The btree implementation is free to use the |
-** initial *pRes value as a hint to improve performance, but the current |
-** SQLite btree implementation does not. (Note that the comdb2 btree |
-** implementation does use this hint, however.) |
-*/ |
-static SQLITE_NOINLINE int btreePrevious(BtCursor *pCur, int *pRes){ |
- int rc; |
- MemPage *pPage; |
- |
- assert( cursorHoldsMutex(pCur) ); |
- assert( pRes!=0 ); |
- assert( *pRes==0 ); |
- assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID ); |
- assert( (pCur->curFlags & (BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey))==0 ); |
- assert( pCur->info.nSize==0 ); |
- if( pCur->eState!=CURSOR_VALID ){ |
- rc = restoreCursorPosition(pCur); |
- if( rc!=SQLITE_OK ){ |
- return rc; |
- } |
- if( CURSOR_INVALID==pCur->eState ){ |
- *pRes = 1; |
- return SQLITE_OK; |
- } |
- if( pCur->skipNext ){ |
- assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT ); |
- pCur->eState = CURSOR_VALID; |
- if( pCur->skipNext<0 ){ |
- pCur->skipNext = 0; |
- return SQLITE_OK; |
- } |
- pCur->skipNext = 0; |
- } |
- } |
- |
- pPage = pCur->apPage[pCur->iPage]; |
- assert( pPage->isInit ); |
- if( !pPage->leaf ){ |
- int idx = pCur->aiIdx[pCur->iPage]; |
- rc = moveToChild(pCur, get4byte(findCell(pPage, idx))); |
- if( rc ) return rc; |
- rc = moveToRightmost(pCur); |
- }else{ |
- while( pCur->aiIdx[pCur->iPage]==0 ){ |
- if( pCur->iPage==0 ){ |
- pCur->eState = CURSOR_INVALID; |
- *pRes = 1; |
- return SQLITE_OK; |
- } |
- moveToParent(pCur); |
- } |
- assert( pCur->info.nSize==0 ); |
- assert( (pCur->curFlags & (BTCF_ValidNKey|BTCF_ValidOvfl))==0 ); |
- |
- pCur->aiIdx[pCur->iPage]--; |
- pPage = pCur->apPage[pCur->iPage]; |
- if( pPage->intKey && !pPage->leaf ){ |
- rc = sqlite3BtreePrevious(pCur, pRes); |
- }else{ |
- rc = SQLITE_OK; |
- } |
- } |
- return rc; |
-} |
-int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){ |
- assert( cursorHoldsMutex(pCur) ); |
- assert( pRes!=0 ); |
- assert( *pRes==0 || *pRes==1 ); |
- assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID ); |
- *pRes = 0; |
- pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey); |
- pCur->info.nSize = 0; |
- if( pCur->eState!=CURSOR_VALID |
- || pCur->aiIdx[pCur->iPage]==0 |
- || pCur->apPage[pCur->iPage]->leaf==0 |
- ){ |
- return btreePrevious(pCur, pRes); |
- } |
- pCur->aiIdx[pCur->iPage]--; |
- return SQLITE_OK; |
-} |
- |
-/* |
-** Allocate a new page from the database file. |
-** |
-** The new page is marked as dirty. (In other words, sqlite3PagerWrite() |
-** has already been called on the new page.) The new page has also |
-** been referenced and the calling routine is responsible for calling |
-** sqlite3PagerUnref() on the new page when it is done. |
-** |
-** SQLITE_OK is returned on success. Any other return value indicates |
-** an error. *ppPage and *pPgno are undefined in the event of an error. |
-** Do not invoke sqlite3PagerUnref() on *ppPage if an error is returned. |
-** |
-** If the "nearby" parameter is not 0, then an effort is made to |
-** locate a page close to the page number "nearby". This can be used in an |
-** attempt to keep related pages close to each other in the database file, |
-** which in turn can make database access faster. |
-** |
-** If the eMode parameter is BTALLOC_EXACT and the nearby page exists |
-** anywhere on the free-list, then it is guaranteed to be returned. If |
-** eMode is BTALLOC_LT then the page returned will be less than or equal |
-** to nearby if any such page exists. If eMode is BTALLOC_ANY then there |
-** are no restrictions on which page is returned. |
-*/ |
-static int allocateBtreePage( |
- BtShared *pBt, /* The btree */ |
- MemPage **ppPage, /* Store pointer to the allocated page here */ |
- Pgno *pPgno, /* Store the page number here */ |
- Pgno nearby, /* Search for a page near this one */ |
- u8 eMode /* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */ |
-){ |
- MemPage *pPage1; |
- int rc; |
- u32 n; /* Number of pages on the freelist */ |
- u32 k; /* Number of leaves on the trunk of the freelist */ |
- MemPage *pTrunk = 0; |
- MemPage *pPrevTrunk = 0; |
- Pgno mxPage; /* Total size of the database file */ |
- |
- assert( sqlite3_mutex_held(pBt->mutex) ); |
- assert( eMode==BTALLOC_ANY || (nearby>0 && IfNotOmitAV(pBt->autoVacuum)) ); |
- pPage1 = pBt->pPage1; |
- mxPage = btreePagecount(pBt); |
- n = get4byte(&pPage1->aData[36]); |
- testcase( n==mxPage-1 ); |
- if( n>=mxPage ){ |
- return SQLITE_CORRUPT_BKPT; |
- } |
- if( n>0 ){ |
- /* There are pages on the freelist. Reuse one of those pages. */ |
- Pgno iTrunk; |
- u8 searchList = 0; /* If the free-list must be searched for 'nearby' */ |
- |
- /* If eMode==BTALLOC_EXACT and a query of the pointer-map |
- ** shows that the page 'nearby' is somewhere on the free-list, then |
- ** the entire-list will be searched for that page. |
- */ |
-#ifndef SQLITE_OMIT_AUTOVACUUM |
- if( eMode==BTALLOC_EXACT ){ |
- if( nearby<=mxPage ){ |
- u8 eType; |
- assert( nearby>0 ); |
- assert( pBt->autoVacuum ); |
- rc = ptrmapGet(pBt, nearby, &eType, 0); |
- if( rc ) return rc; |
- if( eType==PTRMAP_FREEPAGE ){ |
- searchList = 1; |
- } |
- } |
- }else if( eMode==BTALLOC_LE ){ |
- searchList = 1; |
- } |
-#endif |
- |
- /* Decrement the free-list count by 1. Set iTrunk to the index of the |
- ** first free-list trunk page. iPrevTrunk is initially 1. |
- */ |
- rc = sqlite3PagerWrite(pPage1->pDbPage); |
- if( rc ) return rc; |
- put4byte(&pPage1->aData[36], n-1); |
- |
- /* The code within this loop is run only once if the 'searchList' variable |
- ** is not true. Otherwise, it runs once for each trunk-page on the |
- ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT) |
- ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT) |
- */ |
- do { |
- pPrevTrunk = pTrunk; |
- if( pPrevTrunk ){ |
- iTrunk = get4byte(&pPrevTrunk->aData[0]); |
- }else{ |
- iTrunk = get4byte(&pPage1->aData[32]); |
- } |
- testcase( iTrunk==mxPage ); |
- if( iTrunk>mxPage ){ |
- rc = SQLITE_CORRUPT_BKPT; |
- }else{ |
- rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0); |
- } |
- if( rc ){ |
- pTrunk = 0; |
- goto end_allocate_page; |
- } |
- assert( pTrunk!=0 ); |
- assert( pTrunk->aData!=0 ); |
- |
- k = get4byte(&pTrunk->aData[4]); /* # of leaves on this trunk page */ |
- if( k==0 && !searchList ){ |
- /* The trunk has no leaves and the list is not being searched. |
- ** So extract the trunk page itself and use it as the newly |
- ** allocated page */ |
- assert( pPrevTrunk==0 ); |
- rc = sqlite3PagerWrite(pTrunk->pDbPage); |
- if( rc ){ |
- goto end_allocate_page; |
- } |
- *pPgno = iTrunk; |
- memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4); |
- *ppPage = pTrunk; |
- pTrunk = 0; |
- TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1)); |
- }else if( k>(u32)(pBt->usableSize/4 - 2) ){ |
- /* Value of k is out of range. Database corruption */ |
- rc = SQLITE_CORRUPT_BKPT; |
- goto end_allocate_page; |
-#ifndef SQLITE_OMIT_AUTOVACUUM |
- }else if( searchList |
- && (nearby==iTrunk || (iTrunk<nearby && eMode==BTALLOC_LE)) |
- ){ |
- /* The list is being searched and this trunk page is the page |
- ** to allocate, regardless of whether it has leaves. |
- */ |
- *pPgno = iTrunk; |
- *ppPage = pTrunk; |
- searchList = 0; |
- rc = sqlite3PagerWrite(pTrunk->pDbPage); |
- if( rc ){ |
- goto end_allocate_page; |
- } |
- if( k==0 ){ |
- if( !pPrevTrunk ){ |
- memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4); |
- }else{ |
- rc = sqlite3PagerWrite(pPrevTrunk->pDbPage); |
- if( rc!=SQLITE_OK ){ |
- goto end_allocate_page; |
- } |
- memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4); |
- } |
- }else{ |
- /* The trunk page is required by the caller but it contains |
- ** pointers to free-list leaves. The first leaf becomes a trunk |
- ** page in this case. |
- */ |
- MemPage *pNewTrunk; |
- Pgno iNewTrunk = get4byte(&pTrunk->aData[8]); |
- if( iNewTrunk>mxPage ){ |
- rc = SQLITE_CORRUPT_BKPT; |
- goto end_allocate_page; |
- } |
- testcase( iNewTrunk==mxPage ); |
- rc = btreeGetPage(pBt, iNewTrunk, &pNewTrunk, 0); |
- if( rc!=SQLITE_OK ){ |
- goto end_allocate_page; |
- } |
- rc = sqlite3PagerWrite(pNewTrunk->pDbPage); |
- if( rc!=SQLITE_OK ){ |
- releasePage(pNewTrunk); |
- goto end_allocate_page; |
- } |
- memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4); |
- put4byte(&pNewTrunk->aData[4], k-1); |
- memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4); |
- releasePage(pNewTrunk); |
- if( !pPrevTrunk ){ |
- assert( sqlite3PagerIswriteable(pPage1->pDbPage) ); |
- put4byte(&pPage1->aData[32], iNewTrunk); |
- }else{ |
- rc = sqlite3PagerWrite(pPrevTrunk->pDbPage); |
- if( rc ){ |
- goto end_allocate_page; |
- } |
- put4byte(&pPrevTrunk->aData[0], iNewTrunk); |
- } |
- } |
- pTrunk = 0; |
- TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1)); |
-#endif |
- }else if( k>0 ){ |
- /* Extract a leaf from the trunk */ |
- u32 closest; |
- Pgno iPage; |
- unsigned char *aData = pTrunk->aData; |
- if( nearby>0 ){ |
- u32 i; |
- closest = 0; |
- if( eMode==BTALLOC_LE ){ |
- for(i=0; i<k; i++){ |
- iPage = get4byte(&aData[8+i*4]); |
- if( iPage<=nearby ){ |
- closest = i; |
- break; |
- } |
- } |
- }else{ |
- int dist; |
- dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby); |
- for(i=1; i<k; i++){ |
- int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby); |
- if( d2<dist ){ |
- closest = i; |
- dist = d2; |
- } |
- } |
- } |
- }else{ |
- closest = 0; |
- } |
- |
- iPage = get4byte(&aData[8+closest*4]); |
- testcase( iPage==mxPage ); |
- if( iPage>mxPage ){ |
- rc = SQLITE_CORRUPT_BKPT; |
- goto end_allocate_page; |
- } |
- testcase( iPage==mxPage ); |
- if( !searchList |
- || (iPage==nearby || (iPage<nearby && eMode==BTALLOC_LE)) |
- ){ |
- int noContent; |
- *pPgno = iPage; |
- TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d" |
- ": %d more free pages\n", |
- *pPgno, closest+1, k, pTrunk->pgno, n-1)); |
- rc = sqlite3PagerWrite(pTrunk->pDbPage); |
- if( rc ) goto end_allocate_page; |
- if( closest<k-1 ){ |
- memcpy(&aData[8+closest*4], &aData[4+k*4], 4); |
- } |
- put4byte(&aData[4], k-1); |
- noContent = !btreeGetHasContent(pBt, *pPgno)? PAGER_GET_NOCONTENT : 0; |
- rc = btreeGetPage(pBt, *pPgno, ppPage, noContent); |
- if( rc==SQLITE_OK ){ |
- rc = sqlite3PagerWrite((*ppPage)->pDbPage); |
- if( rc!=SQLITE_OK ){ |
- releasePage(*ppPage); |
- } |
- } |
- searchList = 0; |
- } |
- } |
- releasePage(pPrevTrunk); |
- pPrevTrunk = 0; |
- }while( searchList ); |
- }else{ |
- /* There are no pages on the freelist, so append a new page to the |
- ** database image. |
- ** |
- ** Normally, new pages allocated by this block can be requested from the |
- ** pager layer with the 'no-content' flag set. This prevents the pager |
- ** from trying to read the pages content from disk. However, if the |
- ** current transaction has already run one or more incremental-vacuum |
- ** steps, then the page we are about to allocate may contain content |
- ** that is required in the event of a rollback. In this case, do |
- ** not set the no-content flag. This causes the pager to load and journal |
- ** the current page content before overwriting it. |
- ** |
- ** Note that the pager will not actually attempt to load or journal |
- ** content for any page that really does lie past the end of the database |
- ** file on disk. So the effects of disabling the no-content optimization |
- ** here are confined to those pages that lie between the end of the |
- ** database image and the end of the database file. |
- */ |
- int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate))? PAGER_GET_NOCONTENT:0; |
- |
- rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); |
- if( rc ) return rc; |
- pBt->nPage++; |
- if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++; |
- |
-#ifndef SQLITE_OMIT_AUTOVACUUM |
- if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){ |
- /* If *pPgno refers to a pointer-map page, allocate two new pages |
- ** at the end of the file instead of one. The first allocated page |
- ** becomes a new pointer-map page, the second is used by the caller. |
- */ |
- MemPage *pPg = 0; |
- TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage)); |
- assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) ); |
- rc = btreeGetPage(pBt, pBt->nPage, &pPg, bNoContent); |
- if( rc==SQLITE_OK ){ |
- rc = sqlite3PagerWrite(pPg->pDbPage); |
- releasePage(pPg); |
- } |
- if( rc ) return rc; |
- pBt->nPage++; |
- if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; } |
- } |
-#endif |
- put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage); |
- *pPgno = pBt->nPage; |
- |
- assert( *pPgno!=PENDING_BYTE_PAGE(pBt) ); |
- rc = btreeGetPage(pBt, *pPgno, ppPage, bNoContent); |
- if( rc ) return rc; |
- rc = sqlite3PagerWrite((*ppPage)->pDbPage); |
- if( rc!=SQLITE_OK ){ |
- releasePage(*ppPage); |
- } |
- TRACE(("ALLOCATE: %d from end of file\n", *pPgno)); |
- } |
- |
- assert( *pPgno!=PENDING_BYTE_PAGE(pBt) ); |
- |
-end_allocate_page: |
- releasePage(pTrunk); |
- releasePage(pPrevTrunk); |
- if( rc==SQLITE_OK ){ |
- if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){ |
- releasePage(*ppPage); |
- *ppPage = 0; |
- return SQLITE_CORRUPT_BKPT; |
- } |
- (*ppPage)->isInit = 0; |
- }else{ |
- *ppPage = 0; |
- } |
- assert( rc!=SQLITE_OK || sqlite3PagerIswriteable((*ppPage)->pDbPage) ); |
- return rc; |
-} |
- |
-/* |
-** This function is used to add page iPage to the database file free-list. |
-** It is assumed that the page is not already a part of the free-list. |
-** |
-** The value passed as the second argument to this function is optional. |
-** If the caller happens to have a pointer to the MemPage object |
-** corresponding to page iPage handy, it may pass it as the second value. |
-** Otherwise, it may pass NULL. |
-** |
-** If a pointer to a MemPage object is passed as the second argument, |
-** its reference count is not altered by this function. |
-*/ |
-static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){ |
- MemPage *pTrunk = 0; /* Free-list trunk page */ |
- Pgno iTrunk = 0; /* Page number of free-list trunk page */ |
- MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */ |
- MemPage *pPage; /* Page being freed. May be NULL. */ |
- int rc; /* Return Code */ |
- int nFree; /* Initial number of pages on free-list */ |
- |
- assert( sqlite3_mutex_held(pBt->mutex) ); |
- assert( iPage>1 ); |
- assert( !pMemPage || pMemPage->pgno==iPage ); |
- |
- if( pMemPage ){ |
- pPage = pMemPage; |
- sqlite3PagerRef(pPage->pDbPage); |
- }else{ |
- pPage = btreePageLookup(pBt, iPage); |
- } |
- |
- /* Increment the free page count on pPage1 */ |
- rc = sqlite3PagerWrite(pPage1->pDbPage); |
- if( rc ) goto freepage_out; |
- nFree = get4byte(&pPage1->aData[36]); |
- put4byte(&pPage1->aData[36], nFree+1); |
- |
- if( pBt->btsFlags & BTS_SECURE_DELETE ){ |
- /* If the secure_delete option is enabled, then |
- ** always fully overwrite deleted information with zeros. |
- */ |
- if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) ) |
- || ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0) |
- ){ |
- goto freepage_out; |
- } |
- memset(pPage->aData, 0, pPage->pBt->pageSize); |
- } |
- |
- /* If the database supports auto-vacuum, write an entry in the pointer-map |
- ** to indicate that the page is free. |
- */ |
- if( ISAUTOVACUUM ){ |
- ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc); |
- if( rc ) goto freepage_out; |
- } |
- |
- /* Now manipulate the actual database free-list structure. There are two |
- ** possibilities. If the free-list is currently empty, or if the first |
- ** trunk page in the free-list is full, then this page will become a |
- ** new free-list trunk page. Otherwise, it will become a leaf of the |
- ** first trunk page in the current free-list. This block tests if it |
- ** is possible to add the page as a new free-list leaf. |
- */ |
- if( nFree!=0 ){ |
- u32 nLeaf; /* Initial number of leaf cells on trunk page */ |
- |
- iTrunk = get4byte(&pPage1->aData[32]); |
- rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0); |
- if( rc!=SQLITE_OK ){ |
- goto freepage_out; |
- } |
- |
- nLeaf = get4byte(&pTrunk->aData[4]); |
- assert( pBt->usableSize>32 ); |
- if( nLeaf > (u32)pBt->usableSize/4 - 2 ){ |
- rc = SQLITE_CORRUPT_BKPT; |
- goto freepage_out; |
- } |
- if( nLeaf < (u32)pBt->usableSize/4 - 8 ){ |
- /* In this case there is room on the trunk page to insert the page |
- ** being freed as a new leaf. |
- ** |
- ** Note that the trunk page is not really full until it contains |
- ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have |
- ** coded. But due to a coding error in versions of SQLite prior to |
- ** 3.6.0, databases with freelist trunk pages holding more than |
- ** usableSize/4 - 8 entries will be reported as corrupt. In order |
- ** to maintain backwards compatibility with older versions of SQLite, |
- ** we will continue to restrict the number of entries to usableSize/4 - 8 |
- ** for now. At some point in the future (once everyone has upgraded |
- ** to 3.6.0 or later) we should consider fixing the conditional above |
- ** to read "usableSize/4-2" instead of "usableSize/4-8". |
- */ |
- rc = sqlite3PagerWrite(pTrunk->pDbPage); |
- if( rc==SQLITE_OK ){ |
- put4byte(&pTrunk->aData[4], nLeaf+1); |
- put4byte(&pTrunk->aData[8+nLeaf*4], iPage); |
- if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){ |
- sqlite3PagerDontWrite(pPage->pDbPage); |
- } |
- rc = btreeSetHasContent(pBt, iPage); |
- } |
- TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno)); |
- goto freepage_out; |
- } |
- } |
- |
- /* If control flows to this point, then it was not possible to add the |
- ** the page being freed as a leaf page of the first trunk in the free-list. |
- ** Possibly because the free-list is empty, or possibly because the |
- ** first trunk in the free-list is full. Either way, the page being freed |
- ** will become the new first trunk page in the free-list. |
- */ |
- if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){ |
- goto freepage_out; |
- } |
- rc = sqlite3PagerWrite(pPage->pDbPage); |
- if( rc!=SQLITE_OK ){ |
- goto freepage_out; |
- } |
- put4byte(pPage->aData, iTrunk); |
- put4byte(&pPage->aData[4], 0); |
- put4byte(&pPage1->aData[32], iPage); |
- TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk)); |
- |
-freepage_out: |
- if( pPage ){ |
- pPage->isInit = 0; |
- } |
- releasePage(pPage); |
- releasePage(pTrunk); |
- return rc; |
-} |
-static void freePage(MemPage *pPage, int *pRC){ |
- if( (*pRC)==SQLITE_OK ){ |
- *pRC = freePage2(pPage->pBt, pPage, pPage->pgno); |
- } |
-} |
- |
-/* |
-** Free any overflow pages associated with the given Cell. Write the |
-** local Cell size (the number of bytes on the original page, omitting |
-** overflow) into *pnSize. |
-*/ |
-static int clearCell( |
- MemPage *pPage, /* The page that contains the Cell */ |
- unsigned char *pCell, /* First byte of the Cell */ |
- u16 *pnSize /* Write the size of the Cell here */ |
-){ |
- BtShared *pBt = pPage->pBt; |
- CellInfo info; |
- Pgno ovflPgno; |
- int rc; |
- int nOvfl; |
- u32 ovflPageSize; |
- |
- assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
- btreeParseCellPtr(pPage, pCell, &info); |
- *pnSize = info.nSize; |
- if( info.iOverflow==0 ){ |
- return SQLITE_OK; /* No overflow pages. Return without doing anything */ |
- } |
- if( pCell+info.iOverflow+3 > pPage->aData+pPage->maskPage ){ |
- return SQLITE_CORRUPT_BKPT; /* Cell extends past end of page */ |
- } |
- ovflPgno = get4byte(&pCell[info.iOverflow]); |
- assert( pBt->usableSize > 4 ); |
- ovflPageSize = pBt->usableSize - 4; |
- nOvfl = (info.nPayload - info.nLocal + ovflPageSize - 1)/ovflPageSize; |
- assert( ovflPgno==0 || nOvfl>0 ); |
- while( nOvfl-- ){ |
- Pgno iNext = 0; |
- MemPage *pOvfl = 0; |
- if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){ |
- /* 0 is not a legal page number and page 1 cannot be an |
- ** overflow page. Therefore if ovflPgno<2 or past the end of the |
- ** file the database must be corrupt. */ |
- return SQLITE_CORRUPT_BKPT; |
- } |
- if( nOvfl ){ |
- rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext); |
- if( rc ) return rc; |
- } |
- |
- if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) ) |
- && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1 |
- ){ |
- /* There is no reason any cursor should have an outstanding reference |
- ** to an overflow page belonging to a cell that is being deleted/updated. |
- ** So if there exists more than one reference to this page, then it |
- ** must not really be an overflow page and the database must be corrupt. |
- ** It is helpful to detect this before calling freePage2(), as |
- ** freePage2() may zero the page contents if secure-delete mode is |
- ** enabled. If this 'overflow' page happens to be a page that the |
- ** caller is iterating through or using in some other way, this |
- ** can be problematic. |
- */ |
- rc = SQLITE_CORRUPT_BKPT; |
- }else{ |
- rc = freePage2(pBt, pOvfl, ovflPgno); |
- } |
- |
- if( pOvfl ){ |
- sqlite3PagerUnref(pOvfl->pDbPage); |
- } |
- if( rc ) return rc; |
- ovflPgno = iNext; |
- } |
- return SQLITE_OK; |
-} |
- |
-/* |
-** Create the byte sequence used to represent a cell on page pPage |
-** and write that byte sequence into pCell[]. Overflow pages are |
-** allocated and filled in as necessary. The calling procedure |
-** is responsible for making sure sufficient space has been allocated |
-** for pCell[]. |
-** |
-** Note that pCell does not necessary need to point to the pPage->aData |
-** area. pCell might point to some temporary storage. The cell will |
-** be constructed in this temporary area then copied into pPage->aData |
-** later. |
-*/ |
-static int fillInCell( |
- MemPage *pPage, /* The page that contains the cell */ |
- unsigned char *pCell, /* Complete text of the cell */ |
- const void *pKey, i64 nKey, /* The key */ |
- const void *pData,int nData, /* The data */ |
- int nZero, /* Extra zero bytes to append to pData */ |
- int *pnSize /* Write cell size here */ |
-){ |
- int nPayload; |
- const u8 *pSrc; |
- int nSrc, n, rc; |
- int spaceLeft; |
- MemPage *pOvfl = 0; |
- MemPage *pToRelease = 0; |
- unsigned char *pPrior; |
- unsigned char *pPayload; |
- BtShared *pBt = pPage->pBt; |
- Pgno pgnoOvfl = 0; |
- int nHeader; |
- |
- assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
- |
- /* pPage is not necessarily writeable since pCell might be auxiliary |
- ** buffer space that is separate from the pPage buffer area */ |
- assert( pCell<pPage->aData || pCell>=&pPage->aData[pBt->pageSize] |
- || sqlite3PagerIswriteable(pPage->pDbPage) ); |
- |
- /* Fill in the header. */ |
- nHeader = pPage->childPtrSize; |
- nPayload = nData + nZero; |
- if( pPage->intKeyLeaf ){ |
- nHeader += putVarint32(&pCell[nHeader], nPayload); |
- }else{ |
- assert( nData==0 ); |
- assert( nZero==0 ); |
- } |
- nHeader += putVarint(&pCell[nHeader], *(u64*)&nKey); |
- |
- /* Fill in the payload size */ |
- if( pPage->intKey ){ |
- pSrc = pData; |
- nSrc = nData; |
- nData = 0; |
- }else{ |
- if( NEVER(nKey>0x7fffffff || pKey==0) ){ |
- return SQLITE_CORRUPT_BKPT; |
- } |
- nPayload = (int)nKey; |
- pSrc = pKey; |
- nSrc = (int)nKey; |
- } |
- if( nPayload<=pPage->maxLocal ){ |
- n = nHeader + nPayload; |
- testcase( n==3 ); |
- testcase( n==4 ); |
- if( n<4 ) n = 4; |
- *pnSize = n; |
- spaceLeft = nPayload; |
- pPrior = pCell; |
- }else{ |
- int mn = pPage->minLocal; |
- n = mn + (nPayload - mn) % (pPage->pBt->usableSize - 4); |
- testcase( n==pPage->maxLocal ); |
- testcase( n==pPage->maxLocal+1 ); |
- if( n > pPage->maxLocal ) n = mn; |
- spaceLeft = n; |
- *pnSize = n + nHeader + 4; |
- pPrior = &pCell[nHeader+n]; |
- } |
- pPayload = &pCell[nHeader]; |
- |
- /* At this point variables should be set as follows: |
- ** |
- ** nPayload Total payload size in bytes |
- ** pPayload Begin writing payload here |
- ** spaceLeft Space available at pPayload. If nPayload>spaceLeft, |
- ** that means content must spill into overflow pages. |
- ** *pnSize Size of the local cell (not counting overflow pages) |
- ** pPrior Where to write the pgno of the first overflow page |
- ** |
- ** Use a call to btreeParseCellPtr() to verify that the values above |
- ** were computed correctly. |
- */ |
-#if SQLITE_DEBUG |
- { |
- CellInfo info; |
- btreeParseCellPtr(pPage, pCell, &info); |
- assert( nHeader=(int)(info.pPayload - pCell) ); |
- assert( info.nKey==nKey ); |
- assert( *pnSize == info.nSize ); |
- assert( spaceLeft == info.nLocal ); |
- assert( pPrior == &pCell[info.iOverflow] ); |
- } |
-#endif |
- |
- /* Write the payload into the local Cell and any extra into overflow pages */ |
- while( nPayload>0 ){ |
- if( spaceLeft==0 ){ |
-#ifndef SQLITE_OMIT_AUTOVACUUM |
- Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */ |
- if( pBt->autoVacuum ){ |
- do{ |
- pgnoOvfl++; |
- } while( |
- PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt) |
- ); |
- } |
-#endif |
- rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0); |
-#ifndef SQLITE_OMIT_AUTOVACUUM |
- /* If the database supports auto-vacuum, and the second or subsequent |
- ** overflow page is being allocated, add an entry to the pointer-map |
- ** for that page now. |
- ** |
- ** If this is the first overflow page, then write a partial entry |
- ** to the pointer-map. If we write nothing to this pointer-map slot, |
- ** then the optimistic overflow chain processing in clearCell() |
- ** may misinterpret the uninitialized values and delete the |
- ** wrong pages from the database. |
- */ |
- if( pBt->autoVacuum && rc==SQLITE_OK ){ |
- u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1); |
- ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc); |
- if( rc ){ |
- releasePage(pOvfl); |
- } |
- } |
-#endif |
- if( rc ){ |
- releasePage(pToRelease); |
- return rc; |
- } |
- |
- /* If pToRelease is not zero than pPrior points into the data area |
- ** of pToRelease. Make sure pToRelease is still writeable. */ |
- assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) ); |
- |
- /* If pPrior is part of the data area of pPage, then make sure pPage |
- ** is still writeable */ |
- assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize] |
- || sqlite3PagerIswriteable(pPage->pDbPage) ); |
- |
- put4byte(pPrior, pgnoOvfl); |
- releasePage(pToRelease); |
- pToRelease = pOvfl; |
- pPrior = pOvfl->aData; |
- put4byte(pPrior, 0); |
- pPayload = &pOvfl->aData[4]; |
- spaceLeft = pBt->usableSize - 4; |
- } |
- n = nPayload; |
- if( n>spaceLeft ) n = spaceLeft; |
- |
- /* If pToRelease is not zero than pPayload points into the data area |
- ** of pToRelease. Make sure pToRelease is still writeable. */ |
- assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) ); |
- |
- /* If pPayload is part of the data area of pPage, then make sure pPage |
- ** is still writeable */ |
- assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize] |
- || sqlite3PagerIswriteable(pPage->pDbPage) ); |
- |
- if( nSrc>0 ){ |
- if( n>nSrc ) n = nSrc; |
- assert( pSrc ); |
- memcpy(pPayload, pSrc, n); |
- }else{ |
- memset(pPayload, 0, n); |
- } |
- nPayload -= n; |
- pPayload += n; |
- pSrc += n; |
- nSrc -= n; |
- spaceLeft -= n; |
- if( nSrc==0 ){ |
- nSrc = nData; |
- pSrc = pData; |
- } |
- } |
- releasePage(pToRelease); |
- return SQLITE_OK; |
-} |
- |
-/* |
-** Remove the i-th cell from pPage. This routine effects pPage only. |
-** The cell content is not freed or deallocated. It is assumed that |
-** the cell content has been copied someplace else. This routine just |
-** removes the reference to the cell from pPage. |
-** |
-** "sz" must be the number of bytes in the cell. |
-*/ |
-static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){ |
- u32 pc; /* Offset to cell content of cell being deleted */ |
- u8 *data; /* pPage->aData */ |
- u8 *ptr; /* Used to move bytes around within data[] */ |
- int rc; /* The return code */ |
- int hdr; /* Beginning of the header. 0 most pages. 100 page 1 */ |
- |
- if( *pRC ) return; |
- |
- assert( idx>=0 && idx<pPage->nCell ); |
- assert( sz==cellSize(pPage, idx) ); |
- assert( sqlite3PagerIswriteable(pPage->pDbPage) ); |
- assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
- data = pPage->aData; |
- ptr = &pPage->aCellIdx[2*idx]; |
- pc = get2byte(ptr); |
- hdr = pPage->hdrOffset; |
- testcase( pc==get2byte(&data[hdr+5]) ); |
- testcase( pc+sz==pPage->pBt->usableSize ); |
- if( pc < (u32)get2byte(&data[hdr+5]) || pc+sz > pPage->pBt->usableSize ){ |
- *pRC = SQLITE_CORRUPT_BKPT; |
- return; |
- } |
- rc = freeSpace(pPage, pc, sz); |
- if( rc ){ |
- *pRC = rc; |
- return; |
- } |
- pPage->nCell--; |
- memmove(ptr, ptr+2, 2*(pPage->nCell - idx)); |
- put2byte(&data[hdr+3], pPage->nCell); |
- pPage->nFree += 2; |
-} |
- |
-/* |
-** Insert a new cell on pPage at cell index "i". pCell points to the |
-** content of the cell. |
-** |
-** If the cell content will fit on the page, then put it there. If it |
-** will not fit, then make a copy of the cell content into pTemp if |
-** pTemp is not null. Regardless of pTemp, allocate a new entry |
-** in pPage->apOvfl[] and make it point to the cell content (either |
-** in pTemp or the original pCell) and also record its index. |
-** Allocating a new entry in pPage->aCell[] implies that |
-** pPage->nOverflow is incremented. |
-*/ |
-static void insertCell( |
- MemPage *pPage, /* Page into which we are copying */ |
- int i, /* New cell becomes the i-th cell of the page */ |
- u8 *pCell, /* Content of the new cell */ |
- int sz, /* Bytes of content in pCell */ |
- u8 *pTemp, /* Temp storage space for pCell, if needed */ |
- Pgno iChild, /* If non-zero, replace first 4 bytes with this value */ |
- int *pRC /* Read and write return code from here */ |
-){ |
- int idx = 0; /* Where to write new cell content in data[] */ |
- int j; /* Loop counter */ |
- int end; /* First byte past the last cell pointer in data[] */ |
- int ins; /* Index in data[] where new cell pointer is inserted */ |
- int cellOffset; /* Address of first cell pointer in data[] */ |
- u8 *data; /* The content of the whole page */ |
- |
- if( *pRC ) return; |
- |
- assert( i>=0 && i<=pPage->nCell+pPage->nOverflow ); |
- assert( MX_CELL(pPage->pBt)<=10921 ); |
- assert( pPage->nCell<=MX_CELL(pPage->pBt) || CORRUPT_DB ); |
- assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) ); |
- assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) ); |
- assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
- /* The cell should normally be sized correctly. However, when moving a |
- ** malformed cell from a leaf page to an interior page, if the cell size |
- ** wanted to be less than 4 but got rounded up to 4 on the leaf, then size |
- ** might be less than 8 (leaf-size + pointer) on the interior node. Hence |
- ** the term after the || in the following assert(). */ |
- assert( sz==cellSizePtr(pPage, pCell) || (sz==8 && iChild>0) ); |
- if( pPage->nOverflow || sz+2>pPage->nFree ){ |
- if( pTemp ){ |
- memcpy(pTemp, pCell, sz); |
- pCell = pTemp; |
- } |
- if( iChild ){ |
- put4byte(pCell, iChild); |
- } |
- j = pPage->nOverflow++; |
- assert( j<(int)(sizeof(pPage->apOvfl)/sizeof(pPage->apOvfl[0])) ); |
- pPage->apOvfl[j] = pCell; |
- pPage->aiOvfl[j] = (u16)i; |
- }else{ |
- int rc = sqlite3PagerWrite(pPage->pDbPage); |
- if( rc!=SQLITE_OK ){ |
- *pRC = rc; |
- return; |
- } |
- assert( sqlite3PagerIswriteable(pPage->pDbPage) ); |
- data = pPage->aData; |
- cellOffset = pPage->cellOffset; |
- end = cellOffset + 2*pPage->nCell; |
- ins = cellOffset + 2*i; |
- rc = allocateSpace(pPage, sz, &idx); |
- if( rc ){ *pRC = rc; return; } |
- /* The allocateSpace() routine guarantees the following two properties |
- ** if it returns success */ |
- assert( idx >= end+2 ); |
- assert( idx+sz <= (int)pPage->pBt->usableSize ); |
- pPage->nCell++; |
- pPage->nFree -= (u16)(2 + sz); |
- memcpy(&data[idx], pCell, sz); |
- if( iChild ){ |
- put4byte(&data[idx], iChild); |
- } |
- memmove(&data[ins+2], &data[ins], end-ins); |
- put2byte(&data[ins], idx); |
- put2byte(&data[pPage->hdrOffset+3], pPage->nCell); |
