Index: third_party/sqlite/sqlite-src-3080704/ext/misc/regexp.c |
diff --git a/third_party/sqlite/sqlite-src-3080704/ext/misc/regexp.c b/third_party/sqlite/sqlite-src-3080704/ext/misc/regexp.c |
deleted file mode 100644 |
index 7244d5299815b3607fb8098172eabcfc1a5fe7a6..0000000000000000000000000000000000000000 |
--- a/third_party/sqlite/sqlite-src-3080704/ext/misc/regexp.c |
+++ /dev/null |
@@ -1,760 +0,0 @@ |
-/* |
-** 2012-11-13 |
-** |
-** The author disclaims copyright to this source code. In place of |
-** a legal notice, here is a blessing: |
-** |
-** May you do good and not evil. |
-** May you find forgiveness for yourself and forgive others. |
-** May you share freely, never taking more than you give. |
-** |
-****************************************************************************** |
-** |
-** The code in this file implements a compact but reasonably |
-** efficient regular-expression matcher for posix extended regular |
-** expressions against UTF8 text. |
-** |
-** This file is an SQLite extension. It registers a single function |
-** named "regexp(A,B)" where A is the regular expression and B is the |
-** string to be matched. By registering this function, SQLite will also |
-** then implement the "B regexp A" operator. Note that with the function |
-** the regular expression comes first, but with the operator it comes |
-** second. |
-** |
-** The following regular expression syntax is supported: |
-** |
-** X* zero or more occurrences of X |
-** X+ one or more occurrences of X |
-** X? zero or one occurrences of X |
-** X{p,q} between p and q occurrences of X |
-** (X) match X |
-** X|Y X or Y |
-** ^X X occurring at the beginning of the string |
-** X$ X occurring at the end of the string |
-** . Match any single character |
-** \c Character c where c is one of \{}()[]|*+?. |
-** \c C-language escapes for c in afnrtv. ex: \t or \n |
-** \uXXXX Where XXXX is exactly 4 hex digits, unicode value XXXX |
-** \xXX Where XX is exactly 2 hex digits, unicode value XX |
-** [abc] Any single character from the set abc |
-** [^abc] Any single character not in the set abc |
-** [a-z] Any single character in the range a-z |
-** [^a-z] Any single character not in the range a-z |
-** \b Word boundary |
-** \w Word character. [A-Za-z0-9_] |
-** \W Non-word character |
-** \d Digit |
-** \D Non-digit |
-** \s Whitespace character |
-** \S Non-whitespace character |
-** |
-** A nondeterministic finite automaton (NFA) is used for matching, so the |
-** performance is bounded by O(N*M) where N is the size of the regular |
-** expression and M is the size of the input string. The matcher never |
-** exhibits exponential behavior. Note that the X{p,q} operator expands |
-** to p copies of X following by q-p copies of X? and that the size of the |
-** regular expression in the O(N*M) performance bound is computed after |
-** this expansion. |
-*/ |
-#include <string.h> |
-#include <stdlib.h> |
