| Index: third_party/sqlite/sqlite-src-3080704/src/vdbesort.c
|
| diff --git a/third_party/sqlite/sqlite-src-3080704/src/vdbesort.c b/third_party/sqlite/sqlite-src-3080704/src/vdbesort.c
|
| deleted file mode 100644
|
| index 46c9f3789de323f2dbadda1fe902bf00f282a617..0000000000000000000000000000000000000000
|
| --- a/third_party/sqlite/sqlite-src-3080704/src/vdbesort.c
|
| +++ /dev/null
|
| @@ -1,2522 +0,0 @@
|
| -/*
|
| -** 2011-07-09
|
| -**
|
| -** The author disclaims copyright to this source code. In place of
|
| -** a legal notice, here is a blessing:
|
| -**
|
| -** May you do good and not evil.
|
| -** May you find forgiveness for yourself and forgive others.
|
| -** May you share freely, never taking more than you give.
|
| -**
|
| -*************************************************************************
|
| -** This file contains code for the VdbeSorter object, used in concert with
|
| -** a VdbeCursor to sort large numbers of keys for CREATE INDEX statements
|
| -** or by SELECT statements with ORDER BY clauses that cannot be satisfied
|
| -** using indexes and without LIMIT clauses.
|
| -**
|
| -** The VdbeSorter object implements a multi-threaded external merge sort
|
| -** algorithm that is efficient even if the number of elements being sorted
|
| -** exceeds the available memory.
|
| -**
|
| -** Here is the (internal, non-API) interface between this module and the
|
| -** rest of the SQLite system:
|
| -**
|
| -** sqlite3VdbeSorterInit() Create a new VdbeSorter object.
|
| -**
|
| -** sqlite3VdbeSorterWrite() Add a single new row to the VdbeSorter
|
| -** object. The row is a binary blob in the
|
| -** OP_MakeRecord format that contains both
|
| -** the ORDER BY key columns and result columns
|
| -** in the case of a SELECT w/ ORDER BY, or
|
| -** the complete record for an index entry
|
| -** in the case of a CREATE INDEX.
|
| -**
|
| -** sqlite3VdbeSorterRewind() Sort all content previously added.
|
| -** Position the read cursor on the
|
| -** first sorted element.
|
| -**
|
| -** sqlite3VdbeSorterNext() Advance the read cursor to the next sorted
|
| -** element.
|
| -**
|
| -** sqlite3VdbeSorterRowkey() Return the complete binary blob for the
|
| -** row currently under the read cursor.
|
| -**
|
| -** sqlite3VdbeSorterCompare() Compare the binary blob for the row
|
| -** currently under the read cursor against
|
| -** another binary blob X and report if
|
| -** X is strictly less than the read cursor.
|
| -** Used to enforce uniqueness in a
|
| -** CREATE UNIQUE INDEX statement.
|
| -**
|
| -** sqlite3VdbeSorterClose() Close the VdbeSorter object and reclaim
|
| -** all resources.
|
| -**
|
| -** sqlite3VdbeSorterReset() Refurbish the VdbeSorter for reuse. This
|
| -** is like Close() followed by Init() only
|
| -** much faster.
|
| -**
|
| -** The interfaces above must be called in a particular order. Write() can
|
| -** only occur in between Init()/Reset() and Rewind(). Next(), Rowkey(), and
|
| -** Compare() can only occur in between Rewind() and Close()/Reset(). i.e.
|
| -**
|
| -** Init()
|
| -** for each record: Write()
|
| -** Rewind()
|
| -** Rowkey()/Compare()
|
| -** Next()
|
| -** Close()
|
| -**
|
| -** Algorithm:
|
| -**
|
| -** Records passed to the sorter via calls to Write() are initially held
|
| -** unsorted in main memory. Assuming the amount of memory used never exceeds
|
| -** a threshold, when Rewind() is called the set of records is sorted using
|
| -** an in-memory merge sort. In this case, no temporary files are required
|
| -** and subsequent calls to Rowkey(), Next() and Compare() read records
|
| -** directly from main memory.
|
| -**
|
| -** If the amount of space used to store records in main memory exceeds the
|
| -** threshold, then the set of records currently in memory are sorted and
|
| -** written to a temporary file in "Packed Memory Array" (PMA) format.
|
| -** A PMA created at this point is known as a "level-0 PMA". Higher levels
|
| -** of PMAs may be created by merging existing PMAs together - for example
|
| -** merging two or more level-0 PMAs together creates a level-1 PMA.
|
| -**
|
| -** The threshold for the amount of main memory to use before flushing
|
| -** records to a PMA is roughly the same as the limit configured for the
|
| -** page-cache of the main database. Specifically, the threshold is set to
|
| -** the value returned by "PRAGMA main.page_size" multipled by
|
| -** that returned by "PRAGMA main.cache_size", in bytes.
|
| -**
|
| -** If the sorter is running in single-threaded mode, then all PMAs generated
|
| -** are appended to a single temporary file. Or, if the sorter is running in
|
| -** multi-threaded mode then up to (N+1) temporary files may be opened, where
|
| -** N is the configured number of worker threads. In this case, instead of
|
| -** sorting the records and writing the PMA to a temporary file itself, the
|
| -** calling thread usually launches a worker thread to do so. Except, if
|
| -** there are already N worker threads running, the main thread does the work
|
| -** itself.
|
| -**
|
| -** The sorter is running in multi-threaded mode if (a) the library was built
|
| -** with pre-processor symbol SQLITE_MAX_WORKER_THREADS set to a value greater
|
| -** than zero, and (b) worker threads have been enabled at runtime by calling
|
| -** sqlite3_config(SQLITE_CONFIG_WORKER_THREADS, ...).
|
| -**
|
| -** When Rewind() is called, any data remaining in memory is flushed to a
|
| -** final PMA. So at this point the data is stored in some number of sorted
|
| -** PMAs within temporary files on disk.
|
| -**
|
| -** If there are fewer than SORTER_MAX_MERGE_COUNT PMAs in total and the
|
| -** sorter is running in single-threaded mode, then these PMAs are merged
|
| -** incrementally as keys are retreived from the sorter by the VDBE. The
|
| -** MergeEngine object, described in further detail below, performs this
|
| -** merge.
|
| -**
|
| -** Or, if running in multi-threaded mode, then a background thread is
|
| -** launched to merge the existing PMAs. Once the background thread has
|
| -** merged T bytes of data into a single sorted PMA, the main thread
|
| -** begins reading keys from that PMA while the background thread proceeds
|
| -** with merging the next T bytes of data. And so on.
|
| -**
|
| -** Parameter T is set to half the value of the memory threshold used
|
| -** by Write() above to determine when to create a new PMA.
|
| -**
|
| -** If there are more than SORTER_MAX_MERGE_COUNT PMAs in total when
|
| -** Rewind() is called, then a hierarchy of incremental-merges is used.
|
| -** First, T bytes of data from the first SORTER_MAX_MERGE_COUNT PMAs on
|
| -** disk are merged together. Then T bytes of data from the second set, and
|
| -** so on, such that no operation ever merges more than SORTER_MAX_MERGE_COUNT
|
| -** PMAs at a time. This done is to improve locality.
|
| -**
|
| -** If running in multi-threaded mode and there are more than
|
| -** SORTER_MAX_MERGE_COUNT PMAs on disk when Rewind() is called, then more
|
| -** than one background thread may be created. Specifically, there may be
|
| -** one background thread for each temporary file on disk, and one background
|
| -** thread to merge the output of each of the others to a single PMA for
|
| -** the main thread to read from.
|
| -*/
|
| -#include "sqliteInt.h"
|
| -#include "vdbeInt.h"
|
| -
|
| -/*
|
| -** If SQLITE_DEBUG_SORTER_THREADS is defined, this module outputs various
|
| -** messages to stderr that may be helpful in understanding the performance
|
| -** characteristics of the sorter in multi-threaded mode.
|
| -*/
|
| -#if 0
|
| -# define SQLITE_DEBUG_SORTER_THREADS 1
|
| -#endif
|
| -
|
| -/*
|
| -** Private objects used by the sorter
|
| -*/
|
| -typedef struct MergeEngine MergeEngine; /* Merge PMAs together */
|
| -typedef struct PmaReader PmaReader; /* Incrementally read one PMA */
|
| -typedef struct PmaWriter PmaWriter; /* Incrementally write one PMA */
|
| -typedef struct SorterRecord SorterRecord; /* A record being sorted */
|
| -typedef struct SortSubtask SortSubtask; /* A sub-task in the sort process */
|
| -typedef struct SorterFile SorterFile; /* Temporary file object wrapper */
|
| -typedef struct SorterList SorterList; /* In-memory list of records */
|
| -typedef struct IncrMerger IncrMerger; /* Read & merge multiple PMAs */
|
| -
|
| -/*
|
| -** A container for a temp file handle and the current amount of data
|
| -** stored in the file.
|
| -*/
|
| -struct SorterFile {
|
| - sqlite3_file *pFd; /* File handle */
|
| - i64 iEof; /* Bytes of data stored in pFd */
|
| -};
|
| -
|
| -/*
|
| -** An in-memory list of objects to be sorted.
|
| -**
|
| -** If aMemory==0 then each object is allocated separately and the objects
|
| -** are connected using SorterRecord.u.pNext. If aMemory!=0 then all objects
|
| -** are stored in the aMemory[] bulk memory, one right after the other, and
|
| -** are connected using SorterRecord.u.iNext.
|
| -*/
|
| -struct SorterList {
|
| - SorterRecord *pList; /* Linked list of records */
|
| - u8 *aMemory; /* If non-NULL, bulk memory to hold pList */
|
| - int szPMA; /* Size of pList as PMA in bytes */
|
| -};
|
| -
|
| -/*
|
| -** The MergeEngine object is used to combine two or more smaller PMAs into
|
| -** one big PMA using a merge operation. Separate PMAs all need to be
|
| -** combined into one big PMA in order to be able to step through the sorted
|
| -** records in order.
|
| -**
|
| -** The aReadr[] array contains a PmaReader object for each of the PMAs being
|
| -** merged. An aReadr[] object either points to a valid key or else is at EOF.
|
| -** ("EOF" means "End Of File". When aReadr[] is at EOF there is no more data.)
|
| -** For the purposes of the paragraphs below, we assume that the array is
|
| -** actually N elements in size, where N is the smallest power of 2 greater
|
| -** to or equal to the number of PMAs being merged. The extra aReadr[] elements
|
| -** are treated as if they are empty (always at EOF).
|
| -**
|
| -** The aTree[] array is also N elements in size. The value of N is stored in
|
| -** the MergeEngine.nTree variable.
|
| -**
|
| -** The final (N/2) elements of aTree[] contain the results of comparing
|
| -** pairs of PMA keys together. Element i contains the result of
|
| -** comparing aReadr[2*i-N] and aReadr[2*i-N+1]. Whichever key is smaller, the
|
| -** aTree element is set to the index of it.
|
| -**
|
| -** For the purposes of this comparison, EOF is considered greater than any
|
| -** other key value. If the keys are equal (only possible with two EOF
|
| -** values), it doesn't matter which index is stored.
|
| -**
|
| -** The (N/4) elements of aTree[] that precede the final (N/2) described
|
| -** above contains the index of the smallest of each block of 4 PmaReaders
|
| -** And so on. So that aTree[1] contains the index of the PmaReader that
|
| -** currently points to the smallest key value. aTree[0] is unused.
|
| -**
|
| -** Example:
|
| -**
|
| -** aReadr[0] -> Banana
|
| -** aReadr[1] -> Feijoa
|
| -** aReadr[2] -> Elderberry
|
| -** aReadr[3] -> Currant
|
| -** aReadr[4] -> Grapefruit
|
| -** aReadr[5] -> Apple
|
| -** aReadr[6] -> Durian
|
| -** aReadr[7] -> EOF
|
| -**
|
| -** aTree[] = { X, 5 0, 5 0, 3, 5, 6 }
|
| -**
|
| -** The current element is "Apple" (the value of the key indicated by
|
| -** PmaReader 5). When the Next() operation is invoked, PmaReader 5 will
|
| -** be advanced to the next key in its segment. Say the next key is
|
| -** "Eggplant":
|
| -**
|
| -** aReadr[5] -> Eggplant
|
| -**
|
| -** The contents of aTree[] are updated first by comparing the new PmaReader
|
| -** 5 key to the current key of PmaReader 4 (still "Grapefruit"). The PmaReader
|
| -** 5 value is still smaller, so aTree[6] is set to 5. And so on up the tree.
|
| -** The value of PmaReader 6 - "Durian" - is now smaller than that of PmaReader
|
| -** 5, so aTree[3] is set to 6. Key 0 is smaller than key 6 (Banana<Durian),
|
| -** so the value written into element 1 of the array is 0. As follows:
|
| -**
|
| -** aTree[] = { X, 0 0, 6 0, 3, 5, 6 }
|
| -**
|
| -** In other words, each time we advance to the next sorter element, log2(N)
|
| -** key comparison operations are required, where N is the number of segments
|
| -** being merged (rounded up to the next power of 2).
|
| -*/
|
| -struct MergeEngine {
|
| - int nTree; /* Used size of aTree/aReadr (power of 2) */
|
| - SortSubtask *pTask; /* Used by this thread only */
|
| - int *aTree; /* Current state of incremental merge */
|
| - PmaReader *aReadr; /* Array of PmaReaders to merge data from */
|
| -};
|
| -
|
| -/*
|
| -** This object represents a single thread of control in a sort operation.
|
| -** Exactly VdbeSorter.nTask instances of this object are allocated
|
| -** as part of each VdbeSorter object. Instances are never allocated any
|
| -** other way. VdbeSorter.nTask is set to the number of worker threads allowed
|
| -** (see SQLITE_CONFIG_WORKER_THREADS) plus one (the main thread). Thus for
|
| -** single-threaded operation, there is exactly one instance of this object
|
| -** and for multi-threaded operation there are two or more instances.
|
| -**
|
| -** Essentially, this structure contains all those fields of the VdbeSorter
|
| -** structure for which each thread requires a separate instance. For example,
|
| -** each thread requries its own UnpackedRecord object to unpack records in
|
| -** as part of comparison operations.
|
| -**
|
| -** Before a background thread is launched, variable bDone is set to 0. Then,
|
| -** right before it exits, the thread itself sets bDone to 1. This is used for
|
| -** two purposes:
|
| -**
|
| -** 1. When flushing the contents of memory to a level-0 PMA on disk, to
|
| -** attempt to select a SortSubtask for which there is not already an
|
| -** active background thread (since doing so causes the main thread
|
| -** to block until it finishes).
|
| -**
|
| -** 2. If SQLITE_DEBUG_SORTER_THREADS is defined, to determine if a call
|
| -** to sqlite3ThreadJoin() is likely to block. Cases that are likely to
|
| -** block provoke debugging output.
|
| -**
|
| -** In both cases, the effects of the main thread seeing (bDone==0) even
|
| -** after the thread has finished are not dire. So we don't worry about
|
| -** memory barriers and such here.