-#ifndef SQLITE_OMIT_AUTOVACUUM |
- if( pPage->pBt->autoVacuum ){ |
- /* The cell may contain a pointer to an overflow page. If so, write |
- ** the entry for the overflow page into the pointer map. |
- */ |
- ptrmapPutOvflPtr(pPage, pCell, pRC); |
- } |
-#endif |
- } |
-} |
- |
-/* |
-** Add a list of cells to a page. The page should be initially empty. |
-** The cells are guaranteed to fit on the page. |
-*/ |
-static void assemblePage( |
- MemPage *pPage, /* The page to be assembled */ |
- int nCell, /* The number of cells to add to this page */ |
- u8 **apCell, /* Pointers to cell bodies */ |
- u16 *aSize /* Sizes of the cells */ |
-){ |
- int i; /* Loop counter */ |
- u8 *pCellptr; /* Address of next cell pointer */ |
- int cellbody; /* Address of next cell body */ |
- u8 * const data = pPage->aData; /* Pointer to data for pPage */ |
- const int hdr = pPage->hdrOffset; /* Offset of header on pPage */ |
- const int nUsable = pPage->pBt->usableSize; /* Usable size of page */ |
- |
- assert( pPage->nOverflow==0 ); |
- assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
- assert( nCell>=0 && nCell<=(int)MX_CELL(pPage->pBt) |
- && (int)MX_CELL(pPage->pBt)<=10921); |
- assert( sqlite3PagerIswriteable(pPage->pDbPage) ); |
- |
- /* Check that the page has just been zeroed by zeroPage() */ |
- assert( pPage->nCell==0 ); |
- assert( get2byteNotZero(&data[hdr+5])==nUsable ); |
- |
- pCellptr = &pPage->aCellIdx[nCell*2]; |
- cellbody = nUsable; |
- for(i=nCell-1; i>=0; i--){ |
- u16 sz = aSize[i]; |
- pCellptr -= 2; |
- cellbody -= sz; |
- put2byte(pCellptr, cellbody); |
- memcpy(&data[cellbody], apCell[i], sz); |
- } |
- put2byte(&data[hdr+3], nCell); |
- put2byte(&data[hdr+5], cellbody); |
- pPage->nFree -= (nCell*2 + nUsable - cellbody); |
- pPage->nCell = (u16)nCell; |
-} |
- |
-/* |
-** The following parameters determine how many adjacent pages get involved |
-** in a balancing operation. NN is the number of neighbors on either side |
-** of the page that participate in the balancing operation. NB is the |
-** total number of pages that participate, including the target page and |
-** NN neighbors on either side. |
-** |
-** The minimum value of NN is 1 (of course). Increasing NN above 1 |
-** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance |
-** in exchange for a larger degradation in INSERT and UPDATE performance. |
-** The value of NN appears to give the best results overall. |
-*/ |
-#define NN 1 /* Number of neighbors on either side of pPage */ |
-#define NB (NN*2+1) /* Total pages involved in the balance */ |
- |
- |
-#ifndef SQLITE_OMIT_QUICKBALANCE |
-/* |
-** This version of balance() handles the common special case where |
-** a new entry is being inserted on the extreme right-end of the |
-** tree, in other words, when the new entry will become the largest |
-** entry in the tree. |
-** |
-** Instead of trying to balance the 3 right-most leaf pages, just add |
-** a new page to the right-hand side and put the one new entry in |
-** that page. This leaves the right side of the tree somewhat |
-** unbalanced. But odds are that we will be inserting new entries |
-** at the end soon afterwards so the nearly empty page will quickly |
-** fill up. On average. |
-** |
-** pPage is the leaf page which is the right-most page in the tree. |
-** pParent is its parent. pPage must have a single overflow entry |
-** which is also the right-most entry on the page. |
-** |
-** The pSpace buffer is used to store a temporary copy of the divider |
-** cell that will be inserted into pParent. Such a cell consists of a 4 |
-** byte page number followed by a variable length integer. In other |
-** words, at most 13 bytes. Hence the pSpace buffer must be at |
-** least 13 bytes in size. |
-*/ |
-static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){ |
- BtShared *const pBt = pPage->pBt; /* B-Tree Database */ |
- MemPage *pNew; /* Newly allocated page */ |
- int rc; /* Return Code */ |
- Pgno pgnoNew; /* Page number of pNew */ |
- |
- assert( sqlite3_mutex_held(pPage->pBt->mutex) ); |
- assert( sqlite3PagerIswriteable(pParent->pDbPage) ); |
- assert( pPage->nOverflow==1 ); |
- |
- /* This error condition is now caught prior to reaching this function */ |
- if( pPage->nCell==0 ) return SQLITE_CORRUPT_BKPT; |
- |
- /* Allocate a new page. This page will become the right-sibling of |
- ** pPage. Make the parent page writable, so that the new divider cell |
- ** may be inserted. If both these operations are successful, proceed. |
- */ |
- rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0); |
- |
- if( rc==SQLITE_OK ){ |
- |
- u8 *pOut = &pSpace[4]; |
- u8 *pCell = pPage->apOvfl[0]; |
- u16 szCell = cellSizePtr(pPage, pCell); |
- u8 *pStop; |
- |
- assert( sqlite3PagerIswriteable(pNew->pDbPage) ); |
- assert( pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) ); |
- zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF); |
- assemblePage(pNew, 1, &pCell, &szCell); |
- |
- /* If this is an auto-vacuum database, update the pointer map |
- ** with entries for the new page, and any pointer from the |
- ** cell on the page to an overflow page. If either of these |
- ** operations fails, the return code is set, but the contents |
- ** of the parent page are still manipulated by thh code below. |
- ** That is Ok, at this point the parent page is guaranteed to |
- ** be marked as dirty. Returning an error code will cause a |
- ** rollback, undoing any changes made to the parent page. |
- */ |
- if( ISAUTOVACUUM ){ |
- ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc); |
- if( szCell>pNew->minLocal ){ |
- ptrmapPutOvflPtr(pNew, pCell, &rc); |
- } |
- } |
- |
- /* Create a divider cell to insert into pParent. The divider cell |
- ** consists of a 4-byte page number (the page number of pPage) and |
- ** a variable length key value (which must be the same value as the |
- ** largest key on pPage). |
- ** |
- ** To find the largest key value on pPage, first find the right-most |
- ** cell on pPage. The first two fields of this cell are the |
- ** record-length (a variable length integer at most 32-bits in size) |
- ** and the key value (a variable length integer, may have any value). |
- ** The first of the while(...) loops below skips over the record-length |
- ** field. The second while(...) loop copies the key value from the |
- ** cell on pPage into the pSpace buffer. |
- */ |
- pCell = findCell(pPage, pPage->nCell-1); |
- pStop = &pCell[9]; |
- while( (*(pCell++)&0x80) && pCell<pStop ); |
- pStop = &pCell[9]; |
- while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop ); |
- |
- /* Insert the new divider cell into pParent. */ |
- insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace), |
- 0, pPage->pgno, &rc); |
- |
- /* Set the right-child pointer of pParent to point to the new page. */ |
- put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew); |
- |
- /* Release the reference to the new page. */ |
- releasePage(pNew); |
- } |
- |
- return rc; |
-} |
-#endif /* SQLITE_OMIT_QUICKBALANCE */ |
- |
-#if 0 |
-/* |
-** This function does not contribute anything to the operation of SQLite. |
-** it is sometimes activated temporarily while debugging code responsible |
-** for setting pointer-map entries. |
-*/ |
-static int ptrmapCheckPages(MemPage **apPage, int nPage){ |
- int i, j; |
- for(i=0; i<nPage; i++){ |
- Pgno n; |
- u8 e; |
- MemPage *pPage = apPage[i]; |
- BtShared *pBt = pPage->pBt; |
- assert( pPage->isInit ); |
- |
- for(j=0; j<pPage->nCell; j++){ |
- CellInfo info; |
- u8 *z; |
- |
- z = findCell(pPage, j); |
- btreeParseCellPtr(pPage, z, &info); |
- if( info.iOverflow ){ |
- Pgno ovfl = get4byte(&z[info.iOverflow]); |
- ptrmapGet(pBt, ovfl, &e, &n); |
- assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 ); |
- } |
- if( !pPage->leaf ){ |
- Pgno child = get4byte(z); |
- ptrmapGet(pBt, child, &e, &n); |
- assert( n==pPage->pgno && e==PTRMAP_BTREE ); |
- } |
- } |
- if( !pPage->leaf ){ |
- Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]); |
- ptrmapGet(pBt, child, &e, &n); |
- assert( n==pPage->pgno && e==PTRMAP_BTREE ); |
- } |
- } |
- return 1; |
-} |
-#endif |
- |
-/* |
-** This function is used to copy the contents of the b-tree node stored |
-** on page pFrom to page pTo. If page pFrom was not a leaf page, then |
-** the pointer-map entries for each child page are updated so that the |
-** parent page stored in the pointer map is page pTo. If pFrom contained |
-** any cells with overflow page pointers, then the corresponding pointer |
-** map entries are also updated so that the parent page is page pTo. |
-** |
-** If pFrom is currently carrying any overflow cells (entries in the |
-** MemPage.apOvfl[] array), they are not copied to pTo. |
-** |
-** Before returning, page pTo is reinitialized using btreeInitPage(). |
-** |
-** The performance of this function is not critical. It is only used by |
-** the balance_shallower() and balance_deeper() procedures, neither of |
-** which are called often under normal circumstances. |
-*/ |
-static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){ |
- if( (*pRC)==SQLITE_OK ){ |
- BtShared * const pBt = pFrom->pBt; |
- u8 * const aFrom = pFrom->aData; |
- u8 * const aTo = pTo->aData; |
- int const iFromHdr = pFrom->hdrOffset; |
- int const iToHdr = ((pTo->pgno==1) ? 100 : 0); |
- int rc; |
- int iData; |
- |
- |
- assert( pFrom->isInit ); |
- assert( pFrom->nFree>=iToHdr ); |
- assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize ); |
- |
- /* Copy the b-tree node content from page pFrom to page pTo. */ |
- iData = get2byte(&aFrom[iFromHdr+5]); |
- memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData); |
- memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell); |
- |
- /* Reinitialize page pTo so that the contents of the MemPage structure |
- ** match the new data. The initialization of pTo can actually fail under |
- ** fairly obscure circumstances, even though it is a copy of initialized |
- ** page pFrom. |
- */ |
- pTo->isInit = 0; |
- rc = btreeInitPage(pTo); |
- if( rc!=SQLITE_OK ){ |
- *pRC = rc; |
- return; |
- } |
- |
- /* If this is an auto-vacuum database, update the pointer-map entries |
- ** for any b-tree or overflow pages that pTo now contains the pointers to. |
- */ |
- if( ISAUTOVACUUM ){ |
- *pRC = setChildPtrmaps(pTo); |
- } |
- } |
-} |
- |
-/* |
-** This routine redistributes cells on the iParentIdx'th child of pParent |
-** (hereafter "the page") and up to 2 siblings so that all pages have about the |
-** same amount of free space. Usually a single sibling on either side of the |
-** page are used in the balancing, though both siblings might come from one |
-** side if the page is the first or last child of its parent. If the page |
-** has fewer than 2 siblings (something which can only happen if the page |
-** is a root page or a child of a root page) then all available siblings |
-** participate in the balancing. |
-** |
-** The number of siblings of the page might be increased or decreased by |
-** one or two in an effort to keep pages nearly full but not over full. |
-** |
-** Note that when this routine is called, some of the cells on the page |
-** might not actually be stored in MemPage.aData[]. This can happen |
-** if the page is overfull. This routine ensures that all cells allocated |
-** to the page and its siblings fit into MemPage.aData[] before returning. |
-** |
-** In the course of balancing the page and its siblings, cells may be |
-** inserted into or removed from the parent page (pParent). Doing so |
-** may cause the parent page to become overfull or underfull. If this |
-** happens, it is the responsibility of the caller to invoke the correct |
-** balancing routine to fix this problem (see the balance() routine). |
-** |
-** If this routine fails for any reason, it might leave the database |
-** in a corrupted state. So if this routine fails, the database should |
-** be rolled back. |
-** |
-** The third argument to this function, aOvflSpace, is a pointer to a |
-** buffer big enough to hold one page. If while inserting cells into the parent |
-** page (pParent) the parent page becomes overfull, this buffer is |
-** used to store the parent's overflow cells. Because this function inserts |
-** a maximum of four divider cells into the parent page, and the maximum |
-** size of a cell stored within an internal node is always less than 1/4 |
-** of the page-size, the aOvflSpace[] buffer is guaranteed to be large |
-** enough for all overflow cells. |
-** |
-** If aOvflSpace is set to a null pointer, this function returns |
-** SQLITE_NOMEM. |
-*/ |
-#if defined(_MSC_VER) && _MSC_VER >= 1700 && defined(_M_ARM) |
-#pragma optimize("", off) |
-#endif |
-static int balance_nonroot( |
- MemPage *pParent, /* Parent page of siblings being balanced */ |
- int iParentIdx, /* Index of "the page" in pParent */ |
- u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */ |
- int isRoot, /* True if pParent is a root-page */ |
- int bBulk /* True if this call is part of a bulk load */ |
-){ |
- BtShared *pBt; /* The whole database */ |
- int nCell = 0; /* Number of cells in apCell[] */ |
- int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */ |
- int nNew = 0; /* Number of pages in apNew[] */ |
- int nOld; /* Number of pages in apOld[] */ |
- int i, j, k; /* Loop counters */ |
- int nxDiv; /* Next divider slot in pParent->aCell[] */ |
- int rc = SQLITE_OK; /* The return code */ |
- u16 leafCorrection; /* 4 if pPage is a leaf. 0 if not */ |
- int leafData; /* True if pPage is a leaf of a LEAFDATA tree */ |
- int usableSpace; /* Bytes in pPage beyond the header */ |
- int pageFlags; /* Value of pPage->aData[0] */ |
- int subtotal; /* Subtotal of bytes in cells on one page */ |
- int iSpace1 = 0; /* First unused byte of aSpace1[] */ |
- int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */ |
- int szScratch; /* Size of scratch memory requested */ |
- MemPage *apOld[NB]; /* pPage and up to two siblings */ |
- MemPage *apCopy[NB]; /* Private copies of apOld[] pages */ |
- MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */ |
- u8 *pRight; /* Location in parent of right-sibling pointer */ |
- u8 *apDiv[NB-1]; /* Divider cells in pParent */ |
- int cntNew[NB+2]; /* Index in aCell[] of cell after i-th page */ |
- int szNew[NB+2]; /* Combined size of cells place on i-th page */ |
- u8 **apCell = 0; /* All cells begin balanced */ |
- u16 *szCell; /* Local size of all cells in apCell[] */ |
- u8 *aSpace1; /* Space for copies of dividers cells */ |
- Pgno pgno; /* Temp var to store a page number in */ |
- |
- pBt = pParent->pBt; |
- assert( sqlite3_mutex_held(pBt->mutex) ); |
- assert( sqlite3PagerIswriteable(pParent->pDbPage) ); |
- |
-#if 0 |
- TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno)); |
-#endif |
- |
- /* At this point pParent may have at most one overflow cell. And if |
- ** this overflow cell is present, it must be the cell with |
- ** index iParentIdx. This scenario comes about when this function |
- ** is called (indirectly) from sqlite3BtreeDelete(). |
- */ |
- assert( pParent->nOverflow==0 || pParent->nOverflow==1 ); |
- assert( pParent->nOverflow==0 || pParent->aiOvfl[0]==iParentIdx ); |
- |
- if( !aOvflSpace ){ |
- return SQLITE_NOMEM; |
- } |
- |
- /* Find the sibling pages to balance. Also locate the cells in pParent |
- ** that divide the siblings. An attempt is made to find NN siblings on |
- ** either side of pPage. More siblings are taken from one side, however, |
- ** if there are fewer than NN siblings on the other side. If pParent |
- ** has NB or fewer children then all children of pParent are taken. |
- ** |
- ** This loop also drops the divider cells from the parent page. This |
- ** way, the remainder of the function does not have to deal with any |
- ** overflow cells in the parent page, since if any existed they will |
- ** have already been removed. |
- */ |
- i = pParent->nOverflow + pParent->nCell; |
- if( i<2 ){ |
- nxDiv = 0; |
- }else{ |
- assert( bBulk==0 || bBulk==1 ); |
- if( iParentIdx==0 ){ |