-#include "sqlite3ext.h" |
-SQLITE_EXTENSION_INIT1 |
- |
-/* |
-** The following #defines change the names of some functions implemented in |
-** this file to prevent name collisions with C-library functions of the |
-** same name. |
-*/ |
-#define re_match sqlite3re_match |
-#define re_compile sqlite3re_compile |
-#define re_free sqlite3re_free |
- |
-/* The end-of-input character */ |
-#define RE_EOF 0 /* End of input */ |
- |
-/* The NFA is implemented as sequence of opcodes taken from the following |
-** set. Each opcode has a single integer argument. |
-*/ |
-#define RE_OP_MATCH 1 /* Match the one character in the argument */ |
-#define RE_OP_ANY 2 /* Match any one character. (Implements ".") */ |
-#define RE_OP_ANYSTAR 3 /* Special optimized version of .* */ |
-#define RE_OP_FORK 4 /* Continue to both next and opcode at iArg */ |
-#define RE_OP_GOTO 5 /* Jump to opcode at iArg */ |
-#define RE_OP_ACCEPT 6 /* Halt and indicate a successful match */ |
-#define RE_OP_CC_INC 7 /* Beginning of a [...] character class */ |
-#define RE_OP_CC_EXC 8 /* Beginning of a [^...] character class */ |
-#define RE_OP_CC_VALUE 9 /* Single value in a character class */ |
-#define RE_OP_CC_RANGE 10 /* Range of values in a character class */ |
-#define RE_OP_WORD 11 /* Perl word character [A-Za-z0-9_] */ |
-#define RE_OP_NOTWORD 12 /* Not a perl word character */ |
-#define RE_OP_DIGIT 13 /* digit: [0-9] */ |
-#define RE_OP_NOTDIGIT 14 /* Not a digit */ |
-#define RE_OP_SPACE 15 /* space: [ \t\n\r\v\f] */ |
-#define RE_OP_NOTSPACE 16 /* Not a digit */ |
-#define RE_OP_BOUNDARY 17 /* Boundary between word and non-word */ |
- |
-/* Each opcode is a "state" in the NFA */ |
-typedef unsigned short ReStateNumber; |
- |
-/* Because this is an NFA and not a DFA, multiple states can be active at |
-** once. An instance of the following object records all active states in |
-** the NFA. The implementation is optimized for the common case where the |
-** number of actives states is small. |
-*/ |
-typedef struct ReStateSet { |
- unsigned nState; /* Number of current states */ |
- ReStateNumber *aState; /* Current states */ |
-} ReStateSet; |
- |
-/* An input string read one character at a time. |
-*/ |
-typedef struct ReInput ReInput; |
-struct ReInput { |
- const unsigned char *z; /* All text */ |
- int i; /* Next byte to read */ |
- int mx; /* EOF when i>=mx */ |
-}; |
- |
-/* A compiled NFA (or an NFA that is in the process of being compiled) is |
-** an instance of the following object. |
-*/ |
-typedef struct ReCompiled ReCompiled; |
-struct ReCompiled { |
- ReInput sIn; /* Regular expression text */ |
- const char *zErr; /* Error message to return */ |
- char *aOp; /* Operators for the virtual machine */ |
- int *aArg; /* Arguments to each operator */ |
- unsigned (*xNextChar)(ReInput*); /* Next character function */ |
- unsigned char zInit[12]; /* Initial text to match */ |
- int nInit; /* Number of characters in zInit */ |