|
| -*/
|
| -struct SortSubtask {
|
| - SQLiteThread *pThread; /* Background thread, if any */
|
| - int bDone; /* Set if thread is finished but not joined */
|
| - VdbeSorter *pSorter; /* Sorter that owns this sub-task */
|
| - UnpackedRecord *pUnpacked; /* Space to unpack a record */
|
| - SorterList list; /* List for thread to write to a PMA */
|
| - int nPMA; /* Number of PMAs currently in file */
|
| - SorterFile file; /* Temp file for level-0 PMAs */
|
| - SorterFile file2; /* Space for other PMAs */
|
| -};
|
| -
|
| -/*
|
| -** Main sorter structure. A single instance of this is allocated for each
|
| -** sorter cursor created by the VDBE.
|
| -**
|
| -** mxKeysize:
|
| -** As records are added to the sorter by calls to sqlite3VdbeSorterWrite(),
|
| -** this variable is updated so as to be set to the size on disk of the
|
| -** largest record in the sorter.
|
| -*/
|
| -struct VdbeSorter {
|
| - int mnPmaSize; /* Minimum PMA size, in bytes */
|
| - int mxPmaSize; /* Maximum PMA size, in bytes. 0==no limit */
|
| - int mxKeysize; /* Largest serialized key seen so far */
|
| - int pgsz; /* Main database page size */
|
| - PmaReader *pReader; /* Readr data from here after Rewind() */
|
| - MergeEngine *pMerger; /* Or here, if bUseThreads==0 */
|
| - sqlite3 *db; /* Database connection */
|
| - KeyInfo *pKeyInfo; /* How to compare records */
|
| - UnpackedRecord *pUnpacked; /* Used by VdbeSorterCompare() */
|
| - SorterList list; /* List of in-memory records */
|
| - int iMemory; /* Offset of free space in list.aMemory */
|
| - int nMemory; /* Size of list.aMemory allocation in bytes */
|
| - u8 bUsePMA; /* True if one or more PMAs created */
|
| - u8 bUseThreads; /* True to use background threads */
|
| - u8 iPrev; /* Previous thread used to flush PMA */
|
| - u8 nTask; /* Size of aTask[] array */
|
| - SortSubtask aTask[1]; /* One or more subtasks */
|
| -};
|
| -
|
| -/*
|
| -** An instance of the following object is used to read records out of a
|
| -** PMA, in sorted order. The next key to be read is cached in nKey/aKey.
|
| -** aKey might point into aMap or into aBuffer. If neither of those locations
|
| -** contain a contiguous representation of the key, then aAlloc is allocated
|
| -** and the key is copied into aAlloc and aKey is made to poitn to aAlloc.
|
| -**
|
| -** pFd==0 at EOF.
|
| -*/
|
| -struct PmaReader {
|
| - i64 iReadOff; /* Current read offset */
|
| - i64 iEof; /* 1 byte past EOF for this PmaReader */
|
| - int nAlloc; /* Bytes of space at aAlloc */
|
| - int nKey; /* Number of bytes in key */
|
| - sqlite3_file *pFd; /* File handle we are reading from */
|
| - u8 *aAlloc; /* Space for aKey if aBuffer and pMap wont work */
|
| - u8 *aKey; /* Pointer to current key */
|
| - u8 *aBuffer; /* Current read buffer */
|
| - int nBuffer; /* Size of read buffer in bytes */
|
| - u8 *aMap; /* Pointer to mapping of entire file */
|
| - IncrMerger *pIncr; /* Incremental merger */
|
| -};
|
| -
|
| -/*
|
| -** Normally, a PmaReader object iterates through an existing PMA stored
|
| -** within a temp file. However, if the PmaReader.pIncr variable points to
|
| -** an object of the following type, it may be used to iterate/merge through
|
| -** multiple PMAs simultaneously.
|
| -**
|
| -** There are two types of IncrMerger object - single (bUseThread==0) and
|
| -** multi-threaded (bUseThread==1).
|
| -**
|
| -** A multi-threaded IncrMerger object uses two temporary files - aFile[0]
|
| -** and aFile[1]. Neither file is allowed to grow to more than mxSz bytes in
|
| -** size. When the IncrMerger is initialized, it reads enough data from
|
| -** pMerger to populate aFile[0]. It then sets variables within the
|
| -** corresponding PmaReader object to read from that file and kicks off
|
| -** a background thread to populate aFile[1] with the next mxSz bytes of
|
| -** sorted record data from pMerger.
|
| -**
|
| -** When the PmaReader reaches the end of aFile[0], it blocks until the
|
| -** background thread has finished populating aFile[1]. It then exchanges
|
| -** the contents of the aFile[0] and aFile[1] variables within this structure,
|
| -** sets the PmaReader fields to read from the new aFile[0] and kicks off
|
| -** another background thread to populate the new aFile[1]. And so on, until
|
| -** the contents of pMerger are exhausted.
|
| -**
|
| -** A single-threaded IncrMerger does not open any temporary files of its
|
| -** own. Instead, it has exclusive access to mxSz bytes of space beginning
|
| -** at offset iStartOff of file pTask->file2. And instead of using a
|
| -** background thread to prepare data for the PmaReader, with a single
|
| -** threaded IncrMerger the allocate part of pTask->file2 is "refilled" with
|
| -** keys from pMerger by the calling thread whenever the PmaReader runs out
|
| -** of data.
|
| -*/
|
| -struct IncrMerger {
|
| - SortSubtask *pTask; /* Task that owns this merger */
|
| - MergeEngine *pMerger; /* Merge engine thread reads data from */
|
| - i64 iStartOff; /* Offset to start writing file at */
|
| - int mxSz; /* Maximum bytes of data to store */
|
| - int bEof; /* Set to true when merge is finished */
|
| - int bUseThread; /* True to use a bg thread for this object */
|
| - SorterFile aFile[2]; /* aFile[0] for reading, [1] for writing */
|
| -};
|
| -
|
| -/*
|
| -** An instance of this object is used for writing a PMA.
|
| -**
|
| -** The PMA is written one record at a time. Each record is of an arbitrary
|
| -** size. But I/O is more efficient if it occurs in page-sized blocks where
|
| -** each block is aligned on a page boundary. This object caches writes to
|
| -** the PMA so that aligned, page-size blocks are written.
|
| -*/
|
| -struct PmaWriter {
|
| - int eFWErr; /* Non-zero if in an error state */
|
| - u8 *aBuffer; /* Pointer to write buffer */
|
| - int nBuffer; /* Size of write buffer in bytes */
|
| - int iBufStart; /* First byte of buffer to write */
|
| - int iBufEnd; /* Last byte of buffer to write */
|
| - i64 iWriteOff; /* Offset of start of buffer in file */
|
| - sqlite3_file *pFd; /* File handle to write to */
|
| -};
|
| -
|
| -/*
|
| -** This object is the header on a single record while that record is being
|
| -** held in memory and prior to being written out as part of a PMA.
|
| -**
|
| -** How the linked list is connected depends on how memory is being managed
|
| -** by this module. If using a separate allocation for each in-memory record
|
| -** (VdbeSorter.list.aMemory==0), then the list is always connected using the
|
| -** SorterRecord.u.pNext pointers.
|
| -**
|
| -** Or, if using the single large allocation method (VdbeSorter.list.aMemory!=0),
|
| -** then while records are being accumulated the list is linked using the
|
| -** SorterRecord.u.iNext offset. This is because the aMemory[] array may
|
| -** be sqlite3Realloc()ed while records are being accumulated. Once the VM
|
| -** has finished passing records to the sorter, or when the in-memory buffer
|
| -** is full, the list is sorted. As part of the sorting process, it is
|
| -** converted to use the SorterRecord.u.pNext pointers. See function
|
| -** vdbeSorterSort() for details.
|
| -*/
|
| -struct SorterRecord {
|
| - int nVal; /* Size of the record in bytes */
|
| - union {
|
| - SorterRecord *pNext; /* Pointer to next record in list */
|
| - int iNext; /* Offset within aMemory of next record */
|
| - } u;
|
| - /* The data for the record immediately follows this header */
|
| -};
|
| -
|
| -/* Return a pointer to the buffer containing the record data for SorterRecord
|
| -** object p. Should be used as if:
|
| -**
|
| -** void *SRVAL(SorterRecord *p) { return (void*)&p[1]; }
|
| -*/
|
| -#define SRVAL(p) ((void*)((SorterRecord*)(p) + 1))
|
| -
|
| -/* The minimum PMA size is set to this value multiplied by the database
|
| -** page size in bytes. */
|
| -#define SORTER_MIN_WORKING 10
|
| -
|
| -/* Maximum number of PMAs that a single MergeEngine can merge */
|
| -#define SORTER_MAX_MERGE_COUNT 16
|
| -
|
| -static int vdbeIncrSwap(IncrMerger*);
|
| -static void vdbeIncrFree(IncrMerger *);
|
| -
|
| -/*
|
| -** Free all memory belonging to the PmaReader object passed as the
|
| -** argument. All structure fields are set to zero before returning.
|
| -*/
|
| -static void vdbePmaReaderClear(PmaReader *pReadr){
|
| - sqlite3_free(pReadr->aAlloc);
|
| - sqlite3_free(pReadr->aBuffer);
|
| - if( pReadr->aMap ) sqlite3OsUnfetch(pReadr->pFd, 0, pReadr->aMap);
|
| - vdbeIncrFree(pReadr->pIncr);
|
| - memset(pReadr, 0, sizeof(PmaReader));
|
| -}
|
| -
|
| -/*
|
| -** Read the next nByte bytes of data from the PMA p.
|
| -** If successful, set *ppOut to point to a buffer containing the data
|
| -** and return SQLITE_OK. Otherwise, if an error occurs, return an SQLite
|
| -** error code.
|
| -**
|
| -** The buffer returned in *ppOut is only valid until the
|
| -** next call to this function.
|
| -*/
|
| -static int vdbePmaReadBlob(
|
| - PmaReader *p, /* PmaReader from which to take the blob */
|
| - int nByte, /* Bytes of data to read */
|
| - u8 **ppOut /* OUT: Pointer to buffer containing data */
|
| -){
|
| - int iBuf; /* Offset within buffer to read from */
|
| - int nAvail; /* Bytes of data available in buffer */
|
| -
|
| - if( p->aMap ){
|
| - *ppOut = &p->aMap[p->iReadOff];
|
| - p->iReadOff += nByte;
|
| - return SQLITE_OK;
|
| - }
|
| -
|
| - assert( p->aBuffer );
|
| -
|
| - /* If there is no more data to be read from the buffer, read the next
|
| - ** p->nBuffer bytes of data from the file into it. Or, if there are less
|
| - ** than p->nBuffer bytes remaining in the PMA, read all remaining data. */
|
| - iBuf = p->iReadOff % p->nBuffer;
|
| - if( iBuf==0 ){
|
| - int nRead; /* Bytes to read from disk */
|
| - int rc; /* sqlite3OsRead() return code */
|
| -
|
| - /* Determine how many bytes of data to read. */
|
| - if( (p->iEof - p->iReadOff) > (i64)p->nBuffer ){
|
| - nRead = p->nBuffer;
|
| - }else{
|
| - nRead = (int)(p->iEof - p->iReadOff);
|
| - }
|
| - assert( nRead>0 );
|
| -
|
| - /* Readr data from the file. Return early if an error occurs. */
|
| - rc = sqlite3OsRead(p->pFd, p->aBuffer, nRead, p->iReadOff);
|
| - assert( rc!=SQLITE_IOERR_SHORT_READ );
|
| - if( rc!=SQLITE_OK ) return rc;
|
| - }
|
| - nAvail = p->nBuffer - iBuf;
|
| -
|
| - if( nByte<=nAvail ){
|
| - /* The requested data is available in the in-memory buffer. In this
|
| - ** case there is no need to make a copy of the data, just return a
|
| - ** pointer into the buffer to the caller. */
|
| - *ppOut = &p->aBuffer[iBuf];
|
| - p->iReadOff += nByte;
|
| - }else{
|
| - /* The requested data is not all available in the in-memory buffer.
|
| - ** In this case, allocate space at p->aAlloc[] to copy the requested
|
| - ** range into. Then return a copy of pointer p->aAlloc to the caller. */
|
| - int nRem; /* Bytes remaining to copy */
|
| -
|
| - /* Extend the p->aAlloc[] allocation if required. */
|
| - if( p->nAlloc<nByte ){
|
| - u8 *aNew;
|
| - int nNew = MAX(128, p->nAlloc*2);
|
| - while( nByte>nNew ) nNew = nNew*2;
|
| - aNew = sqlite3Realloc(p->aAlloc, nNew);
|
| - if( !aNew ) return SQLITE_NOMEM;
|
| - p->nAlloc = nNew;
|
| - p->aAlloc = aNew;
|
| - }
|
| -
|
| - /* Copy as much data as is available in the buffer into the start of
|
| - ** p->aAlloc[]. */
|
| - memcpy(p->aAlloc, &p->aBuffer[iBuf], nAvail);
|
| - p->iReadOff += nAvail;
|
| - nRem = nByte - nAvail;
|
| -
|
| - /* The following loop copies up to p->nBuffer bytes per iteration into
|
| - ** the p->aAlloc[] buffer. */
|
| - while( nRem>0 ){
|
| - int rc; /* vdbePmaReadBlob() return code */
|
| - int nCopy; /* Number of bytes to copy */
|
| - u8 *aNext; /* Pointer to buffer to copy data from */
|
| -
|
| - nCopy = nRem;
|
| - if( nRem>p->nBuffer ) nCopy = p->nBuffer;
|
| - rc = vdbePmaReadBlob(p, nCopy, &aNext);
|
| - if( rc!=SQLITE_OK ) return rc;
|
| - assert( aNext!=p->aAlloc );
|
| - memcpy(&p->aAlloc[nByte - nRem], aNext, nCopy);
|
| - nRem -= nCopy;
|
| - }
|
| -
|
| - *ppOut = p->aAlloc;
|
| - }
|
| -
|
| - return SQLITE_OK;
|
| -}
|
| -
|
| -/*
|
| -** Read a varint from the stream of data accessed by p. Set *pnOut to
|
| -** the value read.
|
| -*/
|
| -static int vdbePmaReadVarint(PmaReader *p, u64 *pnOut){
|
| - int iBuf;
|
| -
|
| - if( p->aMap ){
|
| - p->iReadOff += sqlite3GetVarint(&p->aMap[p->iReadOff], pnOut);
|
| - }else{
|
| - iBuf = p->iReadOff % p->nBuffer;
|
| - if( iBuf && (p->nBuffer-iBuf)>=9 ){
|
| - p->iReadOff += sqlite3GetVarint(&p->aBuffer[iBuf], pnOut);
|
| - }else{
|
| - u8 aVarint[16], *a;
|
| - int i = 0, rc;
|
| - do{
|
| - rc = vdbePmaReadBlob(p, 1, &a);
|
| - if( rc ) return rc;
|
| - aVarint[(i++)&0xf] = a[0];
|
| - }while( (a[0]&0x80)!=0 );
|
| - sqlite3GetVarint(aVarint, pnOut);
|
| - }
|
| - }
|
| -
|
| - return SQLITE_OK;
|
| -}
|
| -
|
| -/*
|
| -** Attempt to memory map file pFile. If successful, set *pp to point to the
|
| -** new mapping and return SQLITE_OK. If the mapping is not attempted
|
| -** (because the file is too large or the VFS layer is configured not to use
|
| -** mmap), return SQLITE_OK and set *pp to NULL.
|
| -**
|
| -** Or, if an error occurs, return an SQLite error code. The final value of
|
| -** *pp is undefined in this case.
