| Index: third_party/sqlite/sqlite-src-3080704/src/build.c
|
| diff --git a/third_party/sqlite/sqlite-src-3080704/src/build.c b/third_party/sqlite/sqlite-src-3080704/src/build.c
|
| deleted file mode 100644
|
| index b897494db3c2e478402917cfbe724de567177ac7..0000000000000000000000000000000000000000
|
| --- a/third_party/sqlite/sqlite-src-3080704/src/build.c
|
| +++ /dev/null
|
| @@ -1,4293 +0,0 @@
|
| -/*
|
| -** 2001 September 15
|
| -**
|
| -** The author disclaims copyright to this source code. In place of
|
| -** a legal notice, here is a blessing:
|
| -**
|
| -** May you do good and not evil.
|
| -** May you find forgiveness for yourself and forgive others.
|
| -** May you share freely, never taking more than you give.
|
| -**
|
| -*************************************************************************
|
| -** This file contains C code routines that are called by the SQLite parser
|
| -** when syntax rules are reduced. The routines in this file handle the
|
| -** following kinds of SQL syntax:
|
| -**
|
| -** CREATE TABLE
|
| -** DROP TABLE
|
| -** CREATE INDEX
|
| -** DROP INDEX
|
| -** creating ID lists
|
| -** BEGIN TRANSACTION
|
| -** COMMIT
|
| -** ROLLBACK
|
| -*/
|
| -#include "sqliteInt.h"
|
| -
|
| -/*
|
| -** This routine is called when a new SQL statement is beginning to
|
| -** be parsed. Initialize the pParse structure as needed.
|
| -*/
|
| -void sqlite3BeginParse(Parse *pParse, int explainFlag){
|
| - pParse->explain = (u8)explainFlag;
|
| - pParse->nVar = 0;
|
| -}
|
| -
|
| -#ifndef SQLITE_OMIT_SHARED_CACHE
|
| -/*
|
| -** The TableLock structure is only used by the sqlite3TableLock() and
|
| -** codeTableLocks() functions.
|
| -*/
|
| -struct TableLock {
|
| - int iDb; /* The database containing the table to be locked */
|
| - int iTab; /* The root page of the table to be locked */
|
| - u8 isWriteLock; /* True for write lock. False for a read lock */
|
| - const char *zName; /* Name of the table */
|
| -};
|
| -
|
| -/*
|
| -** Record the fact that we want to lock a table at run-time.
|
| -**
|
| -** The table to be locked has root page iTab and is found in database iDb.
|
| -** A read or a write lock can be taken depending on isWritelock.
|
| -**
|
| -** This routine just records the fact that the lock is desired. The
|
| -** code to make the lock occur is generated by a later call to
|
| -** codeTableLocks() which occurs during sqlite3FinishCoding().
|
| -*/
|
| -void sqlite3TableLock(
|
| - Parse *pParse, /* Parsing context */
|
| - int iDb, /* Index of the database containing the table to lock */
|
| - int iTab, /* Root page number of the table to be locked */
|
| - u8 isWriteLock, /* True for a write lock */
|
| - const char *zName /* Name of the table to be locked */
|
| -){
|
| - Parse *pToplevel = sqlite3ParseToplevel(pParse);
|
| - int i;
|
| - int nBytes;
|
| - TableLock *p;
|
| - assert( iDb>=0 );
|
| -
|
| - for(i=0; i<pToplevel->nTableLock; i++){
|
| - p = &pToplevel->aTableLock[i];
|
| - if( p->iDb==iDb && p->iTab==iTab ){
|
| - p->isWriteLock = (p->isWriteLock || isWriteLock);
|
| - return;
|
| - }
|
| - }
|
| -
|
| - nBytes = sizeof(TableLock) * (pToplevel->nTableLock+1);
|
| - pToplevel->aTableLock =
|
| - sqlite3DbReallocOrFree(pToplevel->db, pToplevel->aTableLock, nBytes);
|
| - if( pToplevel->aTableLock ){
|
| - p = &pToplevel->aTableLock[pToplevel->nTableLock++];
|
| - p->iDb = iDb;
|
| - p->iTab = iTab;
|
| - p->isWriteLock = isWriteLock;
|
| - p->zName = zName;
|
| - }else{
|
| - pToplevel->nTableLock = 0;
|
| - pToplevel->db->mallocFailed = 1;
|
| - }
|
| -}
|
| -
|
| -/*
|
| -** Code an OP_TableLock instruction for each table locked by the
|
| -** statement (configured by calls to sqlite3TableLock()).
|
| -*/
|
| -static void codeTableLocks(Parse *pParse){
|
| - int i;
|
| - Vdbe *pVdbe;
|
| -
|
| - pVdbe = sqlite3GetVdbe(pParse);
|
| - assert( pVdbe!=0 ); /* sqlite3GetVdbe cannot fail: VDBE already allocated */
|
| -
|
| - for(i=0; i<pParse->nTableLock; i++){
|
| - TableLock *p = &pParse->aTableLock[i];
|
| - int p1 = p->iDb;
|
| - sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock,
|
| - p->zName, P4_STATIC);
|
| - }
|
| -}
|
| -#else
|
| - #define codeTableLocks(x)
|
| -#endif
|
| -
|
| -/*
|
| -** Return TRUE if the given yDbMask object is empty - if it contains no
|
| -** 1 bits. This routine is used by the DbMaskAllZero() and DbMaskNotZero()
|
| -** macros when SQLITE_MAX_ATTACHED is greater than 30.
|
| -*/
|
| -#if SQLITE_MAX_ATTACHED>30
|
| -int sqlite3DbMaskAllZero(yDbMask m){
|
| - int i;
|
| - for(i=0; i<sizeof(yDbMask); i++) if( m[i] ) return 0;
|
| - return 1;
|
| -}
|
| -#endif
|
| -
|
| -/*
|
| -** This routine is called after a single SQL statement has been
|
| -** parsed and a VDBE program to execute that statement has been
|
| -** prepared. This routine puts the finishing touches on the
|
| -** VDBE program and resets the pParse structure for the next
|
| -** parse.
|
| -**
|
| -** Note that if an error occurred, it might be the case that
|
| -** no VDBE code was generated.
|
| -*/
|
| -void sqlite3FinishCoding(Parse *pParse){
|
| - sqlite3 *db;
|
| - Vdbe *v;
|
| -
|
| - assert( pParse->pToplevel==0 );
|
| - db = pParse->db;
|
| - if( db->mallocFailed ) return;
|
| - if( pParse->nested ) return;
|
| - if( pParse->nErr ) return;
|
| -
|
| - /* Begin by generating some termination code at the end of the
|
| - ** vdbe program
|
| - */
|
| - v = sqlite3GetVdbe(pParse);
|
| - assert( !pParse->isMultiWrite
|
| - || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort));
|
| - if( v ){
|
| - while( sqlite3VdbeDeletePriorOpcode(v, OP_Close) ){}
|
| - sqlite3VdbeAddOp0(v, OP_Halt);
|
| -
|
| -#if SQLITE_USER_AUTHENTICATION
|
| - if( pParse->nTableLock>0 && db->init.busy==0 ){
|
| - sqlite3UserAuthInit(db);
|
| - if( db->auth.authLevel<UAUTH_User ){
|
| - pParse->rc = SQLITE_AUTH_USER;
|
| - sqlite3ErrorMsg(pParse, "user not authenticated");
|
| - return;
|
| - }
|
| - }
|
| -#endif
|
| -
|
| - /* The cookie mask contains one bit for each database file open.
|
| - ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are
|
| - ** set for each database that is used. Generate code to start a
|
| - ** transaction on each used database and to verify the schema cookie
|
| - ** on each used database.
|
| - */
|
| - if( db->mallocFailed==0
|
| - && (DbMaskNonZero(pParse->cookieMask) || pParse->pConstExpr)
|
| - ){
|
| - int iDb, i;
|
| - assert( sqlite3VdbeGetOp(v, 0)->opcode==OP_Init );
|
| - sqlite3VdbeJumpHere(v, 0);
|
| - for(iDb=0; iDb<db->nDb; iDb++){
|
| - if( DbMaskTest(pParse->cookieMask, iDb)==0 ) continue;
|
| - sqlite3VdbeUsesBtree(v, iDb);
|
| - sqlite3VdbeAddOp4Int(v,
|
| - OP_Transaction, /* Opcode */
|
| - iDb, /* P1 */
|
| - DbMaskTest(pParse->writeMask,iDb), /* P2 */
|
| - pParse->cookieValue[iDb], /* P3 */
|
| - db->aDb[iDb].pSchema->iGeneration /* P4 */
|
| - );
|
| - if( db->init.busy==0 ) sqlite3VdbeChangeP5(v, 1);
|
| - }
|
| -#ifndef SQLITE_OMIT_VIRTUALTABLE
|
| - for(i=0; i<pParse->nVtabLock; i++){
|
| - char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]);
|
| - sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB);
|
| - }
|
| - pParse->nVtabLock = 0;
|
| -#endif
|
| -
|
| - /* Once all the cookies have been verified and transactions opened,
|
| - ** obtain the required table-locks. This is a no-op unless the
|
| - ** shared-cache feature is enabled.
|
| - */
|
| - codeTableLocks(pParse);
|
| -
|
| - /* Initialize any AUTOINCREMENT data structures required.
|
| - */
|
| - sqlite3AutoincrementBegin(pParse);
|
| -
|
| - /* Code constant expressions that where factored out of inner loops */
|
| - if( pParse->pConstExpr ){
|
| - ExprList *pEL = pParse->pConstExpr;
|
| - pParse->okConstFactor = 0;
|
| - for(i=0; i<pEL->nExpr; i++){
|
| - sqlite3ExprCode(pParse, pEL->a[i].pExpr, pEL->a[i].u.iConstExprReg);
|
| - }
|
| - }
|
| -
|
| - /* Finally, jump back to the beginning of the executable code. */
|
| - sqlite3VdbeAddOp2(v, OP_Goto, 0, 1);
|
| - }
|
| - }
|
| -
|
| -
|
| - /* Get the VDBE program ready for execution
|
| - */
|
| - if( v && ALWAYS(pParse->nErr==0) && !db->mallocFailed ){
|
| - assert( pParse->iCacheLevel==0 ); /* Disables and re-enables match */
|
| - /* A minimum of one cursor is required if autoincrement is used
|
| - * See ticket [a696379c1f08866] */
|
| - if( pParse->pAinc!=0 && pParse->nTab==0 ) pParse->nTab = 1;
|
| - sqlite3VdbeMakeReady(v, pParse);
|
| - pParse->rc = SQLITE_DONE;
|
| - pParse->colNamesSet = 0;
|
| - }else{
|
| - pParse->rc = SQLITE_ERROR;
|
| - }
|
| - pParse->nTab = 0;
|
| - pParse->nMem = 0;
|
| - pParse->nSet = 0;
|
| - pParse->nVar = 0;
|
| - DbMaskZero(pParse->cookieMask);
|
| -}
|
| -
|
| -/*
|
| -** Run the parser and code generator recursively in order to generate
|
| -** code for the SQL statement given onto the end of the pParse context
|
| -** currently under construction. When the parser is run recursively
|
| -** this way, the final OP_Halt is not appended and other initialization
|
| -** and finalization steps are omitted because those are handling by the
|
| -** outermost parser.
|
| -**
|
| -** Not everything is nestable. This facility is designed to permit
|
| -** INSERT, UPDATE, and DELETE operations against SQLITE_MASTER. Use
|
| -** care if you decide to try to use this routine for some other purposes.
|
| -*/
|
| -void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){
|
| - va_list ap;
|
| - char *zSql;
|
| - char *zErrMsg = 0;
|
| - sqlite3 *db = pParse->db;
|
| -# define SAVE_SZ (sizeof(Parse) - offsetof(Parse,nVar))
|
| - char saveBuf[SAVE_SZ];
|
| -
|
| - if( pParse->nErr ) return;
|
| - assert( pParse->nested<10 ); /* Nesting should only be of limited depth */
|
| - va_start(ap, zFormat);
|
| - zSql = sqlite3VMPrintf(db, zFormat, ap);
|
| - va_end(ap);
|
| - if( zSql==0 ){
|
| - return; /* A malloc must have failed */
|
| - }
|
| - pParse->nested++;
|
| - memcpy(saveBuf, &pParse->nVar, SAVE_SZ);
|
| - memset(&pParse->nVar, 0, SAVE_SZ);
|
| - sqlite3RunParser(pParse, zSql, &zErrMsg);
|
| - sqlite3DbFree(db, zErrMsg);
|
| - sqlite3DbFree(db, zSql);
|
| - memcpy(&pParse->nVar, saveBuf, SAVE_SZ);
|
| - pParse->nested--;
|
| -}
|
| -
|
| -#if SQLITE_USER_AUTHENTICATION
|
| -/*
|
| -** Return TRUE if zTable is the name of the system table that stores the
|
| -** list of users and their access credentials.
|
| -*/
|
| -int sqlite3UserAuthTable(const char *zTable){
|
| - return sqlite3_stricmp(zTable, "sqlite_user")==0;
|
| -}
|
| -#endif
|
| -
|
| -/*
|
| -** Locate the in-memory structure that describes a particular database
|
| -** table given the name of that table and (optionally) the name of the
|
| -** database containing the table. Return NULL if not found.
|
| -**
|
| -** If zDatabase is 0, all databases are searched for the table and the
|
| -** first matching table is returned. (No checking for duplicate table
|
| -** names is done.) The search order is TEMP first, then MAIN, then any
|
| -** auxiliary databases added using the ATTACH command.
|
| -**
|
| -** See also sqlite3LocateTable().
|
| -*/
|
| -Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){
|
| - Table *p = 0;
|
| - int i;
|
| - assert( zName!=0 );
|
| - /* All mutexes are required for schema access. Make sure we hold them. */
|
| - assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) );
|
| -#if SQLITE_USER_AUTHENTICATION
|
| - /* Only the admin user is allowed to know that the sqlite_user table
|
| - ** exists */
|
| - if( db->auth.authLevel<UAUTH_Admin && sqlite3UserAuthTable(zName)!=0 ){
|
| - return 0;
|
| - }
|
| -#endif
|
| - for(i=OMIT_TEMPDB; i<db->nDb; i++){
|
| - int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */
|
| - if( zDatabase!=0 && sqlite3StrICmp(zDatabase, db->aDb[j].zName) ) continue;
|
| - assert( sqlite3SchemaMutexHeld(db, j, 0) );
|
| - p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName);
|
| - if( p ) break;
|
| - }
|
| - return p;
|
| -}
|
| -
|
| -/*
|
| -** Locate the in-memory structure that describes a particular database
|
| -** table given the name of that table and (optionally) the name of the
|
| -** database containing the table. Return NULL if not found. Also leave an
|
| -** error message in pParse->zErrMsg.
|
| -**
|
| -** The difference between this routine and sqlite3FindTable() is that this
|
| -** routine leaves an error message in pParse->zErrMsg where
|
| -** sqlite3FindTable() does not.
|
| -*/
|
| -Table *sqlite3LocateTable(
|
| - Parse *pParse, /* context in which to report errors */
|
| - int isView, /* True if looking for a VIEW rather than a TABLE */
|
| - const char *zName, /* Name of the table we are looking for */
|
| - const char *zDbase /* Name of the database. Might be NULL */
|
| -){
|
| - Table *p;
|
| -
|
| - /* Read the database schema. If an error occurs, leave an error message
|
| - ** and code in pParse and return NULL. */
|
| - if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
|
| - return 0;
|
| - }
|
| -
|
| - p = sqlite3FindTable(pParse->db, zName, zDbase);
|
| - if( p==0 ){
|
| - const char *zMsg = isView ? "no such view" : "no such table";
|
| - if( zDbase ){
|
| - sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName);
|
| - }else{
|
| - sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName);
|
| - }
|
| - pParse->checkSchema = 1;
|
| - }
|
| -#if SQLITE_USER_AUTHENICATION
|
| - else if( pParse->db->auth.authLevel<UAUTH_User ){
|
| - sqlite3ErrorMsg(pParse, "user not authenticated");
|
| - p = 0;
|
| - }
|
| -#endif
|
| - return p;
|
| -}
|
| -
|
| -/*
|
| -** Locate the table identified by *p.