- unsigned nState; /* Number of entries in aOp[] and aArg[] */ |
- unsigned nAlloc; /* Slots allocated for aOp[] and aArg[] */ |
-}; |
- |
-/* Add a state to the given state set if it is not already there */ |
-static void re_add_state(ReStateSet *pSet, int newState){ |
- unsigned i; |
- for(i=0; i<pSet->nState; i++) if( pSet->aState[i]==newState ) return; |
- pSet->aState[pSet->nState++] = newState; |
-} |
- |
-/* Extract the next unicode character from *pzIn and return it. Advance |
-** *pzIn to the first byte past the end of the character returned. To |
-** be clear: this routine converts utf8 to unicode. This routine is |
-** optimized for the common case where the next character is a single byte. |
-*/ |
-static unsigned re_next_char(ReInput *p){ |
- unsigned c; |
- if( p->i>=p->mx ) return 0; |
- c = p->z[p->i++]; |
- if( c>=0x80 ){ |
- if( (c&0xe0)==0xc0 && p->i<p->mx && (p->z[p->i]&0xc0)==0x80 ){ |
- c = (c&0x1f)<<6 | (p->z[p->i++]&0x3f); |
- if( c<0x80 ) c = 0xfffd; |
- }else if( (c&0xf0)==0xe0 && p->i+1<p->mx && (p->z[p->i]&0xc0)==0x80 |
- && (p->z[p->i+1]&0xc0)==0x80 ){ |
- c = (c&0x0f)<<12 | ((p->z[p->i]&0x3f)<<6) | (p->z[p->i+1]&0x3f); |
- p->i += 2; |
- if( c<=0x3ff || (c>=0xd800 && c<=0xdfff) ) c = 0xfffd; |
- }else if( (c&0xf8)==0xf0 && p->i+3<p->mx && (p->z[p->i]&0xc0)==0x80 |
- && (p->z[p->i+1]&0xc0)==0x80 && (p->z[p->i+2]&0xc0)==0x80 ){ |
- c = (c&0x07)<<18 | ((p->z[p->i]&0x3f)<<12) | ((p->z[p->i+1]&0x3f)<<6) |
- | (p->z[p->i+2]&0x3f); |
- p->i += 3; |
- if( c<=0xffff || c>0x10ffff ) c = 0xfffd; |
- }else{ |
- c = 0xfffd; |
- } |
- } |
- return c; |
-} |
-static unsigned re_next_char_nocase(ReInput *p){ |
- unsigned c = re_next_char(p); |
- if( c>='A' && c<='Z' ) c += 'a' - 'A'; |
- return c; |
-} |
- |
-/* Return true if c is a perl "word" character: [A-Za-z0-9_] */ |
-static int re_word_char(int c){ |
- return (c>='0' && c<='9') || (c>='a' && c<='z') |
- || (c>='A' && c<='Z') || c=='_'; |
-} |
- |
-/* Return true if c is a "digit" character: [0-9] */ |
-static int re_digit_char(int c){ |
- return (c>='0' && c<='9'); |
-} |
- |
-/* Return true if c is a perl "space" character: [ \t\r\n\v\f] */ |
-static int re_space_char(int c){ |
- return c==' ' || c=='\t' || c=='\n' || c=='\r' || c=='\v' || c=='\f'; |
-} |
- |
-/* Run a compiled regular expression on the zero-terminated input |
-** string zIn[]. Return true on a match and false if there is no match. |
-*/ |
-static int re_match(ReCompiled *pRe, const unsigned char *zIn, int nIn){ |
- ReStateSet aStateSet[2], *pThis, *pNext; |
- ReStateNumber aSpace[100]; |
- ReStateNumber *pToFree; |
- unsigned int i = 0; |
- unsigned int iSwap = 0; |
- int c = RE_EOF+1; |
- int cPrev = 0; |
- int rc = 0; |
- ReInput in; |
- |
- in.z = zIn; |
- in.i = 0; |
- in.mx = nIn>=0 ? nIn : (int)strlen((char const*)zIn); |
- |
- /* Look for the initial prefix match, if there is one. */ |
- if( pRe->nInit ){ |
- unsigned char x = pRe->zInit[0]; |