- nxDiv = 0; |
- }else if( iParentIdx==i ){ |
- nxDiv = i-2+bBulk; |
- }else{ |
- assert( bBulk==0 ); |
- nxDiv = iParentIdx-1; |
- } |
- i = 2-bBulk; |
- } |
- nOld = i+1; |
- if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){ |
- pRight = &pParent->aData[pParent->hdrOffset+8]; |
- }else{ |
- pRight = findCell(pParent, i+nxDiv-pParent->nOverflow); |
- } |
- pgno = get4byte(pRight); |
- while( 1 ){ |
- rc = getAndInitPage(pBt, pgno, &apOld[i], 0); |
- if( rc ){ |
- memset(apOld, 0, (i+1)*sizeof(MemPage*)); |
- goto balance_cleanup; |
- } |
- nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow; |
- if( (i--)==0 ) break; |
- |
- if( i+nxDiv==pParent->aiOvfl[0] && pParent->nOverflow ){ |
- apDiv[i] = pParent->apOvfl[0]; |
- pgno = get4byte(apDiv[i]); |
- szNew[i] = cellSizePtr(pParent, apDiv[i]); |
- pParent->nOverflow = 0; |
- }else{ |
- apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow); |
- pgno = get4byte(apDiv[i]); |
- szNew[i] = cellSizePtr(pParent, apDiv[i]); |
- |
- /* Drop the cell from the parent page. apDiv[i] still points to |
- ** the cell within the parent, even though it has been dropped. |
- ** This is safe because dropping a cell only overwrites the first |
- ** four bytes of it, and this function does not need the first |
- ** four bytes of the divider cell. So the pointer is safe to use |
- ** later on. |
- ** |
- ** But not if we are in secure-delete mode. In secure-delete mode, |
- ** the dropCell() routine will overwrite the entire cell with zeroes. |
- ** In this case, temporarily copy the cell into the aOvflSpace[] |
- ** buffer. It will be copied out again as soon as the aSpace[] buffer |
- ** is allocated. */ |
- if( pBt->btsFlags & BTS_SECURE_DELETE ){ |
- int iOff; |
- |
- iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData); |
- if( (iOff+szNew[i])>(int)pBt->usableSize ){ |
- rc = SQLITE_CORRUPT_BKPT; |
- memset(apOld, 0, (i+1)*sizeof(MemPage*)); |
- goto balance_cleanup; |
- }else{ |
- memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]); |
- apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData]; |
- } |
- } |
- dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc); |
- } |
- } |
- |
- /* Make nMaxCells a multiple of 4 in order to preserve 8-byte |
- ** alignment */ |
- nMaxCells = (nMaxCells + 3)&~3; |
- |
- /* |
- ** Allocate space for memory structures |
- */ |
- k = pBt->pageSize + ROUND8(sizeof(MemPage)); |
- szScratch = |
- nMaxCells*sizeof(u8*) /* apCell */ |
- + nMaxCells*sizeof(u16) /* szCell */ |
- + pBt->pageSize /* aSpace1 */ |
- + k*nOld; /* Page copies (apCopy) */ |
- apCell = sqlite3ScratchMalloc( szScratch ); |
- if( apCell==0 ){ |
- rc = SQLITE_NOMEM; |
- goto balance_cleanup; |
- } |
- szCell = (u16*)&apCell[nMaxCells]; |
- aSpace1 = (u8*)&szCell[nMaxCells]; |
- assert( EIGHT_BYTE_ALIGNMENT(aSpace1) ); |
- |
- /* |
- ** Load pointers to all cells on sibling pages and the divider cells |
- ** into the local apCell[] array. Make copies of the divider cells |
- ** into space obtained from aSpace1[] and remove the divider cells |
- ** from pParent. |
- ** |
- ** If the siblings are on leaf pages, then the child pointers of the |
- ** divider cells are stripped from the cells before they are copied |
- ** into aSpace1[]. In this way, all cells in apCell[] are without |
- ** child pointers. If siblings are not leaves, then all cell in |
- ** apCell[] include child pointers. Either way, all cells in apCell[] |
- ** are alike. |
- ** |
- ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf. |
- ** leafData: 1 if pPage holds key+data and pParent holds only keys. |
- */ |
- leafCorrection = apOld[0]->leaf*4; |
- leafData = apOld[0]->intKeyLeaf; |
- for(i=0; i<nOld; i++){ |
- int limit; |
- |
- /* Before doing anything else, take a copy of the i'th original sibling |
- ** The rest of this function will use data from the copies rather |
- ** that the original pages since the original pages will be in the |
- ** process of being overwritten. */ |
- MemPage *pOld = apCopy[i] = (MemPage*)&aSpace1[pBt->pageSize + k*i]; |
- memcpy(pOld, apOld[i], sizeof(MemPage)); |
- pOld->aData = (void*)&pOld[1]; |
- memcpy(pOld->aData, apOld[i]->aData, pBt->pageSize); |
- |
- limit = pOld->nCell+pOld->nOverflow; |
- if( pOld->nOverflow>0 ){ |
- for(j=0; j<limit; j++){ |
- assert( nCell<nMaxCells ); |
- apCell[nCell] = findOverflowCell(pOld, j); |
- szCell[nCell] = cellSizePtr(pOld, apCell[nCell]); |
- nCell++; |
- } |
- }else{ |
- u8 *aData = pOld->aData; |
- u16 maskPage = pOld->maskPage; |
- u16 cellOffset = pOld->cellOffset; |
- for(j=0; j<limit; j++){ |
- assert( nCell<nMaxCells ); |
- apCell[nCell] = findCellv2(aData, maskPage, cellOffset, j); |
- szCell[nCell] = cellSizePtr(pOld, apCell[nCell]); |
- nCell++; |
- } |
- } |
- if( i<nOld-1 && !leafData){ |
- u16 sz = (u16)szNew[i]; |
- u8 *pTemp; |
- assert( nCell<nMaxCells ); |
- szCell[nCell] = sz; |
- pTemp = &aSpace1[iSpace1]; |
- iSpace1 += sz; |
- assert( sz<=pBt->maxLocal+23 ); |
- assert( iSpace1 <= (int)pBt->pageSize ); |
- memcpy(pTemp, apDiv[i], sz); |
- apCell[nCell] = pTemp+leafCorrection; |
- assert( leafCorrection==0 || leafCorrection==4 ); |
- szCell[nCell] = szCell[nCell] - leafCorrection; |
- if( !pOld->leaf ){ |
- assert( leafCorrection==0 ); |
- assert( pOld->hdrOffset==0 ); |
- /* The right pointer of the child page pOld becomes the left |
- ** pointer of the divider cell */ |
- memcpy(apCell[nCell], &pOld->aData[8], 4); |
- }else{ |
- assert( leafCorrection==4 ); |
- if( szCell[nCell]<4 ){ |
- /* Do not allow any cells smaller than 4 bytes. */ |
- szCell[nCell] = 4; |
- } |
- } |
- nCell++; |
- } |
- } |
- |
- /* |
- ** Figure out the number of pages needed to hold all nCell cells. |
- ** Store this number in "k". Also compute szNew[] which is the total |
- ** size of all cells on the i-th page and cntNew[] which is the index |
- ** in apCell[] of the cell that divides page i from page i+1. |
- ** cntNew[k] should equal nCell. |
- ** |
- ** Values computed by this block: |
- ** |
- ** k: The total number of sibling pages |
- ** szNew[i]: Spaced used on the i-th sibling page. |
- ** cntNew[i]: Index in apCell[] and szCell[] for the first cell to |
- ** the right of the i-th sibling page. |
- ** usableSpace: Number of bytes of space available on each sibling. |
- ** |
- */ |
- usableSpace = pBt->usableSize - 12 + leafCorrection; |
- for(subtotal=k=i=0; i<nCell; i++){ |
- assert( i<nMaxCells ); |
- subtotal += szCell[i] + 2; |
- if( subtotal > usableSpace ){ |
- szNew[k] = subtotal - szCell[i]; |
- cntNew[k] = i; |
- if( leafData ){ i--; } |
- subtotal = 0; |
- k++; |
- if( k>NB+1 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; } |
- } |
- } |
- szNew[k] = subtotal; |
- cntNew[k] = nCell; |
- k++; |
- |
- /* |
- ** The packing computed by the previous block is biased toward the siblings |
- ** on the left side. The left siblings are always nearly full, while the |
- ** right-most sibling might be nearly empty. This block of code attempts |
- ** to adjust the packing of siblings to get a better balance. |
- ** |
- ** This adjustment is more than an optimization. The packing above might |
- ** be so out of balance as to be illegal. For example, the right-most |
- ** sibling might be completely empty. This adjustment is not optional. |
- */ |
- for(i=k-1; i>0; i--){ |
- int szRight = szNew[i]; /* Size of sibling on the right */ |
- int szLeft = szNew[i-1]; /* Size of sibling on the left */ |
- int r; /* Index of right-most cell in left sibling */ |
- int d; /* Index of first cell to the left of right sibling */ |
- |
- r = cntNew[i-1] - 1; |
- d = r + 1 - leafData; |
- assert( d<nMaxCells ); |
- assert( r<nMaxCells ); |
- while( szRight==0 |
- || (!bBulk && szRight+szCell[d]+2<=szLeft-(szCell[r]+2)) |
- ){ |
- szRight += szCell[d] + 2; |
- szLeft -= szCell[r] + 2; |
- cntNew[i-1]--; |
- r = cntNew[i-1] - 1; |
- d = r + 1 - leafData; |
- } |
- szNew[i] = szRight; |
- szNew[i-1] = szLeft; |
- } |
- |
- /* Either we found one or more cells (cntnew[0])>0) or pPage is |
- ** a virtual root page. A virtual root page is when the real root |
- ** page is page 1 and we are the only child of that page. |
- ** |
- ** UPDATE: The assert() below is not necessarily true if the database |
- ** file is corrupt. The corruption will be detected and reported later |
- ** in this procedure so there is no need to act upon it now. |
- */ |
-#if 0 |
- assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) ); |
-#endif |
- |
- TRACE(("BALANCE: old: %d %d %d ", |
- apOld[0]->pgno, |
- nOld>=2 ? apOld[1]->pgno : 0, |
- nOld>=3 ? apOld[2]->pgno : 0 |
- )); |
- |
- /* |
- ** Allocate k new pages. Reuse old pages where possible. |
- */ |
- if( apOld[0]->pgno<=1 ){ |
- rc = SQLITE_CORRUPT_BKPT; |
- goto balance_cleanup; |
- } |
- pageFlags = apOld[0]->aData[0]; |
- for(i=0; i<k; i++){ |
- MemPage *pNew; |
- if( i<nOld ){ |
- pNew = apNew[i] = apOld[i]; |
- apOld[i] = 0; |
- rc = sqlite3PagerWrite(pNew->pDbPage); |
- nNew++; |
- if( rc ) goto balance_cleanup; |
- }else{ |
- assert( i>0 ); |
- rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0); |
- if( rc ) goto balance_cleanup; |
- apNew[i] = pNew; |
- nNew++; |
- |
- /* Set the pointer-map entry for the new sibling page. */ |
- if( ISAUTOVACUUM ){ |
- ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc); |
- if( rc!=SQLITE_OK ){ |
- goto balance_cleanup; |
- } |
- } |
- } |
- } |
- |
- /* Free any old pages that were not reused as new pages. |
- */ |
- while( i<nOld ){ |
- freePage(apOld[i], &rc); |
- if( rc ) goto balance_cleanup; |
- releasePage(apOld[i]); |
- apOld[i] = 0; |
- i++; |
- } |
- |
- /* |
- ** Put the new pages in ascending order. This helps to |
- ** keep entries in the disk file in order so that a scan |
- ** of the table is a linear scan through the file. That |
- ** in turn helps the operating system to deliver pages |
- ** from the disk more rapidly. |
- ** |
- ** An O(n^2) insertion sort algorithm is used, but since |
- ** n is never more than NB (a small constant), that should |
- ** not be a problem. |
- ** |
- ** When NB==3, this one optimization makes the database |
- ** about 25% faster for large insertions and deletions. |
- */ |
- for(i=0; i<k-1; i++){ |
- int minV = apNew[i]->pgno; |
- int minI = i; |
- for(j=i+1; j<k; j++){ |
- if( apNew[j]->pgno<(unsigned)minV ){ |
- minI = j; |
- minV = apNew[j]->pgno; |
- } |
- } |
- if( minI>i ){ |
- MemPage *pT; |
- pT = apNew[i]; |
- apNew[i] = apNew[minI]; |
- apNew[minI] = pT; |
- } |
- } |
- TRACE(("new: %d(%d) %d(%d) %d(%d) %d(%d) %d(%d)\n", |
- apNew[0]->pgno, szNew[0], |
- nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0, |
- nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0, |
- nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0, |
- nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0)); |
- |
- assert( sqlite3PagerIswriteable(pParent->pDbPage) ); |
- put4byte(pRight, apNew[nNew-1]->pgno); |
- |
- /* |
- ** Evenly distribute the data in apCell[] across the new pages. |
- ** Insert divider cells into pParent as necessary. |
- */ |
- j = 0; |
- for(i=0; i<nNew; i++){ |
- /* Assemble the new sibling page. */ |
- MemPage *pNew = apNew[i]; |
- assert( j<nMaxCells ); |
- zeroPage(pNew, pageFlags); |
- assemblePage(pNew, cntNew[i]-j, &apCell[j], &szCell[j]); |
- assert( pNew->nCell>0 || (nNew==1 && cntNew[0]==0) ); |
- assert( pNew->nOverflow==0 ); |
- |
- j = cntNew[i]; |
- |
- /* If the sibling page assembled above was not the right-most sibling, |
- ** insert a divider cell into the parent page. |
- */ |
- assert( i<nNew-1 || j==nCell ); |
- if( j<nCell ){ |
- u8 *pCell; |
- u8 *pTemp; |
- int sz; |
- |
- assert( j<nMaxCells ); |
- pCell = apCell[j]; |
- sz = szCell[j] + leafCorrection; |
- pTemp = &aOvflSpace[iOvflSpace]; |
- if( !pNew->leaf ){ |
- memcpy(&pNew->aData[8], pCell, 4); |
- }else if( leafData ){ |
- /* If the tree is a leaf-data tree, and the siblings are leaves, |
- ** then there is no divider cell in apCell[]. Instead, the divider |
- ** cell consists of the integer key for the right-most cell of |
- ** the sibling-page assembled above only. |
- */ |
- CellInfo info; |
- j--; |
- btreeParseCellPtr(pNew, apCell[j], &info); |
- pCell = pTemp; |
- sz = 4 + putVarint(&pCell[4], info.nKey); |
- pTemp = 0; |
- }else{ |
- pCell -= 4; |
- /* Obscure case for non-leaf-data trees: If the cell at pCell was |
- ** previously stored on a leaf node, and its reported size was 4 |
- ** bytes, then it may actually be smaller than this |
- ** (see btreeParseCellPtr(), 4 bytes is the minimum size of |
- ** any cell). But it is important to pass the correct size to |
- ** insertCell(), so reparse the cell now. |
- ** |
- ** Note that this can never happen in an SQLite data file, as all |
- ** cells are at least 4 bytes. It only happens in b-trees used |
- ** to evaluate "IN (SELECT ...)" and similar clauses. |
- */ |
- if( szCell[j]==4 ){ |
- assert(leafCorrection==4); |
- sz = cellSizePtr(pParent, pCell); |
- } |
- } |
- iOvflSpace += sz; |
- assert( sz<=pBt->maxLocal+23 ); |
- assert( iOvflSpace <= (int)pBt->pageSize ); |
- insertCell(pParent, nxDiv, pCell, sz, pTemp, pNew->pgno, &rc); |
- if( rc!=SQLITE_OK ) goto balance_cleanup; |
- assert( sqlite3PagerIswriteable(pParent->pDbPage) ); |
- |
- j++; |
- nxDiv++; |
- } |
- } |
- assert( j==nCell ); |
- assert( nOld>0 ); |
- assert( nNew>0 ); |
- if( (pageFlags & PTF_LEAF)==0 ){ |
- u8 *zChild = &apCopy[nOld-1]->aData[8]; |
- memcpy(&apNew[nNew-1]->aData[8], zChild, 4); |
- } |
- |
- if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){ |
- /* The root page of the b-tree now contains no cells. The only sibling |
- ** page is the right-child of the parent. Copy the contents of the |
- ** child page into the parent, decreasing the overall height of the |
- ** b-tree structure by one. This is described as the "balance-shallower" |
- ** sub-algorithm in some documentation. |
- ** |
- ** If this is an auto-vacuum database, the call to copyNodeContent() |
- ** sets all pointer-map entries corresponding to database image pages |
- ** for which the pointer is stored within the content being copied. |
- ** |
- ** The second assert below verifies that the child page is defragmented |
- ** (it must be, as it was just reconstructed using assemblePage()). This |
- ** is important if the parent page happens to be page 1 of the database |
- ** image. */ |
- assert( nNew==1 ); |
- assert( apNew[0]->nFree == |
- (get2byte(&apNew[0]->aData[5])-apNew[0]->cellOffset-apNew[0]->nCell*2) |
- ); |
- copyNodeContent(apNew[0], pParent, &rc); |
- freePage(apNew[0], &rc); |
- }else if( ISAUTOVACUUM ){ |
- /* Fix the pointer-map entries for all the cells that were shifted around. |
- ** There are several different types of pointer-map entries that need to |
- ** be dealt with by this routine. Some of these have been set already, but |
- ** many have not. The following is a summary: |
- ** |
- ** 1) The entries associated with new sibling pages that were not |
- ** siblings when this function was called. These have already |
- ** been set. We don't need to worry about old siblings that were |
- ** moved to the free-list - the freePage() code has taken care |
- ** of those. |
- ** |
- ** 2) The pointer-map entries associated with the first overflow |
- ** page in any overflow chains used by new divider cells. These |
- ** have also already been taken care of by the insertCell() code. |
- ** |
- ** 3) If the sibling pages are not leaves, then the child pages of |
- ** cells stored on the sibling pages may need to be updated. |
- ** |
- ** 4) If the sibling pages are not internal intkey nodes, then any |
- ** overflow pages used by these cells may need to be updated |
- ** (internal intkey nodes never contain pointers to overflow pages). |
- ** |
- ** 5) If the sibling pages are not leaves, then the pointer-map |
- ** entries for the right-child pages of each sibling may need |
- ** to be updated. |
- ** |
- ** Cases 1 and 2 are dealt with above by other code. The next |
- ** block deals with cases 3 and 4 and the one after that, case 5. Since |