|
| -**
|
| -** This is a wrapper around sqlite3LocateTable(). The difference between
|
| -** sqlite3LocateTable() and this function is that this function restricts
|
| -** the search to schema (p->pSchema) if it is not NULL. p->pSchema may be
|
| -** non-NULL if it is part of a view or trigger program definition. See
|
| -** sqlite3FixSrcList() for details.
|
| -*/
|
| -Table *sqlite3LocateTableItem(
|
| - Parse *pParse,
|
| - int isView,
|
| - struct SrcList_item *p
|
| -){
|
| - const char *zDb;
|
| - assert( p->pSchema==0 || p->zDatabase==0 );
|
| - if( p->pSchema ){
|
| - int iDb = sqlite3SchemaToIndex(pParse->db, p->pSchema);
|
| - zDb = pParse->db->aDb[iDb].zName;
|
| - }else{
|
| - zDb = p->zDatabase;
|
| - }
|
| - return sqlite3LocateTable(pParse, isView, p->zName, zDb);
|
| -}
|
| -
|
| -/*
|
| -** Locate the in-memory structure that describes
|
| -** a particular index given the name of that index
|
| -** and the name of the database that contains the index.
|
| -** Return NULL if not found.
|
| -**
|
| -** If zDatabase is 0, all databases are searched for the
|
| -** table and the first matching index is returned. (No checking
|
| -** for duplicate index names is done.) The search order is
|
| -** TEMP first, then MAIN, then any auxiliary databases added
|
| -** using the ATTACH command.
|
| -*/
|
| -Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){
|
| - Index *p = 0;
|
| - int i;
|
| - /* All mutexes are required for schema access. Make sure we hold them. */
|
| - assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) );
|
| - for(i=OMIT_TEMPDB; i<db->nDb; i++){
|
| - int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */
|
| - Schema *pSchema = db->aDb[j].pSchema;
|
| - assert( pSchema );
|
| - if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zName) ) continue;
|
| - assert( sqlite3SchemaMutexHeld(db, j, 0) );
|
| - p = sqlite3HashFind(&pSchema->idxHash, zName);
|
| - if( p ) break;
|
| - }
|
| - return p;
|
| -}
|
| -
|
| -/*
|
| -** Reclaim the memory used by an index
|
| -*/
|
| -static void freeIndex(sqlite3 *db, Index *p){
|
| -#ifndef SQLITE_OMIT_ANALYZE
|
| - sqlite3DeleteIndexSamples(db, p);
|
| -#endif
|
| - if( db==0 || db->pnBytesFreed==0 ) sqlite3KeyInfoUnref(p->pKeyInfo);
|
| - sqlite3ExprDelete(db, p->pPartIdxWhere);
|
| - sqlite3DbFree(db, p->zColAff);
|
| - if( p->isResized ) sqlite3DbFree(db, p->azColl);
|
| -#ifdef SQLITE_ENABLE_STAT3_OR_STAT4
|
| - sqlite3_free(p->aiRowEst);
|
| -#endif
|
| - sqlite3DbFree(db, p);
|
| -}
|
| -
|
| -/*
|
| -** For the index called zIdxName which is found in the database iDb,
|
| -** unlike that index from its Table then remove the index from
|
| -** the index hash table and free all memory structures associated
|
| -** with the index.
|
| -*/
|
| -void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){
|
| - Index *pIndex;
|
| - Hash *pHash;
|
| -
|
| - assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
|
| - pHash = &db->aDb[iDb].pSchema->idxHash;
|
| - pIndex = sqlite3HashInsert(pHash, zIdxName, 0);
|
| - if( ALWAYS(pIndex) ){
|
| - if( pIndex->pTable->pIndex==pIndex ){
|
| - pIndex->pTable->pIndex = pIndex->pNext;
|
| - }else{
|
| - Index *p;
|
| - /* Justification of ALWAYS(); The index must be on the list of
|
| - ** indices. */
|
| - p = pIndex->pTable->pIndex;
|
| - while( ALWAYS(p) && p->pNext!=pIndex ){ p = p->pNext; }
|
| - if( ALWAYS(p && p->pNext==pIndex) ){
|
| - p->pNext = pIndex->pNext;
|
| - }
|
| - }
|
| - freeIndex(db, pIndex);
|
| - }
|
| - db->flags |= SQLITE_InternChanges;
|
| -}
|
| -
|
| -/*
|
| -** Look through the list of open database files in db->aDb[] and if
|
| -** any have been closed, remove them from the list. Reallocate the
|
| -** db->aDb[] structure to a smaller size, if possible.
|
| -**
|
| -** Entry 0 (the "main" database) and entry 1 (the "temp" database)
|
| -** are never candidates for being collapsed.
|
| -*/
|
| -void sqlite3CollapseDatabaseArray(sqlite3 *db){
|
| - int i, j;
|
| - for(i=j=2; i<db->nDb; i++){
|
| - struct Db *pDb = &db->aDb[i];
|
| - if( pDb->pBt==0 ){
|
| - sqlite3DbFree(db, pDb->zName);
|
| - pDb->zName = 0;
|
| - continue;
|
| - }
|
| - if( j<i ){
|
| - db->aDb[j] = db->aDb[i];
|
| - }
|
| - j++;
|
| - }
|
| - memset(&db->aDb[j], 0, (db->nDb-j)*sizeof(db->aDb[j]));
|
| - db->nDb = j;
|
| - if( db->nDb<=2 && db->aDb!=db->aDbStatic ){
|
| - memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0]));
|
| - sqlite3DbFree(db, db->aDb);
|
| - db->aDb = db->aDbStatic;
|
| - }
|
| -}
|
| -
|
| -/*
|
| -** Reset the schema for the database at index iDb. Also reset the
|
| -** TEMP schema.
|
| -*/
|
| -void sqlite3ResetOneSchema(sqlite3 *db, int iDb){
|
| - Db *pDb;
|
| - assert( iDb<db->nDb );
|
| -
|
| - /* Case 1: Reset the single schema identified by iDb */
|
| - pDb = &db->aDb[iDb];
|
| - assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
|
| - assert( pDb->pSchema!=0 );
|
| - sqlite3SchemaClear(pDb->pSchema);
|
| -
|
| - /* If any database other than TEMP is reset, then also reset TEMP
|
| - ** since TEMP might be holding triggers that reference tables in the
|
| - ** other database.
|
| - */
|
| - if( iDb!=1 ){
|
| - pDb = &db->aDb[1];
|
| - assert( pDb->pSchema!=0 );
|
| - sqlite3SchemaClear(pDb->pSchema);
|
| - }
|
| - return;
|
| -}
|
| -
|
| -/*
|
| -** Erase all schema information from all attached databases (including
|
| -** "main" and "temp") for a single database connection.
|
| -*/
|
| -void sqlite3ResetAllSchemasOfConnection(sqlite3 *db){
|
| - int i;
|
| - sqlite3BtreeEnterAll(db);
|
| - for(i=0; i<db->nDb; i++){
|
| - Db *pDb = &db->aDb[i];
|
| - if( pDb->pSchema ){
|
| - sqlite3SchemaClear(pDb->pSchema);
|
| - }
|
| - }
|
| - db->flags &= ~SQLITE_InternChanges;
|
| - sqlite3VtabUnlockList(db);
|
| - sqlite3BtreeLeaveAll(db);
|
| - sqlite3CollapseDatabaseArray(db);
|
| -}
|
| -
|
| -/*
|
| -** This routine is called when a commit occurs.
|
| -*/
|
| -void sqlite3CommitInternalChanges(sqlite3 *db){
|
| - db->flags &= ~SQLITE_InternChanges;
|
| -}
|
| -
|
| -/*
|
| -** Delete memory allocated for the column names of a table or view (the
|
| -** Table.aCol[] array).
|
| -*/
|
| -static void sqliteDeleteColumnNames(sqlite3 *db, Table *pTable){
|
| - int i;
|
| - Column *pCol;
|
| - assert( pTable!=0 );
|
| - if( (pCol = pTable->aCol)!=0 ){
|
| - for(i=0; i<pTable->nCol; i++, pCol++){
|
| - sqlite3DbFree(db, pCol->zName);
|
| - sqlite3ExprDelete(db, pCol->pDflt);
|
| - sqlite3DbFree(db, pCol->zDflt);
|
| - sqlite3DbFree(db, pCol->zType);
|
| - sqlite3DbFree(db, pCol->zColl);
|
| - }
|
| - sqlite3DbFree(db, pTable->aCol);
|
| - }
|
| -}
|
| -
|
| -/*
|
| -** Remove the memory data structures associated with the given
|
| -** Table. No changes are made to disk by this routine.
|
| -**
|
| -** This routine just deletes the data structure. It does not unlink
|
| -** the table data structure from the hash table. But it does destroy
|
| -** memory structures of the indices and foreign keys associated with
|
| -** the table.
|
| -**
|
| -** The db parameter is optional. It is needed if the Table object
|
| -** contains lookaside memory. (Table objects in the schema do not use
|
| -** lookaside memory, but some ephemeral Table objects do.) Or the
|
| -** db parameter can be used with db->pnBytesFreed to measure the memory
|
| -** used by the Table object.
|
| -*/
|
| -void sqlite3DeleteTable(sqlite3 *db, Table *pTable){
|
| - Index *pIndex, *pNext;
|
| - TESTONLY( int nLookaside; ) /* Used to verify lookaside not used for schema */
|
| -
|
| - assert( !pTable || pTable->nRef>0 );
|
| -
|
| - /* Do not delete the table until the reference count reaches zero. */
|
| - if( !pTable ) return;
|
| - if( ((!db || db->pnBytesFreed==0) && (--pTable->nRef)>0) ) return;
|
| -
|
| - /* Record the number of outstanding lookaside allocations in schema Tables
|
| - ** prior to doing any free() operations. Since schema Tables do not use
|
| - ** lookaside, this number should not change. */
|
| - TESTONLY( nLookaside = (db && (pTable->tabFlags & TF_Ephemeral)==0) ?
|
| - db->lookaside.nOut : 0 );
|
| -
|
| - /* Delete all indices associated with this table. */
|
| - for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){
|
| - pNext = pIndex->pNext;
|
| - assert( pIndex->pSchema==pTable->pSchema );
|
| - if( !db || db->pnBytesFreed==0 ){
|
| - char *zName = pIndex->zName;
|
| - TESTONLY ( Index *pOld = ) sqlite3HashInsert(
|
| - &pIndex->pSchema->idxHash, zName, 0
|
| - );
|
| - assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) );
|
| - assert( pOld==pIndex || pOld==0 );
|
| - }
|
| - freeIndex(db, pIndex);
|
| - }
|
| -
|
| - /* Delete any foreign keys attached to this table. */
|
| - sqlite3FkDelete(db, pTable);
|
| -
|
| - /* Delete the Table structure itself.
|
| - */
|
| - sqliteDeleteColumnNames(db, pTable);
|
| - sqlite3DbFree(db, pTable->zName);
|
| - sqlite3DbFree(db, pTable->zColAff);
|
| - sqlite3SelectDelete(db, pTable->pSelect);
|
| -#ifndef SQLITE_OMIT_CHECK
|
| - sqlite3ExprListDelete(db, pTable->pCheck);
|
| -#endif
|
| -#ifndef SQLITE_OMIT_VIRTUALTABLE
|
| - sqlite3VtabClear(db, pTable);
|
| -#endif
|
| - sqlite3DbFree(db, pTable);
|
| -
|
| - /* Verify that no lookaside memory was used by schema tables */
|
| - assert( nLookaside==0 || nLookaside==db->lookaside.nOut );
|
| -}
|
| -
|
| -/*
|
| -** Unlink the given table from the hash tables and the delete the
|
| -** table structure with all its indices and foreign keys.
|
| -*/
|
| -void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){
|
| - Table *p;
|
| - Db *pDb;
|
| -
|
| - assert( db!=0 );
|
| - assert( iDb>=0 && iDb<db->nDb );
|
| - assert( zTabName );
|
| - assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
|
| - testcase( zTabName[0]==0 ); /* Zero-length table names are allowed */
|
| - pDb = &db->aDb[iDb];
|
| - p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, 0);
|
| - sqlite3DeleteTable(db, p);
|
| - db->flags |= SQLITE_InternChanges;
|
| -}
|
| -
|
| -/*
|
| -** Given a token, return a string that consists of the text of that
|
| -** token. Space to hold the returned string
|
| -** is obtained from sqliteMalloc() and must be freed by the calling
|
| -** function.
|
| -**
|
| -** Any quotation marks (ex: "name", 'name', [name], or `name`) that
|
| -** surround the body of the token are removed.
|
| -**
|
| -** Tokens are often just pointers into the original SQL text and so
|
| -** are not \000 terminated and are not persistent. The returned string
|
| -** is \000 terminated and is persistent.
|
| -*/
|
| -char *sqlite3NameFromToken(sqlite3 *db, Token *pName){
|
| - char *zName;
|
| - if( pName ){
|
| - zName = sqlite3DbStrNDup(db, (char*)pName->z, pName->n);
|
| - sqlite3Dequote(zName);
|
| - }else{
|
| - zName = 0;
|
| - }
|
| - return zName;
|
| -}
|
| -
|
| -/*
|
| -** Open the sqlite_master table stored in database number iDb for
|
| -** writing. The table is opened using cursor 0.
|
| -*/
|
| -void sqlite3OpenMasterTable(Parse *p, int iDb){
|
| - Vdbe *v = sqlite3GetVdbe(p);
|
| - sqlite3TableLock(p, iDb, MASTER_ROOT, 1, SCHEMA_TABLE(iDb));
|
| - sqlite3VdbeAddOp4Int(v, OP_OpenWrite, 0, MASTER_ROOT, iDb, 5);
|
| - if( p->nTab==0 ){
|
| - p->nTab = 1;
|
| - }
|
| -}
|
| -
|
| -/*
|
| -** Parameter zName points to a nul-terminated buffer containing the name
|
| -** of a database ("main", "temp" or the name of an attached db). This
|
| -** function returns the index of the named database in db->aDb[], or
|
| -** -1 if the named db cannot be found.
|
| -*/
|
| -int sqlite3FindDbName(sqlite3 *db, const char *zName){
|
| - int i = -1; /* Database number */
|
| - if( zName ){
|
| - Db *pDb;
|
| - int n = sqlite3Strlen30(zName);
|
| - for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){
|
| - if( (!OMIT_TEMPDB || i!=1 ) && n==sqlite3Strlen30(pDb->zName) &&
|
| - 0==sqlite3StrICmp(pDb->zName, zName) ){
|
| - break;
|
| - }
|
| - }
|
| - }
|
| - return i;
|
| -}
|
| -
|
| -/*
|
| -** The token *pName contains the name of a database (either "main" or
|
| -** "temp" or the name of an attached db). This routine returns the
|
| -** index of the named database in db->aDb[], or -1 if the named db
|
| -** does not exist.
|
| -*/
|
| -int sqlite3FindDb(sqlite3 *db, Token *pName){
|
| - int i; /* Database number */
|
| - char *zName; /* Name we are searching for */
|
| - zName = sqlite3NameFromToken(db, pName);
|
| - i = sqlite3FindDbName(db, zName);
|
| - sqlite3DbFree(db, zName);
|
| - return i;
|
| -}
|
| -
|
| -/* The table or view or trigger name is passed to this routine via tokens
|
| -** pName1 and pName2. If the table name was fully qualified, for example:
|
| -**
|
| -** CREATE TABLE xxx.yyy (...);
|
| -**
|
| -** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
|
| -** the table name is not fully qualified, i.e.:
|
| -**
|
| -** CREATE TABLE yyy(...);
|
| -**
|
| -** Then pName1 is set to "yyy" and pName2 is "".
|
| -**
|
| -** This routine sets the *ppUnqual pointer to point at the token (pName1 or
|
| -** pName2) that stores the unqualified table name. The index of the
|
| -** database "xxx" is returned.