- while( in.i+pRe->nInit<=in.mx |
- && (zIn[in.i]!=x || |
- strncmp((const char*)zIn+in.i, (const char*)pRe->zInit, pRe->nInit)!=0) |
- ){ |
- in.i++; |
- } |
- if( in.i+pRe->nInit>in.mx ) return 0; |
- } |
- |
- if( pRe->nState<=(sizeof(aSpace)/(sizeof(aSpace[0])*2)) ){ |
- pToFree = 0; |
- aStateSet[0].aState = aSpace; |
- }else{ |
- pToFree = sqlite3_malloc( sizeof(ReStateNumber)*2*pRe->nState ); |
- if( pToFree==0 ) return -1; |
- aStateSet[0].aState = pToFree; |
- } |
- aStateSet[1].aState = &aStateSet[0].aState[pRe->nState]; |
- pNext = &aStateSet[1]; |
- pNext->nState = 0; |
- re_add_state(pNext, 0); |
- while( c!=RE_EOF && pNext->nState>0 ){ |
- cPrev = c; |
- c = pRe->xNextChar(&in); |
- pThis = pNext; |
- pNext = &aStateSet[iSwap]; |
- iSwap = 1 - iSwap; |
- pNext->nState = 0; |
- for(i=0; i<pThis->nState; i++){ |
- int x = pThis->aState[i]; |
- switch( pRe->aOp[x] ){ |
- case RE_OP_MATCH: { |
- if( pRe->aArg[x]==c ) re_add_state(pNext, x+1); |
- break; |
- } |
- case RE_OP_ANY: { |
- re_add_state(pNext, x+1); |
- break; |
- } |
- case RE_OP_WORD: { |
- if( re_word_char(c) ) re_add_state(pNext, x+1); |
- break; |
- } |
- case RE_OP_NOTWORD: { |
- if( !re_word_char(c) ) re_add_state(pNext, x+1); |
- break; |
- } |
- case RE_OP_DIGIT: { |
- if( re_digit_char(c) ) re_add_state(pNext, x+1); |
- break; |
- } |
- case RE_OP_NOTDIGIT: { |
- if( !re_digit_char(c) ) re_add_state(pNext, x+1); |
- break; |
- } |
- case RE_OP_SPACE: { |
- if( re_space_char(c) ) re_add_state(pNext, x+1); |
- break; |
- } |
- case RE_OP_NOTSPACE: { |
- if( !re_space_char(c) ) re_add_state(pNext, x+1); |
- break; |
- } |
- case RE_OP_BOUNDARY: { |
- if( re_word_char(c)!=re_word_char(cPrev) ) re_add_state(pThis, x+1); |
- break; |
- } |
- case RE_OP_ANYSTAR: { |
- re_add_state(pNext, x); |
- re_add_state(pThis, x+1); |
- break; |
- } |
- case RE_OP_FORK: { |
- re_add_state(pThis, x+pRe->aArg[x]); |
- re_add_state(pThis, x+1); |
- break; |
- } |
- case RE_OP_GOTO: { |
- re_add_state(pThis, x+pRe->aArg[x]); |
- break; |
- } |
- case RE_OP_ACCEPT: { |
- rc = 1; |
- goto re_match_end; |
- } |
- case RE_OP_CC_INC: |
- case RE_OP_CC_EXC: { |
- int j = 1; |
- int n = pRe->aArg[x]; |
- int hit = 0; |
- for(j=1; j>0 && j<n; j++){ |
- if( pRe->aOp[x+j]==RE_OP_CC_VALUE ){ |
- if( pRe->aArg[x+j]==c ){ |
- hit = 1; |
- j = -1; |
- } |
- }else{ |
- if( pRe->aArg[x+j]<=c && pRe->aArg[x+j+1]>=c ){ |
- hit = 1; |
- j = -1; |
- }else{ |
- j++; |
- } |
- } |
- } |
- if( pRe->aOp[x]==RE_OP_CC_EXC ) hit = !hit; |
- if( hit ) re_add_state(pNext, x+n); |
- break; |
- } |
- } |
- } |
- } |
- for(i=0; i<pNext->nState; i++){ |
- if( pRe->aOp[pNext->aState[i]]==RE_OP_ACCEPT ){ rc = 1; break; } |
- } |
-re_match_end: |
- sqlite3_free(pToFree); |
- return rc; |
-} |
- |
-/* Resize the opcode and argument arrays for an RE under construction. |
-*/ |
-static int re_resize(ReCompiled *p, int N){ |
- char *aOp; |
- int *aArg; |