|
| -*/
|
| -static int vdbeSorterMapFile(SortSubtask *pTask, SorterFile *pFile, u8 **pp){
|
| - int rc = SQLITE_OK;
|
| - if( pFile->iEof<=(i64)(pTask->pSorter->db->nMaxSorterMmap) ){
|
| - sqlite3_file *pFd = pFile->pFd;
|
| - if( pFd->pMethods->iVersion>=3 ){
|
| - rc = sqlite3OsFetch(pFd, 0, (int)pFile->iEof, (void**)pp);
|
| - testcase( rc!=SQLITE_OK );
|
| - }
|
| - }
|
| - return rc;
|
| -}
|
| -
|
| -/*
|
| -** Attach PmaReader pReadr to file pFile (if it is not already attached to
|
| -** that file) and seek it to offset iOff within the file. Return SQLITE_OK
|
| -** if successful, or an SQLite error code if an error occurs.
|
| -*/
|
| -static int vdbePmaReaderSeek(
|
| - SortSubtask *pTask, /* Task context */
|
| - PmaReader *pReadr, /* Reader whose cursor is to be moved */
|
| - SorterFile *pFile, /* Sorter file to read from */
|
| - i64 iOff /* Offset in pFile */
|
| -){
|
| - int rc = SQLITE_OK;
|
| -
|
| - assert( pReadr->pIncr==0 || pReadr->pIncr->bEof==0 );
|
| -
|
| - if( sqlite3FaultSim(201) ) return SQLITE_IOERR_READ;
|
| - if( pReadr->aMap ){
|
| - sqlite3OsUnfetch(pReadr->pFd, 0, pReadr->aMap);
|
| - pReadr->aMap = 0;
|
| - }
|
| - pReadr->iReadOff = iOff;
|
| - pReadr->iEof = pFile->iEof;
|
| - pReadr->pFd = pFile->pFd;
|
| -
|
| - rc = vdbeSorterMapFile(pTask, pFile, &pReadr->aMap);
|
| - if( rc==SQLITE_OK && pReadr->aMap==0 ){
|
| - int pgsz = pTask->pSorter->pgsz;
|
| - int iBuf = pReadr->iReadOff % pgsz;
|
| - if( pReadr->aBuffer==0 ){
|
| - pReadr->aBuffer = (u8*)sqlite3Malloc(pgsz);
|
| - if( pReadr->aBuffer==0 ) rc = SQLITE_NOMEM;
|
| - pReadr->nBuffer = pgsz;
|
| - }
|
| - if( rc==SQLITE_OK && iBuf ){
|
| - int nRead = pgsz - iBuf;
|
| - if( (pReadr->iReadOff + nRead) > pReadr->iEof ){
|
| - nRead = (int)(pReadr->iEof - pReadr->iReadOff);
|
| - }
|
| - rc = sqlite3OsRead(
|
| - pReadr->pFd, &pReadr->aBuffer[iBuf], nRead, pReadr->iReadOff
|
| - );
|
| - testcase( rc!=SQLITE_OK );
|
| - }
|
| - }
|
| -
|
| - return rc;
|
| -}
|
| -
|
| -/*
|
| -** Advance PmaReader pReadr to the next key in its PMA. Return SQLITE_OK if
|
| -** no error occurs, or an SQLite error code if one does.
|
| -*/
|
| -static int vdbePmaReaderNext(PmaReader *pReadr){
|
| - int rc = SQLITE_OK; /* Return Code */
|
| - u64 nRec = 0; /* Size of record in bytes */
|
| -
|
| -
|
| - if( pReadr->iReadOff>=pReadr->iEof ){
|
| - IncrMerger *pIncr = pReadr->pIncr;
|
| - int bEof = 1;
|
| - if( pIncr ){
|
| - rc = vdbeIncrSwap(pIncr);
|
| - if( rc==SQLITE_OK && pIncr->bEof==0 ){
|
| - rc = vdbePmaReaderSeek(
|
| - pIncr->pTask, pReadr, &pIncr->aFile[0], pIncr->iStartOff
|
| - );
|
| - bEof = 0;
|
| - }
|
| - }
|
| -
|
| - if( bEof ){
|
| - /* This is an EOF condition */
|
| - vdbePmaReaderClear(pReadr);
|
| - testcase( rc!=SQLITE_OK );
|
| - return rc;
|
| - }
|
| - }
|
| -
|
| - if( rc==SQLITE_OK ){
|
| - rc = vdbePmaReadVarint(pReadr, &nRec);
|
| - }
|
| - if( rc==SQLITE_OK ){
|
| - pReadr->nKey = (int)nRec;
|
| - rc = vdbePmaReadBlob(pReadr, (int)nRec, &pReadr->aKey);
|
| - testcase( rc!=SQLITE_OK );
|
| - }
|
| -
|
| - return rc;
|
| -}
|
| -
|
| -/*
|
| -** Initialize PmaReader pReadr to scan through the PMA stored in file pFile
|
| -** starting at offset iStart and ending at offset iEof-1. This function
|
| -** leaves the PmaReader pointing to the first key in the PMA (or EOF if the
|
| -** PMA is empty).
|
| -**
|
| -** If the pnByte parameter is NULL, then it is assumed that the file
|
| -** contains a single PMA, and that that PMA omits the initial length varint.
|
| -*/
|
| -static int vdbePmaReaderInit(
|
| - SortSubtask *pTask, /* Task context */
|
| - SorterFile *pFile, /* Sorter file to read from */
|
| - i64 iStart, /* Start offset in pFile */
|
| - PmaReader *pReadr, /* PmaReader to populate */
|
| - i64 *pnByte /* IN/OUT: Increment this value by PMA size */
|
| -){
|
| - int rc;
|
| -
|
| - assert( pFile->iEof>iStart );
|
| - assert( pReadr->aAlloc==0 && pReadr->nAlloc==0 );
|
| - assert( pReadr->aBuffer==0 );
|
| - assert( pReadr->aMap==0 );
|
| -
|
| - rc = vdbePmaReaderSeek(pTask, pReadr, pFile, iStart);
|
| - if( rc==SQLITE_OK ){
|
| - u64 nByte; /* Size of PMA in bytes */
|
| - rc = vdbePmaReadVarint(pReadr, &nByte);
|
| - pReadr->iEof = pReadr->iReadOff + nByte;
|
| - *pnByte += nByte;
|
| - }
|
| -
|
| - if( rc==SQLITE_OK ){
|
| - rc = vdbePmaReaderNext(pReadr);
|
| - }
|
| - return rc;
|
| -}
|
| -
|
| -
|
| -/*
|
| -** Compare key1 (buffer pKey1, size nKey1 bytes) with key2 (buffer pKey2,
|
| -** size nKey2 bytes). Use (pTask->pKeyInfo) for the collation sequences
|
| -** used by the comparison. Return the result of the comparison.
|
| -**
|
| -** Before returning, object (pTask->pUnpacked) is populated with the
|
| -** unpacked version of key2. Or, if pKey2 is passed a NULL pointer, then it
|
| -** is assumed that the (pTask->pUnpacked) structure already contains the
|
| -** unpacked key to use as key2.
|
| -**
|
| -** If an OOM error is encountered, (pTask->pUnpacked->error_rc) is set
|
| -** to SQLITE_NOMEM.
|
| -*/
|
| -static int vdbeSorterCompare(
|
| - SortSubtask *pTask, /* Subtask context (for pKeyInfo) */
|
| - const void *pKey1, int nKey1, /* Left side of comparison */
|
| - const void *pKey2, int nKey2 /* Right side of comparison */
|
| -){
|
| - UnpackedRecord *r2 = pTask->pUnpacked;
|
| - if( pKey2 ){
|
| - sqlite3VdbeRecordUnpack(pTask->pSorter->pKeyInfo, nKey2, pKey2, r2);
|
| - }
|
| - return sqlite3VdbeRecordCompare(nKey1, pKey1, r2);
|
| -}
|
| -
|
| -/*
|
| -** Initialize the temporary index cursor just opened as a sorter cursor.
|
| -**
|
| -** Usually, the sorter module uses the value of (pCsr->pKeyInfo->nField)
|
| -** to determine the number of fields that should be compared from the
|
| -** records being sorted. However, if the value passed as argument nField
|
| -** is non-zero and the sorter is able to guarantee a stable sort, nField
|
| -** is used instead. This is used when sorting records for a CREATE INDEX
|
| -** statement. In this case, keys are always delivered to the sorter in
|
| -** order of the primary key, which happens to be make up the final part
|
| -** of the records being sorted. So if the sort is stable, there is never
|
| -** any reason to compare PK fields and they can be ignored for a small
|
| -** performance boost.
|
| -**
|
| -** The sorter can guarantee a stable sort when running in single-threaded
|
| -** mode, but not in multi-threaded mode.
|
| -**
|
| -** SQLITE_OK is returned if successful, or an SQLite error code otherwise.
|
| -*/
|
| -int sqlite3VdbeSorterInit(
|
| - sqlite3 *db, /* Database connection (for malloc()) */
|
| - int nField, /* Number of key fields in each record */
|
| - VdbeCursor *pCsr /* Cursor that holds the new sorter */
|
| -){
|
| - int pgsz; /* Page size of main database */
|
| - int i; /* Used to iterate through aTask[] */
|
| - int mxCache; /* Cache size */
|
| - VdbeSorter *pSorter; /* The new sorter */
|
| - KeyInfo *pKeyInfo; /* Copy of pCsr->pKeyInfo with db==0 */
|
| - int szKeyInfo; /* Size of pCsr->pKeyInfo in bytes */
|
| - int sz; /* Size of pSorter in bytes */
|
| - int rc = SQLITE_OK;
|
| -#if SQLITE_MAX_WORKER_THREADS==0
|
| -# define nWorker 0
|
| -#else
|
| - int nWorker;
|
| -#endif
|
| -
|
| - /* Initialize the upper limit on the number of worker threads */
|
| -#if SQLITE_MAX_WORKER_THREADS>0
|
| - if( sqlite3TempInMemory(db) || sqlite3GlobalConfig.bCoreMutex==0 ){
|
| - nWorker = 0;
|
| - }else{
|
| - nWorker = db->aLimit[SQLITE_LIMIT_WORKER_THREADS];
|
| - }
|
| -#endif
|
| -
|
| - /* Do not allow the total number of threads (main thread + all workers)
|
| - ** to exceed the maximum merge count */
|
| -#if SQLITE_MAX_WORKER_THREADS>=SORTER_MAX_MERGE_COUNT
|
| - if( nWorker>=SORTER_MAX_MERGE_COUNT ){
|
| - nWorker = SORTER_MAX_MERGE_COUNT-1;
|
| - }
|
| -#endif
|
| -
|
| - assert( pCsr->pKeyInfo && pCsr->pBt==0 );
|
| - szKeyInfo = sizeof(KeyInfo) + (pCsr->pKeyInfo->nField-1)*sizeof(CollSeq*);
|
| - sz = sizeof(VdbeSorter) + nWorker * sizeof(SortSubtask);
|
| -
|
| - pSorter = (VdbeSorter*)sqlite3DbMallocZero(db, sz + szKeyInfo);
|
| - pCsr->pSorter = pSorter;
|
| - if( pSorter==0 ){
|
| - rc = SQLITE_NOMEM;
|
| - }else{
|
| - pSorter->pKeyInfo = pKeyInfo = (KeyInfo*)((u8*)pSorter + sz);
|
| - memcpy(pKeyInfo, pCsr->pKeyInfo, szKeyInfo);
|
| - pKeyInfo->db = 0;
|
| - if( nField && nWorker==0 ) pKeyInfo->nField = nField;
|
| - pSorter->pgsz = pgsz = sqlite3BtreeGetPageSize(db->aDb[0].pBt);
|
| - pSorter->nTask = nWorker + 1;
|
| - pSorter->bUseThreads = (pSorter->nTask>1);
|
| - pSorter->db = db;
|
| - for(i=0; i<pSorter->nTask; i++){
|
| - SortSubtask *pTask = &pSorter->aTask[i];
|
| - pTask->pSorter = pSorter;
|
| - }
|
| -
|
| - if( !sqlite3TempInMemory(db) ){
|
| - pSorter->mnPmaSize = SORTER_MIN_WORKING * pgsz;
|
| - mxCache = db->aDb[0].pSchema->cache_size;
|
| - if( mxCache<SORTER_MIN_WORKING ) mxCache = SORTER_MIN_WORKING;
|
| - pSorter->mxPmaSize = mxCache * pgsz;
|
| -
|
| - /* If the application has not configure scratch memory using
|
| - ** SQLITE_CONFIG_SCRATCH then we assume it is OK to do large memory
|
| - ** allocations. If scratch memory has been configured, then assume
|
| - ** large memory allocations should be avoided to prevent heap
|
| - ** fragmentation.
|
| - */
|
| - if( sqlite3GlobalConfig.pScratch==0 ){
|
| - assert( pSorter->iMemory==0 );
|
| - pSorter->nMemory = pgsz;
|
| - pSorter->list.aMemory = (u8*)sqlite3Malloc(pgsz);
|
| - if( !pSorter->list.aMemory ) rc = SQLITE_NOMEM;
|
| - }
|
| - }
|
| - }
|
| -
|
| - return rc;
|
| -}
|
| -#undef nWorker /* Defined at the top of this function */
|
| -
|
| -/*
|
| -** Free the list of sorted records starting at pRecord.
|
| -*/
|
| -static void vdbeSorterRecordFree(sqlite3 *db, SorterRecord *pRecord){
|
| - SorterRecord *p;
|
| - SorterRecord *pNext;
|
| - for(p=pRecord; p; p=pNext){
|
| - pNext = p->u.pNext;
|
| - sqlite3DbFree(db, p);
|
| - }
|
| -}
|
| -
|
| -/*
|
| -** Free all resources owned by the object indicated by argument pTask. All
|
| -** fields of *pTask are zeroed before returning.