- ** setting a pointer map entry is a relatively expensive operation, this |
- ** code only sets pointer map entries for child or overflow pages that have |
- ** actually moved between pages. */ |
- MemPage *pNew = apNew[0]; |
- MemPage *pOld = apCopy[0]; |
- int nOverflow = pOld->nOverflow; |
- int iNextOld = pOld->nCell + nOverflow; |
- int iOverflow = (nOverflow ? pOld->aiOvfl[0] : -1); |
- j = 0; /* Current 'old' sibling page */ |
- k = 0; /* Current 'new' sibling page */ |
- for(i=0; i<nCell; i++){ |
- int isDivider = 0; |
- while( i==iNextOld ){ |
- /* Cell i is the cell immediately following the last cell on old |
- ** sibling page j. If the siblings are not leaf pages of an |
- ** intkey b-tree, then cell i was a divider cell. */ |
- assert( j+1 < ArraySize(apCopy) ); |
- assert( j+1 < nOld ); |
- pOld = apCopy[++j]; |
- iNextOld = i + !leafData + pOld->nCell + pOld->nOverflow; |
- if( pOld->nOverflow ){ |
- nOverflow = pOld->nOverflow; |
- iOverflow = i + !leafData + pOld->aiOvfl[0]; |
- } |
- isDivider = !leafData; |
- } |
- |
- assert(nOverflow>0 || iOverflow<i ); |
- assert(nOverflow<2 || pOld->aiOvfl[0]==pOld->aiOvfl[1]-1); |
- assert(nOverflow<3 || pOld->aiOvfl[1]==pOld->aiOvfl[2]-1); |
- if( i==iOverflow ){ |
- isDivider = 1; |
- if( (--nOverflow)>0 ){ |
- iOverflow++; |
- } |
- } |
- |
- if( i==cntNew[k] ){ |
- /* Cell i is the cell immediately following the last cell on new |
- ** sibling page k. If the siblings are not leaf pages of an |
- ** intkey b-tree, then cell i is a divider cell. */ |
- pNew = apNew[++k]; |
- if( !leafData ) continue; |
- } |
- assert( j<nOld ); |
- assert( k<nNew ); |
- |
- /* If the cell was originally divider cell (and is not now) or |
- ** an overflow cell, or if the cell was located on a different sibling |
- ** page before the balancing, then the pointer map entries associated |
- ** with any child or overflow pages need to be updated. */ |
- if( isDivider || pOld->pgno!=pNew->pgno ){ |
- if( !leafCorrection ){ |
- ptrmapPut(pBt, get4byte(apCell[i]), PTRMAP_BTREE, pNew->pgno, &rc); |
- } |
- if( szCell[i]>pNew->minLocal ){ |
- ptrmapPutOvflPtr(pNew, apCell[i], &rc); |
- } |
- } |
- } |
- |
- if( !leafCorrection ){ |
- for(i=0; i<nNew; i++){ |
- u32 key = get4byte(&apNew[i]->aData[8]); |
- ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc); |
- } |
- } |
- |
-#if 0 |
- /* The ptrmapCheckPages() contains assert() statements that verify that |
- ** all pointer map pages are set correctly. This is helpful while |
- ** debugging. This is usually disabled because a corrupt database may |
- ** cause an assert() statement to fail. */ |
- ptrmapCheckPages(apNew, nNew); |
- ptrmapCheckPages(&pParent, 1); |
-#endif |
- } |
- |
- assert( pParent->isInit ); |
- TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n", |
- nOld, nNew, nCell)); |
- |
- /* |
- ** Cleanup before returning. |
- */ |
-balance_cleanup: |
- sqlite3ScratchFree(apCell); |
- for(i=0; i<nOld; i++){ |
- releasePage(apOld[i]); |
- } |
- for(i=0; i<nNew; i++){ |
- releasePage(apNew[i]); |
- } |
- |
- return rc; |
-} |
-#if defined(_MSC_VER) && _MSC_VER >= 1700 && defined(_M_ARM) |
-#pragma optimize("", on) |
-#endif |
- |
- |
-/* |
-** This function is called when the root page of a b-tree structure is |
-** overfull (has one or more overflow pages). |
-** |
-** A new child page is allocated and the contents of the current root |
-** page, including overflow cells, are copied into the child. The root |
-** page is then overwritten to make it an empty page with the right-child |
-** pointer pointing to the new page. |
-** |
-** Before returning, all pointer-map entries corresponding to pages |
-** that the new child-page now contains pointers to are updated. The |
-** entry corresponding to the new right-child pointer of the root |
-** page is also updated. |
-** |
-** If successful, *ppChild is set to contain a reference to the child |
-** page and SQLITE_OK is returned. In this case the caller is required |
-** to call releasePage() on *ppChild exactly once. If an error occurs, |
-** an error code is returned and *ppChild is set to 0. |
-*/ |
-static int balance_deeper(MemPage *pRoot, MemPage **ppChild){ |
- int rc; /* Return value from subprocedures */ |
- MemPage *pChild = 0; /* Pointer to a new child page */ |
- Pgno pgnoChild = 0; /* Page number of the new child page */ |
- BtShared *pBt = pRoot->pBt; /* The BTree */ |
- |
- assert( pRoot->nOverflow>0 ); |
- assert( sqlite3_mutex_held(pBt->mutex) ); |
- |
- /* Make pRoot, the root page of the b-tree, writable. Allocate a new |
- ** page that will become the new right-child of pPage. Copy the contents |
- ** of the node stored on pRoot into the new child page. |
- */ |
- rc = sqlite3PagerWrite(pRoot->pDbPage); |
- if( rc==SQLITE_OK ){ |
- rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0); |
- copyNodeContent(pRoot, pChild, &rc); |
- if( ISAUTOVACUUM ){ |
- ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc); |
- } |
- } |
- if( rc ){ |
- *ppChild = 0; |
- releasePage(pChild); |
- return rc; |
- } |
- assert( sqlite3PagerIswriteable(pChild->pDbPage) ); |
- assert( sqlite3PagerIswriteable(pRoot->pDbPage) ); |
- assert( pChild->nCell==pRoot->nCell ); |
- |
- TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno)); |
- |
- /* Copy the overflow cells from pRoot to pChild */ |
- memcpy(pChild->aiOvfl, pRoot->aiOvfl, |
- pRoot->nOverflow*sizeof(pRoot->aiOvfl[0])); |
- memcpy(pChild->apOvfl, pRoot->apOvfl, |
- pRoot->nOverflow*sizeof(pRoot->apOvfl[0])); |
- pChild->nOverflow = pRoot->nOverflow; |
- |
- /* Zero the contents of pRoot. Then install pChild as the right-child. */ |
- zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF); |
- put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild); |
- |
- *ppChild = pChild; |
- return SQLITE_OK; |
-} |
- |
-/* |
-** The page that pCur currently points to has just been modified in |
-** some way. This function figures out if this modification means the |
-** tree needs to be balanced, and if so calls the appropriate balancing |
-** routine. Balancing routines are: |
-** |
-** balance_quick() |
-** balance_deeper() |
-** balance_nonroot() |
-*/ |
-static int balance(BtCursor *pCur){ |
- int rc = SQLITE_OK; |
- const int nMin = pCur->pBt->usableSize * 2 / 3; |
- u8 aBalanceQuickSpace[13]; |
- u8 *pFree = 0; |
- |
- TESTONLY( int balance_quick_called = 0 ); |
- TESTONLY( int balance_deeper_called = 0 ); |
- |
- do { |
- int iPage = pCur->iPage; |
- MemPage *pPage = pCur->apPage[iPage]; |
- |
- if( iPage==0 ){ |
- if( pPage->nOverflow ){ |
- /* The root page of the b-tree is overfull. In this case call the |
- ** balance_deeper() function to create a new child for the root-page |
- ** and copy the current contents of the root-page to it. The |
- ** next iteration of the do-loop will balance the child page. |
- */ |
- assert( (balance_deeper_called++)==0 ); |
- rc = balance_deeper(pPage, &pCur->apPage[1]); |
- if( rc==SQLITE_OK ){ |
- pCur->iPage = 1; |
- pCur->aiIdx[0] = 0; |
- pCur->aiIdx[1] = 0; |
- assert( pCur->apPage[1]->nOverflow ); |
- } |
- }else{ |
- break; |
- } |
- }else if( pPage->nOverflow==0 && pPage->nFree<=nMin ){ |
- break; |
- }else{ |
- MemPage * const pParent = pCur->apPage[iPage-1]; |
- int const iIdx = pCur->aiIdx[iPage-1]; |
- |
- rc = sqlite3PagerWrite(pParent->pDbPage); |
- if( rc==SQLITE_OK ){ |
-#ifndef SQLITE_OMIT_QUICKBALANCE |
- if( pPage->intKeyLeaf |
- && pPage->nOverflow==1 |
- && pPage->aiOvfl[0]==pPage->nCell |
- && pParent->pgno!=1 |
- && pParent->nCell==iIdx |
- ){ |
- /* Call balance_quick() to create a new sibling of pPage on which |
- ** to store the overflow cell. balance_quick() inserts a new cell |
- ** into pParent, which may cause pParent overflow. If this |
- ** happens, the next iteration of the do-loop will balance pParent |
- ** use either balance_nonroot() or balance_deeper(). Until this |
- ** happens, the overflow cell is stored in the aBalanceQuickSpace[] |
- ** buffer. |
- ** |
- ** The purpose of the following assert() is to check that only a |
- ** single call to balance_quick() is made for each call to this |
- ** function. If this were not verified, a subtle bug involving reuse |
- ** of the aBalanceQuickSpace[] might sneak in. |
- */ |
- assert( (balance_quick_called++)==0 ); |
- rc = balance_quick(pParent, pPage, aBalanceQuickSpace); |
- }else |
-#endif |
- { |
- /* In this case, call balance_nonroot() to redistribute cells |
- ** between pPage and up to 2 of its sibling pages. This involves |
- ** modifying the contents of pParent, which may cause pParent to |
- ** become overfull or underfull. The next iteration of the do-loop |
- ** will balance the parent page to correct this. |
- ** |
- ** If the parent page becomes overfull, the overflow cell or cells |
- ** are stored in the pSpace buffer allocated immediately below. |
- ** A subsequent iteration of the do-loop will deal with this by |
- ** calling balance_nonroot() (balance_deeper() may be called first, |
- ** but it doesn't deal with overflow cells - just moves them to a |
- ** different page). Once this subsequent call to balance_nonroot() |
- ** has completed, it is safe to release the pSpace buffer used by |
- ** the previous call, as the overflow cell data will have been |
- ** copied either into the body of a database page or into the new |
- ** pSpace buffer passed to the latter call to balance_nonroot(). |
- */ |
- u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize); |
- rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1, pCur->hints); |
- if( pFree ){ |
- /* If pFree is not NULL, it points to the pSpace buffer used |
- ** by a previous call to balance_nonroot(). Its contents are |
- ** now stored either on real database pages or within the |
- ** new pSpace buffer, so it may be safely freed here. */ |
- sqlite3PageFree(pFree); |
- } |
- |
- /* The pSpace buffer will be freed after the next call to |
- ** balance_nonroot(), or just before this function returns, whichever |
- ** comes first. */ |
- pFree = pSpace; |
- } |
- } |
- |
- pPage->nOverflow = 0; |
- |
- /* The next iteration of the do-loop balances the parent page. */ |
- releasePage(pPage); |
- pCur->iPage--; |
- } |
- }while( rc==SQLITE_OK ); |
- |
- if( pFree ){ |
- sqlite3PageFree(pFree); |
- } |
- return rc; |
-} |
- |
- |
-/* |
-** Insert a new record into the BTree. The key is given by (pKey,nKey) |
-** and the data is given by (pData,nData). The cursor is used only to |
-** define what table the record should be inserted into. The cursor |
-** is left pointing at a random location. |
-** |
-** For an INTKEY table, only the nKey value of the key is used. pKey is |
-** ignored. For a ZERODATA table, the pData and nData are both ignored. |
-** |
-** If the seekResult parameter is non-zero, then a successful call to |
-** MovetoUnpacked() to seek cursor pCur to (pKey, nKey) has already |
-** been performed. seekResult is the search result returned (a negative |
-** number if pCur points at an entry that is smaller than (pKey, nKey), or |
-** a positive value if pCur points at an entry that is larger than |
-** (pKey, nKey)). |
-** |
-** If the seekResult parameter is non-zero, then the caller guarantees that |
-** cursor pCur is pointing at the existing copy of a row that is to be |
-** overwritten. If the seekResult parameter is 0, then cursor pCur may |
-** point to any entry or to no entry at all and so this function has to seek |
-** the cursor before the new key can be inserted. |
-*/ |
-int sqlite3BtreeInsert( |
- BtCursor *pCur, /* Insert data into the table of this cursor */ |
- const void *pKey, i64 nKey, /* The key of the new record */ |
- const void *pData, int nData, /* The data of the new record */ |
- int nZero, /* Number of extra 0 bytes to append to data */ |
- int appendBias, /* True if this is likely an append */ |
- int seekResult /* Result of prior MovetoUnpacked() call */ |
-){ |
- int rc; |
- int loc = seekResult; /* -1: before desired location +1: after */ |
- int szNew = 0; |
- int idx; |
- MemPage *pPage; |
- Btree *p = pCur->pBtree; |
- BtShared *pBt = p->pBt; |
- unsigned char *oldCell; |
- unsigned char *newCell = 0; |
- |
- if( pCur->eState==CURSOR_FAULT ){ |
- assert( pCur->skipNext!=SQLITE_OK ); |
- return pCur->skipNext; |
- } |
- |
- assert( cursorHoldsMutex(pCur) ); |
- assert( (pCur->curFlags & BTCF_WriteFlag)!=0 |
- && pBt->inTransaction==TRANS_WRITE |
- && (pBt->btsFlags & BTS_READ_ONLY)==0 ); |
- assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) ); |
- |
- /* Assert that the caller has been consistent. If this cursor was opened |
- ** expecting an index b-tree, then the caller should be inserting blob |
- ** keys with no associated data. If the cursor was opened expecting an |
- ** intkey table, the caller should be inserting integer keys with a |
- ** blob of associated data. */ |
- assert( (pKey==0)==(pCur->pKeyInfo==0) ); |
- |
- /* Save the positions of any other cursors open on this table. |
- ** |
- ** In some cases, the call to btreeMoveto() below is a no-op. For |
- ** example, when inserting data into a table with auto-generated integer |
- ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the |
- ** integer key to use. It then calls this function to actually insert the |
- ** data into the intkey B-Tree. In this case btreeMoveto() recognizes |
- ** that the cursor is already where it needs to be and returns without |
- ** doing any work. To avoid thwarting these optimizations, it is important |
- ** not to clear the cursor here. |
- */ |
- rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur); |
- if( rc ) return rc; |
- |
- if( pCur->pKeyInfo==0 ){ |
- /* If this is an insert into a table b-tree, invalidate any incrblob |
- ** cursors open on the row being replaced */ |
- invalidateIncrblobCursors(p, nKey, 0); |
- |
- /* If the cursor is currently on the last row and we are appending a |
- ** new row onto the end, set the "loc" to avoid an unnecessary btreeMoveto() |
- ** call */ |
- if( (pCur->curFlags&BTCF_ValidNKey)!=0 && nKey>0 |
- && pCur->info.nKey==nKey-1 ){ |
- loc = -1; |
- } |
- } |
- |
- if( !loc ){ |
- rc = btreeMoveto(pCur, pKey, nKey, appendBias, &loc); |
- if( rc ) return rc; |
- } |
- assert( pCur->eState==CURSOR_VALID || (pCur->eState==CURSOR_INVALID && loc) ); |
- |
- pPage = pCur->apPage[pCur->iPage]; |
- assert( pPage->intKey || nKey>=0 ); |
- assert( pPage->leaf || !pPage->intKey ); |
- |
- TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n", |
- pCur->pgnoRoot, nKey, nData, pPage->pgno, |
- loc==0 ? "overwrite" : "new entry")); |
- assert( pPage->isInit ); |
- newCell = pBt->pTmpSpace; |
- assert( newCell!=0 ); |
- rc = fillInCell(pPage, newCell, pKey, nKey, pData, nData, nZero, &szNew); |
- if( rc ) goto end_insert; |
- assert( szNew==cellSizePtr(pPage, newCell) ); |
- assert( szNew <= MX_CELL_SIZE(pBt) ); |
- idx = pCur->aiIdx[pCur->iPage]; |
- if( loc==0 ){ |
- u16 szOld; |
- assert( idx<pPage->nCell ); |
- rc = sqlite3PagerWrite(pPage->pDbPage); |
- if( rc ){ |
- goto end_insert; |
- } |
- oldCell = findCell(pPage, idx); |
- if( !pPage->leaf ){ |
- memcpy(newCell, oldCell, 4); |
- } |
- rc = clearCell(pPage, oldCell, &szOld); |
- dropCell(pPage, idx, szOld, &rc); |
- if( rc ) goto end_insert; |
- }else if( loc<0 && pPage->nCell>0 ){ |
- assert( pPage->leaf ); |
- idx = ++pCur->aiIdx[pCur->iPage]; |
- }else{ |
- assert( pPage->leaf ); |
- } |
- insertCell(pPage, idx, newCell, szNew, 0, 0, &rc); |
- assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 ); |
- |
- /* If no error has occurred and pPage has an overflow cell, call balance() |
- ** to redistribute the cells within the tree. Since balance() may move |
- ** the cursor, zero the BtCursor.info.nSize and BTCF_ValidNKey |
- ** variables. |
- ** |
- ** Previous versions of SQLite called moveToRoot() to move the cursor |
- ** back to the root page as balance() used to invalidate the contents |
- ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that, |
- ** set the cursor state to "invalid". This makes common insert operations |