- aOp = sqlite3_realloc(p->aOp, N*sizeof(p->aOp[0])); |
- if( aOp==0 ) return 1; |
- p->aOp = aOp; |
- aArg = sqlite3_realloc(p->aArg, N*sizeof(p->aArg[0])); |
- if( aArg==0 ) return 1; |
- p->aArg = aArg; |
- p->nAlloc = N; |
- return 0; |
-} |
- |
-/* Insert a new opcode and argument into an RE under construction. The |
-** insertion point is just prior to existing opcode iBefore. |
-*/ |
-static int re_insert(ReCompiled *p, int iBefore, int op, int arg){ |
- int i; |
- if( p->nAlloc<=p->nState && re_resize(p, p->nAlloc*2) ) return 0; |
- for(i=p->nState; i>iBefore; i--){ |
- p->aOp[i] = p->aOp[i-1]; |
- p->aArg[i] = p->aArg[i-1]; |
- } |
- p->nState++; |
- p->aOp[iBefore] = op; |
- p->aArg[iBefore] = arg; |
- return iBefore; |
-} |
- |
-/* Append a new opcode and argument to the end of the RE under construction. |
-*/ |
-static int re_append(ReCompiled *p, int op, int arg){ |
- return re_insert(p, p->nState, op, arg); |
-} |
- |
-/* Make a copy of N opcodes starting at iStart onto the end of the RE |
-** under construction. |
-*/ |
-static void re_copy(ReCompiled *p, int iStart, int N){ |
- if( p->nState+N>=p->nAlloc && re_resize(p, p->nAlloc*2+N) ) return; |
- memcpy(&p->aOp[p->nState], &p->aOp[iStart], N*sizeof(p->aOp[0])); |
- memcpy(&p->aArg[p->nState], &p->aArg[iStart], N*sizeof(p->aArg[0])); |
- p->nState += N; |
-} |
- |
-/* Return true if c is a hexadecimal digit character: [0-9a-fA-F] |
-** If c is a hex digit, also set *pV = (*pV)*16 + valueof(c). If |
-** c is not a hex digit *pV is unchanged. |
-*/ |
-static int re_hex(int c, int *pV){ |
- if( c>='0' && c<='9' ){ |
- c -= '0'; |
- }else if( c>='a' && c<='f' ){ |
- c -= 'a' - 10; |
- }else if( c>='A' && c<='F' ){ |
- c -= 'A' - 10; |
- }else{ |
- return 0; |
- } |
- *pV = (*pV)*16 + (c & 0xff); |
- return 1; |
-} |
- |
-/* A backslash character has been seen, read the next character and |
-** return its interpretation. |
-*/ |
-static unsigned re_esc_char(ReCompiled *p){ |
- static const char zEsc[] = "afnrtv\\()*.+?[$^{|}]"; |
- static const char zTrans[] = "\a\f\n\r\t\v"; |
- int i, v = 0; |
- char c; |
- if( p->sIn.i>=p->sIn.mx ) return 0; |
- c = p->sIn.z[p->sIn.i]; |
- if( c=='u' && p->sIn.i+4<p->sIn.mx ){ |
- const unsigned char *zIn = p->sIn.z + p->sIn.i; |
- if( re_hex(zIn[1],&v) |
- && re_hex(zIn[2],&v) |
- && re_hex(zIn[3],&v) |
- && re_hex(zIn[4],&v) |
- ){ |
- p->sIn.i += 5; |
- return v; |
- } |
- } |
- if( c=='x' && p->sIn.i+2<p->sIn.mx ){ |
- const unsigned char *zIn = p->sIn.z + p->sIn.i; |
- if( re_hex(zIn[1],&v) |
- && re_hex(zIn[2],&v) |
- ){ |
- p->sIn.i += 3; |
- return v; |
- } |
- } |
- for(i=0; zEsc[i] && zEsc[i]!=c; i++){} |
- if( zEsc[i] ){ |
- if( i<6 ) c = zTrans[i]; |
- p->sIn.i++; |
- }else{ |
- p->zErr = "unknown \\ escape"; |
- } |
- return c; |
-} |
- |
-/* Forward declaration */ |
-static const char *re_subcompile_string(ReCompiled*); |
- |
-/* Peek at the next byte of input */ |
-static unsigned char rePeek(ReCompiled *p){ |