|
| -*/
|
| -static void vdbeSortSubtaskCleanup(sqlite3 *db, SortSubtask *pTask){
|
| - sqlite3DbFree(db, pTask->pUnpacked);
|
| - pTask->pUnpacked = 0;
|
| -#if SQLITE_MAX_WORKER_THREADS>0
|
| - /* pTask->list.aMemory can only be non-zero if it was handed memory
|
| - ** from the main thread. That only occurs SQLITE_MAX_WORKER_THREADS>0 */
|
| - if( pTask->list.aMemory ){
|
| - sqlite3_free(pTask->list.aMemory);
|
| - pTask->list.aMemory = 0;
|
| - }else
|
| -#endif
|
| - {
|
| - assert( pTask->list.aMemory==0 );
|
| - vdbeSorterRecordFree(0, pTask->list.pList);
|
| - }
|
| - pTask->list.pList = 0;
|
| - if( pTask->file.pFd ){
|
| - sqlite3OsCloseFree(pTask->file.pFd);
|
| - pTask->file.pFd = 0;
|
| - pTask->file.iEof = 0;
|
| - }
|
| - if( pTask->file2.pFd ){
|
| - sqlite3OsCloseFree(pTask->file2.pFd);
|
| - pTask->file2.pFd = 0;
|
| - pTask->file2.iEof = 0;
|
| - }
|
| -}
|
| -
|
| -#ifdef SQLITE_DEBUG_SORTER_THREADS
|
| -static void vdbeSorterWorkDebug(SortSubtask *pTask, const char *zEvent){
|
| - i64 t;
|
| - int iTask = (pTask - pTask->pSorter->aTask);
|
| - sqlite3OsCurrentTimeInt64(pTask->pSorter->db->pVfs, &t);
|
| - fprintf(stderr, "%lld:%d %s\n", t, iTask, zEvent);
|
| -}
|
| -static void vdbeSorterRewindDebug(const char *zEvent){
|
| - i64 t;
|
| - sqlite3OsCurrentTimeInt64(sqlite3_vfs_find(0), &t);
|
| - fprintf(stderr, "%lld:X %s\n", t, zEvent);
|
| -}
|
| -static void vdbeSorterPopulateDebug(
|
| - SortSubtask *pTask,
|
| - const char *zEvent
|
| -){
|
| - i64 t;
|
| - int iTask = (pTask - pTask->pSorter->aTask);
|
| - sqlite3OsCurrentTimeInt64(pTask->pSorter->db->pVfs, &t);
|
| - fprintf(stderr, "%lld:bg%d %s\n", t, iTask, zEvent);
|
| -}
|
| -static void vdbeSorterBlockDebug(
|
| - SortSubtask *pTask,
|
| - int bBlocked,
|
| - const char *zEvent
|
| -){
|
| - if( bBlocked ){
|
| - i64 t;
|
| - sqlite3OsCurrentTimeInt64(pTask->pSorter->db->pVfs, &t);
|
| - fprintf(stderr, "%lld:main %s\n", t, zEvent);
|
| - }
|
| -}
|
| -#else
|
| -# define vdbeSorterWorkDebug(x,y)
|
| -# define vdbeSorterRewindDebug(y)
|
| -# define vdbeSorterPopulateDebug(x,y)
|
| -# define vdbeSorterBlockDebug(x,y,z)
|
| -#endif
|
| -
|
| -#if SQLITE_MAX_WORKER_THREADS>0
|
| -/*
|
| -** Join thread pTask->thread.
|
| -*/
|
| -static int vdbeSorterJoinThread(SortSubtask *pTask){
|
| - int rc = SQLITE_OK;
|
| - if( pTask->pThread ){
|
| -#ifdef SQLITE_DEBUG_SORTER_THREADS
|
| - int bDone = pTask->bDone;
|
| -#endif
|
| - void *pRet = SQLITE_INT_TO_PTR(SQLITE_ERROR);
|
| - vdbeSorterBlockDebug(pTask, !bDone, "enter");
|
| - (void)sqlite3ThreadJoin(pTask->pThread, &pRet);
|
| - vdbeSorterBlockDebug(pTask, !bDone, "exit");
|
| - rc = SQLITE_PTR_TO_INT(pRet);
|
| - assert( pTask->bDone==1 );
|
| - pTask->bDone = 0;
|
| - pTask->pThread = 0;
|
| - }
|
| - return rc;
|
| -}
|
| -
|
| -/*
|
| -** Launch a background thread to run xTask(pIn).
|
| -*/
|
| -static int vdbeSorterCreateThread(
|
| - SortSubtask *pTask, /* Thread will use this task object */
|
| - void *(*xTask)(void*), /* Routine to run in a separate thread */
|
| - void *pIn /* Argument passed into xTask() */
|
| -){
|
| - assert( pTask->pThread==0 && pTask->bDone==0 );
|
| - return sqlite3ThreadCreate(&pTask->pThread, xTask, pIn);
|
| -}
|
| -
|
| -/*
|
| -** Join all outstanding threads launched by SorterWrite() to create
|
| -** level-0 PMAs.
|
| -*/
|
| -static int vdbeSorterJoinAll(VdbeSorter *pSorter, int rcin){
|
| - int rc = rcin;
|
| - int i;
|
| -
|
| - /* This function is always called by the main user thread.
|
| - **
|
| - ** If this function is being called after SorterRewind() has been called,
|
| - ** it is possible that thread pSorter->aTask[pSorter->nTask-1].pThread
|
| - ** is currently attempt to join one of the other threads. To avoid a race
|
| - ** condition where this thread also attempts to join the same object, join
|
| - ** thread pSorter->aTask[pSorter->nTask-1].pThread first. */
|
| - for(i=pSorter->nTask-1; i>=0; i--){
|
| - SortSubtask *pTask = &pSorter->aTask[i];
|
| - int rc2 = vdbeSorterJoinThread(pTask);
|
| - if( rc==SQLITE_OK ) rc = rc2;
|
| - }
|
| - return rc;
|
| -}
|
| -#else
|
| -# define vdbeSorterJoinAll(x,rcin) (rcin)
|
| -# define vdbeSorterJoinThread(pTask) SQLITE_OK
|
| -#endif
|
| -
|
| -/*
|
| -** Allocate a new MergeEngine object capable of handling up to
|
| -** nReader PmaReader inputs.
|
| -**
|
| -** nReader is automatically rounded up to the next power of two.
|
| -** nReader may not exceed SORTER_MAX_MERGE_COUNT even after rounding up.
|
| -*/
|
| -static MergeEngine *vdbeMergeEngineNew(int nReader){
|
| - int N = 2; /* Smallest power of two >= nReader */
|
| - int nByte; /* Total bytes of space to allocate */
|
| - MergeEngine *pNew; /* Pointer to allocated object to return */
|
| -
|
| - assert( nReader<=SORTER_MAX_MERGE_COUNT );
|
| -
|
| - while( N<nReader ) N += N;
|
| - nByte = sizeof(MergeEngine) + N * (sizeof(int) + sizeof(PmaReader));
|
| -
|
| - pNew = sqlite3FaultSim(100) ? 0 : (MergeEngine*)sqlite3MallocZero(nByte);
|
| - if( pNew ){
|
| - pNew->nTree = N;
|
| - pNew->pTask = 0;
|
| - pNew->aReadr = (PmaReader*)&pNew[1];
|
| - pNew->aTree = (int*)&pNew->aReadr[N];
|
| - }
|
| - return pNew;
|
| -}
|
| -
|
| -/*
|
| -** Free the MergeEngine object passed as the only argument.
|
| -*/
|
| -static void vdbeMergeEngineFree(MergeEngine *pMerger){
|
| - int i;
|
| - if( pMerger ){
|
| - for(i=0; i<pMerger->nTree; i++){
|
| - vdbePmaReaderClear(&pMerger->aReadr[i]);
|
| - }
|
| - }
|
| - sqlite3_free(pMerger);
|
| -}
|
| -
|
| -/*
|
| -** Free all resources associated with the IncrMerger object indicated by
|
| -** the first argument.
|
| -*/
|
| -static void vdbeIncrFree(IncrMerger *pIncr){
|
| - if( pIncr ){
|
| -#if SQLITE_MAX_WORKER_THREADS>0
|
| - if( pIncr->bUseThread ){
|
| - vdbeSorterJoinThread(pIncr->pTask);
|
| - if( pIncr->aFile[0].pFd ) sqlite3OsCloseFree(pIncr->aFile[0].pFd);
|
| - if( pIncr->aFile[1].pFd ) sqlite3OsCloseFree(pIncr->aFile[1].pFd);
|
| - }
|
| -#endif
|
| - vdbeMergeEngineFree(pIncr->pMerger);
|
| - sqlite3_free(pIncr);
|
| - }
|
| -}
|
| -
|
| -/*
|
| -** Reset a sorting cursor back to its original empty state.
|
| -*/
|
| -void sqlite3VdbeSorterReset(sqlite3 *db, VdbeSorter *pSorter){
|
| - int i;
|
| - (void)vdbeSorterJoinAll(pSorter, SQLITE_OK);
|
| - assert( pSorter->bUseThreads || pSorter->pReader==0 );
|
| -#if SQLITE_MAX_WORKER_THREADS>0
|
| - if( pSorter->pReader ){
|
| - vdbePmaReaderClear(pSorter->pReader);
|
| - sqlite3DbFree(db, pSorter->pReader);
|
| - pSorter->pReader = 0;
|
| - }
|
| -#endif
|
| - vdbeMergeEngineFree(pSorter->pMerger);
|
| - pSorter->pMerger = 0;
|
| - for(i=0; i<pSorter->nTask; i++){
|
| - SortSubtask *pTask = &pSorter->aTask[i];
|
| - vdbeSortSubtaskCleanup(db, pTask);
|
| - }
|
| - if( pSorter->list.aMemory==0 ){
|
| - vdbeSorterRecordFree(0, pSorter->list.pList);
|
| - }
|
| - pSorter->list.pList = 0;
|
| - pSorter->list.szPMA = 0;
|
| - pSorter->bUsePMA = 0;
|
| - pSorter->iMemory = 0;
|
| - pSorter->mxKeysize = 0;
|
| - sqlite3DbFree(db, pSorter->pUnpacked);
|
| - pSorter->pUnpacked = 0;
|
| -}
|
| -
|
| -/*
|
| -** Free any cursor components allocated by sqlite3VdbeSorterXXX routines.
|
| -*/
|
| -void sqlite3VdbeSorterClose(sqlite3 *db, VdbeCursor *pCsr){
|
| - VdbeSorter *pSorter = pCsr->pSorter;
|
| - if( pSorter ){
|
| - sqlite3VdbeSorterReset(db, pSorter);
|
| - sqlite3_free(pSorter->list.aMemory);
|
| - sqlite3DbFree(db, pSorter);
|
| - pCsr->pSorter = 0;
|
| - }
|
| -}
|
| -
|
| -#if SQLITE_MAX_MMAP_SIZE>0
|
| -/*
|
| -** The first argument is a file-handle open on a temporary file. The file
|
| -** is guaranteed to be nByte bytes or smaller in size. This function
|
| -** attempts to extend the file to nByte bytes in size and to ensure that
|
| -** the VFS has memory mapped it.
|
| -**
|
| -** Whether or not the file does end up memory mapped of course depends on
|
| -** the specific VFS implementation.
|
| -*/
|
| -static void vdbeSorterExtendFile(sqlite3 *db, sqlite3_file *pFd, i64 nByte){
|
| - if( nByte<=(i64)(db->nMaxSorterMmap) && pFd->pMethods->iVersion>=3 ){
|
| - int rc = sqlite3OsTruncate(pFd, nByte);
|
| - if( rc==SQLITE_OK ){
|
| - void *p = 0;
|
| - sqlite3OsFetch(pFd, 0, (int)nByte, &p);
|
| - sqlite3OsUnfetch(pFd, 0, p);
|
| - }
|
| - }
|
| -}
|
| -#else
|
| -# define vdbeSorterExtendFile(x,y,z)
|
| -#endif
|
| -
|
| -/*
|
| -** Allocate space for a file-handle and open a temporary file. If successful,
|
| -** set *ppFd to point to the malloc'd file-handle and return SQLITE_OK.
|
| -** Otherwise, set *ppFd to 0 and return an SQLite error code.
|
| -*/
|
| -static int vdbeSorterOpenTempFile(
|
| - sqlite3 *db, /* Database handle doing sort */
|
| - i64 nExtend, /* Attempt to extend file to this size */
|
| - sqlite3_file **ppFd
|
| -){
|
| - int rc;
|
| - rc = sqlite3OsOpenMalloc(db->pVfs, 0, ppFd,
|
| - SQLITE_OPEN_TEMP_JOURNAL |
|
| - SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE |
|
| - SQLITE_OPEN_EXCLUSIVE | SQLITE_OPEN_DELETEONCLOSE, &rc
|
| - );
|
| - if( rc==SQLITE_OK ){
|
| - i64 max = SQLITE_MAX_MMAP_SIZE;
|
| - sqlite3OsFileControlHint(*ppFd, SQLITE_FCNTL_MMAP_SIZE, (void*)&max);
|
| - if( nExtend>0 ){
|
| - vdbeSorterExtendFile(db, *ppFd, nExtend);
|
| - }
|
| - }
|
| - return rc;
|
| -}
|
| -
|
| -/*
|
| -** If it has not already been allocated, allocate the UnpackedRecord
|
| -** structure at pTask->pUnpacked. Return SQLITE_OK if successful (or
|
| -** if no allocation was required), or SQLITE_NOMEM otherwise.
|
| -*/
|
| -static int vdbeSortAllocUnpacked(SortSubtask *pTask){
|
| - if( pTask->pUnpacked==0 ){
|
| - char *pFree;
|
| - pTask->pUnpacked = sqlite3VdbeAllocUnpackedRecord(
|
| - pTask->pSorter->pKeyInfo, 0, 0, &pFree
|
| - );
|
| - assert( pTask->pUnpacked==(UnpackedRecord*)pFree );
|
| - if( pFree==0 ) return SQLITE_NOMEM;
|
| - pTask->pUnpacked->nField = pTask->pSorter->pKeyInfo->nField;
|
| - pTask->pUnpacked->errCode = 0;
|
| - }
|
| - return SQLITE_OK;
|
| -}
|
| -
|
| -
|
| -/*
|
| -** Merge the two sorted lists p1 and p2 into a single list.
|
| -** Set *ppOut to the head of the new list.
|
| -*/
|
| -static void vdbeSorterMerge(
|
| - SortSubtask *pTask, /* Calling thread context */
|
| - SorterRecord *p1, /* First list to merge */
|
| - SorterRecord *p2, /* Second list to merge */
|
| - SorterRecord **ppOut /* OUT: Head of merged list */
|
| -){
|
| - SorterRecord *pFinal = 0;
|
| - SorterRecord **pp = &pFinal;
|
| - void *pVal2 = p2 ? SRVAL(p2) : 0;
|
| -
|
| - while( p1 && p2 ){
|
| - int res;
|
| - res = vdbeSorterCompare(pTask, SRVAL(p1), p1->nVal, pVal2, p2->nVal);
|
| - if( res<=0 ){
|
| - *pp = p1;
|
| - pp = &p1->u.pNext;
|
| - p1 = p1->u.pNext;
|
| - pVal2 = 0;
|
| - }else{
|
| - *pp = p2;
|
| - pp = &p2->u.pNext;
|
| - p2 = p2->u.pNext;
|
| - if( p2==0 ) break;
|
| - pVal2 = SRVAL(p2);
|
| - }
|
| - }
|
| - *pp = p1 ? p1 : p2;
|
| - *ppOut = pFinal;
|
| -}
|
| -
|
| -/*
|
| -** Sort the linked list of records headed at pTask->pList. Return
|
| -** SQLITE_OK if successful, or an SQLite error code (i.e. SQLITE_NOMEM) if
|
| -** an error occurs.