|
| -*/
|
| -int sqlite3TwoPartName(
|
| - Parse *pParse, /* Parsing and code generating context */
|
| - Token *pName1, /* The "xxx" in the name "xxx.yyy" or "xxx" */
|
| - Token *pName2, /* The "yyy" in the name "xxx.yyy" */
|
| - Token **pUnqual /* Write the unqualified object name here */
|
| -){
|
| - int iDb; /* Database holding the object */
|
| - sqlite3 *db = pParse->db;
|
| -
|
| - if( ALWAYS(pName2!=0) && pName2->n>0 ){
|
| - if( db->init.busy ) {
|
| - sqlite3ErrorMsg(pParse, "corrupt database");
|
| - pParse->nErr++;
|
| - return -1;
|
| - }
|
| - *pUnqual = pName2;
|
| - iDb = sqlite3FindDb(db, pName1);
|
| - if( iDb<0 ){
|
| - sqlite3ErrorMsg(pParse, "unknown database %T", pName1);
|
| - pParse->nErr++;
|
| - return -1;
|
| - }
|
| - }else{
|
| - assert( db->init.iDb==0 || db->init.busy );
|
| - iDb = db->init.iDb;
|
| - *pUnqual = pName1;
|
| - }
|
| - return iDb;
|
| -}
|
| -
|
| -/*
|
| -** This routine is used to check if the UTF-8 string zName is a legal
|
| -** unqualified name for a new schema object (table, index, view or
|
| -** trigger). All names are legal except those that begin with the string
|
| -** "sqlite_" (in upper, lower or mixed case). This portion of the namespace
|
| -** is reserved for internal use.
|
| -*/
|
| -int sqlite3CheckObjectName(Parse *pParse, const char *zName){
|
| - if( !pParse->db->init.busy && pParse->nested==0
|
| - && (pParse->db->flags & SQLITE_WriteSchema)==0
|
| - && 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){
|
| - sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", zName);
|
| - return SQLITE_ERROR;
|
| - }
|
| - return SQLITE_OK;
|
| -}
|
| -
|
| -/*
|
| -** Return the PRIMARY KEY index of a table
|
| -*/
|
| -Index *sqlite3PrimaryKeyIndex(Table *pTab){
|
| - Index *p;
|
| - for(p=pTab->pIndex; p && !IsPrimaryKeyIndex(p); p=p->pNext){}
|
| - return p;
|
| -}
|
| -
|
| -/*
|
| -** Return the column of index pIdx that corresponds to table
|
| -** column iCol. Return -1 if not found.
|
| -*/
|
| -i16 sqlite3ColumnOfIndex(Index *pIdx, i16 iCol){
|
| - int i;
|
| - for(i=0; i<pIdx->nColumn; i++){
|
| - if( iCol==pIdx->aiColumn[i] ) return i;
|
| - }
|
| - return -1;
|
| -}
|
| -
|
| -/*
|
| -** Begin constructing a new table representation in memory. This is
|
| -** the first of several action routines that get called in response
|
| -** to a CREATE TABLE statement. In particular, this routine is called
|
| -** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp
|
| -** flag is true if the table should be stored in the auxiliary database
|
| -** file instead of in the main database file. This is normally the case
|
| -** when the "TEMP" or "TEMPORARY" keyword occurs in between
|
| -** CREATE and TABLE.
|
| -**
|
| -** The new table record is initialized and put in pParse->pNewTable.
|
| -** As more of the CREATE TABLE statement is parsed, additional action
|
| -** routines will be called to add more information to this record.
|
| -** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine
|
| -** is called to complete the construction of the new table record.
|
| -*/
|
| -void sqlite3StartTable(
|
| - Parse *pParse, /* Parser context */
|
| - Token *pName1, /* First part of the name of the table or view */
|
| - Token *pName2, /* Second part of the name of the table or view */
|
| - int isTemp, /* True if this is a TEMP table */
|
| - int isView, /* True if this is a VIEW */
|
| - int isVirtual, /* True if this is a VIRTUAL table */
|
| - int noErr /* Do nothing if table already exists */
|
| -){
|
| - Table *pTable;
|
| - char *zName = 0; /* The name of the new table */
|
| - sqlite3 *db = pParse->db;
|
| - Vdbe *v;
|
| - int iDb; /* Database number to create the table in */
|
| - Token *pName; /* Unqualified name of the table to create */
|
| -
|
| - /* The table or view name to create is passed to this routine via tokens
|
| - ** pName1 and pName2. If the table name was fully qualified, for example:
|
| - **
|
| - ** CREATE TABLE xxx.yyy (...);
|
| - **
|
| - ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
|
| - ** the table name is not fully qualified, i.e.:
|
| - **
|
| - ** CREATE TABLE yyy(...);
|
| - **
|
| - ** Then pName1 is set to "yyy" and pName2 is "".
|
| - **
|
| - ** The call below sets the pName pointer to point at the token (pName1 or
|
| - ** pName2) that stores the unqualified table name. The variable iDb is
|
| - ** set to the index of the database that the table or view is to be
|
| - ** created in.
|
| - */
|
| - iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
|
| - if( iDb<0 ) return;
|
| - if( !OMIT_TEMPDB && isTemp && pName2->n>0 && iDb!=1 ){
|
| - /* If creating a temp table, the name may not be qualified. Unless
|
| - ** the database name is "temp" anyway. */
|
| - sqlite3ErrorMsg(pParse, "temporary table name must be unqualified");
|
| - return;
|
| - }
|
| - if( !OMIT_TEMPDB && isTemp ) iDb = 1;
|
| -
|
| - pParse->sNameToken = *pName;
|
| - zName = sqlite3NameFromToken(db, pName);
|
| - if( zName==0 ) return;
|
| - if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
|
| - goto begin_table_error;
|
| - }
|
| - if( db->init.iDb==1 ) isTemp = 1;
|
| -#ifndef SQLITE_OMIT_AUTHORIZATION
|
| - assert( (isTemp & 1)==isTemp );
|
| - {
|
| - int code;
|
| - char *zDb = db->aDb[iDb].zName;
|
| - if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){
|
| - goto begin_table_error;
|
| - }
|
| - if( isView ){
|
| - if( !OMIT_TEMPDB && isTemp ){
|
| - code = SQLITE_CREATE_TEMP_VIEW;
|
| - }else{
|
| - code = SQLITE_CREATE_VIEW;
|
| - }
|
| - }else{
|
| - if( !OMIT_TEMPDB && isTemp ){
|
| - code = SQLITE_CREATE_TEMP_TABLE;
|
| - }else{
|
| - code = SQLITE_CREATE_TABLE;
|
| - }
|
| - }
|
| - if( !isVirtual && sqlite3AuthCheck(pParse, code, zName, 0, zDb) ){
|
| - goto begin_table_error;
|
| - }
|
| - }
|
| -#endif
|
| -
|
| - /* Make sure the new table name does not collide with an existing
|
| - ** index or table name in the same database. Issue an error message if
|
| - ** it does. The exception is if the statement being parsed was passed
|
| - ** to an sqlite3_declare_vtab() call. In that case only the column names
|
| - ** and types will be used, so there is no need to test for namespace
|
| - ** collisions.
|
| - */
|
| - if( !IN_DECLARE_VTAB ){
|
| - char *zDb = db->aDb[iDb].zName;
|
| - if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
|
| - goto begin_table_error;
|
| - }
|
| - pTable = sqlite3FindTable(db, zName, zDb);
|
| - if( pTable ){
|
| - if( !noErr ){
|
| - sqlite3ErrorMsg(pParse, "table %T already exists", pName);
|
| - }else{
|
| - assert( !db->init.busy );
|
| - sqlite3CodeVerifySchema(pParse, iDb);
|
| - }
|
| - goto begin_table_error;
|
| - }
|
| - if( sqlite3FindIndex(db, zName, zDb)!=0 ){
|
| - sqlite3ErrorMsg(pParse, "there is already an index named %s", zName);
|
| - goto begin_table_error;
|
| - }
|
| - }
|
| -
|
| - pTable = sqlite3DbMallocZero(db, sizeof(Table));
|
| - if( pTable==0 ){
|
| - db->mallocFailed = 1;
|
| - pParse->rc = SQLITE_NOMEM;
|
| - pParse->nErr++;
|
| - goto begin_table_error;
|
| - }
|
| - pTable->zName = zName;
|
| - pTable->iPKey = -1;
|
| - pTable->pSchema = db->aDb[iDb].pSchema;
|
| - pTable->nRef = 1;
|
| - pTable->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
|
| - assert( pParse->pNewTable==0 );
|
| - pParse->pNewTable = pTable;
|
| -
|
| - /* If this is the magic sqlite_sequence table used by autoincrement,
|
| - ** then record a pointer to this table in the main database structure
|
| - ** so that INSERT can find the table easily.
|
| - */
|
| -#ifndef SQLITE_OMIT_AUTOINCREMENT
|
| - if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){
|
| - assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
|
| - pTable->pSchema->pSeqTab = pTable;
|
| - }
|
| -#endif
|
| -
|
| - /* Begin generating the code that will insert the table record into
|
| - ** the SQLITE_MASTER table. Note in particular that we must go ahead
|
| - ** and allocate the record number for the table entry now. Before any
|
| - ** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause
|
| - ** indices to be created and the table record must come before the
|
| - ** indices. Hence, the record number for the table must be allocated
|
| - ** now.
|
| - */
|
| - if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){
|
| - int j1;
|
| - int fileFormat;
|
| - int reg1, reg2, reg3;
|
| - sqlite3BeginWriteOperation(pParse, 0, iDb);
|
| -
|
| -#ifndef SQLITE_OMIT_VIRTUALTABLE
|
| - if( isVirtual ){
|
| - sqlite3VdbeAddOp0(v, OP_VBegin);
|
| - }
|
| -#endif
|
| -
|
| - /* If the file format and encoding in the database have not been set,
|
| - ** set them now.
|
| - */
|
| - reg1 = pParse->regRowid = ++pParse->nMem;
|
| - reg2 = pParse->regRoot = ++pParse->nMem;
|
| - reg3 = ++pParse->nMem;
|
| - sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT);
|
| - sqlite3VdbeUsesBtree(v, iDb);
|
| - j1 = sqlite3VdbeAddOp1(v, OP_If, reg3); VdbeCoverage(v);
|
| - fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ?
|
| - 1 : SQLITE_MAX_FILE_FORMAT;
|
| - sqlite3VdbeAddOp2(v, OP_Integer, fileFormat, reg3);
|
| - sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, reg3);
|
| - sqlite3VdbeAddOp2(v, OP_Integer, ENC(db), reg3);
|
| - sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, reg3);
|
| - sqlite3VdbeJumpHere(v, j1);
|
| -
|
| - /* This just creates a place-holder record in the sqlite_master table.
|
| - ** The record created does not contain anything yet. It will be replaced
|
| - ** by the real entry in code generated at sqlite3EndTable().
|
| - **
|
| - ** The rowid for the new entry is left in register pParse->regRowid.
|
| - ** The root page number of the new table is left in reg pParse->regRoot.
|
| - ** The rowid and root page number values are needed by the code that
|
| - ** sqlite3EndTable will generate.
|
| - */
|
| -#if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
|
| - if( isView || isVirtual ){
|
| - sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2);
|
| - }else
|
| -#endif
|
| - {
|
| - pParse->addrCrTab = sqlite3VdbeAddOp2(v, OP_CreateTable, iDb, reg2);
|
| - }
|
| - sqlite3OpenMasterTable(pParse, iDb);
|
| - sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1);
|
| - sqlite3VdbeAddOp2(v, OP_Null, 0, reg3);
|
| - sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1);
|
| - sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
|
| - sqlite3VdbeAddOp0(v, OP_Close);
|
| - }
|
| -
|
| - /* Normal (non-error) return. */
|
| - return;
|
| -
|
| - /* If an error occurs, we jump here */
|
| -begin_table_error:
|
| - sqlite3DbFree(db, zName);
|
| - return;
|
| -}
|
| -
|
| -/*
|
| -** This macro is used to compare two strings in a case-insensitive manner.
|
| -** It is slightly faster than calling sqlite3StrICmp() directly, but
|
| -** produces larger code.
|
| -**
|
| -** WARNING: This macro is not compatible with the strcmp() family. It
|
| -** returns true if the two strings are equal, otherwise false.
|
| -*/
|
| -#define STRICMP(x, y) (\
|
| -sqlite3UpperToLower[*(unsigned char *)(x)]== \
|
| -sqlite3UpperToLower[*(unsigned char *)(y)] \
|
| -&& sqlite3StrICmp((x)+1,(y)+1)==0 )
|
| -
|
| -/*
|
| -** Add a new column to the table currently being constructed.
|
| -**
|
| -** The parser calls this routine once for each column declaration
|
| -** in a CREATE TABLE statement. sqlite3StartTable() gets called
|
| -** first to get things going. Then this routine is called for each
|
| -** column.
|
| -*/
|
| -void sqlite3AddColumn(Parse *pParse, Token *pName){
|
| - Table *p;
|
| - int i;
|
| - char *z;
|
| - Column *pCol;
|
| - sqlite3 *db = pParse->db;
|
| - if( (p = pParse->pNewTable)==0 ) return;
|
| -#if SQLITE_MAX_COLUMN
|
| - if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){
|
| - sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName);
|
| - return;
|
| - }
|
| -#endif
|
| - z = sqlite3NameFromToken(db, pName);
|
| - if( z==0 ) return;
|
| - for(i=0; i<p->nCol; i++){
|
| - if( STRICMP(z, p->aCol[i].zName) ){
|
| - sqlite3ErrorMsg(pParse, "duplicate column name: %s", z);
|
| - sqlite3DbFree(db, z);
|
| - return;
|
| - }
|
| - }
|
| - if( (p->nCol & 0x7)==0 ){
|
| - Column *aNew;
|
| - aNew = sqlite3DbRealloc(db,p->aCol,(p->nCol+8)*sizeof(p->aCol[0]));
|
| - if( aNew==0 ){
|
| - sqlite3DbFree(db, z);
|
| - return;
|
| - }
|
| - p->aCol = aNew;
|
| - }
|
| - pCol = &p->aCol[p->nCol];
|
| - memset(pCol, 0, sizeof(p->aCol[0]));
|
| - pCol->zName = z;
|
| -
|
| - /* If there is no type specified, columns have the default affinity
|
| - ** 'NONE'. If there is a type specified, then sqlite3AddColumnType() will
|
| - ** be called next to set pCol->affinity correctly.
|
| - */
|
| - pCol->affinity = SQLITE_AFF_NONE;
|
| - pCol->szEst = 1;
|
| - p->nCol++;
|
| -}
|
| -
|
| -/*
|
| -** This routine is called by the parser while in the middle of
|
| -** parsing a CREATE TABLE statement. A "NOT NULL" constraint has
|
| -** been seen on a column. This routine sets the notNull flag on
|
| -** the column currently under construction.
|
| -*/
|
| -void sqlite3AddNotNull(Parse *pParse, int onError){
|
| - Table *p;
|
| - p = pParse->pNewTable;
|
| - if( p==0 || NEVER(p->nCol<1) ) return;
|
| - p->aCol[p->nCol-1].notNull = (u8)onError;
|
| -}
|
| -
|
| -/*
|
| -** Scan the column type name zType (length nType) and return the
|
| -** associated affinity type.
|
| -**
|
| -** This routine does a case-independent search of zType for the
|
| -** substrings in the following table. If one of the substrings is
|
| -** found, the corresponding affinity is returned. If zType contains
|
| -** more than one of the substrings, entries toward the top of
|
| -** the table take priority. For example, if zType is 'BLOBINT',
|
| -** SQLITE_AFF_INTEGER is returned.