- return p->sIn.i<p->sIn.mx ? p->sIn.z[p->sIn.i] : 0; |
-} |
- |
-/* Compile RE text into a sequence of opcodes. Continue up to the |
-** first unmatched ")" character, then return. If an error is found, |
-** return a pointer to the error message string. |
-*/ |
-static const char *re_subcompile_re(ReCompiled *p){ |
- const char *zErr; |
- int iStart, iEnd, iGoto; |
- iStart = p->nState; |
- zErr = re_subcompile_string(p); |
- if( zErr ) return zErr; |
- while( rePeek(p)=='|' ){ |
- iEnd = p->nState; |
- re_insert(p, iStart, RE_OP_FORK, iEnd + 2 - iStart); |
- iGoto = re_append(p, RE_OP_GOTO, 0); |
- p->sIn.i++; |
- zErr = re_subcompile_string(p); |
- if( zErr ) return zErr; |
- p->aArg[iGoto] = p->nState - iGoto; |
- } |
- return 0; |
-} |
- |
-/* Compile an element of regular expression text (anything that can be |
-** an operand to the "|" operator). Return NULL on success or a pointer |
-** to the error message if there is a problem. |
-*/ |
-static const char *re_subcompile_string(ReCompiled *p){ |
- int iPrev = -1; |
- int iStart; |
- unsigned c; |
- const char *zErr; |
- while( (c = p->xNextChar(&p->sIn))!=0 ){ |
- iStart = p->nState; |
- switch( c ){ |
- case '|': |
- case '$': |
- case ')': { |
- p->sIn.i--; |
- return 0; |
- } |
- case '(': { |
- zErr = re_subcompile_re(p); |
- if( zErr ) return zErr; |
- if( rePeek(p)!=')' ) return "unmatched '('"; |
- p->sIn.i++; |
- break; |
- } |
- case '.': { |
- if( rePeek(p)=='*' ){ |
- re_append(p, RE_OP_ANYSTAR, 0); |
- p->sIn.i++; |
- }else{ |
- re_append(p, RE_OP_ANY, 0); |
- } |
- break; |
- } |
- case '*': { |
- if( iPrev<0 ) return "'*' without operand"; |
- re_insert(p, iPrev, RE_OP_GOTO, p->nState - iPrev + 1); |
- re_append(p, RE_OP_FORK, iPrev - p->nState + 1); |
- break; |
- } |
- case '+': { |
- if( iPrev<0 ) return "'+' without operand"; |
- re_append(p, RE_OP_FORK, iPrev - p->nState); |
- break; |
- } |
- case '?': { |
- if( iPrev<0 ) return "'?' without operand"; |
- re_insert(p, iPrev, RE_OP_FORK, p->nState - iPrev+1); |
- break; |
- } |
- case '{': { |
- int m = 0, n = 0; |
- int sz, j; |
- if( iPrev<0 ) return "'{m,n}' without operand"; |
- while( (c=rePeek(p))>='0' && c<='9' ){ m = m*10 + c - '0'; p->sIn.i++; } |
- n = m; |
- if( c==',' ){ |
- p->sIn.i++; |
- n = 0; |
- while( (c=rePeek(p))>='0' && c<='9' ){ n = n*10 + c-'0'; p->sIn.i++; } |
- } |
- if( c!='}' ) return "unmatched '{'"; |
- if( n>0 && n<m ) return "n less than m in '{m,n}'"; |
- p->sIn.i++; |
- sz = p->nState - iPrev; |
- if( m==0 ){ |
- if( n==0 ) return "both m and n are zero in '{m,n}'"; |
- re_insert(p, iPrev, RE_OP_FORK, sz+1); |
- n--; |
- }else{ |
- for(j=1; j<m; j++) re_copy(p, iPrev, sz); |
- } |
- for(j=m; j<n; j++){ |
- re_append(p, RE_OP_FORK, sz+1); |
- re_copy(p, iPrev, sz); |
- } |
- if( n==0 && m>0 ){ |
- re_append(p, RE_OP_FORK, -sz); |
- } |
- break; |
- } |
- case '[': { |
- int iFirst = p->nState; |
- if( rePeek(p)=='^' ){ |