- ** slightly faster. |
- ** |
- ** There is a subtle but important optimization here too. When inserting |
- ** multiple records into an intkey b-tree using a single cursor (as can |
- ** happen while processing an "INSERT INTO ... SELECT" statement), it |
- ** is advantageous to leave the cursor pointing to the last entry in |
- ** the b-tree if possible. If the cursor is left pointing to the last |
- ** entry in the table, and the next row inserted has an integer key |
- ** larger than the largest existing key, it is possible to insert the |
- ** row without seeking the cursor. This can be a big performance boost. |
- */ |
- pCur->info.nSize = 0; |
- if( rc==SQLITE_OK && pPage->nOverflow ){ |
- pCur->curFlags &= ~(BTCF_ValidNKey); |
- rc = balance(pCur); |
- |
- /* Must make sure nOverflow is reset to zero even if the balance() |
- ** fails. Internal data structure corruption will result otherwise. |
- ** Also, set the cursor state to invalid. This stops saveCursorPosition() |
- ** from trying to save the current position of the cursor. */ |
- pCur->apPage[pCur->iPage]->nOverflow = 0; |
- pCur->eState = CURSOR_INVALID; |
- } |
- assert( pCur->apPage[pCur->iPage]->nOverflow==0 ); |
- |
-end_insert: |
- return rc; |
-} |
- |
-/* |
-** Delete the entry that the cursor is pointing to. The cursor |
-** is left pointing at an arbitrary location. |
-*/ |
-int sqlite3BtreeDelete(BtCursor *pCur){ |
- Btree *p = pCur->pBtree; |
- BtShared *pBt = p->pBt; |
- int rc; /* Return code */ |
- MemPage *pPage; /* Page to delete cell from */ |
- unsigned char *pCell; /* Pointer to cell to delete */ |
- int iCellIdx; /* Index of cell to delete */ |
- int iCellDepth; /* Depth of node containing pCell */ |
- u16 szCell; /* Size of the cell being deleted */ |
- |
- assert( cursorHoldsMutex(pCur) ); |
- assert( pBt->inTransaction==TRANS_WRITE ); |
- assert( (pBt->btsFlags & BTS_READ_ONLY)==0 ); |
- assert( pCur->curFlags & BTCF_WriteFlag ); |
- assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) ); |
- assert( !hasReadConflicts(p, pCur->pgnoRoot) ); |
- |
- if( NEVER(pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell) |
- || NEVER(pCur->eState!=CURSOR_VALID) |
- ){ |
- return SQLITE_ERROR; /* Something has gone awry. */ |
- } |
- |
- iCellDepth = pCur->iPage; |
- iCellIdx = pCur->aiIdx[iCellDepth]; |
- pPage = pCur->apPage[iCellDepth]; |
- pCell = findCell(pPage, iCellIdx); |
- |
- /* If the page containing the entry to delete is not a leaf page, move |
- ** the cursor to the largest entry in the tree that is smaller than |
- ** the entry being deleted. This cell will replace the cell being deleted |
- ** from the internal node. The 'previous' entry is used for this instead |
- ** of the 'next' entry, as the previous entry is always a part of the |
- ** sub-tree headed by the child page of the cell being deleted. This makes |
- ** balancing the tree following the delete operation easier. */ |
- if( !pPage->leaf ){ |
- int notUsed = 0; |
- rc = sqlite3BtreePrevious(pCur, ¬Used); |
- if( rc ) return rc; |
- } |
- |
- /* Save the positions of any other cursors open on this table before |
- ** making any modifications. Make the page containing the entry to be |
- ** deleted writable. Then free any overflow pages associated with the |
- ** entry and finally remove the cell itself from within the page. |
- */ |
- rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur); |
- if( rc ) return rc; |
- |
- /* If this is a delete operation to remove a row from a table b-tree, |
- ** invalidate any incrblob cursors open on the row being deleted. */ |
- if( pCur->pKeyInfo==0 ){ |
- invalidateIncrblobCursors(p, pCur->info.nKey, 0); |
- } |
- |
- rc = sqlite3PagerWrite(pPage->pDbPage); |
- if( rc ) return rc; |
- rc = clearCell(pPage, pCell, &szCell); |
- dropCell(pPage, iCellIdx, szCell, &rc); |
- if( rc ) return rc; |
- |
- /* If the cell deleted was not located on a leaf page, then the cursor |
- ** is currently pointing to the largest entry in the sub-tree headed |
- ** by the child-page of the cell that was just deleted from an internal |
- ** node. The cell from the leaf node needs to be moved to the internal |
- ** node to replace the deleted cell. */ |
- if( !pPage->leaf ){ |
- MemPage *pLeaf = pCur->apPage[pCur->iPage]; |
- int nCell; |
- Pgno n = pCur->apPage[iCellDepth+1]->pgno; |
- unsigned char *pTmp; |
- |
- pCell = findCell(pLeaf, pLeaf->nCell-1); |
- nCell = cellSizePtr(pLeaf, pCell); |
- assert( MX_CELL_SIZE(pBt) >= nCell ); |
- pTmp = pBt->pTmpSpace; |
- assert( pTmp!=0 ); |
- rc = sqlite3PagerWrite(pLeaf->pDbPage); |
- insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc); |
- dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc); |
- if( rc ) return rc; |
- } |
- |
- /* Balance the tree. If the entry deleted was located on a leaf page, |
- ** then the cursor still points to that page. In this case the first |
- ** call to balance() repairs the tree, and the if(...) condition is |
- ** never true. |
- ** |
- ** Otherwise, if the entry deleted was on an internal node page, then |
- ** pCur is pointing to the leaf page from which a cell was removed to |
- ** replace the cell deleted from the internal node. This is slightly |
- ** tricky as the leaf node may be underfull, and the internal node may |
- ** be either under or overfull. In this case run the balancing algorithm |
- ** on the leaf node first. If the balance proceeds far enough up the |
- ** tree that we can be sure that any problem in the internal node has |
- ** been corrected, so be it. Otherwise, after balancing the leaf node, |
- ** walk the cursor up the tree to the internal node and balance it as |
- ** well. */ |
- rc = balance(pCur); |
- if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){ |
- while( pCur->iPage>iCellDepth ){ |
- releasePage(pCur->apPage[pCur->iPage--]); |
- } |
- rc = balance(pCur); |
- } |
- |
- if( rc==SQLITE_OK ){ |
- moveToRoot(pCur); |
- } |
- return rc; |
-} |
- |
-/* |
-** Create a new BTree table. Write into *piTable the page |
-** number for the root page of the new table. |
-** |
-** The type of type is determined by the flags parameter. Only the |
-** following values of flags are currently in use. Other values for |
-** flags might not work: |
-** |
-** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys |
-** BTREE_ZERODATA Used for SQL indices |
-*/ |
-static int btreeCreateTable(Btree *p, int *piTable, int createTabFlags){ |
- BtShared *pBt = p->pBt; |
- MemPage *pRoot; |
- Pgno pgnoRoot; |
- int rc; |
- int ptfFlags; /* Page-type flage for the root page of new table */ |
- |
- assert( sqlite3BtreeHoldsMutex(p) ); |
- assert( pBt->inTransaction==TRANS_WRITE ); |
- assert( (pBt->btsFlags & BTS_READ_ONLY)==0 ); |
- |
-#ifdef SQLITE_OMIT_AUTOVACUUM |
- rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0); |
- if( rc ){ |
- return rc; |
- } |
-#else |
- if( pBt->autoVacuum ){ |
- Pgno pgnoMove; /* Move a page here to make room for the root-page */ |
- MemPage *pPageMove; /* The page to move to. */ |
- |
- /* Creating a new table may probably require moving an existing database |
- ** to make room for the new tables root page. In case this page turns |
- ** out to be an overflow page, delete all overflow page-map caches |
- ** held by open cursors. |
- */ |
- invalidateAllOverflowCache(pBt); |
- |
- /* Read the value of meta[3] from the database to determine where the |
- ** root page of the new table should go. meta[3] is the largest root-page |
- ** created so far, so the new root-page is (meta[3]+1). |
- */ |
- sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot); |
- pgnoRoot++; |
- |
- /* The new root-page may not be allocated on a pointer-map page, or the |
- ** PENDING_BYTE page. |
- */ |
- while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) || |
- pgnoRoot==PENDING_BYTE_PAGE(pBt) ){ |
- pgnoRoot++; |
- } |
- assert( pgnoRoot>=3 ); |
- |
- /* Allocate a page. The page that currently resides at pgnoRoot will |
- ** be moved to the allocated page (unless the allocated page happens |
- ** to reside at pgnoRoot). |
- */ |
- rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, BTALLOC_EXACT); |
- if( rc!=SQLITE_OK ){ |
- return rc; |
- } |
- |
- if( pgnoMove!=pgnoRoot ){ |
- /* pgnoRoot is the page that will be used for the root-page of |
- ** the new table (assuming an error did not occur). But we were |
- ** allocated pgnoMove. If required (i.e. if it was not allocated |
- ** by extending the file), the current page at position pgnoMove |
- ** is already journaled. |
- */ |
- u8 eType = 0; |
- Pgno iPtrPage = 0; |
- |
- /* Save the positions of any open cursors. This is required in |
- ** case they are holding a reference to an xFetch reference |
- ** corresponding to page pgnoRoot. */ |
- rc = saveAllCursors(pBt, 0, 0); |
- releasePage(pPageMove); |
- if( rc!=SQLITE_OK ){ |
- return rc; |
- } |
- |
- /* Move the page currently at pgnoRoot to pgnoMove. */ |
- rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0); |
- if( rc!=SQLITE_OK ){ |
- return rc; |
- } |
- rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage); |
- if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){ |
- rc = SQLITE_CORRUPT_BKPT; |
- } |
- if( rc!=SQLITE_OK ){ |
- releasePage(pRoot); |
- return rc; |
- } |
- assert( eType!=PTRMAP_ROOTPAGE ); |
- assert( eType!=PTRMAP_FREEPAGE ); |
- rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0); |
- releasePage(pRoot); |
- |
- /* Obtain the page at pgnoRoot */ |
- if( rc!=SQLITE_OK ){ |
- return rc; |
- } |
- rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0); |
- if( rc!=SQLITE_OK ){ |
- return rc; |
- } |
- rc = sqlite3PagerWrite(pRoot->pDbPage); |
- if( rc!=SQLITE_OK ){ |
- releasePage(pRoot); |
- return rc; |
- } |
- }else{ |
- pRoot = pPageMove; |
- } |
- |
- /* Update the pointer-map and meta-data with the new root-page number. */ |
- ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc); |
- if( rc ){ |
- releasePage(pRoot); |
- return rc; |
- } |
- |
- /* When the new root page was allocated, page 1 was made writable in |
- ** order either to increase the database filesize, or to decrement the |
- ** freelist count. Hence, the sqlite3BtreeUpdateMeta() call cannot fail. |
- */ |
- assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) ); |
- rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot); |
- if( NEVER(rc) ){ |
- releasePage(pRoot); |
- return rc; |
- } |
- |
- }else{ |
- rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0); |
- if( rc ) return rc; |
- } |
-#endif |
- assert( sqlite3PagerIswriteable(pRoot->pDbPage) ); |
- if( createTabFlags & BTREE_INTKEY ){ |
- ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF; |
- }else{ |
- ptfFlags = PTF_ZERODATA | PTF_LEAF; |
- } |
- zeroPage(pRoot, ptfFlags); |
- sqlite3PagerUnref(pRoot->pDbPage); |
- assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 ); |
- *piTable = (int)pgnoRoot; |
- return SQLITE_OK; |
-} |
-int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){ |
- int rc; |
- sqlite3BtreeEnter(p); |
- rc = btreeCreateTable(p, piTable, flags); |
- sqlite3BtreeLeave(p); |
- return rc; |
-} |
- |
-/* |
-** Erase the given database page and all its children. Return |
-** the page to the freelist. |
-*/ |
-static int clearDatabasePage( |
- BtShared *pBt, /* The BTree that contains the table */ |
- Pgno pgno, /* Page number to clear */ |
- int freePageFlag, /* Deallocate page if true */ |
- int *pnChange /* Add number of Cells freed to this counter */ |
-){ |
- MemPage *pPage; |
- int rc; |
- unsigned char *pCell; |
- int i; |
- int hdr; |
- u16 szCell; |
- |
- assert( sqlite3_mutex_held(pBt->mutex) ); |
- if( pgno>btreePagecount(pBt) ){ |
- return SQLITE_CORRUPT_BKPT; |
- } |
- |
- rc = getAndInitPage(pBt, pgno, &pPage, 0); |
- if( rc ) return rc; |
- hdr = pPage->hdrOffset; |
- for(i=0; i<pPage->nCell; i++){ |
- pCell = findCell(pPage, i); |
- if( !pPage->leaf ){ |
- rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange); |
- if( rc ) goto cleardatabasepage_out; |
- } |
- rc = clearCell(pPage, pCell, &szCell); |
- if( rc ) goto cleardatabasepage_out; |
- } |
- if( !pPage->leaf ){ |
- rc = clearDatabasePage(pBt, get4byte(&pPage->aData[hdr+8]), 1, pnChange); |
- if( rc ) goto cleardatabasepage_out; |
- }else if( pnChange ){ |
- assert( pPage->intKey ); |
- *pnChange += pPage->nCell; |
- } |
- if( freePageFlag ){ |
- freePage(pPage, &rc); |
- }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){ |
- zeroPage(pPage, pPage->aData[hdr] | PTF_LEAF); |
- } |
- |
-cleardatabasepage_out: |
- releasePage(pPage); |
- return rc; |
-} |
- |
-/* |
-** Delete all information from a single table in the database. iTable is |
-** the page number of the root of the table. After this routine returns, |
-** the root page is empty, but still exists. |
-** |
-** This routine will fail with SQLITE_LOCKED if there are any open |
-** read cursors on the table. Open write cursors are moved to the |
-** root of the table. |
-** |
-** If pnChange is not NULL, then table iTable must be an intkey table. The |
-** integer value pointed to by pnChange is incremented by the number of |
-** entries in the table. |
-*/ |
-int sqlite3BtreeClearTable(Btree *p, int iTable, int *pnChange){ |
- int rc; |
- BtShared *pBt = p->pBt; |
- sqlite3BtreeEnter(p); |
- assert( p->inTrans==TRANS_WRITE ); |
- |
- rc = saveAllCursors(pBt, (Pgno)iTable, 0); |
- |
- if( SQLITE_OK==rc ){ |
- /* Invalidate all incrblob cursors open on table iTable (assuming iTable |
- ** is the root of a table b-tree - if it is not, the following call is |
- ** a no-op). */ |
- invalidateIncrblobCursors(p, 0, 1); |
- rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange); |
- } |
- sqlite3BtreeLeave(p); |
- return rc; |
-} |
- |
-/* |
-** Delete all information from the single table that pCur is open on. |
-** |
-** This routine only work for pCur on an ephemeral table. |
-*/ |
-int sqlite3BtreeClearTableOfCursor(BtCursor *pCur){ |
- return sqlite3BtreeClearTable(pCur->pBtree, pCur->pgnoRoot, 0); |
-} |
- |
-/* |
-** Erase all information in a table and add the root of the table to |
-** the freelist. Except, the root of the principle table (the one on |
-** page 1) is never added to the freelist. |
-** |
-** This routine will fail with SQLITE_LOCKED if there are any open |
-** cursors on the table. |
-** |
-** If AUTOVACUUM is enabled and the page at iTable is not the last |
-** root page in the database file, then the last root page |
-** in the database file is moved into the slot formerly occupied by |
-** iTable and that last slot formerly occupied by the last root page |
-** is added to the freelist instead of iTable. In this say, all |
-** root pages are kept at the beginning of the database file, which |
-** is necessary for AUTOVACUUM to work right. *piMoved is set to the |
-** page number that used to be the last root page in the file before |
-** the move. If no page gets moved, *piMoved is set to 0. |
-** The last root page is recorded in meta[3] and the value of |
-** meta[3] is updated by this procedure. |
-*/ |
-static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){ |
- int rc; |
- MemPage *pPage = 0; |
- BtShared *pBt = p->pBt; |
- |
- assert( sqlite3BtreeHoldsMutex(p) ); |
- assert( p->inTrans==TRANS_WRITE ); |
- |
- /* It is illegal to drop a table if any cursors are open on the |
- ** database. This is because in auto-vacuum mode the backend may |
- ** need to move another root-page to fill a gap left by the deleted |
- ** root page. If an open cursor was using this page a problem would |
- ** occur. |
- ** |
- ** This error is caught long before control reaches this point. |
- */ |
- if( NEVER(pBt->pCursor) ){ |
- sqlite3ConnectionBlocked(p->db, pBt->pCursor->pBtree->db); |
- return SQLITE_LOCKED_SHAREDCACHE; |
- } |
- |
- rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0); |
- if( rc ) return rc; |
- rc = sqlite3BtreeClearTable(p, iTable, 0); |
- if( rc ){ |
- releasePage(pPage); |
- return rc; |
- } |
- |
- *piMoved = 0; |
- |
- if( iTable>1 ){ |
-#ifdef SQLITE_OMIT_AUTOVACUUM |