|
| -**
|
| -** Substring | Affinity
|
| -** --------------------------------
|
| -** 'INT' | SQLITE_AFF_INTEGER
|
| -** 'CHAR' | SQLITE_AFF_TEXT
|
| -** 'CLOB' | SQLITE_AFF_TEXT
|
| -** 'TEXT' | SQLITE_AFF_TEXT
|
| -** 'BLOB' | SQLITE_AFF_NONE
|
| -** 'REAL' | SQLITE_AFF_REAL
|
| -** 'FLOA' | SQLITE_AFF_REAL
|
| -** 'DOUB' | SQLITE_AFF_REAL
|
| -**
|
| -** If none of the substrings in the above table are found,
|
| -** SQLITE_AFF_NUMERIC is returned.
|
| -*/
|
| -char sqlite3AffinityType(const char *zIn, u8 *pszEst){
|
| - u32 h = 0;
|
| - char aff = SQLITE_AFF_NUMERIC;
|
| - const char *zChar = 0;
|
| -
|
| - if( zIn==0 ) return aff;
|
| - while( zIn[0] ){
|
| - h = (h<<8) + sqlite3UpperToLower[(*zIn)&0xff];
|
| - zIn++;
|
| - if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){ /* CHAR */
|
| - aff = SQLITE_AFF_TEXT;
|
| - zChar = zIn;
|
| - }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){ /* CLOB */
|
| - aff = SQLITE_AFF_TEXT;
|
| - }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){ /* TEXT */
|
| - aff = SQLITE_AFF_TEXT;
|
| - }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b') /* BLOB */
|
| - && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){
|
| - aff = SQLITE_AFF_NONE;
|
| - if( zIn[0]=='(' ) zChar = zIn;
|
| -#ifndef SQLITE_OMIT_FLOATING_POINT
|
| - }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l') /* REAL */
|
| - && aff==SQLITE_AFF_NUMERIC ){
|
| - aff = SQLITE_AFF_REAL;
|
| - }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a') /* FLOA */
|
| - && aff==SQLITE_AFF_NUMERIC ){
|
| - aff = SQLITE_AFF_REAL;
|
| - }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b') /* DOUB */
|
| - && aff==SQLITE_AFF_NUMERIC ){
|
| - aff = SQLITE_AFF_REAL;
|
| -#endif
|
| - }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){ /* INT */
|
| - aff = SQLITE_AFF_INTEGER;
|
| - break;
|
| - }
|
| - }
|
| -
|
| - /* If pszEst is not NULL, store an estimate of the field size. The
|
| - ** estimate is scaled so that the size of an integer is 1. */
|
| - if( pszEst ){
|
| - *pszEst = 1; /* default size is approx 4 bytes */
|
| - if( aff<SQLITE_AFF_NUMERIC ){
|
| - if( zChar ){
|
| - while( zChar[0] ){
|
| - if( sqlite3Isdigit(zChar[0]) ){
|
| - int v = 0;
|
| - sqlite3GetInt32(zChar, &v);
|
| - v = v/4 + 1;
|
| - if( v>255 ) v = 255;
|
| - *pszEst = v; /* BLOB(k), VARCHAR(k), CHAR(k) -> r=(k/4+1) */
|
| - break;
|
| - }
|
| - zChar++;
|
| - }
|
| - }else{
|
| - *pszEst = 5; /* BLOB, TEXT, CLOB -> r=5 (approx 20 bytes)*/
|
| - }
|
| - }
|
| - }
|
| - return aff;
|
| -}
|
| -
|
| -/*
|
| -** This routine is called by the parser while in the middle of
|
| -** parsing a CREATE TABLE statement. The pFirst token is the first
|
| -** token in the sequence of tokens that describe the type of the
|
| -** column currently under construction. pLast is the last token
|
| -** in the sequence. Use this information to construct a string
|
| -** that contains the typename of the column and store that string
|
| -** in zType.
|
| -*/
|
| -void sqlite3AddColumnType(Parse *pParse, Token *pType){
|
| - Table *p;
|
| - Column *pCol;
|
| -
|
| - p = pParse->pNewTable;
|
| - if( p==0 || NEVER(p->nCol<1) ) return;
|
| - pCol = &p->aCol[p->nCol-1];
|
| - assert( pCol->zType==0 );
|
| - pCol->zType = sqlite3NameFromToken(pParse->db, pType);
|
| - pCol->affinity = sqlite3AffinityType(pCol->zType, &pCol->szEst);
|
| -}
|
| -
|
| -/*
|
| -** The expression is the default value for the most recently added column
|
| -** of the table currently under construction.
|
| -**
|
| -** Default value expressions must be constant. Raise an exception if this
|
| -** is not the case.
|
| -**
|
| -** This routine is called by the parser while in the middle of
|
| -** parsing a CREATE TABLE statement.
|
| -*/
|
| -void sqlite3AddDefaultValue(Parse *pParse, ExprSpan *pSpan){
|
| - Table *p;
|
| - Column *pCol;
|
| - sqlite3 *db = pParse->db;
|
| - p = pParse->pNewTable;
|
| - if( p!=0 ){
|
| - pCol = &(p->aCol[p->nCol-1]);
|
| - if( !sqlite3ExprIsConstantOrFunction(pSpan->pExpr, db->init.busy) ){
|
| - sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant",
|
| - pCol->zName);
|
| - }else{
|
| - /* A copy of pExpr is used instead of the original, as pExpr contains
|
| - ** tokens that point to volatile memory. The 'span' of the expression
|
| - ** is required by pragma table_info.
|
| - */
|
| - sqlite3ExprDelete(db, pCol->pDflt);
|
| - pCol->pDflt = sqlite3ExprDup(db, pSpan->pExpr, EXPRDUP_REDUCE);
|
| - sqlite3DbFree(db, pCol->zDflt);
|
| - pCol->zDflt = sqlite3DbStrNDup(db, (char*)pSpan->zStart,
|
| - (int)(pSpan->zEnd - pSpan->zStart));
|
| - }
|
| - }
|
| - sqlite3ExprDelete(db, pSpan->pExpr);
|
| -}
|
| -
|
| -/*
|
| -** Designate the PRIMARY KEY for the table. pList is a list of names
|
| -** of columns that form the primary key. If pList is NULL, then the
|
| -** most recently added column of the table is the primary key.
|
| -**
|
| -** A table can have at most one primary key. If the table already has
|
| -** a primary key (and this is the second primary key) then create an
|
| -** error.
|
| -**
|
| -** If the PRIMARY KEY is on a single column whose datatype is INTEGER,
|
| -** then we will try to use that column as the rowid. Set the Table.iPKey
|
| -** field of the table under construction to be the index of the
|
| -** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is
|
| -** no INTEGER PRIMARY KEY.
|
| -**
|
| -** If the key is not an INTEGER PRIMARY KEY, then create a unique
|
| -** index for the key. No index is created for INTEGER PRIMARY KEYs.
|
| -*/
|
| -void sqlite3AddPrimaryKey(
|
| - Parse *pParse, /* Parsing context */
|
| - ExprList *pList, /* List of field names to be indexed */
|
| - int onError, /* What to do with a uniqueness conflict */
|
| - int autoInc, /* True if the AUTOINCREMENT keyword is present */
|
| - int sortOrder /* SQLITE_SO_ASC or SQLITE_SO_DESC */
|
| -){
|
| - Table *pTab = pParse->pNewTable;
|
| - char *zType = 0;
|
| - int iCol = -1, i;
|
| - int nTerm;
|
| - if( pTab==0 || IN_DECLARE_VTAB ) goto primary_key_exit;
|
| - if( pTab->tabFlags & TF_HasPrimaryKey ){
|
| - sqlite3ErrorMsg(pParse,
|
| - "table \"%s\" has more than one primary key", pTab->zName);
|
| - goto primary_key_exit;
|
| - }
|
| - pTab->tabFlags |= TF_HasPrimaryKey;
|
| - if( pList==0 ){
|
| - iCol = pTab->nCol - 1;
|
| - pTab->aCol[iCol].colFlags |= COLFLAG_PRIMKEY;
|
| - zType = pTab->aCol[iCol].zType;
|
| - nTerm = 1;
|
| - }else{
|
| - nTerm = pList->nExpr;
|
| - for(i=0; i<nTerm; i++){
|
| - for(iCol=0; iCol<pTab->nCol; iCol++){
|
| - if( sqlite3StrICmp(pList->a[i].zName, pTab->aCol[iCol].zName)==0 ){
|
| - pTab->aCol[iCol].colFlags |= COLFLAG_PRIMKEY;
|
| - zType = pTab->aCol[iCol].zType;
|
| - break;
|
| - }
|
| - }
|
| - }
|
| - }
|
| - if( nTerm==1
|
| - && zType && sqlite3StrICmp(zType, "INTEGER")==0
|
| - && sortOrder==SQLITE_SO_ASC
|
| - ){
|
| - pTab->iPKey = iCol;
|
| - pTab->keyConf = (u8)onError;
|
| - assert( autoInc==0 || autoInc==1 );
|
| - pTab->tabFlags |= autoInc*TF_Autoincrement;
|
| - if( pList ) pParse->iPkSortOrder = pList->a[0].sortOrder;
|
| - }else if( autoInc ){
|
| -#ifndef SQLITE_OMIT_AUTOINCREMENT
|
| - sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an "
|
| - "INTEGER PRIMARY KEY");
|
| -#endif
|
| - }else{
|
| - Vdbe *v = pParse->pVdbe;
|
| - Index *p;
|
| - if( v ) pParse->addrSkipPK = sqlite3VdbeAddOp0(v, OP_Noop);
|
| - p = sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0,
|
| - 0, sortOrder, 0);
|
| - if( p ){
|
| - p->idxType = SQLITE_IDXTYPE_PRIMARYKEY;
|
| - if( v ) sqlite3VdbeJumpHere(v, pParse->addrSkipPK);
|
| - }
|
| - pList = 0;
|
| - }
|
| -
|
| -primary_key_exit:
|
| - sqlite3ExprListDelete(pParse->db, pList);
|
| - return;
|
| -}
|
| -
|
| -/*
|
| -** Add a new CHECK constraint to the table currently under construction.
|
| -*/
|
| -void sqlite3AddCheckConstraint(
|
| - Parse *pParse, /* Parsing context */
|
| - Expr *pCheckExpr /* The check expression */
|
| -){
|
| -#ifndef SQLITE_OMIT_CHECK
|
| - Table *pTab = pParse->pNewTable;
|
| - sqlite3 *db = pParse->db;
|
| - if( pTab && !IN_DECLARE_VTAB
|
| - && !sqlite3BtreeIsReadonly(db->aDb[db->init.iDb].pBt)
|
| - ){
|
| - pTab->pCheck = sqlite3ExprListAppend(pParse, pTab->pCheck, pCheckExpr);
|
| - if( pParse->constraintName.n ){
|
| - sqlite3ExprListSetName(pParse, pTab->pCheck, &pParse->constraintName, 1);
|
| - }
|
| - }else
|
| -#endif
|
| - {
|
| - sqlite3ExprDelete(pParse->db, pCheckExpr);
|
| - }
|
| -}
|
| -
|
| -/*
|
| -** Set the collation function of the most recently parsed table column
|
| -** to the CollSeq given.
|
| -*/
|
| -void sqlite3AddCollateType(Parse *pParse, Token *pToken){
|
| - Table *p;
|
| - int i;
|
| - char *zColl; /* Dequoted name of collation sequence */
|
| - sqlite3 *db;
|
| -
|
| - if( (p = pParse->pNewTable)==0 ) return;
|
| - i = p->nCol-1;
|
| - db = pParse->db;
|
| - zColl = sqlite3NameFromToken(db, pToken);
|
| - if( !zColl ) return;
|
| -
|
| - if( sqlite3LocateCollSeq(pParse, zColl) ){
|
| - Index *pIdx;
|
| - sqlite3DbFree(db, p->aCol[i].zColl);
|
| - p->aCol[i].zColl = zColl;
|
| -
|
| - /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>",
|
| - ** then an index may have been created on this column before the
|
| - ** collation type was added. Correct this if it is the case.
|
| - */
|
| - for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
|
| - assert( pIdx->nKeyCol==1 );
|
| - if( pIdx->aiColumn[0]==i ){
|
| - pIdx->azColl[0] = p->aCol[i].zColl;
|
| - }
|
| - }
|
| - }else{
|
| - sqlite3DbFree(db, zColl);
|
| - }
|
| -}
|
| -
|
| -/*
|
| -** This function returns the collation sequence for database native text
|
| -** encoding identified by the string zName, length nName.
|
| -**
|
| -** If the requested collation sequence is not available, or not available
|
| -** in the database native encoding, the collation factory is invoked to
|
| -** request it. If the collation factory does not supply such a sequence,
|
| -** and the sequence is available in another text encoding, then that is
|
| -** returned instead.
|
| -**
|
| -** If no versions of the requested collations sequence are available, or
|
| -** another error occurs, NULL is returned and an error message written into
|
| -** pParse.
|
| -**
|
| -** This routine is a wrapper around sqlite3FindCollSeq(). This routine
|
| -** invokes the collation factory if the named collation cannot be found
|
| -** and generates an error message.
|
| -**
|
| -** See also: sqlite3FindCollSeq(), sqlite3GetCollSeq()
|
| -*/
|
| -CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName){
|
| - sqlite3 *db = pParse->db;
|
| - u8 enc = ENC(db);
|
| - u8 initbusy = db->init.busy;
|
| - CollSeq *pColl;
|
| -
|
| - pColl = sqlite3FindCollSeq(db, enc, zName, initbusy);
|
| - if( !initbusy && (!pColl || !pColl->xCmp) ){
|
| - pColl = sqlite3GetCollSeq(pParse, enc, pColl, zName);
|
| - }
|
| -
|
| - return pColl;
|
| -}
|
| -
|
| -
|
| -/*
|
| -** Generate code that will increment the schema cookie.
|
| -**
|
| -** The schema cookie is used to determine when the schema for the
|
| -** database changes. After each schema change, the cookie value
|
| -** changes. When a process first reads the schema it records the
|
| -** cookie. Thereafter, whenever it goes to access the database,
|
| -** it checks the cookie to make sure the schema has not changed
|
| -** since it was last read.
|
| -**
|
| -** This plan is not completely bullet-proof. It is possible for
|
| -** the schema to change multiple times and for the cookie to be
|
| -** set back to prior value. But schema changes are infrequent
|
| -** and the probability of hitting the same cookie value is only
|
| -** 1 chance in 2^32. So we're safe enough.
|
| -*/
|
| -void sqlite3ChangeCookie(Parse *pParse, int iDb){
|
| - int r1 = sqlite3GetTempReg(pParse);
|
| - sqlite3 *db = pParse->db;
|
| - Vdbe *v = pParse->pVdbe;
|
| - assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
|
| - sqlite3VdbeAddOp2(v, OP_Integer, db->aDb[iDb].pSchema->schema_cookie+1, r1);
|
| - sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION, r1);
|
| - sqlite3ReleaseTempReg(pParse, r1);
|
| -}
|
| -
|
| -/*
|
| -** Measure the number of characters needed to output the given
|
| -** identifier. The number returned includes any quotes used
|
| -** but does not include the null terminator.
|
| -**
|
| -** The estimate is conservative. It might be larger that what is
|
| -** really needed.
|
| -*/
|
| -static int identLength(const char *z){
|
| - int n;
|
| - for(n=0; *z; n++, z++){
|
| - if( *z=='"' ){ n++; }
|
| - }
|
| - return n + 2;
|
| -}
|
| -
|
| -/*
|
| -** The first parameter is a pointer to an output buffer. The second
|
| -** parameter is a pointer to an integer that contains the offset at
|
| -** which to write into the output buffer. This function copies the
|
| -** nul-terminated string pointed to by the third parameter, zSignedIdent,
|
| -** to the specified offset in the buffer and updates *pIdx to refer
|
| -** to the first byte after the last byte written before returning.
|
| -**
|
| -** If the string zSignedIdent consists entirely of alpha-numeric
|
| -** characters, does not begin with a digit and is not an SQL keyword,
|
| -** then it is copied to the output buffer exactly as it is. Otherwise,
|
| -** it is quoted using double-quotes.