- re_append(p, RE_OP_CC_EXC, 0); |
- p->sIn.i++; |
- }else{ |
- re_append(p, RE_OP_CC_INC, 0); |
- } |
- while( (c = p->xNextChar(&p->sIn))!=0 ){ |
- if( c=='[' && rePeek(p)==':' ){ |
- return "POSIX character classes not supported"; |
- } |
- if( c=='\\' ) c = re_esc_char(p); |
- if( rePeek(p)=='-' ){ |
- re_append(p, RE_OP_CC_RANGE, c); |
- p->sIn.i++; |
- c = p->xNextChar(&p->sIn); |
- if( c=='\\' ) c = re_esc_char(p); |
- re_append(p, RE_OP_CC_RANGE, c); |
- }else{ |
- re_append(p, RE_OP_CC_VALUE, c); |
- } |
- if( rePeek(p)==']' ){ p->sIn.i++; break; } |
- } |
- if( c==0 ) return "unclosed '['"; |
- p->aArg[iFirst] = p->nState - iFirst; |
- break; |
- } |
- case '\\': { |
- int specialOp = 0; |
- switch( rePeek(p) ){ |
- case 'b': specialOp = RE_OP_BOUNDARY; break; |
- case 'd': specialOp = RE_OP_DIGIT; break; |
- case 'D': specialOp = RE_OP_NOTDIGIT; break; |
- case 's': specialOp = RE_OP_SPACE; break; |
- case 'S': specialOp = RE_OP_NOTSPACE; break; |
- case 'w': specialOp = RE_OP_WORD; break; |
- case 'W': specialOp = RE_OP_NOTWORD; break; |
- } |
- if( specialOp ){ |
- p->sIn.i++; |
- re_append(p, specialOp, 0); |
- }else{ |
- c = re_esc_char(p); |
- re_append(p, RE_OP_MATCH, c); |
- } |
- break; |
- } |
- default: { |
- re_append(p, RE_OP_MATCH, c); |
- break; |
- } |
- } |
- iPrev = iStart; |
- } |
- return 0; |
-} |
- |
-/* Free and reclaim all the memory used by a previously compiled |
-** regular expression. Applications should invoke this routine once |
-** for every call to re_compile() to avoid memory leaks. |
-*/ |
-void re_free(ReCompiled *pRe){ |
- if( pRe ){ |
- sqlite3_free(pRe->aOp); |
- sqlite3_free(pRe->aArg); |
- sqlite3_free(pRe); |
- } |
-} |
- |
-/* |
-** Compile a textual regular expression in zIn[] into a compiled regular |
-** expression suitable for us by re_match() and return a pointer to the |
-** compiled regular expression in *ppRe. Return NULL on success or an |
-** error message if something goes wrong. |
-*/ |
-const char *re_compile(ReCompiled **ppRe, const char *zIn, int noCase){ |
- ReCompiled *pRe; |
- const char *zErr; |
- int i, j; |
- |
- *ppRe = 0; |
- pRe = sqlite3_malloc( sizeof(*pRe) ); |
- if( pRe==0 ){ |
- return "out of memory"; |
- } |
- memset(pRe, 0, sizeof(*pRe)); |
- pRe->xNextChar = noCase ? re_next_char_nocase : re_next_char; |
- if( re_resize(pRe, 30) ){ |
- re_free(pRe); |
- return "out of memory"; |
- } |
- if( zIn[0]=='^' ){ |
- zIn++; |
- }else{ |
- re_append(pRe, RE_OP_ANYSTAR, 0); |
- } |
- pRe->sIn.z = (unsigned char*)zIn; |
- pRe->sIn.i = 0; |
- pRe->sIn.mx = (int)strlen(zIn); |
- zErr = re_subcompile_re(pRe); |
- if( zErr ){ |
- re_free(pRe); |
- return zErr; |
- } |
- if( rePeek(pRe)=='$' && pRe->sIn.i+1>=pRe->sIn.mx ){ |
- re_append(pRe, RE_OP_MATCH, RE_EOF); |
- re_append(pRe, RE_OP_ACCEPT, 0); |
- *ppRe = pRe; |
- }else if( pRe->sIn.i>=pRe->sIn.mx ){ |
- re_append(pRe, RE_OP_ACCEPT, 0); |
- *ppRe = pRe; |
- }else{ |
- re_free(pRe); |