|
| -*/
|
| -static int vdbeSorterSort(SortSubtask *pTask, SorterList *pList){
|
| - int i;
|
| - SorterRecord **aSlot;
|
| - SorterRecord *p;
|
| - int rc;
|
| -
|
| - rc = vdbeSortAllocUnpacked(pTask);
|
| - if( rc!=SQLITE_OK ) return rc;
|
| -
|
| - aSlot = (SorterRecord **)sqlite3MallocZero(64 * sizeof(SorterRecord *));
|
| - if( !aSlot ){
|
| - return SQLITE_NOMEM;
|
| - }
|
| -
|
| - p = pList->pList;
|
| - while( p ){
|
| - SorterRecord *pNext;
|
| - if( pList->aMemory ){
|
| - if( (u8*)p==pList->aMemory ){
|
| - pNext = 0;
|
| - }else{
|
| - assert( p->u.iNext<sqlite3MallocSize(pList->aMemory) );
|
| - pNext = (SorterRecord*)&pList->aMemory[p->u.iNext];
|
| - }
|
| - }else{
|
| - pNext = p->u.pNext;
|
| - }
|
| -
|
| - p->u.pNext = 0;
|
| - for(i=0; aSlot[i]; i++){
|
| - vdbeSorterMerge(pTask, p, aSlot[i], &p);
|
| - aSlot[i] = 0;
|
| - }
|
| - aSlot[i] = p;
|
| - p = pNext;
|
| - }
|
| -
|
| - p = 0;
|
| - for(i=0; i<64; i++){
|
| - vdbeSorterMerge(pTask, p, aSlot[i], &p);
|
| - }
|
| - pList->pList = p;
|
| -
|
| - sqlite3_free(aSlot);
|
| - assert( pTask->pUnpacked->errCode==SQLITE_OK
|
| - || pTask->pUnpacked->errCode==SQLITE_NOMEM
|
| - );
|
| - return pTask->pUnpacked->errCode;
|
| -}
|
| -
|
| -/*
|
| -** Initialize a PMA-writer object.
|
| -*/
|
| -static void vdbePmaWriterInit(
|
| - sqlite3_file *pFd, /* File handle to write to */
|
| - PmaWriter *p, /* Object to populate */
|
| - int nBuf, /* Buffer size */
|
| - i64 iStart /* Offset of pFd to begin writing at */
|
| -){
|
| - memset(p, 0, sizeof(PmaWriter));
|
| - p->aBuffer = (u8*)sqlite3Malloc(nBuf);
|
| - if( !p->aBuffer ){
|
| - p->eFWErr = SQLITE_NOMEM;
|
| - }else{
|
| - p->iBufEnd = p->iBufStart = (iStart % nBuf);
|
| - p->iWriteOff = iStart - p->iBufStart;
|
| - p->nBuffer = nBuf;
|
| - p->pFd = pFd;
|
| - }
|
| -}
|
| -
|
| -/*
|
| -** Write nData bytes of data to the PMA. Return SQLITE_OK
|
| -** if successful, or an SQLite error code if an error occurs.
|
| -*/
|
| -static void vdbePmaWriteBlob(PmaWriter *p, u8 *pData, int nData){
|
| - int nRem = nData;
|
| - while( nRem>0 && p->eFWErr==0 ){
|
| - int nCopy = nRem;
|
| - if( nCopy>(p->nBuffer - p->iBufEnd) ){
|
| - nCopy = p->nBuffer - p->iBufEnd;
|
| - }
|
| -
|
| - memcpy(&p->aBuffer[p->iBufEnd], &pData[nData-nRem], nCopy);
|
| - p->iBufEnd += nCopy;
|
| - if( p->iBufEnd==p->nBuffer ){
|
| - p->eFWErr = sqlite3OsWrite(p->pFd,
|
| - &p->aBuffer[p->iBufStart], p->iBufEnd - p->iBufStart,
|
| - p->iWriteOff + p->iBufStart
|
| - );
|
| - p->iBufStart = p->iBufEnd = 0;
|
| - p->iWriteOff += p->nBuffer;
|
| - }
|
| - assert( p->iBufEnd<p->nBuffer );
|
| -
|
| - nRem -= nCopy;
|
| - }
|
| -}
|
| -
|
| -/*
|
| -** Flush any buffered data to disk and clean up the PMA-writer object.
|
| -** The results of using the PMA-writer after this call are undefined.
|
| -** Return SQLITE_OK if flushing the buffered data succeeds or is not
|
| -** required. Otherwise, return an SQLite error code.
|
| -**
|
| -** Before returning, set *piEof to the offset immediately following the
|
| -** last byte written to the file.
|
| -*/
|
| -static int vdbePmaWriterFinish(PmaWriter *p, i64 *piEof){
|
| - int rc;
|
| - if( p->eFWErr==0 && ALWAYS(p->aBuffer) && p->iBufEnd>p->iBufStart ){
|
| - p->eFWErr = sqlite3OsWrite(p->pFd,
|
| - &p->aBuffer[p->iBufStart], p->iBufEnd - p->iBufStart,
|
| - p->iWriteOff + p->iBufStart
|
| - );
|
| - }
|
| - *piEof = (p->iWriteOff + p->iBufEnd);
|
| - sqlite3_free(p->aBuffer);
|
| - rc = p->eFWErr;
|
| - memset(p, 0, sizeof(PmaWriter));
|
| - return rc;
|
| -}
|
| -
|
| -/*
|
| -** Write value iVal encoded as a varint to the PMA. Return
|
| -** SQLITE_OK if successful, or an SQLite error code if an error occurs.
|
| -*/
|
| -static void vdbePmaWriteVarint(PmaWriter *p, u64 iVal){
|
| - int nByte;
|
| - u8 aByte[10];
|
| - nByte = sqlite3PutVarint(aByte, iVal);
|
| - vdbePmaWriteBlob(p, aByte, nByte);
|
| -}
|
| -
|
| -/*
|
| -** Write the current contents of in-memory linked-list pList to a level-0
|
| -** PMA in the temp file belonging to sub-task pTask. Return SQLITE_OK if
|
| -** successful, or an SQLite error code otherwise.
|
| -**
|
| -** The format of a PMA is:
|
| -**
|
| -** * A varint. This varint contains the total number of bytes of content
|
| -** in the PMA (not including the varint itself).
|
| -**
|
| -** * One or more records packed end-to-end in order of ascending keys.
|
| -** Each record consists of a varint followed by a blob of data (the
|
| -** key). The varint is the number of bytes in the blob of data.
|
| -*/
|
| -static int vdbeSorterListToPMA(SortSubtask *pTask, SorterList *pList){
|
| - sqlite3 *db = pTask->pSorter->db;
|
| - int rc = SQLITE_OK; /* Return code */
|
| - PmaWriter writer; /* Object used to write to the file */
|
| -
|
| -#ifdef SQLITE_DEBUG
|
| - /* Set iSz to the expected size of file pTask->file after writing the PMA.
|
| - ** This is used by an assert() statement at the end of this function. */
|
| - i64 iSz = pList->szPMA + sqlite3VarintLen(pList->szPMA) + pTask->file.iEof;
|
| -#endif
|
| -
|
| - vdbeSorterWorkDebug(pTask, "enter");
|
| - memset(&writer, 0, sizeof(PmaWriter));
|
| - assert( pList->szPMA>0 );
|
| -
|
| - /* If the first temporary PMA file has not been opened, open it now. */
|
| - if( pTask->file.pFd==0 ){
|
| - rc = vdbeSorterOpenTempFile(db, 0, &pTask->file.pFd);
|
| - assert( rc!=SQLITE_OK || pTask->file.pFd );
|
| - assert( pTask->file.iEof==0 );
|
| - assert( pTask->nPMA==0 );
|
| - }
|
| -
|
| - /* Try to get the file to memory map */
|
| - if( rc==SQLITE_OK ){
|
| - vdbeSorterExtendFile(db, pTask->file.pFd, pTask->file.iEof+pList->szPMA+9);
|
| - }
|
| -
|
| - /* Sort the list */
|
| - if( rc==SQLITE_OK ){
|
| - rc = vdbeSorterSort(pTask, pList);
|
| - }
|
| -
|
| - if( rc==SQLITE_OK ){
|
| - SorterRecord *p;
|
| - SorterRecord *pNext = 0;
|
| -
|
| - vdbePmaWriterInit(pTask->file.pFd, &writer, pTask->pSorter->pgsz,
|
| - pTask->file.iEof);
|
| - pTask->nPMA++;
|
| - vdbePmaWriteVarint(&writer, pList->szPMA);
|
| - for(p=pList->pList; p; p=pNext){
|
| - pNext = p->u.pNext;
|
| - vdbePmaWriteVarint(&writer, p->nVal);
|
| - vdbePmaWriteBlob(&writer, SRVAL(p), p->nVal);
|
| - if( pList->aMemory==0 ) sqlite3_free(p);
|
| - }
|
| - pList->pList = p;
|
| - rc = vdbePmaWriterFinish(&writer, &pTask->file.iEof);
|
| - }
|
| -
|
| - vdbeSorterWorkDebug(pTask, "exit");
|
| - assert( rc!=SQLITE_OK || pList->pList==0 );
|
| - assert( rc!=SQLITE_OK || pTask->file.iEof==iSz );
|
| - return rc;
|
| -}
|
| -
|
| -/*
|
| -** Advance the MergeEngine to its next entry.
|
| -** Set *pbEof to true there is no next entry because
|
| -** the MergeEngine has reached the end of all its inputs.
|
| -**
|
| -** Return SQLITE_OK if successful or an error code if an error occurs.
|
| -*/
|
| -static int vdbeMergeEngineStep(
|
| - MergeEngine *pMerger, /* The merge engine to advance to the next row */
|
| - int *pbEof /* Set TRUE at EOF. Set false for more content */
|
| -){
|
| - int rc;
|
| - int iPrev = pMerger->aTree[1];/* Index of PmaReader to advance */
|
| - SortSubtask *pTask = pMerger->pTask;
|
| -
|
| - /* Advance the current PmaReader */
|
| - rc = vdbePmaReaderNext(&pMerger->aReadr[iPrev]);
|
| -
|
| - /* Update contents of aTree[] */
|
| - if( rc==SQLITE_OK ){
|
| - int i; /* Index of aTree[] to recalculate */
|
| - PmaReader *pReadr1; /* First PmaReader to compare */
|
| - PmaReader *pReadr2; /* Second PmaReader to compare */
|
| - u8 *pKey2; /* To pReadr2->aKey, or 0 if record cached */
|
| -
|
| - /* Find the first two PmaReaders to compare. The one that was just
|
| - ** advanced (iPrev) and the one next to it in the array. */
|
| - pReadr1 = &pMerger->aReadr[(iPrev & 0xFFFE)];
|
| - pReadr2 = &pMerger->aReadr[(iPrev | 0x0001)];
|
| - pKey2 = pReadr2->aKey;
|
| -
|
| - for(i=(pMerger->nTree+iPrev)/2; i>0; i=i/2){
|
| - /* Compare pReadr1 and pReadr2. Store the result in variable iRes. */
|
| - int iRes;
|
| - if( pReadr1->pFd==0 ){
|
| - iRes = +1;
|
| - }else if( pReadr2->pFd==0 ){
|
| - iRes = -1;
|
| - }else{
|
| - iRes = vdbeSorterCompare(pTask,
|
| - pReadr1->aKey, pReadr1->nKey, pKey2, pReadr2->nKey
|
| - );
|
| - }
|
| -
|
| - /* If pReadr1 contained the smaller value, set aTree[i] to its index.
|
| - ** Then set pReadr2 to the next PmaReader to compare to pReadr1. In this
|
| - ** case there is no cache of pReadr2 in pTask->pUnpacked, so set
|
| - ** pKey2 to point to the record belonging to pReadr2.
|
| - **
|
| - ** Alternatively, if pReadr2 contains the smaller of the two values,
|
| - ** set aTree[i] to its index and update pReadr1. If vdbeSorterCompare()
|
| - ** was actually called above, then pTask->pUnpacked now contains
|
| - ** a value equivalent to pReadr2. So set pKey2 to NULL to prevent
|
| - ** vdbeSorterCompare() from decoding pReadr2 again.
|
| - **
|
| - ** If the two values were equal, then the value from the oldest
|
| - ** PMA should be considered smaller. The VdbeSorter.aReadr[] array
|
| - ** is sorted from oldest to newest, so pReadr1 contains older values
|
| - ** than pReadr2 iff (pReadr1<pReadr2). */
|
| - if( iRes<0 || (iRes==0 && pReadr1<pReadr2) ){
|
| - pMerger->aTree[i] = (int)(pReadr1 - pMerger->aReadr);
|
| - pReadr2 = &pMerger->aReadr[ pMerger->aTree[i ^ 0x0001] ];
|
| - pKey2 = pReadr2->aKey;
|
| - }else{
|
| - if( pReadr1->pFd ) pKey2 = 0;
|
| - pMerger->aTree[i] = (int)(pReadr2 - pMerger->aReadr);
|
| - pReadr1 = &pMerger->aReadr[ pMerger->aTree[i ^ 0x0001] ];
|
| - }
|
| - }
|
| - *pbEof = (pMerger->aReadr[pMerger->aTree[1]].pFd==0);
|
| - }
|
| -
|
| - return (rc==SQLITE_OK ? pTask->pUnpacked->errCode : rc);
|
| -}
|
| -
|
| -#if SQLITE_MAX_WORKER_THREADS>0
|
| -/*
|
| -** The main routine for background threads that write level-0 PMAs.
|
| -*/
|
| -static void *vdbeSorterFlushThread(void *pCtx){
|
| - SortSubtask *pTask = (SortSubtask*)pCtx;
|
| - int rc; /* Return code */
|
| - assert( pTask->bDone==0 );
|
| - rc = vdbeSorterListToPMA(pTask, &pTask->list);
|
| - pTask->bDone = 1;
|
| - return SQLITE_INT_TO_PTR(rc);
|
| -}
|
| -#endif /* SQLITE_MAX_WORKER_THREADS>0 */
|
| -
|
| -/*
|
| -** Flush the current contents of VdbeSorter.list to a new PMA, possibly
|
| -** using a background thread.
|
| -*/
|
| -static int vdbeSorterFlushPMA(VdbeSorter *pSorter){
|
| -#if SQLITE_MAX_WORKER_THREADS==0
|
| - pSorter->bUsePMA = 1;
|
| - return vdbeSorterListToPMA(&pSorter->aTask[0], &pSorter->list);
|
| -#else
|
| - int rc = SQLITE_OK;
|
| - int i;
|
| - SortSubtask *pTask = 0; /* Thread context used to create new PMA */
|
| - int nWorker = (pSorter->nTask-1);
|
| -
|
| - /* Set the flag to indicate that at least one PMA has been written.
|
| - ** Or will be, anyhow. */
|
| - pSorter->bUsePMA = 1;
|
| -
|
| - /* Select a sub-task to sort and flush the current list of in-memory
|
| - ** records to disk. If the sorter is running in multi-threaded mode,
|
| - ** round-robin between the first (pSorter->nTask-1) tasks. Except, if
|
| - ** the background thread from a sub-tasks previous turn is still running,
|
| - ** skip it. If the first (pSorter->nTask-1) sub-tasks are all still busy,
|
| - ** fall back to using the final sub-task. The first (pSorter->nTask-1)
|
| - ** sub-tasks are prefered as they use background threads - the final
|
| - ** sub-task uses the main thread. */
|
| - for(i=0; i<nWorker; i++){
|
| - int iTest = (pSorter->iPrev + i + 1) % nWorker;
|
| - pTask = &pSorter->aTask[iTest];
|
| - if( pTask->bDone ){
|
| - rc = vdbeSorterJoinThread(pTask);
|
| - }
|
| - if( rc!=SQLITE_OK || pTask->pThread==0 ) break;
|
| - }
|
| -
|
| - if( rc==SQLITE_OK ){
|
| - if( i==nWorker ){
|
| - /* Use the foreground thread for this operation */
|
| - rc = vdbeSorterListToPMA(&pSorter->aTask[nWorker], &pSorter->list);
|
| - }else{
|
| - /* Launch a background thread for this operation */
|
| - u8 *aMem = pTask->list.aMemory;
|
| - void *pCtx = (void*)pTask;
|
| -
|
| - assert( pTask->pThread==0 && pTask->bDone==0 );
|
| - assert( pTask->list.pList==0 );
|
| - assert( pTask->list.aMemory==0 || pSorter->list.aMemory!=0 );
|
| -
|
| - pSorter->iPrev = (u8)(pTask - pSorter->aTask);
|
| - pTask->list = pSorter->list;
|
| - pSorter->list.pList = 0;
|
| - pSorter->list.szPMA = 0;
|
| - if( aMem ){
|
| - pSorter->list.aMemory = aMem;
|
| - pSorter->nMemory = sqlite3MallocSize(aMem);
|
| - }else if( pSorter->list.aMemory ){
|
| - pSorter->list.aMemory = sqlite3Malloc(pSorter->nMemory);
|
| - if( !pSorter->list.aMemory ) return SQLITE_NOMEM;
|
| - }
|
| -
|
| - rc = vdbeSorterCreateThread(pTask, vdbeSorterFlushThread, pCtx);
|
| - }
|
| - }
|
| -
|
| - return rc;
|
| -#endif /* SQLITE_MAX_WORKER_THREADS!=0 */
|
| -}
|
| -
|
| -/*
|
| -** Add a record to the sorter.