|
| -*/
|
| -static void identPut(char *z, int *pIdx, char *zSignedIdent){
|
| - unsigned char *zIdent = (unsigned char*)zSignedIdent;
|
| - int i, j, needQuote;
|
| - i = *pIdx;
|
| -
|
| - for(j=0; zIdent[j]; j++){
|
| - if( !sqlite3Isalnum(zIdent[j]) && zIdent[j]!='_' ) break;
|
| - }
|
| - needQuote = sqlite3Isdigit(zIdent[0])
|
| - || sqlite3KeywordCode(zIdent, j)!=TK_ID
|
| - || zIdent[j]!=0
|
| - || j==0;
|
| -
|
| - if( needQuote ) z[i++] = '"';
|
| - for(j=0; zIdent[j]; j++){
|
| - z[i++] = zIdent[j];
|
| - if( zIdent[j]=='"' ) z[i++] = '"';
|
| - }
|
| - if( needQuote ) z[i++] = '"';
|
| - z[i] = 0;
|
| - *pIdx = i;
|
| -}
|
| -
|
| -/*
|
| -** Generate a CREATE TABLE statement appropriate for the given
|
| -** table. Memory to hold the text of the statement is obtained
|
| -** from sqliteMalloc() and must be freed by the calling function.
|
| -*/
|
| -static char *createTableStmt(sqlite3 *db, Table *p){
|
| - int i, k, n;
|
| - char *zStmt;
|
| - char *zSep, *zSep2, *zEnd;
|
| - Column *pCol;
|
| - n = 0;
|
| - for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){
|
| - n += identLength(pCol->zName) + 5;
|
| - }
|
| - n += identLength(p->zName);
|
| - if( n<50 ){
|
| - zSep = "";
|
| - zSep2 = ",";
|
| - zEnd = ")";
|
| - }else{
|
| - zSep = "\n ";
|
| - zSep2 = ",\n ";
|
| - zEnd = "\n)";
|
| - }
|
| - n += 35 + 6*p->nCol;
|
| - zStmt = sqlite3DbMallocRaw(0, n);
|
| - if( zStmt==0 ){
|
| - db->mallocFailed = 1;
|
| - return 0;
|
| - }
|
| - sqlite3_snprintf(n, zStmt, "CREATE TABLE ");
|
| - k = sqlite3Strlen30(zStmt);
|
| - identPut(zStmt, &k, p->zName);
|
| - zStmt[k++] = '(';
|
| - for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){
|
| - static const char * const azType[] = {
|
| - /* SQLITE_AFF_NONE */ "",
|
| - /* SQLITE_AFF_TEXT */ " TEXT",
|
| - /* SQLITE_AFF_NUMERIC */ " NUM",
|
| - /* SQLITE_AFF_INTEGER */ " INT",
|
| - /* SQLITE_AFF_REAL */ " REAL"
|
| - };
|
| - int len;
|
| - const char *zType;
|
| -
|
| - sqlite3_snprintf(n-k, &zStmt[k], zSep);
|
| - k += sqlite3Strlen30(&zStmt[k]);
|
| - zSep = zSep2;
|
| - identPut(zStmt, &k, pCol->zName);
|
| - assert( pCol->affinity-SQLITE_AFF_NONE >= 0 );
|
| - assert( pCol->affinity-SQLITE_AFF_NONE < ArraySize(azType) );
|
| - testcase( pCol->affinity==SQLITE_AFF_NONE );
|
| - testcase( pCol->affinity==SQLITE_AFF_TEXT );
|
| - testcase( pCol->affinity==SQLITE_AFF_NUMERIC );
|
| - testcase( pCol->affinity==SQLITE_AFF_INTEGER );
|
| - testcase( pCol->affinity==SQLITE_AFF_REAL );
|
| -
|
| - zType = azType[pCol->affinity - SQLITE_AFF_NONE];
|
| - len = sqlite3Strlen30(zType);
|
| - assert( pCol->affinity==SQLITE_AFF_NONE
|
| - || pCol->affinity==sqlite3AffinityType(zType, 0) );
|
| - memcpy(&zStmt[k], zType, len);
|
| - k += len;
|
| - assert( k<=n );
|
| - }
|
| - sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd);
|
| - return zStmt;
|
| -}
|
| -
|
| -/*
|
| -** Resize an Index object to hold N columns total. Return SQLITE_OK
|
| -** on success and SQLITE_NOMEM on an OOM error.
|
| -*/
|
| -static int resizeIndexObject(sqlite3 *db, Index *pIdx, int N){
|
| - char *zExtra;
|
| - int nByte;
|
| - if( pIdx->nColumn>=N ) return SQLITE_OK;
|
| - assert( pIdx->isResized==0 );
|
| - nByte = (sizeof(char*) + sizeof(i16) + 1)*N;
|
| - zExtra = sqlite3DbMallocZero(db, nByte);
|
| - if( zExtra==0 ) return SQLITE_NOMEM;
|
| - memcpy(zExtra, pIdx->azColl, sizeof(char*)*pIdx->nColumn);
|
| - pIdx->azColl = (char**)zExtra;
|
| - zExtra += sizeof(char*)*N;
|
| - memcpy(zExtra, pIdx->aiColumn, sizeof(i16)*pIdx->nColumn);
|
| - pIdx->aiColumn = (i16*)zExtra;
|
| - zExtra += sizeof(i16)*N;
|
| - memcpy(zExtra, pIdx->aSortOrder, pIdx->nColumn);
|
| - pIdx->aSortOrder = (u8*)zExtra;
|
| - pIdx->nColumn = N;
|
| - pIdx->isResized = 1;
|
| - return SQLITE_OK;
|
| -}
|
| -
|
| -/*
|
| -** Estimate the total row width for a table.
|
| -*/
|
| -static void estimateTableWidth(Table *pTab){
|
| - unsigned wTable = 0;
|
| - const Column *pTabCol;
|
| - int i;
|
| - for(i=pTab->nCol, pTabCol=pTab->aCol; i>0; i--, pTabCol++){
|
| - wTable += pTabCol->szEst;
|
| - }
|
| - if( pTab->iPKey<0 ) wTable++;
|
| - pTab->szTabRow = sqlite3LogEst(wTable*4);
|
| -}
|
| -
|
| -/*
|
| -** Estimate the average size of a row for an index.
|
| -*/
|
| -static void estimateIndexWidth(Index *pIdx){
|
| - unsigned wIndex = 0;
|
| - int i;
|
| - const Column *aCol = pIdx->pTable->aCol;
|
| - for(i=0; i<pIdx->nColumn; i++){
|
| - i16 x = pIdx->aiColumn[i];
|
| - assert( x<pIdx->pTable->nCol );
|
| - wIndex += x<0 ? 1 : aCol[pIdx->aiColumn[i]].szEst;
|
| - }
|
| - pIdx->szIdxRow = sqlite3LogEst(wIndex*4);
|
| -}
|
| -
|
| -/* Return true if value x is found any of the first nCol entries of aiCol[]
|
| -*/
|
| -static int hasColumn(const i16 *aiCol, int nCol, int x){
|
| - while( nCol-- > 0 ) if( x==*(aiCol++) ) return 1;
|
| - return 0;
|
| -}
|
| -
|
| -/*
|
| -** This routine runs at the end of parsing a CREATE TABLE statement that
|
| -** has a WITHOUT ROWID clause. The job of this routine is to convert both
|
| -** internal schema data structures and the generated VDBE code so that they
|
| -** are appropriate for a WITHOUT ROWID table instead of a rowid table.
|
| -** Changes include:
|
| -**
|
| -** (1) Convert the OP_CreateTable into an OP_CreateIndex. There is
|
| -** no rowid btree for a WITHOUT ROWID. Instead, the canonical
|
| -** data storage is a covering index btree.
|
| -** (2) Bypass the creation of the sqlite_master table entry
|
| -** for the PRIMARY KEY as the primary key index is now
|
| -** identified by the sqlite_master table entry of the table itself.
|
| -** (3) Set the Index.tnum of the PRIMARY KEY Index object in the
|
| -** schema to the rootpage from the main table.
|
| -** (4) Set all columns of the PRIMARY KEY schema object to be NOT NULL.
|
| -** (5) Add all table columns to the PRIMARY KEY Index object
|
| -** so that the PRIMARY KEY is a covering index. The surplus
|
| -** columns are part of KeyInfo.nXField and are not used for
|
| -** sorting or lookup or uniqueness checks.
|
| -** (6) Replace the rowid tail on all automatically generated UNIQUE
|
| -** indices with the PRIMARY KEY columns.
|
| -*/
|
| -static void convertToWithoutRowidTable(Parse *pParse, Table *pTab){
|
| - Index *pIdx;
|
| - Index *pPk;
|
| - int nPk;
|
| - int i, j;
|
| - sqlite3 *db = pParse->db;
|
| - Vdbe *v = pParse->pVdbe;
|
| -
|
| - /* Convert the OP_CreateTable opcode that would normally create the
|
| - ** root-page for the table into an OP_CreateIndex opcode. The index
|
| - ** created will become the PRIMARY KEY index.
|
| - */
|
| - if( pParse->addrCrTab ){
|
| - assert( v );
|
| - sqlite3VdbeGetOp(v, pParse->addrCrTab)->opcode = OP_CreateIndex;
|
| - }
|
| -
|
| - /* Bypass the creation of the PRIMARY KEY btree and the sqlite_master
|
| - ** table entry.
|
| - */
|
| - if( pParse->addrSkipPK ){
|
| - assert( v );
|
| - sqlite3VdbeGetOp(v, pParse->addrSkipPK)->opcode = OP_Goto;
|
| - }
|
| -
|
| - /* Locate the PRIMARY KEY index. Or, if this table was originally
|
| - ** an INTEGER PRIMARY KEY table, create a new PRIMARY KEY index.
|
| - */
|
| - if( pTab->iPKey>=0 ){
|
| - ExprList *pList;
|
| - pList = sqlite3ExprListAppend(pParse, 0, 0);
|
| - if( pList==0 ) return;
|
| - pList->a[0].zName = sqlite3DbStrDup(pParse->db,
|
| - pTab->aCol[pTab->iPKey].zName);
|
| - pList->a[0].sortOrder = pParse->iPkSortOrder;
|
| - assert( pParse->pNewTable==pTab );
|
| - pPk = sqlite3CreateIndex(pParse, 0, 0, 0, pList, pTab->keyConf, 0, 0, 0, 0);
|
| - if( pPk==0 ) return;
|
| - pPk->idxType = SQLITE_IDXTYPE_PRIMARYKEY;
|
| - pTab->iPKey = -1;
|
| - }else{
|
| - pPk = sqlite3PrimaryKeyIndex(pTab);
|
| - }
|
| - pPk->isCovering = 1;
|
| - assert( pPk!=0 );
|
| - nPk = pPk->nKeyCol;
|
| -
|
| - /* Make sure every column of the PRIMARY KEY is NOT NULL */
|
| - for(i=0; i<nPk; i++){
|
| - pTab->aCol[pPk->aiColumn[i]].notNull = 1;
|
| - }
|
| - pPk->uniqNotNull = 1;
|
| -
|
| - /* The root page of the PRIMARY KEY is the table root page */
|
| - pPk->tnum = pTab->tnum;
|
| -
|
| - /* Update the in-memory representation of all UNIQUE indices by converting
|
| - ** the final rowid column into one or more columns of the PRIMARY KEY.
|
| - */
|
| - for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
|
| - int n;
|
| - if( IsPrimaryKeyIndex(pIdx) ) continue;
|
| - for(i=n=0; i<nPk; i++){
|
| - if( !hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ) n++;
|
| - }
|
| - if( n==0 ){
|
| - /* This index is a superset of the primary key */
|
| - pIdx->nColumn = pIdx->nKeyCol;
|
| - continue;
|
| - }
|
| - if( resizeIndexObject(db, pIdx, pIdx->nKeyCol+n) ) return;
|
| - for(i=0, j=pIdx->nKeyCol; i<nPk; i++){
|
| - if( !hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ){
|
| - pIdx->aiColumn[j] = pPk->aiColumn[i];
|
| - pIdx->azColl[j] = pPk->azColl[i];
|
| - j++;
|
| - }
|
| - }
|
| - assert( pIdx->nColumn>=pIdx->nKeyCol+n );
|
| - assert( pIdx->nColumn>=j );
|
| - }
|
| -
|
| - /* Add all table columns to the PRIMARY KEY index
|
| - */
|
| - if( nPk<pTab->nCol ){
|
| - if( resizeIndexObject(db, pPk, pTab->nCol) ) return;
|
| - for(i=0, j=nPk; i<pTab->nCol; i++){
|
| - if( !hasColumn(pPk->aiColumn, j, i) ){
|
| - assert( j<pPk->nColumn );
|
| - pPk->aiColumn[j] = i;
|
| - pPk->azColl[j] = "BINARY";
|
| - j++;
|
| - }
|
| - }
|
| - assert( pPk->nColumn==j );
|
| - assert( pTab->nCol==j );
|
| - }else{
|
| - pPk->nColumn = pTab->nCol;
|
| - }
|
| -}
|
| -
|
| -/*
|
| -** This routine is called to report the final ")" that terminates
|
| -** a CREATE TABLE statement.
|
| -**
|
| -** The table structure that other action routines have been building
|
| -** is added to the internal hash tables, assuming no errors have
|
| -** occurred.
|
| -**
|
| -** An entry for the table is made in the master table on disk, unless
|
| -** this is a temporary table or db->init.busy==1. When db->init.busy==1
|
| -** it means we are reading the sqlite_master table because we just
|
| -** connected to the database or because the sqlite_master table has
|
| -** recently changed, so the entry for this table already exists in
|
| -** the sqlite_master table. We do not want to create it again.
|
| -**
|
| -** If the pSelect argument is not NULL, it means that this routine
|
| -** was called to create a table generated from a
|
| -** "CREATE TABLE ... AS SELECT ..." statement. The column names of
|
| -** the new table will match the result set of the SELECT.
|
| -*/
|
| -void sqlite3EndTable(
|
| - Parse *pParse, /* Parse context */
|
| - Token *pCons, /* The ',' token after the last column defn. */
|
| - Token *pEnd, /* The ')' before options in the CREATE TABLE */
|
| - u8 tabOpts, /* Extra table options. Usually 0. */
|
| - Select *pSelect /* Select from a "CREATE ... AS SELECT" */
|
| -){
|
| - Table *p; /* The new table */
|
| - sqlite3 *db = pParse->db; /* The database connection */
|
| - int iDb; /* Database in which the table lives */
|
| - Index *pIdx; /* An implied index of the table */
|
| -
|
| - if( (pEnd==0 && pSelect==0) || db->mallocFailed ){
|
| - return;
|
| - }
|
| - p = pParse->pNewTable;
|
| - if( p==0 ) return;
|
| -
|
| - assert( !db->init.busy || !pSelect );
|
| -
|
| - /* If the db->init.busy is 1 it means we are reading the SQL off the
|
| - ** "sqlite_master" or "sqlite_temp_master" table on the disk.
|
| - ** So do not write to the disk again. Extract the root page number
|
| - ** for the table from the db->init.newTnum field. (The page number
|
| - ** should have been put there by the sqliteOpenCb routine.)
|
| - */
|
| - if( db->init.busy ){
|
| - p->tnum = db->init.newTnum;
|
| - }
|
| -
|
| - /* Special processing for WITHOUT ROWID Tables */
|
| - if( tabOpts & TF_WithoutRowid ){
|
| - if( (p->tabFlags & TF_Autoincrement) ){
|
| - sqlite3ErrorMsg(pParse,
|
| - "AUTOINCREMENT not allowed on WITHOUT ROWID tables");
|
| - return;
|
| - }
|
| - if( (p->tabFlags & TF_HasPrimaryKey)==0 ){
|
| - sqlite3ErrorMsg(pParse, "PRIMARY KEY missing on table %s", p->zName);
|
| - }else{
|
| - p->tabFlags |= TF_WithoutRowid;
|
| - convertToWithoutRowidTable(pParse, p);
|
| - }
|
| - }
|
| -
|
| - iDb = sqlite3SchemaToIndex(db, p->pSchema);
|
| -
|
| -#ifndef SQLITE_OMIT_CHECK
|
| - /* Resolve names in all CHECK constraint expressions.