- return "unrecognized character"; |
- } |
- |
- /* The following is a performance optimization. If the regex begins with |
- ** ".*" (if the input regex lacks an initial "^") and afterwards there are |
- ** one or more matching characters, enter those matching characters into |
- ** zInit[]. The re_match() routine can then search ahead in the input |
- ** string looking for the initial match without having to run the whole |
- ** regex engine over the string. Do not worry able trying to match |
- ** unicode characters beyond plane 0 - those are very rare and this is |
- ** just an optimization. */ |
- if( pRe->aOp[0]==RE_OP_ANYSTAR ){ |
- for(j=0, i=1; j<sizeof(pRe->zInit)-2 && pRe->aOp[i]==RE_OP_MATCH; i++){ |
- unsigned x = pRe->aArg[i]; |
- if( x<=127 ){ |
- pRe->zInit[j++] = x; |
- }else if( x<=0xfff ){ |
- pRe->zInit[j++] = 0xc0 | (x>>6); |
- pRe->zInit[j++] = 0x80 | (x&0x3f); |
- }else if( x<=0xffff ){ |
- pRe->zInit[j++] = 0xd0 | (x>>12); |
- pRe->zInit[j++] = 0x80 | ((x>>6)&0x3f); |
- pRe->zInit[j++] = 0x80 | (x&0x3f); |
- }else{ |
- break; |
- } |
- } |
- if( j>0 && pRe->zInit[j-1]==0 ) j--; |
- pRe->nInit = j; |
- } |
- return pRe->zErr; |
-} |
- |
-/* |
-** Implementation of the regexp() SQL function. This function implements |
-** the build-in REGEXP operator. The first argument to the function is the |
-** pattern and the second argument is the string. So, the SQL statements: |
-** |
-** A REGEXP B |
-** |
-** is implemented as regexp(B,A). |
-*/ |
-static void re_sql_func( |
- sqlite3_context *context, |
- int argc, |
- sqlite3_value **argv |
-){ |
- ReCompiled *pRe; /* Compiled regular expression */ |
- const char *zPattern; /* The regular expression */ |
- const unsigned char *zStr;/* String being searched */ |
- const char *zErr; /* Compile error message */ |
- int setAux = 0; /* True to invoke sqlite3_set_auxdata() */ |
- |
- pRe = sqlite3_get_auxdata(context, 0); |
- if( pRe==0 ){ |
- zPattern = (const char*)sqlite3_value_text(argv[0]); |
- if( zPattern==0 ) return; |
- zErr = re_compile(&pRe, zPattern, 0); |
- if( zErr ){ |
- re_free(pRe); |
- sqlite3_result_error(context, zErr, -1); |
- return; |
- } |
- if( pRe==0 ){ |
- sqlite3_result_error_nomem(context); |
- return; |
- } |
- setAux = 1; |
- } |
- zStr = (const unsigned char*)sqlite3_value_text(argv[1]); |
- if( zStr!=0 ){ |
- sqlite3_result_int(context, re_match(pRe, zStr, -1)); |
- } |
- if( setAux ){ |
- sqlite3_set_auxdata(context, 0, pRe, (void(*)(void*))re_free); |
- } |
-} |
- |
-/* |
-** Invoke this routine to register the regexp() function with the |
-** SQLite database connection. |
-*/ |
-#ifdef _WIN32 |
-__declspec(dllexport) |
-#endif |
-int sqlite3_regexp_init( |
- sqlite3 *db, |
- char **pzErrMsg, |
- const sqlite3_api_routines *pApi |
-){ |
- int rc = SQLITE_OK; |
- SQLITE_EXTENSION_INIT2(pApi); |
- rc = sqlite3_create_function(db, "regexp", 2, SQLITE_UTF8, 0, |
- re_sql_func, 0, 0); |
- return rc; |
-} |