|
| -*/
|
| -int sqlite3VdbeSorterWrite(
|
| - const VdbeCursor *pCsr, /* Sorter cursor */
|
| - Mem *pVal /* Memory cell containing record */
|
| -){
|
| - VdbeSorter *pSorter = pCsr->pSorter;
|
| - int rc = SQLITE_OK; /* Return Code */
|
| - SorterRecord *pNew; /* New list element */
|
| -
|
| - int bFlush; /* True to flush contents of memory to PMA */
|
| - int nReq; /* Bytes of memory required */
|
| - int nPMA; /* Bytes of PMA space required */
|
| -
|
| - assert( pSorter );
|
| -
|
| - /* Figure out whether or not the current contents of memory should be
|
| - ** flushed to a PMA before continuing. If so, do so.
|
| - **
|
| - ** If using the single large allocation mode (pSorter->aMemory!=0), then
|
| - ** flush the contents of memory to a new PMA if (a) at least one value is
|
| - ** already in memory and (b) the new value will not fit in memory.
|
| - **
|
| - ** Or, if using separate allocations for each record, flush the contents
|
| - ** of memory to a PMA if either of the following are true:
|
| - **
|
| - ** * The total memory allocated for the in-memory list is greater
|
| - ** than (page-size * cache-size), or
|
| - **
|
| - ** * The total memory allocated for the in-memory list is greater
|
| - ** than (page-size * 10) and sqlite3HeapNearlyFull() returns true.
|
| - */
|
| - nReq = pVal->n + sizeof(SorterRecord);
|
| - nPMA = pVal->n + sqlite3VarintLen(pVal->n);
|
| - if( pSorter->mxPmaSize ){
|
| - if( pSorter->list.aMemory ){
|
| - bFlush = pSorter->iMemory && (pSorter->iMemory+nReq) > pSorter->mxPmaSize;
|
| - }else{
|
| - bFlush = (
|
| - (pSorter->list.szPMA > pSorter->mxPmaSize)
|
| - || (pSorter->list.szPMA > pSorter->mnPmaSize && sqlite3HeapNearlyFull())
|
| - );
|
| - }
|
| - if( bFlush ){
|
| - rc = vdbeSorterFlushPMA(pSorter);
|
| - pSorter->list.szPMA = 0;
|
| - pSorter->iMemory = 0;
|
| - assert( rc!=SQLITE_OK || pSorter->list.pList==0 );
|
| - }
|
| - }
|
| -
|
| - pSorter->list.szPMA += nPMA;
|
| - if( nPMA>pSorter->mxKeysize ){
|
| - pSorter->mxKeysize = nPMA;
|
| - }
|
| -
|
| - if( pSorter->list.aMemory ){
|
| - int nMin = pSorter->iMemory + nReq;
|
| -
|
| - if( nMin>pSorter->nMemory ){
|
| - u8 *aNew;
|
| - int nNew = pSorter->nMemory * 2;
|
| - while( nNew < nMin ) nNew = nNew*2;
|
| - if( nNew > pSorter->mxPmaSize ) nNew = pSorter->mxPmaSize;
|
| - if( nNew < nMin ) nNew = nMin;
|
| -
|
| - aNew = sqlite3Realloc(pSorter->list.aMemory, nNew);
|
| - if( !aNew ) return SQLITE_NOMEM;
|
| - pSorter->list.pList = (SorterRecord*)(
|
| - aNew + ((u8*)pSorter->list.pList - pSorter->list.aMemory)
|
| - );
|
| - pSorter->list.aMemory = aNew;
|
| - pSorter->nMemory = nNew;
|
| - }
|
| -
|
| - pNew = (SorterRecord*)&pSorter->list.aMemory[pSorter->iMemory];
|
| - pSorter->iMemory += ROUND8(nReq);
|
| - pNew->u.iNext = (int)((u8*)(pSorter->list.pList) - pSorter->list.aMemory);
|
| - }else{
|
| - pNew = (SorterRecord *)sqlite3Malloc(nReq);
|
| - if( pNew==0 ){
|
| - return SQLITE_NOMEM;
|
| - }
|
| - pNew->u.pNext = pSorter->list.pList;
|
| - }
|
| -
|
| - memcpy(SRVAL(pNew), pVal->z, pVal->n);
|
| - pNew->nVal = pVal->n;
|
| - pSorter->list.pList = pNew;
|
| -
|
| - return rc;
|
| -}
|
| -
|
| -/*
|
| -** Read keys from pIncr->pMerger and populate pIncr->aFile[1]. The format
|
| -** of the data stored in aFile[1] is the same as that used by regular PMAs,
|
| -** except that the number-of-bytes varint is omitted from the start.
|
| -*/
|
| -static int vdbeIncrPopulate(IncrMerger *pIncr){
|
| - int rc = SQLITE_OK;
|
| - int rc2;
|
| - i64 iStart = pIncr->iStartOff;
|
| - SorterFile *pOut = &pIncr->aFile[1];
|
| - SortSubtask *pTask = pIncr->pTask;
|
| - MergeEngine *pMerger = pIncr->pMerger;
|
| - PmaWriter writer;
|
| - assert( pIncr->bEof==0 );
|
| -
|
| - vdbeSorterPopulateDebug(pTask, "enter");
|
| -
|
| - vdbePmaWriterInit(pOut->pFd, &writer, pTask->pSorter->pgsz, iStart);
|
| - while( rc==SQLITE_OK ){
|
| - int dummy;
|
| - PmaReader *pReader = &pMerger->aReadr[ pMerger->aTree[1] ];
|
| - int nKey = pReader->nKey;
|
| - i64 iEof = writer.iWriteOff + writer.iBufEnd;
|
| -
|
| - /* Check if the output file is full or if the input has been exhausted.
|
| - ** In either case exit the loop. */
|
| - if( pReader->pFd==0 ) break;
|
| - if( (iEof + nKey + sqlite3VarintLen(nKey))>(iStart + pIncr->mxSz) ) break;
|
| -
|
| - /* Write the next key to the output. */
|
| - vdbePmaWriteVarint(&writer, nKey);
|
| - vdbePmaWriteBlob(&writer, pReader->aKey, nKey);
|
| - assert( pIncr->pMerger->pTask==pTask );
|
| - rc = vdbeMergeEngineStep(pIncr->pMerger, &dummy);
|
| - }
|
| -
|
| - rc2 = vdbePmaWriterFinish(&writer, &pOut->iEof);
|
| - if( rc==SQLITE_OK ) rc = rc2;
|
| - vdbeSorterPopulateDebug(pTask, "exit");
|
| - return rc;
|
| -}
|
| -
|
| -#if SQLITE_MAX_WORKER_THREADS>0
|
| -/*
|
| -** The main routine for background threads that populate aFile[1] of
|
| -** multi-threaded IncrMerger objects.
|
| -*/
|
| -static void *vdbeIncrPopulateThread(void *pCtx){
|
| - IncrMerger *pIncr = (IncrMerger*)pCtx;
|
| - void *pRet = SQLITE_INT_TO_PTR( vdbeIncrPopulate(pIncr) );
|
| - pIncr->pTask->bDone = 1;
|
| - return pRet;
|
| -}
|
| -
|
| -/*
|
| -** Launch a background thread to populate aFile[1] of pIncr.
|
| -*/
|
| -static int vdbeIncrBgPopulate(IncrMerger *pIncr){
|
| - void *p = (void*)pIncr;
|
| - assert( pIncr->bUseThread );
|
| - return vdbeSorterCreateThread(pIncr->pTask, vdbeIncrPopulateThread, p);
|
| -}
|
| -#endif
|
| -
|
| -/*
|
| -** This function is called when the PmaReader corresponding to pIncr has
|
| -** finished reading the contents of aFile[0]. Its purpose is to "refill"
|
| -** aFile[0] such that the PmaReader should start rereading it from the
|
| -** beginning.
|
| -**
|
| -** For single-threaded objects, this is accomplished by literally reading
|
| -** keys from pIncr->pMerger and repopulating aFile[0].
|
| -**
|
| -** For multi-threaded objects, all that is required is to wait until the
|
| -** background thread is finished (if it is not already) and then swap
|
| -** aFile[0] and aFile[1] in place. If the contents of pMerger have not
|
| -** been exhausted, this function also launches a new background thread
|
| -** to populate the new aFile[1].
|
| -**
|
| -** SQLITE_OK is returned on success, or an SQLite error code otherwise.
|
| -*/
|
| -static int vdbeIncrSwap(IncrMerger *pIncr){
|
| - int rc = SQLITE_OK;
|
| -
|
| -#if SQLITE_MAX_WORKER_THREADS>0
|
| - if( pIncr->bUseThread ){
|
| - rc = vdbeSorterJoinThread(pIncr->pTask);
|
| -
|
| - if( rc==SQLITE_OK ){
|
| - SorterFile f0 = pIncr->aFile[0];
|
| - pIncr->aFile[0] = pIncr->aFile[1];
|
| - pIncr->aFile[1] = f0;
|
| - }
|
| -
|
| - if( rc==SQLITE_OK ){
|
| - if( pIncr->aFile[0].iEof==pIncr->iStartOff ){
|
| - pIncr->bEof = 1;
|
| - }else{
|
| - rc = vdbeIncrBgPopulate(pIncr);
|
| - }
|
| - }
|
| - }else
|
| -#endif
|
| - {
|
| - rc = vdbeIncrPopulate(pIncr);
|
| - pIncr->aFile[0] = pIncr->aFile[1];
|
| - if( pIncr->aFile[0].iEof==pIncr->iStartOff ){
|
| - pIncr->bEof = 1;
|
| - }
|
| - }
|
| -
|
| - return rc;
|
| -}
|
| -
|
| -/*
|
| -** Allocate and return a new IncrMerger object to read data from pMerger.
|
| -**
|
| -** If an OOM condition is encountered, return NULL. In this case free the
|
| -** pMerger argument before returning.
|
| -*/
|
| -static int vdbeIncrMergerNew(
|
| - SortSubtask *pTask, /* The thread that will be using the new IncrMerger */
|
| - MergeEngine *pMerger, /* The MergeEngine that the IncrMerger will control */
|
| - IncrMerger **ppOut /* Write the new IncrMerger here */
|
| -){
|
| - int rc = SQLITE_OK;
|
| - IncrMerger *pIncr = *ppOut = (IncrMerger*)
|
| - (sqlite3FaultSim(100) ? 0 : sqlite3MallocZero(sizeof(*pIncr)));
|
| - if( pIncr ){
|
| - pIncr->pMerger = pMerger;
|
| - pIncr->pTask = pTask;
|
| - pIncr->mxSz = MAX(pTask->pSorter->mxKeysize+9,pTask->pSorter->mxPmaSize/2);
|
| - pTask->file2.iEof += pIncr->mxSz;
|
| - }else{
|
| - vdbeMergeEngineFree(pMerger);
|
| - rc = SQLITE_NOMEM;
|
| - }
|
| - return rc;
|
| -}
|
| -
|
| -#if SQLITE_MAX_WORKER_THREADS>0
|
| -/*
|
| -** Set the "use-threads" flag on object pIncr.
|
| -*/
|
| -static void vdbeIncrMergerSetThreads(IncrMerger *pIncr){
|
| - pIncr->bUseThread = 1;
|
| - pIncr->pTask->file2.iEof -= pIncr->mxSz;
|
| -}
|
| -#endif /* SQLITE_MAX_WORKER_THREADS>0 */
|
| -
|
| -
|
| -
|
| -/*
|
| -** Recompute pMerger->aTree[iOut] by comparing the next keys on the
|
| -** two PmaReaders that feed that entry. Neither of the PmaReaders
|
| -** are advanced. This routine merely does the comparison.
|
| -*/
|
| -static void vdbeMergeEngineCompare(
|
| - MergeEngine *pMerger, /* Merge engine containing PmaReaders to compare */
|
| - int iOut /* Store the result in pMerger->aTree[iOut] */
|
| -){
|
| - int i1;
|
| - int i2;
|
| - int iRes;
|
| - PmaReader *p1;
|
| - PmaReader *p2;
|
| -
|
| - assert( iOut<pMerger->nTree && iOut>0 );
|
| -
|
| - if( iOut>=(pMerger->nTree/2) ){
|
| - i1 = (iOut - pMerger->nTree/2) * 2;
|
| - i2 = i1 + 1;
|
| - }else{
|
| - i1 = pMerger->aTree[iOut*2];
|
| - i2 = pMerger->aTree[iOut*2+1];
|
| - }
|
| -
|
| - p1 = &pMerger->aReadr[i1];
|
| - p2 = &pMerger->aReadr[i2];
|
| -
|
| - if( p1->pFd==0 ){
|
| - iRes = i2;
|
| - }else if( p2->pFd==0 ){
|
| - iRes = i1;
|
| - }else{
|
| - int res;
|
| - assert( pMerger->pTask->pUnpacked!=0 ); /* from vdbeSortSubtaskMain() */
|
| - res = vdbeSorterCompare(
|
| - pMerger->pTask, p1->aKey, p1->nKey, p2->aKey, p2->nKey
|
| - );
|
| - if( res<=0 ){
|
| - iRes = i1;
|
| - }else{
|
| - iRes = i2;
|
| - }
|
| - }
|
| -
|
| - pMerger->aTree[iOut] = iRes;
|
| -}
|
| -
|
| -/*
|
| -** Allowed values for the eMode parameter to vdbeMergeEngineInit()
|
| -** and vdbePmaReaderIncrMergeInit().
|
| -**
|
| -** Only INCRINIT_NORMAL is valid in single-threaded builds (when
|
| -** SQLITE_MAX_WORKER_THREADS==0). The other values are only used
|
| -** when there exists one or more separate worker threads.
|
| -*/
|
| -#define INCRINIT_NORMAL 0
|
| -#define INCRINIT_TASK 1
|
| -#define INCRINIT_ROOT 2
|
| -
|
| -/* Forward reference.
|
| -** The vdbeIncrMergeInit() and vdbePmaReaderIncrMergeInit() routines call each
|
| -** other (when building a merge tree).