|
| - */
|
| - if( p->pCheck ){
|
| - sqlite3ResolveSelfReference(pParse, p, NC_IsCheck, 0, p->pCheck);
|
| - }
|
| -#endif /* !defined(SQLITE_OMIT_CHECK) */
|
| -
|
| - /* Estimate the average row size for the table and for all implied indices */
|
| - estimateTableWidth(p);
|
| - for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
|
| - estimateIndexWidth(pIdx);
|
| - }
|
| -
|
| - /* If not initializing, then create a record for the new table
|
| - ** in the SQLITE_MASTER table of the database.
|
| - **
|
| - ** If this is a TEMPORARY table, write the entry into the auxiliary
|
| - ** file instead of into the main database file.
|
| - */
|
| - if( !db->init.busy ){
|
| - int n;
|
| - Vdbe *v;
|
| - char *zType; /* "view" or "table" */
|
| - char *zType2; /* "VIEW" or "TABLE" */
|
| - char *zStmt; /* Text of the CREATE TABLE or CREATE VIEW statement */
|
| -
|
| - v = sqlite3GetVdbe(pParse);
|
| - if( NEVER(v==0) ) return;
|
| -
|
| - sqlite3VdbeAddOp1(v, OP_Close, 0);
|
| -
|
| - /*
|
| - ** Initialize zType for the new view or table.
|
| - */
|
| - if( p->pSelect==0 ){
|
| - /* A regular table */
|
| - zType = "table";
|
| - zType2 = "TABLE";
|
| -#ifndef SQLITE_OMIT_VIEW
|
| - }else{
|
| - /* A view */
|
| - zType = "view";
|
| - zType2 = "VIEW";
|
| -#endif
|
| - }
|
| -
|
| - /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT
|
| - ** statement to populate the new table. The root-page number for the
|
| - ** new table is in register pParse->regRoot.
|
| - **
|
| - ** Once the SELECT has been coded by sqlite3Select(), it is in a
|
| - ** suitable state to query for the column names and types to be used
|
| - ** by the new table.
|
| - **
|
| - ** A shared-cache write-lock is not required to write to the new table,
|
| - ** as a schema-lock must have already been obtained to create it. Since
|
| - ** a schema-lock excludes all other database users, the write-lock would
|
| - ** be redundant.
|
| - */
|
| - if( pSelect ){
|
| - SelectDest dest;
|
| - Table *pSelTab;
|
| -
|
| - assert(pParse->nTab==1);
|
| - sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb);
|
| - sqlite3VdbeChangeP5(v, OPFLAG_P2ISREG);
|
| - pParse->nTab = 2;
|
| - sqlite3SelectDestInit(&dest, SRT_Table, 1);
|
| - sqlite3Select(pParse, pSelect, &dest);
|
| - sqlite3VdbeAddOp1(v, OP_Close, 1);
|
| - if( pParse->nErr==0 ){
|
| - pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect);
|
| - if( pSelTab==0 ) return;
|
| - assert( p->aCol==0 );
|
| - p->nCol = pSelTab->nCol;
|
| - p->aCol = pSelTab->aCol;
|
| - pSelTab->nCol = 0;
|
| - pSelTab->aCol = 0;
|
| - sqlite3DeleteTable(db, pSelTab);
|
| - }
|
| - }
|
| -
|
| - /* Compute the complete text of the CREATE statement */
|
| - if( pSelect ){
|
| - zStmt = createTableStmt(db, p);
|
| - }else{
|
| - Token *pEnd2 = tabOpts ? &pParse->sLastToken : pEnd;
|
| - n = (int)(pEnd2->z - pParse->sNameToken.z);
|
| - if( pEnd2->z[0]!=';' ) n += pEnd2->n;
|
| - zStmt = sqlite3MPrintf(db,
|
| - "CREATE %s %.*s", zType2, n, pParse->sNameToken.z
|
| - );
|
| - }
|
| -
|
| - /* A slot for the record has already been allocated in the
|
| - ** SQLITE_MASTER table. We just need to update that slot with all
|
| - ** the information we've collected.
|
| - */
|
| - sqlite3NestedParse(pParse,
|
| - "UPDATE %Q.%s "
|
| - "SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q "
|
| - "WHERE rowid=#%d",
|
| - db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
|
| - zType,
|
| - p->zName,
|
| - p->zName,
|
| - pParse->regRoot,
|
| - zStmt,
|
| - pParse->regRowid
|
| - );
|
| - sqlite3DbFree(db, zStmt);
|
| - sqlite3ChangeCookie(pParse, iDb);
|
| -
|
| -#ifndef SQLITE_OMIT_AUTOINCREMENT
|
| - /* Check to see if we need to create an sqlite_sequence table for
|
| - ** keeping track of autoincrement keys.
|
| - */
|
| - if( p->tabFlags & TF_Autoincrement ){
|
| - Db *pDb = &db->aDb[iDb];
|
| - assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
|
| - if( pDb->pSchema->pSeqTab==0 ){
|
| - sqlite3NestedParse(pParse,
|
| - "CREATE TABLE %Q.sqlite_sequence(name,seq)",
|
| - pDb->zName
|
| - );
|
| - }
|
| - }
|
| -#endif
|
| -
|
| - /* Reparse everything to update our internal data structures */
|
| - sqlite3VdbeAddParseSchemaOp(v, iDb,
|
| - sqlite3MPrintf(db, "tbl_name='%q' AND type!='trigger'", p->zName));
|
| - }
|
| -
|
| -
|
| - /* Add the table to the in-memory representation of the database.
|
| - */
|
| - if( db->init.busy ){
|
| - Table *pOld;
|
| - Schema *pSchema = p->pSchema;
|
| - assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
|
| - pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, p);
|
| - if( pOld ){
|
| - assert( p==pOld ); /* Malloc must have failed inside HashInsert() */
|
| - db->mallocFailed = 1;
|
| - return;
|
| - }
|
| - pParse->pNewTable = 0;
|
| - db->flags |= SQLITE_InternChanges;
|
| -
|
| -#ifndef SQLITE_OMIT_ALTERTABLE
|
| - if( !p->pSelect ){
|
| - const char *zName = (const char *)pParse->sNameToken.z;
|
| - int nName;
|
| - assert( !pSelect && pCons && pEnd );
|
| - if( pCons->z==0 ){
|
| - pCons = pEnd;
|
| - }
|
| - nName = (int)((const char *)pCons->z - zName);
|
| - p->addColOffset = 13 + sqlite3Utf8CharLen(zName, nName);
|
| - }
|
| -#endif
|
| - }
|
| -}
|
| -
|
| -#ifndef SQLITE_OMIT_VIEW
|
| -/*
|
| -** The parser calls this routine in order to create a new VIEW
|
| -*/
|
| -void sqlite3CreateView(
|
| - Parse *pParse, /* The parsing context */
|
| - Token *pBegin, /* The CREATE token that begins the statement */
|
| - Token *pName1, /* The token that holds the name of the view */
|
| - Token *pName2, /* The token that holds the name of the view */
|
| - Select *pSelect, /* A SELECT statement that will become the new view */
|
| - int isTemp, /* TRUE for a TEMPORARY view */
|
| - int noErr /* Suppress error messages if VIEW already exists */
|
| -){
|
| - Table *p;
|
| - int n;
|
| - const char *z;
|
| - Token sEnd;
|
| - DbFixer sFix;
|
| - Token *pName = 0;
|
| - int iDb;
|
| - sqlite3 *db = pParse->db;
|
| -
|
| - if( pParse->nVar>0 ){
|
| - sqlite3ErrorMsg(pParse, "parameters are not allowed in views");
|
| - sqlite3SelectDelete(db, pSelect);
|
| - return;
|
| - }
|
| - sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr);
|
| - p = pParse->pNewTable;
|
| - if( p==0 || pParse->nErr ){
|
| - sqlite3SelectDelete(db, pSelect);
|
| - return;
|
| - }
|
| - sqlite3TwoPartName(pParse, pName1, pName2, &pName);
|
| - iDb = sqlite3SchemaToIndex(db, p->pSchema);
|
| - sqlite3FixInit(&sFix, pParse, iDb, "view", pName);
|
| - if( sqlite3FixSelect(&sFix, pSelect) ){
|
| - sqlite3SelectDelete(db, pSelect);
|
| - return;
|
| - }
|
| -
|
| - /* Make a copy of the entire SELECT statement that defines the view.
|
| - ** This will force all the Expr.token.z values to be dynamically
|
| - ** allocated rather than point to the input string - which means that
|
| - ** they will persist after the current sqlite3_exec() call returns.
|
| - */
|
| - p->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE);
|
| - sqlite3SelectDelete(db, pSelect);
|
| - if( db->mallocFailed ){
|
| - return;
|
| - }
|
| - if( !db->init.busy ){
|
| - sqlite3ViewGetColumnNames(pParse, p);
|
| - }
|
| -
|
| - /* Locate the end of the CREATE VIEW statement. Make sEnd point to
|
| - ** the end.
|
| - */
|
| - sEnd = pParse->sLastToken;
|
| - if( ALWAYS(sEnd.z[0]!=0) && sEnd.z[0]!=';' ){
|
| - sEnd.z += sEnd.n;
|
| - }
|
| - sEnd.n = 0;
|
| - n = (int)(sEnd.z - pBegin->z);
|
| - z = pBegin->z;
|
| - while( ALWAYS(n>0) && sqlite3Isspace(z[n-1]) ){ n--; }
|
| - sEnd.z = &z[n-1];
|
| - sEnd.n = 1;
|
| -
|
| - /* Use sqlite3EndTable() to add the view to the SQLITE_MASTER table */
|
| - sqlite3EndTable(pParse, 0, &sEnd, 0, 0);
|
| - return;
|
| -}
|
| -#endif /* SQLITE_OMIT_VIEW */
|
| -
|
| -#if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
|
| -/*
|
| -** The Table structure pTable is really a VIEW. Fill in the names of
|
| -** the columns of the view in the pTable structure. Return the number
|
| -** of errors. If an error is seen leave an error message in pParse->zErrMsg.
|
| -*/
|
| -int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){
|
| - Table *pSelTab; /* A fake table from which we get the result set */
|
| - Select *pSel; /* Copy of the SELECT that implements the view */
|
| - int nErr = 0; /* Number of errors encountered */
|
| - int n; /* Temporarily holds the number of cursors assigned */
|
| - sqlite3 *db = pParse->db; /* Database connection for malloc errors */
|
| - sqlite3_xauth xAuth; /* Saved xAuth pointer */
|
| -
|
| - assert( pTable );
|
| -
|
| -#ifndef SQLITE_OMIT_VIRTUALTABLE
|
| - if( sqlite3VtabCallConnect(pParse, pTable) ){
|
| - return SQLITE_ERROR;
|
| - }
|
| - if( IsVirtual(pTable) ) return 0;
|
| -#endif
|
| -
|
| -#ifndef SQLITE_OMIT_VIEW
|
| - /* A positive nCol means the columns names for this view are
|
| - ** already known.
|
| - */
|
| - if( pTable->nCol>0 ) return 0;
|
| -
|
| - /* A negative nCol is a special marker meaning that we are currently
|
| - ** trying to compute the column names. If we enter this routine with
|
| - ** a negative nCol, it means two or more views form a loop, like this:
|
| - **
|
| - ** CREATE VIEW one AS SELECT * FROM two;
|
| - ** CREATE VIEW two AS SELECT * FROM one;
|
| - **
|
| - ** Actually, the error above is now caught prior to reaching this point.
|
| - ** But the following test is still important as it does come up
|
| - ** in the following:
|
| - **
|
| - ** CREATE TABLE main.ex1(a);
|
| - ** CREATE TEMP VIEW ex1 AS SELECT a FROM ex1;
|
| - ** SELECT * FROM temp.ex1;
|
| - */
|
| - if( pTable->nCol<0 ){
|
| - sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName);
|
| - return 1;
|
| - }
|
| - assert( pTable->nCol>=0 );
|
| -
|
| - /* If we get this far, it means we need to compute the table names.
|
| - ** Note that the call to sqlite3ResultSetOfSelect() will expand any
|
| - ** "*" elements in the results set of the view and will assign cursors
|
| - ** to the elements of the FROM clause. But we do not want these changes
|
| - ** to be permanent. So the computation is done on a copy of the SELECT
|
| - ** statement that defines the view.
|
| - */
|
| - assert( pTable->pSelect );
|
| - pSel = sqlite3SelectDup(db, pTable->pSelect, 0);
|
| - if( pSel ){
|
| - u8 enableLookaside = db->lookaside.bEnabled;
|
| - n = pParse->nTab;
|
| - sqlite3SrcListAssignCursors(pParse, pSel->pSrc);
|
| - pTable->nCol = -1;
|
| - db->lookaside.bEnabled = 0;
|
| -#ifndef SQLITE_OMIT_AUTHORIZATION
|
| - xAuth = db->xAuth;
|
| - db->xAuth = 0;
|
| - pSelTab = sqlite3ResultSetOfSelect(pParse, pSel);
|
| - db->xAuth = xAuth;
|
| -#else
|
| - pSelTab = sqlite3ResultSetOfSelect(pParse, pSel);
|
| -#endif
|
| - db->lookaside.bEnabled = enableLookaside;
|
| - pParse->nTab = n;
|
| - if( pSelTab ){
|
| - assert( pTable->aCol==0 );
|
| - pTable->nCol = pSelTab->nCol;
|
| - pTable->aCol = pSelTab->aCol;
|
| - pSelTab->nCol = 0;
|
| - pSelTab->aCol = 0;
|
| - sqlite3DeleteTable(db, pSelTab);
|
| - assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) );
|
| - pTable->pSchema->schemaFlags |= DB_UnresetViews;
|
| - }else{
|
| - pTable->nCol = 0;
|
| - nErr++;
|
| - }
|
| - sqlite3SelectDelete(db, pSel);
|
| - } else {
|
| - nErr++;
|
| - }
|
| -#endif /* SQLITE_OMIT_VIEW */
|
| - return nErr;
|
| -}
|
| -#endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */
|
| -
|
| -#ifndef SQLITE_OMIT_VIEW
|
| -/*
|
| -** Clear the column names from every VIEW in database idx.
|
| -*/
|
| -static void sqliteViewResetAll(sqlite3 *db, int idx){
|
| - HashElem *i;
|
| - assert( sqlite3SchemaMutexHeld(db, idx, 0) );
|
| - if( !DbHasProperty(db, idx, DB_UnresetViews) ) return;
|
| - for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){
|
| - Table *pTab = sqliteHashData(i);
|
| - if( pTab->pSelect ){
|
| - sqliteDeleteColumnNames(db, pTab);
|
| - pTab->aCol = 0;
|
| - pTab->nCol = 0;
|
| - }
|
| - }
|
| - DbClearProperty(db, idx, DB_UnresetViews);
|
| -}
|
| -#else
|
| -# define sqliteViewResetAll(A,B)
|
| -#endif /* SQLITE_OMIT_VIEW */
|
| -
|
| -/*
|
| -** This function is called by the VDBE to adjust the internal schema
|
| -** used by SQLite when the btree layer moves a table root page. The
|
| -** root-page of a table or index in database iDb has changed from iFrom
|
| -** to iTo.
|
| -**
|
| -** Ticket #1728: The symbol table might still contain information
|
| -** on tables and/or indices that are the process of being deleted.
|
| -** If you are unlucky, one of those deleted indices or tables might
|
| -** have the same rootpage number as the real table or index that is
|
| -** being moved. So we cannot stop searching after the first match
|
| -** because the first match might be for one of the deleted indices
|
| -** or tables and not the table/index that is actually being moved.
|
| -** We must continue looping until all tables and indices with
|
| -** rootpage==iFrom have been converted to have a rootpage of iTo
|
| -** in order to be certain that we got the right one.