- freePage(pPage, &rc); |
- releasePage(pPage); |
-#else |
- if( pBt->autoVacuum ){ |
- Pgno maxRootPgno; |
- sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno); |
- |
- if( iTable==maxRootPgno ){ |
- /* If the table being dropped is the table with the largest root-page |
- ** number in the database, put the root page on the free list. |
- */ |
- freePage(pPage, &rc); |
- releasePage(pPage); |
- if( rc!=SQLITE_OK ){ |
- return rc; |
- } |
- }else{ |
- /* The table being dropped does not have the largest root-page |
- ** number in the database. So move the page that does into the |
- ** gap left by the deleted root-page. |
- */ |
- MemPage *pMove; |
- releasePage(pPage); |
- rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0); |
- if( rc!=SQLITE_OK ){ |
- return rc; |
- } |
- rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0); |
- releasePage(pMove); |
- if( rc!=SQLITE_OK ){ |
- return rc; |
- } |
- pMove = 0; |
- rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0); |
- freePage(pMove, &rc); |
- releasePage(pMove); |
- if( rc!=SQLITE_OK ){ |
- return rc; |
- } |
- *piMoved = maxRootPgno; |
- } |
- |
- /* Set the new 'max-root-page' value in the database header. This |
- ** is the old value less one, less one more if that happens to |
- ** be a root-page number, less one again if that is the |
- ** PENDING_BYTE_PAGE. |
- */ |
- maxRootPgno--; |
- while( maxRootPgno==PENDING_BYTE_PAGE(pBt) |
- || PTRMAP_ISPAGE(pBt, maxRootPgno) ){ |
- maxRootPgno--; |
- } |
- assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) ); |
- |
- rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno); |
- }else{ |
- freePage(pPage, &rc); |
- releasePage(pPage); |
- } |
-#endif |
- }else{ |
- /* If sqlite3BtreeDropTable was called on page 1. |
- ** This really never should happen except in a corrupt |
- ** database. |
- */ |
- zeroPage(pPage, PTF_INTKEY|PTF_LEAF ); |
- releasePage(pPage); |
- } |
- return rc; |
-} |
-int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){ |
- int rc; |
- sqlite3BtreeEnter(p); |
- rc = btreeDropTable(p, iTable, piMoved); |
- sqlite3BtreeLeave(p); |
- return rc; |
-} |
- |
- |
-/* |
-** This function may only be called if the b-tree connection already |
-** has a read or write transaction open on the database. |
-** |
-** Read the meta-information out of a database file. Meta[0] |
-** is the number of free pages currently in the database. Meta[1] |
-** through meta[15] are available for use by higher layers. Meta[0] |
-** is read-only, the others are read/write. |
-** |
-** The schema layer numbers meta values differently. At the schema |
-** layer (and the SetCookie and ReadCookie opcodes) the number of |
-** free pages is not visible. So Cookie[0] is the same as Meta[1]. |
-*/ |
-void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){ |
- BtShared *pBt = p->pBt; |
- |
- sqlite3BtreeEnter(p); |
- assert( p->inTrans>TRANS_NONE ); |
- assert( SQLITE_OK==querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK) ); |
- assert( pBt->pPage1 ); |
- assert( idx>=0 && idx<=15 ); |
- |
- *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]); |
- |
- /* If auto-vacuum is disabled in this build and this is an auto-vacuum |
- ** database, mark the database as read-only. */ |
-#ifdef SQLITE_OMIT_AUTOVACUUM |
- if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){ |
- pBt->btsFlags |= BTS_READ_ONLY; |
- } |
-#endif |
- |
- sqlite3BtreeLeave(p); |
-} |
- |
-/* |
-** Write meta-information back into the database. Meta[0] is |
-** read-only and may not be written. |
-*/ |
-int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){ |
- BtShared *pBt = p->pBt; |
- unsigned char *pP1; |
- int rc; |
- assert( idx>=1 && idx<=15 ); |
- sqlite3BtreeEnter(p); |
- assert( p->inTrans==TRANS_WRITE ); |
- assert( pBt->pPage1!=0 ); |
- pP1 = pBt->pPage1->aData; |
- rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); |
- if( rc==SQLITE_OK ){ |
- put4byte(&pP1[36 + idx*4], iMeta); |
-#ifndef SQLITE_OMIT_AUTOVACUUM |
- if( idx==BTREE_INCR_VACUUM ){ |
- assert( pBt->autoVacuum || iMeta==0 ); |
- assert( iMeta==0 || iMeta==1 ); |
- pBt->incrVacuum = (u8)iMeta; |
- } |
-#endif |
- } |
- sqlite3BtreeLeave(p); |
- return rc; |
-} |
- |
-#ifndef SQLITE_OMIT_BTREECOUNT |
-/* |
-** The first argument, pCur, is a cursor opened on some b-tree. Count the |
-** number of entries in the b-tree and write the result to *pnEntry. |
-** |
-** SQLITE_OK is returned if the operation is successfully executed. |
-** Otherwise, if an error is encountered (i.e. an IO error or database |
-** corruption) an SQLite error code is returned. |
-*/ |
-int sqlite3BtreeCount(BtCursor *pCur, i64 *pnEntry){ |
- i64 nEntry = 0; /* Value to return in *pnEntry */ |
- int rc; /* Return code */ |
- |
- if( pCur->pgnoRoot==0 ){ |
- *pnEntry = 0; |
- return SQLITE_OK; |
- } |
- rc = moveToRoot(pCur); |
- |
- /* Unless an error occurs, the following loop runs one iteration for each |
- ** page in the B-Tree structure (not including overflow pages). |
- */ |
- while( rc==SQLITE_OK ){ |
- int iIdx; /* Index of child node in parent */ |
- MemPage *pPage; /* Current page of the b-tree */ |
- |
- /* If this is a leaf page or the tree is not an int-key tree, then |
- ** this page contains countable entries. Increment the entry counter |
- ** accordingly. |
- */ |
- pPage = pCur->apPage[pCur->iPage]; |
- if( pPage->leaf || !pPage->intKey ){ |
- nEntry += pPage->nCell; |
- } |
- |
- /* pPage is a leaf node. This loop navigates the cursor so that it |
- ** points to the first interior cell that it points to the parent of |
- ** the next page in the tree that has not yet been visited. The |
- ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell |
- ** of the page, or to the number of cells in the page if the next page |
- ** to visit is the right-child of its parent. |
- ** |
- ** If all pages in the tree have been visited, return SQLITE_OK to the |
- ** caller. |
- */ |
- if( pPage->leaf ){ |
- do { |
- if( pCur->iPage==0 ){ |
- /* All pages of the b-tree have been visited. Return successfully. */ |
- *pnEntry = nEntry; |
- return SQLITE_OK; |
- } |
- moveToParent(pCur); |
- }while ( pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell ); |
- |
- pCur->aiIdx[pCur->iPage]++; |
- pPage = pCur->apPage[pCur->iPage]; |
- } |
- |
- /* Descend to the child node of the cell that the cursor currently |
- ** points at. This is the right-child if (iIdx==pPage->nCell). |
- */ |
- iIdx = pCur->aiIdx[pCur->iPage]; |
- if( iIdx==pPage->nCell ){ |
- rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8])); |
- }else{ |
- rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx))); |
- } |
- } |
- |
- /* An error has occurred. Return an error code. */ |
- return rc; |
-} |
-#endif |
- |
-/* |
-** Return the pager associated with a BTree. This routine is used for |
-** testing and debugging only. |
-*/ |
-Pager *sqlite3BtreePager(Btree *p){ |
- return p->pBt->pPager; |
-} |
- |
-#ifndef SQLITE_OMIT_INTEGRITY_CHECK |
-/* |
-** Append a message to the error message string. |
-*/ |
-static void checkAppendMsg( |
- IntegrityCk *pCheck, |
- const char *zFormat, |
- ... |
-){ |
- va_list ap; |
- char zBuf[200]; |
- if( !pCheck->mxErr ) return; |
- pCheck->mxErr--; |
- pCheck->nErr++; |
- va_start(ap, zFormat); |
- if( pCheck->errMsg.nChar ){ |
- sqlite3StrAccumAppend(&pCheck->errMsg, "\n", 1); |
- } |
- if( pCheck->zPfx ){ |
- sqlite3_snprintf(sizeof(zBuf), zBuf, pCheck->zPfx, pCheck->v1, pCheck->v2); |
- sqlite3StrAccumAppendAll(&pCheck->errMsg, zBuf); |
- } |
- sqlite3VXPrintf(&pCheck->errMsg, 1, zFormat, ap); |
- va_end(ap); |
- if( pCheck->errMsg.accError==STRACCUM_NOMEM ){ |
- pCheck->mallocFailed = 1; |
- } |
-} |
-#endif /* SQLITE_OMIT_INTEGRITY_CHECK */ |
- |
-#ifndef SQLITE_OMIT_INTEGRITY_CHECK |
- |
-/* |
-** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that |
-** corresponds to page iPg is already set. |
-*/ |
-static int getPageReferenced(IntegrityCk *pCheck, Pgno iPg){ |
- assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 ); |
- return (pCheck->aPgRef[iPg/8] & (1 << (iPg & 0x07))); |
-} |
- |
-/* |
-** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg. |
-*/ |
-static void setPageReferenced(IntegrityCk *pCheck, Pgno iPg){ |
- assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 ); |
- pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07)); |
-} |
- |
- |
-/* |
-** Add 1 to the reference count for page iPage. If this is the second |
-** reference to the page, add an error message to pCheck->zErrMsg. |
-** Return 1 if there are 2 or more references to the page and 0 if |
-** if this is the first reference to the page. |
-** |
-** Also check that the page number is in bounds. |
-*/ |
-static int checkRef(IntegrityCk *pCheck, Pgno iPage){ |
- if( iPage==0 ) return 1; |
- if( iPage>pCheck->nPage ){ |
- checkAppendMsg(pCheck, "invalid page number %d", iPage); |
- return 1; |
- } |
- if( getPageReferenced(pCheck, iPage) ){ |
- checkAppendMsg(pCheck, "2nd reference to page %d", iPage); |
- return 1; |
- } |
- setPageReferenced(pCheck, iPage); |
- return 0; |
-} |
- |
-#ifndef SQLITE_OMIT_AUTOVACUUM |
-/* |
-** Check that the entry in the pointer-map for page iChild maps to |
-** page iParent, pointer type ptrType. If not, append an error message |
-** to pCheck. |
-*/ |
-static void checkPtrmap( |
- IntegrityCk *pCheck, /* Integrity check context */ |
- Pgno iChild, /* Child page number */ |
- u8 eType, /* Expected pointer map type */ |
- Pgno iParent /* Expected pointer map parent page number */ |
-){ |
- int rc; |
- u8 ePtrmapType; |
- Pgno iPtrmapParent; |
- |
- rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent); |
- if( rc!=SQLITE_OK ){ |
- if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1; |
- checkAppendMsg(pCheck, "Failed to read ptrmap key=%d", iChild); |
- return; |
- } |
- |
- if( ePtrmapType!=eType || iPtrmapParent!=iParent ){ |
- checkAppendMsg(pCheck, |
- "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)", |
- iChild, eType, iParent, ePtrmapType, iPtrmapParent); |
- } |
-} |
-#endif |
- |
-/* |
-** Check the integrity of the freelist or of an overflow page list. |
-** Verify that the number of pages on the list is N. |
-*/ |
-static void checkList( |
- IntegrityCk *pCheck, /* Integrity checking context */ |
- int isFreeList, /* True for a freelist. False for overflow page list */ |
- int iPage, /* Page number for first page in the list */ |
- int N /* Expected number of pages in the list */ |
-){ |
- int i; |
- int expected = N; |
- int iFirst = iPage; |
- while( N-- > 0 && pCheck->mxErr ){ |
- DbPage *pOvflPage; |
- unsigned char *pOvflData; |
- if( iPage<1 ){ |
- checkAppendMsg(pCheck, |
- "%d of %d pages missing from overflow list starting at %d", |
- N+1, expected, iFirst); |
- break; |
- } |
- if( checkRef(pCheck, iPage) ) break; |
- if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage) ){ |
- checkAppendMsg(pCheck, "failed to get page %d", iPage); |
- break; |
- } |
- pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage); |
- if( isFreeList ){ |
- int n = get4byte(&pOvflData[4]); |
-#ifndef SQLITE_OMIT_AUTOVACUUM |
- if( pCheck->pBt->autoVacuum ){ |
- checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0); |
- } |
-#endif |
- if( n>(int)pCheck->pBt->usableSize/4-2 ){ |
- checkAppendMsg(pCheck, |
- "freelist leaf count too big on page %d", iPage); |
- N--; |
- }else{ |
- for(i=0; i<n; i++){ |
- Pgno iFreePage = get4byte(&pOvflData[8+i*4]); |
-#ifndef SQLITE_OMIT_AUTOVACUUM |
- if( pCheck->pBt->autoVacuum ){ |
- checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0); |
- } |
-#endif |
- checkRef(pCheck, iFreePage); |
- } |
- N -= n; |
- } |
- } |
-#ifndef SQLITE_OMIT_AUTOVACUUM |
- else{ |
- /* If this database supports auto-vacuum and iPage is not the last |
- ** page in this overflow list, check that the pointer-map entry for |
- ** the following page matches iPage. |
- */ |
- if( pCheck->pBt->autoVacuum && N>0 ){ |
- i = get4byte(pOvflData); |
- checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage); |
- } |
- } |
-#endif |
- iPage = get4byte(pOvflData); |
- sqlite3PagerUnref(pOvflPage); |
- } |
-} |
-#endif /* SQLITE_OMIT_INTEGRITY_CHECK */ |
- |
-#ifndef SQLITE_OMIT_INTEGRITY_CHECK |
-/* |
-** Do various sanity checks on a single page of a tree. Return |
-** the tree depth. Root pages return 0. Parents of root pages |
-** return 1, and so forth. |
-** |
-** These checks are done: |
-** |
-** 1. Make sure that cells and freeblocks do not overlap |
-** but combine to completely cover the page. |
-** NO 2. Make sure cell keys are in order. |
-** NO 3. Make sure no key is less than or equal to zLowerBound. |
-** NO 4. Make sure no key is greater than or equal to zUpperBound. |
-** 5. Check the integrity of overflow pages. |
-** 6. Recursively call checkTreePage on all children. |
-** 7. Verify that the depth of all children is the same. |
-** 8. Make sure this page is at least 33% full or else it is |
-** the root of the tree. |
-*/ |
-static int checkTreePage( |
- IntegrityCk *pCheck, /* Context for the sanity check */ |
- int iPage, /* Page number of the page to check */ |
- i64 *pnParentMinKey, |
- i64 *pnParentMaxKey |
-){ |
- MemPage *pPage; |
- int i, rc, depth, d2, pgno, cnt; |
- int hdr, cellStart; |
- int nCell; |
- u8 *data; |
- BtShared *pBt; |
- int usableSize; |
- char *hit = 0; |
- i64 nMinKey = 0; |
- i64 nMaxKey = 0; |
- const char *saved_zPfx = pCheck->zPfx; |
- int saved_v1 = pCheck->v1; |
- int saved_v2 = pCheck->v2; |
- |
- /* Check that the page exists |
- */ |
- pBt = pCheck->pBt; |
- usableSize = pBt->usableSize; |
- if( iPage==0 ) return 0; |
- if( checkRef(pCheck, iPage) ) return 0; |
- pCheck->zPfx = "Page %d: "; |
- pCheck->v1 = iPage; |
- if( (rc = btreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){ |
- checkAppendMsg(pCheck, |
- "unable to get the page. error code=%d", rc); |
- depth = -1; |
- goto end_of_check; |
- } |
- |
- /* Clear MemPage.isInit to make sure the corruption detection code in |
- ** btreeInitPage() is executed. */ |
- pPage->isInit = 0; |
- if( (rc = btreeInitPage(pPage))!=0 ){ |
- assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */ |
- checkAppendMsg(pCheck, |
- "btreeInitPage() returns error code %d", rc); |
- releasePage(pPage); |
- depth = -1; |
- goto end_of_check; |
- } |
- |
- /* Check out all the cells. |
- */ |
- depth = 0; |
- for(i=0; i<pPage->nCell && pCheck->mxErr; i++){ |
- u8 *pCell; |
- u32 sz; |
- CellInfo info; |
- |
- /* Check payload overflow pages |
- */ |
- pCheck->zPfx = "On tree page %d cell %d: "; |
- pCheck->v1 = iPage; |
- pCheck->v2 = i; |
- pCell = findCell(pPage,i); |
- btreeParseCellPtr(pPage, pCell, &info); |
- sz = info.nPayload; |
- /* For intKey pages, check that the keys are in order. |
- */ |
- if( pPage->intKey ){ |
- if( i==0 ){ |
- nMinKey = nMaxKey = info.nKey; |
- }else if( info.nKey <= nMaxKey ){ |
- checkAppendMsg(pCheck, |
- "Rowid %lld out of order (previous was %lld)", info.nKey, nMaxKey); |
- } |
- nMaxKey = info.nKey; |
- } |
- if( (sz>info.nLocal) |
- && (&pCell[info.iOverflow]<=&pPage->aData[pBt->usableSize]) |
- ){ |
- int nPage = (sz - info.nLocal + usableSize - 5)/(usableSize - 4); |
- Pgno pgnoOvfl = get4byte(&pCell[info.iOverflow]); |
-#ifndef SQLITE_OMIT_AUTOVACUUM |
- if( pBt->autoVacuum ){ |
- checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage); |
- } |
-#endif |
- checkList(pCheck, 0, pgnoOvfl, nPage); |
- } |
- |
- /* Check sanity of left child page. |
- */ |
- if( !pPage->leaf ){ |
- pgno = get4byte(pCell); |
-#ifndef SQLITE_OMIT_AUTOVACUUM |
- if( pBt->autoVacuum ){ |
- checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage); |
- } |
-#endif |
- d2 = checkTreePage(pCheck, pgno, &nMinKey, i==0?NULL:&nMaxKey); |
- if( i>0 && d2!=depth ){ |
- checkAppendMsg(pCheck, "Child page depth differs"); |
- } |
- depth = d2; |
- } |
- } |
- |
- if( !pPage->leaf ){ |
- pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]); |
- pCheck->zPfx = "On page %d at right child: "; |
- pCheck->v1 = iPage; |