|
| -*/
|
| -static int vdbePmaReaderIncrMergeInit(PmaReader *pReadr, int eMode);
|
| -
|
| -/*
|
| -** Initialize the MergeEngine object passed as the second argument. Once this
|
| -** function returns, the first key of merged data may be read from the
|
| -** MergeEngine object in the usual fashion.
|
| -**
|
| -** If argument eMode is INCRINIT_ROOT, then it is assumed that any IncrMerge
|
| -** objects attached to the PmaReader objects that the merger reads from have
|
| -** already been populated, but that they have not yet populated aFile[0] and
|
| -** set the PmaReader objects up to read from it. In this case all that is
|
| -** required is to call vdbePmaReaderNext() on each PmaReader to point it at
|
| -** its first key.
|
| -**
|
| -** Otherwise, if eMode is any value other than INCRINIT_ROOT, then use
|
| -** vdbePmaReaderIncrMergeInit() to initialize each PmaReader that feeds data
|
| -** to pMerger.
|
| -**
|
| -** SQLITE_OK is returned if successful, or an SQLite error code otherwise.
|
| -*/
|
| -static int vdbeMergeEngineInit(
|
| - SortSubtask *pTask, /* Thread that will run pMerger */
|
| - MergeEngine *pMerger, /* MergeEngine to initialize */
|
| - int eMode /* One of the INCRINIT_XXX constants */
|
| -){
|
| - int rc = SQLITE_OK; /* Return code */
|
| - int i; /* For looping over PmaReader objects */
|
| - int nTree = pMerger->nTree;
|
| -
|
| - /* eMode is always INCRINIT_NORMAL in single-threaded mode */
|
| - assert( SQLITE_MAX_WORKER_THREADS>0 || eMode==INCRINIT_NORMAL );
|
| -
|
| - /* Verify that the MergeEngine is assigned to a single thread */
|
| - assert( pMerger->pTask==0 );
|
| - pMerger->pTask = pTask;
|
| -
|
| - for(i=0; i<nTree; i++){
|
| - if( SQLITE_MAX_WORKER_THREADS>0 && eMode==INCRINIT_ROOT ){
|
| - /* PmaReaders should be normally initialized in order, as if they are
|
| - ** reading from the same temp file this makes for more linear file IO.
|
| - ** However, in the INCRINIT_ROOT case, if PmaReader aReadr[nTask-1] is
|
| - ** in use it will block the vdbePmaReaderNext() call while it uses
|
| - ** the main thread to fill its buffer. So calling PmaReaderNext()
|
| - ** on this PmaReader before any of the multi-threaded PmaReaders takes
|
| - ** better advantage of multi-processor hardware. */
|
| - rc = vdbePmaReaderNext(&pMerger->aReadr[nTree-i-1]);
|
| - }else{
|
| - rc = vdbePmaReaderIncrMergeInit(&pMerger->aReadr[i], INCRINIT_NORMAL);
|
| - }
|
| - if( rc!=SQLITE_OK ) return rc;
|
| - }
|
| -
|
| - for(i=pMerger->nTree-1; i>0; i--){
|
| - vdbeMergeEngineCompare(pMerger, i);
|
| - }
|
| - return pTask->pUnpacked->errCode;
|
| -}
|
| -
|
| -/*
|
| -** Initialize the IncrMerge field of a PmaReader.
|
| -**
|
| -** If the PmaReader passed as the first argument is not an incremental-reader
|
| -** (if pReadr->pIncr==0), then this function is a no-op. Otherwise, it serves
|
| -** to open and/or initialize the temp file related fields of the IncrMerge
|
| -** object at (pReadr->pIncr).
|
| -**
|
| -** If argument eMode is set to INCRINIT_NORMAL, then all PmaReaders
|
| -** in the sub-tree headed by pReadr are also initialized. Data is then loaded
|
| -** into the buffers belonging to pReadr and it is set to
|
| -** point to the first key in its range.
|
| -**
|
| -** If argument eMode is set to INCRINIT_TASK, then pReadr is guaranteed
|
| -** to be a multi-threaded PmaReader and this function is being called in a
|
| -** background thread. In this case all PmaReaders in the sub-tree are
|
| -** initialized as for INCRINIT_NORMAL and the aFile[1] buffer belonging to
|
| -** pReadr is populated. However, pReadr itself is not set up to point
|
| -** to its first key. A call to vdbePmaReaderNext() is still required to do
|
| -** that.
|
| -**
|
| -** The reason this function does not call vdbePmaReaderNext() immediately
|
| -** in the INCRINIT_TASK case is that vdbePmaReaderNext() assumes that it has
|
| -** to block on thread (pTask->thread) before accessing aFile[1]. But, since
|
| -** this entire function is being run by thread (pTask->thread), that will
|
| -** lead to the current background thread attempting to join itself.
|
| -**
|
| -** Finally, if argument eMode is set to INCRINIT_ROOT, it may be assumed
|
| -** that pReadr->pIncr is a multi-threaded IncrMerge objects, and that all
|
| -** child-trees have already been initialized using IncrInit(INCRINIT_TASK).
|
| -** In this case vdbePmaReaderNext() is called on all child PmaReaders and
|
| -** the current PmaReader set to point to the first key in its range.
|
| -**
|
| -** SQLITE_OK is returned if successful, or an SQLite error code otherwise.
|
| -*/
|
| -static int vdbePmaReaderIncrMergeInit(PmaReader *pReadr, int eMode){
|
| - int rc = SQLITE_OK;
|
| - IncrMerger *pIncr = pReadr->pIncr;
|
| -
|
| - /* eMode is always INCRINIT_NORMAL in single-threaded mode */
|
| - assert( SQLITE_MAX_WORKER_THREADS>0 || eMode==INCRINIT_NORMAL );
|
| -
|
| - if( pIncr ){
|
| - SortSubtask *pTask = pIncr->pTask;
|
| - sqlite3 *db = pTask->pSorter->db;
|
| -
|
| - rc = vdbeMergeEngineInit(pTask, pIncr->pMerger, eMode);
|
| -
|
| - /* Set up the required files for pIncr. A multi-theaded IncrMerge object
|
| - ** requires two temp files to itself, whereas a single-threaded object
|
| - ** only requires a region of pTask->file2. */
|
| - if( rc==SQLITE_OK ){
|
| - int mxSz = pIncr->mxSz;
|
| -#if SQLITE_MAX_WORKER_THREADS>0
|
| - if( pIncr->bUseThread ){
|
| - rc = vdbeSorterOpenTempFile(db, mxSz, &pIncr->aFile[0].pFd);
|
| - if( rc==SQLITE_OK ){
|
| - rc = vdbeSorterOpenTempFile(db, mxSz, &pIncr->aFile[1].pFd);
|
| - }
|
| - }else
|
| -#endif
|
| - /*if( !pIncr->bUseThread )*/{
|
| - if( pTask->file2.pFd==0 ){
|
| - assert( pTask->file2.iEof>0 );
|
| - rc = vdbeSorterOpenTempFile(db, pTask->file2.iEof, &pTask->file2.pFd);
|
| - pTask->file2.iEof = 0;
|
| - }
|
| - if( rc==SQLITE_OK ){
|
| - pIncr->aFile[1].pFd = pTask->file2.pFd;
|
| - pIncr->iStartOff = pTask->file2.iEof;
|
| - pTask->file2.iEof += mxSz;
|
| - }
|
| - }
|
| - }
|
| -
|
| -#if SQLITE_MAX_WORKER_THREADS>0
|
| - if( rc==SQLITE_OK && pIncr->bUseThread ){
|
| - /* Use the current thread to populate aFile[1], even though this
|
| - ** PmaReader is multi-threaded. The reason being that this function
|
| - ** is already running in background thread pIncr->pTask->thread. */
|
| - assert( eMode==INCRINIT_ROOT || eMode==INCRINIT_TASK );
|
| - rc = vdbeIncrPopulate(pIncr);
|
| - }
|
| -#endif
|
| -
|
| - if( rc==SQLITE_OK
|
| - && (SQLITE_MAX_WORKER_THREADS==0 || eMode!=INCRINIT_TASK)
|
| - ){
|
| - rc = vdbePmaReaderNext(pReadr);
|
| - }
|
| - }
|
| - return rc;
|
| -}
|
| -
|
| -#if SQLITE_MAX_WORKER_THREADS>0
|
| -/*
|
| -** The main routine for vdbePmaReaderIncrMergeInit() operations run in
|
| -** background threads.
|
| -*/
|
| -static void *vdbePmaReaderBgInit(void *pCtx){
|
| - PmaReader *pReader = (PmaReader*)pCtx;
|
| - void *pRet = SQLITE_INT_TO_PTR(
|
| - vdbePmaReaderIncrMergeInit(pReader,INCRINIT_TASK)
|
| - );
|
| - pReader->pIncr->pTask->bDone = 1;
|
| - return pRet;
|
| -}
|
| -
|
| -/*
|
| -** Use a background thread to invoke vdbePmaReaderIncrMergeInit(INCRINIT_TASK)
|
| -** on the PmaReader object passed as the first argument.
|
| -**
|
| -** This call will initialize the various fields of the pReadr->pIncr
|
| -** structure and, if it is a multi-threaded IncrMerger, launch a
|
| -** background thread to populate aFile[1].
|
| -*/
|
| -static int vdbePmaReaderBgIncrInit(PmaReader *pReadr){
|
| - void *pCtx = (void*)pReadr;
|
| - return vdbeSorterCreateThread(pReadr->pIncr->pTask, vdbePmaReaderBgInit, pCtx);
|
| -}
|
| -#endif
|
| -
|
| -/*
|
| -** Allocate a new MergeEngine object to merge the contents of nPMA level-0
|
| -** PMAs from pTask->file. If no error occurs, set *ppOut to point to
|
| -** the new object and return SQLITE_OK. Or, if an error does occur, set *ppOut
|
| -** to NULL and return an SQLite error code.
|
| -**
|
| -** When this function is called, *piOffset is set to the offset of the
|
| -** first PMA to read from pTask->file. Assuming no error occurs, it is
|
| -** set to the offset immediately following the last byte of the last
|
| -** PMA before returning. If an error does occur, then the final value of
|
| -** *piOffset is undefined.
|
| -*/
|
| -static int vdbeMergeEngineLevel0(
|
| - SortSubtask *pTask, /* Sorter task to read from */
|
| - int nPMA, /* Number of PMAs to read */
|
| - i64 *piOffset, /* IN/OUT: Readr offset in pTask->file */
|
| - MergeEngine **ppOut /* OUT: New merge-engine */
|
| -){
|
| - MergeEngine *pNew; /* Merge engine to return */
|
| - i64 iOff = *piOffset;
|
| - int i;
|
| - int rc = SQLITE_OK;
|
| -
|
| - *ppOut = pNew = vdbeMergeEngineNew(nPMA);
|
| - if( pNew==0 ) rc = SQLITE_NOMEM;
|
| -
|
| - for(i=0; i<nPMA && rc==SQLITE_OK; i++){
|
| - i64 nDummy;
|
| - PmaReader *pReadr = &pNew->aReadr[i];
|
| - rc = vdbePmaReaderInit(pTask, &pTask->file, iOff, pReadr, &nDummy);
|
| - iOff = pReadr->iEof;
|
| - }
|
| -
|
| - if( rc!=SQLITE_OK ){
|
| - vdbeMergeEngineFree(pNew);
|
| - *ppOut = 0;
|
| - }
|
| - *piOffset = iOff;
|
| - return rc;
|
| -}
|
| -
|
| -/*
|
| -** Return the depth of a tree comprising nPMA PMAs, assuming a fanout of
|
| -** SORTER_MAX_MERGE_COUNT. The returned value does not include leaf nodes.
|
| -**
|
| -** i.e.
|
| -**
|
| -** nPMA<=16 -> TreeDepth() == 0
|
| -** nPMA<=256 -> TreeDepth() == 1
|
| -** nPMA<=65536 -> TreeDepth() == 2
|
| -*/
|
| -static int vdbeSorterTreeDepth(int nPMA){
|
| - int nDepth = 0;
|
| - i64 nDiv = SORTER_MAX_MERGE_COUNT;
|
| - while( nDiv < (i64)nPMA ){
|
| - nDiv = nDiv * SORTER_MAX_MERGE_COUNT;
|
| - nDepth++;
|
| - }
|
| - return nDepth;
|
| -}
|
| -
|
| -/*
|
| -** pRoot is the root of an incremental merge-tree with depth nDepth (according
|
| -** to vdbeSorterTreeDepth()). pLeaf is the iSeq'th leaf to be added to the
|
| -** tree, counting from zero. This function adds pLeaf to the tree.
|
| -**
|
| -** If successful, SQLITE_OK is returned. If an error occurs, an SQLite error
|
| -** code is returned and pLeaf is freed.
|
| -*/
|
| -static int vdbeSorterAddToTree(
|
| - SortSubtask *pTask, /* Task context */
|
| - int nDepth, /* Depth of tree according to TreeDepth() */
|
| - int iSeq, /* Sequence number of leaf within tree */
|
| - MergeEngine *pRoot, /* Root of tree */
|
| - MergeEngine *pLeaf /* Leaf to add to tree */
|
| -){
|
| - int rc = SQLITE_OK;
|
| - int nDiv = 1;
|
| - int i;
|
| - MergeEngine *p = pRoot;
|
| - IncrMerger *pIncr;
|
| -
|
| - rc = vdbeIncrMergerNew(pTask, pLeaf, &pIncr);
|
| -
|
| - for(i=1; i<nDepth; i++){
|
| - nDiv = nDiv * SORTER_MAX_MERGE_COUNT;
|
| - }
|
| -
|
| - for(i=1; i<nDepth && rc==SQLITE_OK; i++){
|
| - int iIter = (iSeq / nDiv) % SORTER_MAX_MERGE_COUNT;
|
| - PmaReader *pReadr = &p->aReadr[iIter];
|
| -
|
| - if( pReadr->pIncr==0 ){
|
| - MergeEngine *pNew = vdbeMergeEngineNew(SORTER_MAX_MERGE_COUNT);
|
| - if( pNew==0 ){
|
| - rc = SQLITE_NOMEM;
|
| - }else{
|
| - rc = vdbeIncrMergerNew(pTask, pNew, &pReadr->pIncr);
|
| - }
|
| - }
|
| - if( rc==SQLITE_OK ){
|
| - p = pReadr->pIncr->pMerger;
|
| - nDiv = nDiv / SORTER_MAX_MERGE_COUNT;
|
| - }
|
| - }
|
| -
|
| - if( rc==SQLITE_OK ){
|
| - p->aReadr[iSeq % SORTER_MAX_MERGE_COUNT].pIncr = pIncr;
|
| - }else{
|
| - vdbeIncrFree(pIncr);
|
| - }
|
| - return rc;
|
| -}
|
| -
|
| -/*
|
| -** This function is called as part of a SorterRewind() operation on a sorter
|
| -** that has already written two or more level-0 PMAs to one or more temp
|
| -** files. It builds a tree of MergeEngine/IncrMerger/PmaReader objects that
|
| -** can be used to incrementally merge all PMAs on disk.
|
| -**
|
| -** If successful, SQLITE_OK is returned and *ppOut set to point to the
|
| -** MergeEngine object at the root of the tree before returning. Or, if an
|
| -** error occurs, an SQLite error code is returned and the final value
|
| -** of *ppOut is undefined.