|
| -*/
|
| -#ifndef SQLITE_OMIT_AUTOVACUUM
|
| -void sqlite3RootPageMoved(sqlite3 *db, int iDb, int iFrom, int iTo){
|
| - HashElem *pElem;
|
| - Hash *pHash;
|
| - Db *pDb;
|
| -
|
| - assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
|
| - pDb = &db->aDb[iDb];
|
| - pHash = &pDb->pSchema->tblHash;
|
| - for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
|
| - Table *pTab = sqliteHashData(pElem);
|
| - if( pTab->tnum==iFrom ){
|
| - pTab->tnum = iTo;
|
| - }
|
| - }
|
| - pHash = &pDb->pSchema->idxHash;
|
| - for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
|
| - Index *pIdx = sqliteHashData(pElem);
|
| - if( pIdx->tnum==iFrom ){
|
| - pIdx->tnum = iTo;
|
| - }
|
| - }
|
| -}
|
| -#endif
|
| -
|
| -/*
|
| -** Write code to erase the table with root-page iTable from database iDb.
|
| -** Also write code to modify the sqlite_master table and internal schema
|
| -** if a root-page of another table is moved by the btree-layer whilst
|
| -** erasing iTable (this can happen with an auto-vacuum database).
|
| -*/
|
| -static void destroyRootPage(Parse *pParse, int iTable, int iDb){
|
| - Vdbe *v = sqlite3GetVdbe(pParse);
|
| - int r1 = sqlite3GetTempReg(pParse);
|
| - sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb);
|
| - sqlite3MayAbort(pParse);
|
| -#ifndef SQLITE_OMIT_AUTOVACUUM
|
| - /* OP_Destroy stores an in integer r1. If this integer
|
| - ** is non-zero, then it is the root page number of a table moved to
|
| - ** location iTable. The following code modifies the sqlite_master table to
|
| - ** reflect this.
|
| - **
|
| - ** The "#NNN" in the SQL is a special constant that means whatever value
|
| - ** is in register NNN. See grammar rules associated with the TK_REGISTER
|
| - ** token for additional information.
|
| - */
|
| - sqlite3NestedParse(pParse,
|
| - "UPDATE %Q.%s SET rootpage=%d WHERE #%d AND rootpage=#%d",
|
| - pParse->db->aDb[iDb].zName, SCHEMA_TABLE(iDb), iTable, r1, r1);
|
| -#endif
|
| - sqlite3ReleaseTempReg(pParse, r1);
|
| -}
|
| -
|
| -/*
|
| -** Write VDBE code to erase table pTab and all associated indices on disk.
|
| -** Code to update the sqlite_master tables and internal schema definitions
|
| -** in case a root-page belonging to another table is moved by the btree layer
|
| -** is also added (this can happen with an auto-vacuum database).
|
| -*/
|
| -static void destroyTable(Parse *pParse, Table *pTab){
|
| -#ifdef SQLITE_OMIT_AUTOVACUUM
|
| - Index *pIdx;
|
| - int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
|
| - destroyRootPage(pParse, pTab->tnum, iDb);
|
| - for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
|
| - destroyRootPage(pParse, pIdx->tnum, iDb);
|
| - }
|
| -#else
|
| - /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM
|
| - ** is not defined), then it is important to call OP_Destroy on the
|
| - ** table and index root-pages in order, starting with the numerically
|
| - ** largest root-page number. This guarantees that none of the root-pages
|
| - ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the
|
| - ** following were coded:
|
| - **
|
| - ** OP_Destroy 4 0
|
| - ** ...
|
| - ** OP_Destroy 5 0
|
| - **
|
| - ** and root page 5 happened to be the largest root-page number in the
|
| - ** database, then root page 5 would be moved to page 4 by the
|
| - ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit
|
| - ** a free-list page.
|
| - */
|
| - int iTab = pTab->tnum;
|
| - int iDestroyed = 0;
|
| -
|
| - while( 1 ){
|
| - Index *pIdx;
|
| - int iLargest = 0;
|
| -
|
| - if( iDestroyed==0 || iTab<iDestroyed ){
|
| - iLargest = iTab;
|
| - }
|
| - for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
|
| - int iIdx = pIdx->tnum;
|
| - assert( pIdx->pSchema==pTab->pSchema );
|
| - if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){
|
| - iLargest = iIdx;
|
| - }
|
| - }
|
| - if( iLargest==0 ){
|
| - return;
|
| - }else{
|
| - int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
|
| - assert( iDb>=0 && iDb<pParse->db->nDb );
|
| - destroyRootPage(pParse, iLargest, iDb);
|
| - iDestroyed = iLargest;
|
| - }
|
| - }
|
| -#endif
|
| -}
|
| -
|
| -/*
|
| -** Remove entries from the sqlite_statN tables (for N in (1,2,3))
|
| -** after a DROP INDEX or DROP TABLE command.
|
| -*/
|
| -static void sqlite3ClearStatTables(
|
| - Parse *pParse, /* The parsing context */
|
| - int iDb, /* The database number */
|
| - const char *zType, /* "idx" or "tbl" */
|
| - const char *zName /* Name of index or table */
|
| -){
|
| - int i;
|
| - const char *zDbName = pParse->db->aDb[iDb].zName;
|
| - for(i=1; i<=4; i++){
|
| - char zTab[24];
|
| - sqlite3_snprintf(sizeof(zTab),zTab,"sqlite_stat%d",i);
|
| - if( sqlite3FindTable(pParse->db, zTab, zDbName) ){
|
| - sqlite3NestedParse(pParse,
|
| - "DELETE FROM %Q.%s WHERE %s=%Q",
|
| - zDbName, zTab, zType, zName
|
| - );
|
| - }
|
| - }
|
| -}
|
| -
|
| -/*
|
| -** Generate code to drop a table.
|
| -*/
|
| -void sqlite3CodeDropTable(Parse *pParse, Table *pTab, int iDb, int isView){
|
| - Vdbe *v;
|
| - sqlite3 *db = pParse->db;
|
| - Trigger *pTrigger;
|
| - Db *pDb = &db->aDb[iDb];
|
| -
|
| - v = sqlite3GetVdbe(pParse);
|
| - assert( v!=0 );
|
| - sqlite3BeginWriteOperation(pParse, 1, iDb);
|
| -
|
| -#ifndef SQLITE_OMIT_VIRTUALTABLE
|
| - if( IsVirtual(pTab) ){
|
| - sqlite3VdbeAddOp0(v, OP_VBegin);
|
| - }
|
| -#endif
|
| -
|
| - /* Drop all triggers associated with the table being dropped. Code
|
| - ** is generated to remove entries from sqlite_master and/or
|
| - ** sqlite_temp_master if required.
|
| - */
|
| - pTrigger = sqlite3TriggerList(pParse, pTab);
|
| - while( pTrigger ){
|
| - assert( pTrigger->pSchema==pTab->pSchema ||
|
| - pTrigger->pSchema==db->aDb[1].pSchema );
|
| - sqlite3DropTriggerPtr(pParse, pTrigger);
|
| - pTrigger = pTrigger->pNext;
|
| - }
|
| -
|
| -#ifndef SQLITE_OMIT_AUTOINCREMENT
|
| - /* Remove any entries of the sqlite_sequence table associated with
|
| - ** the table being dropped. This is done before the table is dropped
|
| - ** at the btree level, in case the sqlite_sequence table needs to
|
| - ** move as a result of the drop (can happen in auto-vacuum mode).
|
| - */
|
| - if( pTab->tabFlags & TF_Autoincrement ){
|
| - sqlite3NestedParse(pParse,
|
| - "DELETE FROM %Q.sqlite_sequence WHERE name=%Q",
|
| - pDb->zName, pTab->zName
|
| - );
|
| - }
|
| -#endif
|
| -
|
| - /* Drop all SQLITE_MASTER table and index entries that refer to the
|
| - ** table. The program name loops through the master table and deletes
|
| - ** every row that refers to a table of the same name as the one being
|
| - ** dropped. Triggers are handled separately because a trigger can be
|
| - ** created in the temp database that refers to a table in another
|
| - ** database.
|
| - */
|
| - sqlite3NestedParse(pParse,
|
| - "DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'",
|
| - pDb->zName, SCHEMA_TABLE(iDb), pTab->zName);
|
| - if( !isView && !IsVirtual(pTab) ){
|
| - destroyTable(pParse, pTab);
|
| - }
|
| -
|
| - /* Remove the table entry from SQLite's internal schema and modify
|
| - ** the schema cookie.
|
| - */
|
| - if( IsVirtual(pTab) ){
|
| - sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0);
|
| - }
|
| - sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0);
|
| - sqlite3ChangeCookie(pParse, iDb);
|
| - sqliteViewResetAll(db, iDb);
|
| -}
|
| -
|
| -/*
|
| -** This routine is called to do the work of a DROP TABLE statement.
|
| -** pName is the name of the table to be dropped.
|
| -*/
|
| -void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){
|
| - Table *pTab;
|
| - Vdbe *v;
|
| - sqlite3 *db = pParse->db;
|
| - int iDb;
|
| -
|
| - if( db->mallocFailed ){
|
| - goto exit_drop_table;
|
| - }
|
| - assert( pParse->nErr==0 );
|
| - assert( pName->nSrc==1 );
|
| - if( noErr ) db->suppressErr++;
|
| - pTab = sqlite3LocateTableItem(pParse, isView, &pName->a[0]);
|
| - if( noErr ) db->suppressErr--;
|
| -
|
| - if( pTab==0 ){
|
| - if( noErr ) sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase);
|
| - goto exit_drop_table;
|
| - }
|
| - iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
|
| - assert( iDb>=0 && iDb<db->nDb );
|
| -
|
| - /* If pTab is a virtual table, call ViewGetColumnNames() to ensure
|
| - ** it is initialized.
|
| - */
|
| - if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){
|
| - goto exit_drop_table;
|
| - }
|
| -#ifndef SQLITE_OMIT_AUTHORIZATION
|
| - {
|
| - int code;
|
| - const char *zTab = SCHEMA_TABLE(iDb);
|
| - const char *zDb = db->aDb[iDb].zName;
|
| - const char *zArg2 = 0;
|
| - if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){
|
| - goto exit_drop_table;
|
| - }
|
| - if( isView ){
|
| - if( !OMIT_TEMPDB && iDb==1 ){
|
| - code = SQLITE_DROP_TEMP_VIEW;
|
| - }else{
|
| - code = SQLITE_DROP_VIEW;
|
| - }
|
| -#ifndef SQLITE_OMIT_VIRTUALTABLE
|
| - }else if( IsVirtual(pTab) ){
|
| - code = SQLITE_DROP_VTABLE;
|
| - zArg2 = sqlite3GetVTable(db, pTab)->pMod->zName;
|
| -#endif
|
| - }else{
|
| - if( !OMIT_TEMPDB && iDb==1 ){
|
| - code = SQLITE_DROP_TEMP_TABLE;
|
| - }else{
|
| - code = SQLITE_DROP_TABLE;
|
| - }
|
| - }
|
| - if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){
|
| - goto exit_drop_table;
|
| - }
|
| - if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){
|
| - goto exit_drop_table;
|
| - }
|
| - }
|
| -#endif
|
| - if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0
|
| - && sqlite3StrNICmp(pTab->zName, "sqlite_stat", 11)!=0 ){
|
| - sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName);
|
| - goto exit_drop_table;
|
| - }
|
| -
|
| -#ifndef SQLITE_OMIT_VIEW
|
| - /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used
|
| - ** on a table.
|
| - */
|
| - if( isView && pTab->pSelect==0 ){
|
| - sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName);
|
| - goto exit_drop_table;
|
| - }
|
| - if( !isView && pTab->pSelect ){
|
| - sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName);
|
| - goto exit_drop_table;
|
| - }
|
| -#endif
|
| -
|
| - /* Generate code to remove the table from the master table
|
| - ** on disk.
|
| - */
|
| - v = sqlite3GetVdbe(pParse);
|
| - if( v ){
|
| - sqlite3BeginWriteOperation(pParse, 1, iDb);
|
| - sqlite3ClearStatTables(pParse, iDb, "tbl", pTab->zName);
|
| - sqlite3FkDropTable(pParse, pName, pTab);
|
| - sqlite3CodeDropTable(pParse, pTab, iDb, isView);
|
| - }
|
| -
|
| -exit_drop_table:
|
| - sqlite3SrcListDelete(db, pName);
|
| -}
|
| -
|
| -/*
|
| -** This routine is called to create a new foreign key on the table
|
| -** currently under construction. pFromCol determines which columns
|
| -** in the current table point to the foreign key. If pFromCol==0 then
|
| -** connect the key to the last column inserted. pTo is the name of
|
| -** the table referred to (a.k.a the "parent" table). pToCol is a list
|
| -** of tables in the parent pTo table. flags contains all
|
| -** information about the conflict resolution algorithms specified
|
| -** in the ON DELETE, ON UPDATE and ON INSERT clauses.
|
| -**
|
| -** An FKey structure is created and added to the table currently
|
| -** under construction in the pParse->pNewTable field.
|
| -**
|
| -** The foreign key is set for IMMEDIATE processing. A subsequent call
|
| -** to sqlite3DeferForeignKey() might change this to DEFERRED.
|
| -*/
|
| -void sqlite3CreateForeignKey(
|
| - Parse *pParse, /* Parsing context */
|
| - ExprList *pFromCol, /* Columns in this table that point to other table */
|
| - Token *pTo, /* Name of the other table */
|
| - ExprList *pToCol, /* Columns in the other table */
|
| - int flags /* Conflict resolution algorithms. */
|
| -){
|
| - sqlite3 *db = pParse->db;
|
| -#ifndef SQLITE_OMIT_FOREIGN_KEY
|
| - FKey *pFKey = 0;
|
| - FKey *pNextTo;
|
| - Table *p = pParse->pNewTable;
|
| - int nByte;
|
| - int i;
|
| - int nCol;
|
| - char *z;
|
| -
|
| - assert( pTo!=0 );
|
| - if( p==0 || IN_DECLARE_VTAB ) goto fk_end;
|
| - if( pFromCol==0 ){
|
| - int iCol = p->nCol-1;
|
| - if( NEVER(iCol<0) ) goto fk_end;
|
| - if( pToCol && pToCol->nExpr!=1 ){
|
| - sqlite3ErrorMsg(pParse, "foreign key on %s"
|
| - " should reference only one column of table %T",
|
| - p->aCol[iCol].zName, pTo);
|
| - goto fk_end;
|
| - }
|
| - nCol = 1;
|
| - }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){
|
| - sqlite3ErrorMsg(pParse,
|
| - "number of columns in foreign key does not match the number of "
|
| - "columns in the referenced table");
|
| - goto fk_end;
|
| - }else{
|
| - nCol = pFromCol->nExpr;
|
| - }
|
| - nByte = sizeof(*pFKey) + (nCol-1)*sizeof(pFKey->aCol[0]) + pTo->n + 1;
|
| - if( pToCol ){
|
| - for(i=0; i<pToCol->nExpr; i++){
|
| - nByte += sqlite3Strlen30(pToCol->a[i].zName) + 1;
|
| - }
|
| - }
|
| - pFKey = sqlite3DbMallocZero(db, nByte );
|
| - if( pFKey==0 ){
|
| - goto fk_end;
|
| - }
|
| - pFKey->pFrom = p;
|
| - pFKey->pNextFrom = p->pFKey;
|
| - z = (char*)&pFKey->aCol[nCol];
|
| - pFKey->zTo = z;
|
| - memcpy(z, pTo->z, pTo->n);
|
| - z[pTo->n] = 0;
|
| - sqlite3Dequote(z);
|
| - z += pTo->n+1;
|
| - pFKey->nCol = nCol;
|
| - if( pFromCol==0 ){
|
| - pFKey->aCol[0].iFrom = p->nCol-1;
|
| - }else{
|
| - for(i=0; i<nCol; i++){
|
| - int j;
|
| - for(j=0; j<p->nCol; j++){
|
| - if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){
|
| - pFKey->aCol[i].iFrom = j;
|
| - break;
|
| - }
|
| - }
|
| - if( j>=p->nCol ){
|
| - sqlite3ErrorMsg(pParse,
|
| - "unknown column \"%s\" in foreign key definition",
|
| - pFromCol->a[i].zName);
|
| - goto fk_end;
|
| - }
|
| - }
|
| - }
|
| - if( pToCol ){
|
| - for(i=0; i<nCol; i++){
|
| - int n = sqlite3Strlen30(pToCol->a[i].zName);
|
| - pFKey->aCol[i].zCol = z;
|
| - memcpy(z, pToCol->a[i].zName, n);
|
| - z[n] = 0;
|
| - z += n+1;
|
| - }
|
| - }
|
| - pFKey->isDeferred = 0;
|
| - pFKey->aAction[0] = (u8)(flags & 0xff); /* ON DELETE action */
|
| - pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff); /* ON UPDATE action */
|
| -
|
| - assert( sqlite3SchemaMutexHeld(db, 0, p->pSchema) );
|
| - pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash,
|
| - pFKey->zTo, (void *)pFKey
|
| - );
|
| - if( pNextTo==pFKey ){
|
| - db->mallocFailed = 1;
|
| - goto fk_end;
|
| - }
|
| - if( pNextTo ){
|
| - assert( pNextTo->pPrevTo==0 );
|
| - pFKey->pNextTo = pNextTo;
|
| - pNextTo->pPrevTo = pFKey;
|
| - }
|
| -
|
| - /* Link the foreign key to the table as the last step.