-#ifndef SQLITE_OMIT_AUTOVACUUM |
- if( pBt->autoVacuum ){ |
- checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage); |
- } |
-#endif |
- checkTreePage(pCheck, pgno, NULL, !pPage->nCell?NULL:&nMaxKey); |
- } |
- |
- /* For intKey leaf pages, check that the min/max keys are in order |
- ** with any left/parent/right pages. |
- */ |
- pCheck->zPfx = "Page %d: "; |
- pCheck->v1 = iPage; |
- if( pPage->leaf && pPage->intKey ){ |
- /* if we are a left child page */ |
- if( pnParentMinKey ){ |
- /* if we are the left most child page */ |
- if( !pnParentMaxKey ){ |
- if( nMaxKey > *pnParentMinKey ){ |
- checkAppendMsg(pCheck, |
- "Rowid %lld out of order (max larger than parent min of %lld)", |
- nMaxKey, *pnParentMinKey); |
- } |
- }else{ |
- if( nMinKey <= *pnParentMinKey ){ |
- checkAppendMsg(pCheck, |
- "Rowid %lld out of order (min less than parent min of %lld)", |
- nMinKey, *pnParentMinKey); |
- } |
- if( nMaxKey > *pnParentMaxKey ){ |
- checkAppendMsg(pCheck, |
- "Rowid %lld out of order (max larger than parent max of %lld)", |
- nMaxKey, *pnParentMaxKey); |
- } |
- *pnParentMinKey = nMaxKey; |
- } |
- /* else if we're a right child page */ |
- } else if( pnParentMaxKey ){ |
- if( nMinKey <= *pnParentMaxKey ){ |
- checkAppendMsg(pCheck, |
- "Rowid %lld out of order (min less than parent max of %lld)", |
- nMinKey, *pnParentMaxKey); |
- } |
- } |
- } |
- |
- /* Check for complete coverage of the page |
- */ |
- data = pPage->aData; |
- hdr = pPage->hdrOffset; |
- hit = sqlite3PageMalloc( pBt->pageSize ); |
- pCheck->zPfx = 0; |
- if( hit==0 ){ |
- pCheck->mallocFailed = 1; |
- }else{ |
- int contentOffset = get2byteNotZero(&data[hdr+5]); |
- assert( contentOffset<=usableSize ); /* Enforced by btreeInitPage() */ |
- memset(hit+contentOffset, 0, usableSize-contentOffset); |
- memset(hit, 1, contentOffset); |
- nCell = get2byte(&data[hdr+3]); |
- cellStart = hdr + 12 - 4*pPage->leaf; |
- for(i=0; i<nCell; i++){ |
- int pc = get2byte(&data[cellStart+i*2]); |
- u32 size = 65536; |
- int j; |
- if( pc<=usableSize-4 ){ |
- size = cellSizePtr(pPage, &data[pc]); |
- } |
- if( (int)(pc+size-1)>=usableSize ){ |
- pCheck->zPfx = 0; |
- checkAppendMsg(pCheck, |
- "Corruption detected in cell %d on page %d",i,iPage); |
- }else{ |
- for(j=pc+size-1; j>=pc; j--) hit[j]++; |
- } |
- } |
- i = get2byte(&data[hdr+1]); |
- while( i>0 ){ |
- int size, j; |
- assert( i<=usableSize-4 ); /* Enforced by btreeInitPage() */ |
- size = get2byte(&data[i+2]); |
- assert( i+size<=usableSize ); /* Enforced by btreeInitPage() */ |
- for(j=i+size-1; j>=i; j--) hit[j]++; |
- j = get2byte(&data[i]); |
- assert( j==0 || j>i+size ); /* Enforced by btreeInitPage() */ |
- assert( j<=usableSize-4 ); /* Enforced by btreeInitPage() */ |
- i = j; |
- } |
- for(i=cnt=0; i<usableSize; i++){ |
- if( hit[i]==0 ){ |
- cnt++; |
- }else if( hit[i]>1 ){ |
- checkAppendMsg(pCheck, |
- "Multiple uses for byte %d of page %d", i, iPage); |
- break; |
- } |
- } |
- if( cnt!=data[hdr+7] ){ |
- checkAppendMsg(pCheck, |
- "Fragmentation of %d bytes reported as %d on page %d", |
- cnt, data[hdr+7], iPage); |
- } |
- } |
- sqlite3PageFree(hit); |
- releasePage(pPage); |
- |
-end_of_check: |
- pCheck->zPfx = saved_zPfx; |
- pCheck->v1 = saved_v1; |
- pCheck->v2 = saved_v2; |
- return depth+1; |
-} |
-#endif /* SQLITE_OMIT_INTEGRITY_CHECK */ |
- |
-#ifndef SQLITE_OMIT_INTEGRITY_CHECK |
-/* |
-** This routine does a complete check of the given BTree file. aRoot[] is |
-** an array of pages numbers were each page number is the root page of |
-** a table. nRoot is the number of entries in aRoot. |
-** |
-** A read-only or read-write transaction must be opened before calling |
-** this function. |
-** |
-** Write the number of error seen in *pnErr. Except for some memory |
-** allocation errors, an error message held in memory obtained from |
-** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is |
-** returned. If a memory allocation error occurs, NULL is returned. |
-*/ |
-char *sqlite3BtreeIntegrityCheck( |
- Btree *p, /* The btree to be checked */ |
- int *aRoot, /* An array of root pages numbers for individual trees */ |
- int nRoot, /* Number of entries in aRoot[] */ |
- int mxErr, /* Stop reporting errors after this many */ |
- int *pnErr /* Write number of errors seen to this variable */ |
-){ |
- Pgno i; |
- int nRef; |
- IntegrityCk sCheck; |
- BtShared *pBt = p->pBt; |
- char zErr[100]; |
- |
- sqlite3BtreeEnter(p); |
- assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE ); |
- nRef = sqlite3PagerRefcount(pBt->pPager); |
- sCheck.pBt = pBt; |
- sCheck.pPager = pBt->pPager; |
- sCheck.nPage = btreePagecount(sCheck.pBt); |
- sCheck.mxErr = mxErr; |
- sCheck.nErr = 0; |
- sCheck.mallocFailed = 0; |
- sCheck.zPfx = 0; |
- sCheck.v1 = 0; |
- sCheck.v2 = 0; |
- *pnErr = 0; |
- if( sCheck.nPage==0 ){ |
- sqlite3BtreeLeave(p); |
- return 0; |
- } |
- |
- sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1); |
- if( !sCheck.aPgRef ){ |
- *pnErr = 1; |
- sqlite3BtreeLeave(p); |
- return 0; |
- } |
- i = PENDING_BYTE_PAGE(pBt); |
- if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i); |
- sqlite3StrAccumInit(&sCheck.errMsg, zErr, sizeof(zErr), SQLITE_MAX_LENGTH); |
- sCheck.errMsg.useMalloc = 2; |
- |
- /* Check the integrity of the freelist |
- */ |
- sCheck.zPfx = "Main freelist: "; |
- checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]), |
- get4byte(&pBt->pPage1->aData[36])); |
- sCheck.zPfx = 0; |
- |
- /* Check all the tables. |
- */ |
- for(i=0; (int)i<nRoot && sCheck.mxErr; i++){ |
- if( aRoot[i]==0 ) continue; |
-#ifndef SQLITE_OMIT_AUTOVACUUM |
- if( pBt->autoVacuum && aRoot[i]>1 ){ |
- checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0); |
- } |
-#endif |
- sCheck.zPfx = "List of tree roots: "; |
- checkTreePage(&sCheck, aRoot[i], NULL, NULL); |
- sCheck.zPfx = 0; |
- } |
- |
- /* Make sure every page in the file is referenced |
- */ |
- for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){ |
-#ifdef SQLITE_OMIT_AUTOVACUUM |
- if( getPageReferenced(&sCheck, i)==0 ){ |
- checkAppendMsg(&sCheck, "Page %d is never used", i); |
- } |
-#else |
- /* If the database supports auto-vacuum, make sure no tables contain |
- ** references to pointer-map pages. |
- */ |
- if( getPageReferenced(&sCheck, i)==0 && |
- (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){ |
- checkAppendMsg(&sCheck, "Page %d is never used", i); |
- } |
- if( getPageReferenced(&sCheck, i)!=0 && |
- (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){ |
- checkAppendMsg(&sCheck, "Pointer map page %d is referenced", i); |
- } |
-#endif |
- } |
- |
- /* Make sure this analysis did not leave any unref() pages. |
- ** This is an internal consistency check; an integrity check |
- ** of the integrity check. |
- */ |
- if( NEVER(nRef != sqlite3PagerRefcount(pBt->pPager)) ){ |
- checkAppendMsg(&sCheck, |
- "Outstanding page count goes from %d to %d during this analysis", |
- nRef, sqlite3PagerRefcount(pBt->pPager) |
- ); |
- } |
- |
- /* Clean up and report errors. |
- */ |
- sqlite3BtreeLeave(p); |
- sqlite3_free(sCheck.aPgRef); |
- if( sCheck.mallocFailed ){ |
- sqlite3StrAccumReset(&sCheck.errMsg); |
- *pnErr = sCheck.nErr+1; |
- return 0; |
- } |
- *pnErr = sCheck.nErr; |
- if( sCheck.nErr==0 ) sqlite3StrAccumReset(&sCheck.errMsg); |
- return sqlite3StrAccumFinish(&sCheck.errMsg); |
-} |
-#endif /* SQLITE_OMIT_INTEGRITY_CHECK */ |
- |
-/* |
-** Return the full pathname of the underlying database file. Return |
-** an empty string if the database is in-memory or a TEMP database. |
-** |
-** The pager filename is invariant as long as the pager is |
-** open so it is safe to access without the BtShared mutex. |
-*/ |
-const char *sqlite3BtreeGetFilename(Btree *p){ |
- assert( p->pBt->pPager!=0 ); |
- return sqlite3PagerFilename(p->pBt->pPager, 1); |
-} |
- |
-/* |
-** Return the pathname of the journal file for this database. The return |
-** value of this routine is the same regardless of whether the journal file |
-** has been created or not. |
-** |
-** The pager journal filename is invariant as long as the pager is |
-** open so it is safe to access without the BtShared mutex. |
-*/ |
-const char *sqlite3BtreeGetJournalname(Btree *p){ |
- assert( p->pBt->pPager!=0 ); |
- return sqlite3PagerJournalname(p->pBt->pPager); |
-} |
- |
-/* |
-** Return non-zero if a transaction is active. |
-*/ |
-int sqlite3BtreeIsInTrans(Btree *p){ |
- assert( p==0 || sqlite3_mutex_held(p->db->mutex) ); |
- return (p && (p->inTrans==TRANS_WRITE)); |
-} |
- |
-#ifndef SQLITE_OMIT_WAL |
-/* |
-** Run a checkpoint on the Btree passed as the first argument. |
-** |
-** Return SQLITE_LOCKED if this or any other connection has an open |
-** transaction on the shared-cache the argument Btree is connected to. |
-** |
-** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART. |
-*/ |
-int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){ |
- int rc = SQLITE_OK; |
- if( p ){ |
- BtShared *pBt = p->pBt; |
- sqlite3BtreeEnter(p); |
- if( pBt->inTransaction!=TRANS_NONE ){ |
- rc = SQLITE_LOCKED; |
- }else{ |
- rc = sqlite3PagerCheckpoint(pBt->pPager, eMode, pnLog, pnCkpt); |
- } |
- sqlite3BtreeLeave(p); |
- } |
- return rc; |
-} |
-#endif |
- |
-/* |
-** Return non-zero if a read (or write) transaction is active. |
-*/ |
-int sqlite3BtreeIsInReadTrans(Btree *p){ |
- assert( p ); |
- assert( sqlite3_mutex_held(p->db->mutex) ); |
- return p->inTrans!=TRANS_NONE; |
-} |
- |
-int sqlite3BtreeIsInBackup(Btree *p){ |
- assert( p ); |
- assert( sqlite3_mutex_held(p->db->mutex) ); |
- return p->nBackup!=0; |
-} |
- |
-/* |
-** This function returns a pointer to a blob of memory associated with |
-** a single shared-btree. The memory is used by client code for its own |
-** purposes (for example, to store a high-level schema associated with |
-** the shared-btree). The btree layer manages reference counting issues. |
-** |
-** The first time this is called on a shared-btree, nBytes bytes of memory |
-** are allocated, zeroed, and returned to the caller. For each subsequent |
-** call the nBytes parameter is ignored and a pointer to the same blob |
-** of memory returned. |
-** |
-** If the nBytes parameter is 0 and the blob of memory has not yet been |
-** allocated, a null pointer is returned. If the blob has already been |
-** allocated, it is returned as normal. |
-** |
-** Just before the shared-btree is closed, the function passed as the |
-** xFree argument when the memory allocation was made is invoked on the |
-** blob of allocated memory. The xFree function should not call sqlite3_free() |
-** on the memory, the btree layer does that. |
-*/ |
-void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){ |
- BtShared *pBt = p->pBt; |
- sqlite3BtreeEnter(p); |
- if( !pBt->pSchema && nBytes ){ |
- pBt->pSchema = sqlite3DbMallocZero(0, nBytes); |
- pBt->xFreeSchema = xFree; |
- } |
- sqlite3BtreeLeave(p); |
- return pBt->pSchema; |
-} |
- |
-/* |
-** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared |
-** btree as the argument handle holds an exclusive lock on the |
-** sqlite_master table. Otherwise SQLITE_OK. |
-*/ |
-int sqlite3BtreeSchemaLocked(Btree *p){ |
- int rc; |
- assert( sqlite3_mutex_held(p->db->mutex) ); |
- sqlite3BtreeEnter(p); |
- rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK); |
- assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE ); |
- sqlite3BtreeLeave(p); |
- return rc; |
-} |
- |
- |
-#ifndef SQLITE_OMIT_SHARED_CACHE |
-/* |
-** Obtain a lock on the table whose root page is iTab. The |
-** lock is a write lock if isWritelock is true or a read lock |
-** if it is false. |
-*/ |
-int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){ |
- int rc = SQLITE_OK; |
- assert( p->inTrans!=TRANS_NONE ); |
- if( p->sharable ){ |
- u8 lockType = READ_LOCK + isWriteLock; |
- assert( READ_LOCK+1==WRITE_LOCK ); |
- assert( isWriteLock==0 || isWriteLock==1 ); |
- |
- sqlite3BtreeEnter(p); |
- rc = querySharedCacheTableLock(p, iTab, lockType); |
- if( rc==SQLITE_OK ){ |
- rc = setSharedCacheTableLock(p, iTab, lockType); |
- } |
- sqlite3BtreeLeave(p); |
- } |
- return rc; |
-} |
-#endif |
- |
-#ifndef SQLITE_OMIT_INCRBLOB |
-/* |
-** Argument pCsr must be a cursor opened for writing on an |
-** INTKEY table currently pointing at a valid table entry. |
-** This function modifies the data stored as part of that entry. |
-** |
-** Only the data content may only be modified, it is not possible to |
-** change the length of the data stored. If this function is called with |
-** parameters that attempt to write past the end of the existing data, |
-** no modifications are made and SQLITE_CORRUPT is returned. |
-*/ |
-int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){ |
- int rc; |
- assert( cursorHoldsMutex(pCsr) ); |
- assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) ); |
- assert( pCsr->curFlags & BTCF_Incrblob ); |
- |
- rc = restoreCursorPosition(pCsr); |
- if( rc!=SQLITE_OK ){ |
- return rc; |
- } |
- assert( pCsr->eState!=CURSOR_REQUIRESEEK ); |
- if( pCsr->eState!=CURSOR_VALID ){ |
- return SQLITE_ABORT; |
- } |
- |
- /* Save the positions of all other cursors open on this table. This is |
- ** required in case any of them are holding references to an xFetch |
- ** version of the b-tree page modified by the accessPayload call below. |
- ** |
- ** Note that pCsr must be open on a INTKEY table and saveCursorPosition() |
- ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence |
- ** saveAllCursors can only return SQLITE_OK. |
- */ |
- VVA_ONLY(rc =) saveAllCursors(pCsr->pBt, pCsr->pgnoRoot, pCsr); |
- assert( rc==SQLITE_OK ); |
- |
- /* Check some assumptions: |
- ** (a) the cursor is open for writing, |
- ** (b) there is a read/write transaction open, |
- ** (c) the connection holds a write-lock on the table (if required), |
- ** (d) there are no conflicting read-locks, and |
- ** (e) the cursor points at a valid row of an intKey table. |
- */ |
- if( (pCsr->curFlags & BTCF_WriteFlag)==0 ){ |
- return SQLITE_READONLY; |
- } |
- assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0 |
- && pCsr->pBt->inTransaction==TRANS_WRITE ); |
- assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) ); |
- assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) ); |
- assert( pCsr->apPage[pCsr->iPage]->intKey ); |
- |
- return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1); |
-} |
- |
-/* |
-** Mark this cursor as an incremental blob cursor. |
-*/ |
-void sqlite3BtreeIncrblobCursor(BtCursor *pCur){ |
- pCur->curFlags |= BTCF_Incrblob; |
-} |
-#endif |
- |
-/* |
-** Set both the "read version" (single byte at byte offset 18) and |
-** "write version" (single byte at byte offset 19) fields in the database |
-** header to iVersion. |
-*/ |
-int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){ |
- BtShared *pBt = pBtree->pBt; |
- int rc; /* Return code */ |
- |
- assert( iVersion==1 || iVersion==2 ); |
- |
- /* If setting the version fields to 1, do not automatically open the |
- ** WAL connection, even if the version fields are currently set to 2. |
- */ |
- pBt->btsFlags &= ~BTS_NO_WAL; |
- if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL; |
- |
- rc = sqlite3BtreeBeginTrans(pBtree, 0); |
- if( rc==SQLITE_OK ){ |
- u8 *aData = pBt->pPage1->aData; |
- if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){ |
- rc = sqlite3BtreeBeginTrans(pBtree, 2); |
- if( rc==SQLITE_OK ){ |
- rc = sqlite3PagerWrite(pBt->pPage1->pDbPage); |
- if( rc==SQLITE_OK ){ |
- aData[18] = (u8)iVersion; |
- aData[19] = (u8)iVersion; |
- } |
- } |
- } |
- } |
- |
- pBt->btsFlags &= ~BTS_NO_WAL; |
- return rc; |
-} |
- |
-/* |
-** set the mask of hint flags for cursor pCsr. Currently the only valid |
-** values are 0 and BTREE_BULKLOAD. |
-*/ |
-void sqlite3BtreeCursorHints(BtCursor *pCsr, unsigned int mask){ |
- assert( mask==BTREE_BULKLOAD || mask==0 ); |
- pCsr->hints = mask; |
-} |
- |
-/* |
-** Return true if the given Btree is read-only. |
-*/ |
-int sqlite3BtreeIsReadonly(Btree *p){ |
- return (p->pBt->btsFlags & BTS_READ_ONLY)!=0; |
-} |