|
| -*/
|
| -static int vdbeSorterMergeTreeBuild(
|
| - VdbeSorter *pSorter, /* The VDBE cursor that implements the sort */
|
| - MergeEngine **ppOut /* Write the MergeEngine here */
|
| -){
|
| - MergeEngine *pMain = 0;
|
| - int rc = SQLITE_OK;
|
| - int iTask;
|
| -
|
| -#if SQLITE_MAX_WORKER_THREADS>0
|
| - /* If the sorter uses more than one task, then create the top-level
|
| - ** MergeEngine here. This MergeEngine will read data from exactly
|
| - ** one PmaReader per sub-task. */
|
| - assert( pSorter->bUseThreads || pSorter->nTask==1 );
|
| - if( pSorter->nTask>1 ){
|
| - pMain = vdbeMergeEngineNew(pSorter->nTask);
|
| - if( pMain==0 ) rc = SQLITE_NOMEM;
|
| - }
|
| -#endif
|
| -
|
| - for(iTask=0; rc==SQLITE_OK && iTask<pSorter->nTask; iTask++){
|
| - SortSubtask *pTask = &pSorter->aTask[iTask];
|
| - assert( pTask->nPMA>0 || SQLITE_MAX_WORKER_THREADS>0 );
|
| - if( SQLITE_MAX_WORKER_THREADS==0 || pTask->nPMA ){
|
| - MergeEngine *pRoot = 0; /* Root node of tree for this task */
|
| - int nDepth = vdbeSorterTreeDepth(pTask->nPMA);
|
| - i64 iReadOff = 0;
|
| -
|
| - if( pTask->nPMA<=SORTER_MAX_MERGE_COUNT ){
|
| - rc = vdbeMergeEngineLevel0(pTask, pTask->nPMA, &iReadOff, &pRoot);
|
| - }else{
|
| - int i;
|
| - int iSeq = 0;
|
| - pRoot = vdbeMergeEngineNew(SORTER_MAX_MERGE_COUNT);
|
| - if( pRoot==0 ) rc = SQLITE_NOMEM;
|
| - for(i=0; i<pTask->nPMA && rc==SQLITE_OK; i += SORTER_MAX_MERGE_COUNT){
|
| - MergeEngine *pMerger = 0; /* New level-0 PMA merger */
|
| - int nReader; /* Number of level-0 PMAs to merge */
|
| -
|
| - nReader = MIN(pTask->nPMA - i, SORTER_MAX_MERGE_COUNT);
|
| - rc = vdbeMergeEngineLevel0(pTask, nReader, &iReadOff, &pMerger);
|
| - if( rc==SQLITE_OK ){
|
| - rc = vdbeSorterAddToTree(pTask, nDepth, iSeq++, pRoot, pMerger);
|
| - }
|
| - }
|
| - }
|
| -
|
| - if( rc==SQLITE_OK ){
|
| -#if SQLITE_MAX_WORKER_THREADS>0
|
| - if( pMain!=0 ){
|
| - rc = vdbeIncrMergerNew(pTask, pRoot, &pMain->aReadr[iTask].pIncr);
|
| - }else
|
| -#endif
|
| - {
|
| - assert( pMain==0 );
|
| - pMain = pRoot;
|
| - }
|
| - }else{
|
| - vdbeMergeEngineFree(pRoot);
|
| - }
|
| - }
|
| - }
|
| -
|
| - if( rc!=SQLITE_OK ){
|
| - vdbeMergeEngineFree(pMain);
|
| - pMain = 0;
|
| - }
|
| - *ppOut = pMain;
|
| - return rc;
|
| -}
|
| -
|
| -/*
|
| -** This function is called as part of an sqlite3VdbeSorterRewind() operation
|
| -** on a sorter that has written two or more PMAs to temporary files. It sets
|
| -** up either VdbeSorter.pMerger (for single threaded sorters) or pReader
|
| -** (for multi-threaded sorters) so that it can be used to iterate through
|
| -** all records stored in the sorter.
|
| -**
|
| -** SQLITE_OK is returned if successful, or an SQLite error code otherwise.
|
| -*/
|
| -static int vdbeSorterSetupMerge(VdbeSorter *pSorter){
|
| - int rc; /* Return code */
|
| - SortSubtask *pTask0 = &pSorter->aTask[0];
|
| - MergeEngine *pMain = 0;
|
| -#if SQLITE_MAX_WORKER_THREADS
|
| - sqlite3 *db = pTask0->pSorter->db;
|
| -#endif
|
| -
|
| - rc = vdbeSorterMergeTreeBuild(pSorter, &pMain);
|
| - if( rc==SQLITE_OK ){
|
| -#if SQLITE_MAX_WORKER_THREADS
|
| - assert( pSorter->bUseThreads==0 || pSorter->nTask>1 );
|
| - if( pSorter->bUseThreads ){
|
| - int iTask;
|
| - PmaReader *pReadr = 0;
|
| - SortSubtask *pLast = &pSorter->aTask[pSorter->nTask-1];
|
| - rc = vdbeSortAllocUnpacked(pLast);
|
| - if( rc==SQLITE_OK ){
|
| - pReadr = (PmaReader*)sqlite3DbMallocZero(db, sizeof(PmaReader));
|
| - pSorter->pReader = pReadr;
|
| - if( pReadr==0 ) rc = SQLITE_NOMEM;
|
| - }
|
| - if( rc==SQLITE_OK ){
|
| - rc = vdbeIncrMergerNew(pLast, pMain, &pReadr->pIncr);
|
| - if( rc==SQLITE_OK ){
|
| - vdbeIncrMergerSetThreads(pReadr->pIncr);
|
| - for(iTask=0; iTask<(pSorter->nTask-1); iTask++){
|
| - IncrMerger *pIncr;
|
| - if( (pIncr = pMain->aReadr[iTask].pIncr) ){
|
| - vdbeIncrMergerSetThreads(pIncr);
|
| - assert( pIncr->pTask!=pLast );
|
| - }
|
| - }
|
| - for(iTask=0; rc==SQLITE_OK && iTask<pSorter->nTask; iTask++){
|
| - PmaReader *p = &pMain->aReadr[iTask];
|
| - assert( p->pIncr==0 || p->pIncr->pTask==&pSorter->aTask[iTask] );
|
| - if( p->pIncr ){
|
| - if( iTask==pSorter->nTask-1 ){
|
| - rc = vdbePmaReaderIncrMergeInit(p, INCRINIT_TASK);
|
| - }else{
|
| - rc = vdbePmaReaderBgIncrInit(p);
|
| - }
|
| - }
|
| - }
|
| - }
|
| - pMain = 0;
|
| - }
|
| - if( rc==SQLITE_OK ){
|
| - rc = vdbePmaReaderIncrMergeInit(pReadr, INCRINIT_ROOT);
|
| - }
|
| - }else
|
| -#endif
|
| - {
|
| - rc = vdbeMergeEngineInit(pTask0, pMain, INCRINIT_NORMAL);
|
| - pSorter->pMerger = pMain;
|
| - pMain = 0;
|
| - }
|
| - }
|
| -
|
| - if( rc!=SQLITE_OK ){
|
| - vdbeMergeEngineFree(pMain);
|
| - }
|
| - return rc;
|
| -}
|
| -
|
| -
|
| -/*
|
| -** Once the sorter has been populated by calls to sqlite3VdbeSorterWrite,
|
| -** this function is called to prepare for iterating through the records
|
| -** in sorted order.
|
| -*/
|
| -int sqlite3VdbeSorterRewind(const VdbeCursor *pCsr, int *pbEof){
|
| - VdbeSorter *pSorter = pCsr->pSorter;
|
| - int rc = SQLITE_OK; /* Return code */
|
| -
|
| - assert( pSorter );
|
| -
|
| - /* If no data has been written to disk, then do not do so now. Instead,
|
| - ** sort the VdbeSorter.pRecord list. The vdbe layer will read data directly
|
| - ** from the in-memory list. */
|
| - if( pSorter->bUsePMA==0 ){
|
| - if( pSorter->list.pList ){
|
| - *pbEof = 0;
|
| - rc = vdbeSorterSort(&pSorter->aTask[0], &pSorter->list);
|
| - }else{
|
| - *pbEof = 1;
|
| - }
|
| - return rc;
|
| - }
|
| -
|
| - /* Write the current in-memory list to a PMA. When the VdbeSorterWrite()
|
| - ** function flushes the contents of memory to disk, it immediately always
|
| - ** creates a new list consisting of a single key immediately afterwards.
|
| - ** So the list is never empty at this point. */
|
| - assert( pSorter->list.pList );
|
| - rc = vdbeSorterFlushPMA(pSorter);
|
| -
|
| - /* Join all threads */
|
| - rc = vdbeSorterJoinAll(pSorter, rc);
|
| -
|
| - vdbeSorterRewindDebug("rewind");
|
| -
|
| - /* Assuming no errors have occurred, set up a merger structure to
|
| - ** incrementally read and merge all remaining PMAs. */
|
| - assert( pSorter->pReader==0 );
|
| - if( rc==SQLITE_OK ){
|
| - rc = vdbeSorterSetupMerge(pSorter);
|
| - *pbEof = 0;
|
| - }
|
| -
|
| - vdbeSorterRewindDebug("rewinddone");
|
| - return rc;
|
| -}
|
| -
|
| -/*
|
| -** Advance to the next element in the sorter.
|
| -*/
|
| -int sqlite3VdbeSorterNext(sqlite3 *db, const VdbeCursor *pCsr, int *pbEof){
|
| - VdbeSorter *pSorter = pCsr->pSorter;
|
| - int rc; /* Return code */
|
| -
|
| - assert( pSorter->bUsePMA || (pSorter->pReader==0 && pSorter->pMerger==0) );
|
| - if( pSorter->bUsePMA ){
|
| - assert( pSorter->pReader==0 || pSorter->pMerger==0 );
|
| - assert( pSorter->bUseThreads==0 || pSorter->pReader );
|
| - assert( pSorter->bUseThreads==1 || pSorter->pMerger );
|
| -#if SQLITE_MAX_WORKER_THREADS>0
|
| - if( pSorter->bUseThreads ){
|
| - rc = vdbePmaReaderNext(pSorter->pReader);
|
| - *pbEof = (pSorter->pReader->pFd==0);
|
| - }else
|
| -#endif
|
| - /*if( !pSorter->bUseThreads )*/ {
|
| - assert( pSorter->pMerger->pTask==(&pSorter->aTask[0]) );
|
| - rc = vdbeMergeEngineStep(pSorter->pMerger, pbEof);
|
| - }
|
| - }else{
|
| - SorterRecord *pFree = pSorter->list.pList;
|
| - pSorter->list.pList = pFree->u.pNext;
|
| - pFree->u.pNext = 0;
|
| - if( pSorter->list.aMemory==0 ) vdbeSorterRecordFree(db, pFree);
|
| - *pbEof = !pSorter->list.pList;
|
| - rc = SQLITE_OK;
|
| - }
|
| - return rc;
|
| -}
|
| -
|
| -/*
|
| -** Return a pointer to a buffer owned by the sorter that contains the
|
| -** current key.
|
| -*/
|
| -static void *vdbeSorterRowkey(
|
| - const VdbeSorter *pSorter, /* Sorter object */
|
| - int *pnKey /* OUT: Size of current key in bytes */
|
| -){
|
| - void *pKey;
|
| - if( pSorter->bUsePMA ){
|
| - PmaReader *pReader;
|
| -#if SQLITE_MAX_WORKER_THREADS>0
|
| - if( pSorter->bUseThreads ){
|
| - pReader = pSorter->pReader;
|
| - }else
|
| -#endif
|
| - /*if( !pSorter->bUseThreads )*/{
|
| - pReader = &pSorter->pMerger->aReadr[pSorter->pMerger->aTree[1]];
|
| - }
|
| - *pnKey = pReader->nKey;
|
| - pKey = pReader->aKey;
|
| - }else{
|
| - *pnKey = pSorter->list.pList->nVal;
|
| - pKey = SRVAL(pSorter->list.pList);
|
| - }
|
| - return pKey;
|
| -}
|
| -
|
| -/*
|
| -** Copy the current sorter key into the memory cell pOut.
|
| -*/
|
| -int sqlite3VdbeSorterRowkey(const VdbeCursor *pCsr, Mem *pOut){
|
| - VdbeSorter *pSorter = pCsr->pSorter;
|
| - void *pKey; int nKey; /* Sorter key to copy into pOut */
|
| -
|
| - pKey = vdbeSorterRowkey(pSorter, &nKey);
|
| - if( sqlite3VdbeMemClearAndResize(pOut, nKey) ){
|
| - return SQLITE_NOMEM;
|
| - }
|
| - pOut->n = nKey;
|
| - MemSetTypeFlag(pOut, MEM_Blob);
|
| - memcpy(pOut->z, pKey, nKey);
|
| -
|
| - return SQLITE_OK;
|
| -}
|
| -
|
| -/*
|
| -** Compare the key in memory cell pVal with the key that the sorter cursor
|
| -** passed as the first argument currently points to. For the purposes of
|
| -** the comparison, ignore the rowid field at the end of each record.
|
| -**
|
| -** If the sorter cursor key contains any NULL values, consider it to be
|
| -** less than pVal. Even if pVal also contains NULL values.
|
| -**
|
| -** If an error occurs, return an SQLite error code (i.e. SQLITE_NOMEM).
|
| -** Otherwise, set *pRes to a negative, zero or positive value if the
|
| -** key in pVal is smaller than, equal to or larger than the current sorter
|
| -** key.
|
| -**
|
| -** This routine forms the core of the OP_SorterCompare opcode, which in
|
| -** turn is used to verify uniqueness when constructing a UNIQUE INDEX.
|
| -*/
|
| -int sqlite3VdbeSorterCompare(
|
| - const VdbeCursor *pCsr, /* Sorter cursor */
|
| - Mem *pVal, /* Value to compare to current sorter key */
|
| - int nKeyCol, /* Compare this many columns */
|
| - int *pRes /* OUT: Result of comparison */
|
| -){
|
| - VdbeSorter *pSorter = pCsr->pSorter;
|
| - UnpackedRecord *r2 = pSorter->pUnpacked;
|
| - KeyInfo *pKeyInfo = pCsr->pKeyInfo;
|
| - int i;
|
| - void *pKey; int nKey; /* Sorter key to compare pVal with */
|
| -
|
| - if( r2==0 ){
|
| - char *p;
|
| - r2 = pSorter->pUnpacked = sqlite3VdbeAllocUnpackedRecord(pKeyInfo,0,0,&p);
|
| - assert( pSorter->pUnpacked==(UnpackedRecord*)p );
|
| - if( r2==0 ) return SQLITE_NOMEM;
|
| - r2->nField = nKeyCol;
|
| - }
|
| - assert( r2->nField==nKeyCol );
|
| -
|
| - pKey = vdbeSorterRowkey(pSorter, &nKey);
|
| - sqlite3VdbeRecordUnpack(pKeyInfo, nKey, pKey, r2);
|
| - for(i=0; i<nKeyCol; i++){
|
| - if( r2->aMem[i].flags & MEM_Null ){
|
| - *pRes = -1;
|
| - return SQLITE_OK;
|
| - }
|
| - }
|
| -
|
| - *pRes = sqlite3VdbeRecordCompare(pVal->n, pVal->z, r2);
|
| - return SQLITE_OK;
|
| -}
|
|
|