|
| - */
|
| - p->pFKey = pFKey;
|
| - pFKey = 0;
|
| -
|
| -fk_end:
|
| - sqlite3DbFree(db, pFKey);
|
| -#endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
|
| - sqlite3ExprListDelete(db, pFromCol);
|
| - sqlite3ExprListDelete(db, pToCol);
|
| -}
|
| -
|
| -/*
|
| -** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED
|
| -** clause is seen as part of a foreign key definition. The isDeferred
|
| -** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE.
|
| -** The behavior of the most recently created foreign key is adjusted
|
| -** accordingly.
|
| -*/
|
| -void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){
|
| -#ifndef SQLITE_OMIT_FOREIGN_KEY
|
| - Table *pTab;
|
| - FKey *pFKey;
|
| - if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return;
|
| - assert( isDeferred==0 || isDeferred==1 ); /* EV: R-30323-21917 */
|
| - pFKey->isDeferred = (u8)isDeferred;
|
| -#endif
|
| -}
|
| -
|
| -/*
|
| -** Generate code that will erase and refill index *pIdx. This is
|
| -** used to initialize a newly created index or to recompute the
|
| -** content of an index in response to a REINDEX command.
|
| -**
|
| -** if memRootPage is not negative, it means that the index is newly
|
| -** created. The register specified by memRootPage contains the
|
| -** root page number of the index. If memRootPage is negative, then
|
| -** the index already exists and must be cleared before being refilled and
|
| -** the root page number of the index is taken from pIndex->tnum.
|
| -*/
|
| -static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){
|
| - Table *pTab = pIndex->pTable; /* The table that is indexed */
|
| - int iTab = pParse->nTab++; /* Btree cursor used for pTab */
|
| - int iIdx = pParse->nTab++; /* Btree cursor used for pIndex */
|
| - int iSorter; /* Cursor opened by OpenSorter (if in use) */
|
| - int addr1; /* Address of top of loop */
|
| - int addr2; /* Address to jump to for next iteration */
|
| - int tnum; /* Root page of index */
|
| - int iPartIdxLabel; /* Jump to this label to skip a row */
|
| - Vdbe *v; /* Generate code into this virtual machine */
|
| - KeyInfo *pKey; /* KeyInfo for index */
|
| - int regRecord; /* Register holding assembled index record */
|
| - sqlite3 *db = pParse->db; /* The database connection */
|
| - int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
|
| -
|
| -#ifndef SQLITE_OMIT_AUTHORIZATION
|
| - if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0,
|
| - db->aDb[iDb].zName ) ){
|
| - return;
|
| - }
|
| -#endif
|
| -
|
| - /* Require a write-lock on the table to perform this operation */
|
| - sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName);
|
| -
|
| - v = sqlite3GetVdbe(pParse);
|
| - if( v==0 ) return;
|
| - if( memRootPage>=0 ){
|
| - tnum = memRootPage;
|
| - }else{
|
| - tnum = pIndex->tnum;
|
| - }
|
| - pKey = sqlite3KeyInfoOfIndex(pParse, pIndex);
|
| -
|
| - /* Open the sorter cursor if we are to use one. */
|
| - iSorter = pParse->nTab++;
|
| - sqlite3VdbeAddOp4(v, OP_SorterOpen, iSorter, 0, pIndex->nKeyCol, (char*)
|
| - sqlite3KeyInfoRef(pKey), P4_KEYINFO);
|
| -
|
| - /* Open the table. Loop through all rows of the table, inserting index
|
| - ** records into the sorter. */
|
| - sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
|
| - addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); VdbeCoverage(v);
|
| - regRecord = sqlite3GetTempReg(pParse);
|
| -
|
| - sqlite3GenerateIndexKey(pParse,pIndex,iTab,regRecord,0,&iPartIdxLabel,0,0);
|
| - sqlite3VdbeAddOp2(v, OP_SorterInsert, iSorter, regRecord);
|
| - sqlite3ResolvePartIdxLabel(pParse, iPartIdxLabel);
|
| - sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); VdbeCoverage(v);
|
| - sqlite3VdbeJumpHere(v, addr1);
|
| - if( memRootPage<0 ) sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb);
|
| - sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb,
|
| - (char *)pKey, P4_KEYINFO);
|
| - sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR|((memRootPage>=0)?OPFLAG_P2ISREG:0));
|
| -
|
| - addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0); VdbeCoverage(v);
|
| - assert( pKey!=0 || db->mallocFailed || pParse->nErr );
|
| - if( IsUniqueIndex(pIndex) && pKey!=0 ){
|
| - int j2 = sqlite3VdbeCurrentAddr(v) + 3;
|
| - sqlite3VdbeAddOp2(v, OP_Goto, 0, j2);
|
| - addr2 = sqlite3VdbeCurrentAddr(v);
|
| - sqlite3VdbeAddOp4Int(v, OP_SorterCompare, iSorter, j2, regRecord,
|
| - pIndex->nKeyCol); VdbeCoverage(v);
|
| - sqlite3UniqueConstraint(pParse, OE_Abort, pIndex);
|
| - }else{
|
| - addr2 = sqlite3VdbeCurrentAddr(v);
|
| - }
|
| - sqlite3VdbeAddOp3(v, OP_SorterData, iSorter, regRecord, iIdx);
|
| - sqlite3VdbeAddOp3(v, OP_IdxInsert, iIdx, regRecord, 1);
|
| - sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
|
| - sqlite3ReleaseTempReg(pParse, regRecord);
|
| - sqlite3VdbeAddOp2(v, OP_SorterNext, iSorter, addr2); VdbeCoverage(v);
|
| - sqlite3VdbeJumpHere(v, addr1);
|
| -
|
| - sqlite3VdbeAddOp1(v, OP_Close, iTab);
|
| - sqlite3VdbeAddOp1(v, OP_Close, iIdx);
|
| - sqlite3VdbeAddOp1(v, OP_Close, iSorter);
|
| -}
|
| -
|
| -/*
|
| -** Allocate heap space to hold an Index object with nCol columns.
|
| -**
|
| -** Increase the allocation size to provide an extra nExtra bytes
|
| -** of 8-byte aligned space after the Index object and return a
|
| -** pointer to this extra space in *ppExtra.
|
| -*/
|
| -Index *sqlite3AllocateIndexObject(
|
| - sqlite3 *db, /* Database connection */
|
| - i16 nCol, /* Total number of columns in the index */
|
| - int nExtra, /* Number of bytes of extra space to alloc */
|
| - char **ppExtra /* Pointer to the "extra" space */
|
| -){
|
| - Index *p; /* Allocated index object */
|
| - int nByte; /* Bytes of space for Index object + arrays */
|
| -
|
| - nByte = ROUND8(sizeof(Index)) + /* Index structure */
|
| - ROUND8(sizeof(char*)*nCol) + /* Index.azColl */
|
| - ROUND8(sizeof(LogEst)*(nCol+1) + /* Index.aiRowLogEst */
|
| - sizeof(i16)*nCol + /* Index.aiColumn */
|
| - sizeof(u8)*nCol); /* Index.aSortOrder */
|
| - p = sqlite3DbMallocZero(db, nByte + nExtra);
|
| - if( p ){
|
| - char *pExtra = ((char*)p)+ROUND8(sizeof(Index));
|
| - p->azColl = (char**)pExtra; pExtra += ROUND8(sizeof(char*)*nCol);
|
| - p->aiRowLogEst = (LogEst*)pExtra; pExtra += sizeof(LogEst)*(nCol+1);
|
| - p->aiColumn = (i16*)pExtra; pExtra += sizeof(i16)*nCol;
|
| - p->aSortOrder = (u8*)pExtra;
|
| - p->nColumn = nCol;
|
| - p->nKeyCol = nCol - 1;
|
| - *ppExtra = ((char*)p) + nByte;
|
| - }
|
| - return p;
|
| -}
|
| -
|
| -/*
|
| -** Create a new index for an SQL table. pName1.pName2 is the name of the index
|
| -** and pTblList is the name of the table that is to be indexed. Both will
|
| -** be NULL for a primary key or an index that is created to satisfy a
|
| -** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable
|
| -** as the table to be indexed. pParse->pNewTable is a table that is
|
| -** currently being constructed by a CREATE TABLE statement.
|
| -**
|
| -** pList is a list of columns to be indexed. pList will be NULL if this
|
| -** is a primary key or unique-constraint on the most recent column added
|
| -** to the table currently under construction.
|
| -**
|
| -** If the index is created successfully, return a pointer to the new Index
|
| -** structure. This is used by sqlite3AddPrimaryKey() to mark the index
|
| -** as the tables primary key (Index.idxType==SQLITE_IDXTYPE_PRIMARYKEY)
|
| -*/
|
| -Index *sqlite3CreateIndex(
|
| - Parse *pParse, /* All information about this parse */
|
| - Token *pName1, /* First part of index name. May be NULL */
|
| - Token *pName2, /* Second part of index name. May be NULL */
|
| - SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */
|
| - ExprList *pList, /* A list of columns to be indexed */
|
| - int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
|
| - Token *pStart, /* The CREATE token that begins this statement */
|
| - Expr *pPIWhere, /* WHERE clause for partial indices */
|
| - int sortOrder, /* Sort order of primary key when pList==NULL */
|
| - int ifNotExist /* Omit error if index already exists */
|
| -){
|
| - Index *pRet = 0; /* Pointer to return */
|
| - Table *pTab = 0; /* Table to be indexed */
|
| - Index *pIndex = 0; /* The index to be created */
|
| - char *zName = 0; /* Name of the index */
|
| - int nName; /* Number of characters in zName */
|
| - int i, j;
|
| - DbFixer sFix; /* For assigning database names to pTable */
|
| - int sortOrderMask; /* 1 to honor DESC in index. 0 to ignore. */
|
| - sqlite3 *db = pParse->db;
|
| - Db *pDb; /* The specific table containing the indexed database */
|
| - int iDb; /* Index of the database that is being written */
|
| - Token *pName = 0; /* Unqualified name of the index to create */
|
| - struct ExprList_item *pListItem; /* For looping over pList */
|
| - const Column *pTabCol; /* A column in the table */
|
| - int nExtra = 0; /* Space allocated for zExtra[] */
|
| - int nExtraCol; /* Number of extra columns needed */
|
| - char *zExtra = 0; /* Extra space after the Index object */
|
| - Index *pPk = 0; /* PRIMARY KEY index for WITHOUT ROWID tables */
|
| -
|
| - assert( pParse->nErr==0 ); /* Never called with prior errors */
|
| - if( db->mallocFailed || IN_DECLARE_VTAB ){
|
| - goto exit_create_index;
|
| - }
|
| - if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
|
| - goto exit_create_index;
|
| - }
|
| -
|
| - /*
|
| - ** Find the table that is to be indexed. Return early if not found.
|
| - */
|
| - if( pTblName!=0 ){
|
| -
|
| - /* Use the two-part index name to determine the database
|
| - ** to search for the table. 'Fix' the table name to this db
|
| - ** before looking up the table.
|
| - */
|
| - assert( pName1 && pName2 );
|
| - iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
|
| - if( iDb<0 ) goto exit_create_index;
|
| - assert( pName && pName->z );
|
| -
|
| -#ifndef SQLITE_OMIT_TEMPDB
|
| - /* If the index name was unqualified, check if the table
|
| - ** is a temp table. If so, set the database to 1. Do not do this
|
| - ** if initialising a database schema.
|
| - */
|
| - if( !db->init.busy ){
|
| - pTab = sqlite3SrcListLookup(pParse, pTblName);
|
| - if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){
|
| - iDb = 1;
|
| - }
|
| - }
|
| -#endif
|
| -
|
| - sqlite3FixInit(&sFix, pParse, iDb, "index", pName);
|
| - if( sqlite3FixSrcList(&sFix, pTblName) ){
|
| - /* Because the parser constructs pTblName from a single identifier,
|
| - ** sqlite3FixSrcList can never fail. */
|
| - assert(0);
|
| - }
|
| - pTab = sqlite3LocateTableItem(pParse, 0, &pTblName->a[0]);
|
| - assert( db->mallocFailed==0 || pTab==0 );
|
| - if( pTab==0 ) goto exit_create_index;
|
| - if( iDb==1 && db->aDb[iDb].pSchema!=pTab->pSchema ){
|
| - sqlite3ErrorMsg(pParse,
|
| - "cannot create a TEMP index on non-TEMP table \"%s\"",
|
| - pTab->zName);
|
| - goto exit_create_index;
|
| - }
|
| - if( !HasRowid(pTab) ) pPk = sqlite3PrimaryKeyIndex(pTab);
|
| - }else{
|
| - assert( pName==0 );
|
| - assert( pStart==0 );
|
| - pTab = pParse->pNewTable;
|
| - if( !pTab ) goto exit_create_index;
|
| - iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
|
| - }
|
| - pDb = &db->aDb[iDb];
|
| -
|
| - assert( pTab!=0 );
|
| - assert( pParse->nErr==0 );
|
| - if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0
|
| - && db->init.busy==0
|
| -#if SQLITE_USER_AUTHENTICATION
|
| - && sqlite3UserAuthTable(pTab->zName)==0
|
| -#endif
|
| - && sqlite3StrNICmp(&pTab->zName[7],"altertab_",9)!=0 ){
|
| - sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName);
|
| - goto exit_create_index;
|
| - }
|
| -#ifndef SQLITE_OMIT_VIEW
|
| - if( pTab->pSelect ){
|
| - sqlite3ErrorMsg(pParse, "views may not be indexed");
|
| - goto exit_create_index;
|
| - }
|
| -#endif
|
| -#ifndef SQLITE_OMIT_VIRTUALTABLE
|
| - if( IsVirtual(pTab) ){
|
| - sqlite3ErrorMsg(pParse, "virtual tables may not be indexed");
|
| - goto exit_create_index;
|
| - }
|
| -#endif
|
| -
|
| - /*
|
| - ** Find the name of the index. Make sure there is not already another
|
| - ** index or table with the same name.
|
| - **
|
| - ** Exception: If we are reading the names of permanent indices from the
|
| - ** sqlite_master table (because some other process changed the schema) and
|
| - ** one of the index names collides with the name of a temporary table or
|
| - ** index, then we will continue to process this index.
|
| - **
|
| - ** If pName==0 it means that we are
|
| - ** dealing with a primary key or UNIQUE constraint. We have to invent our
|
| - ** own name.
|
| - */
|
| - if( pName ){
|
| - zName = sqlite3NameFromToken(db, pName);
|
| - if( zName==0 ) goto exit_create_index;
|
| - assert( pName->z!=0 );
|
| - if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
|
| - goto exit_create_index;
|
| - }
|
| - if( !db->init.busy ){
|
| - if( sqlite3FindTable(db, zName, 0)!=0 ){
|
| - sqlite3ErrorMsg(pParse, "there is already a table named %s", zName);
|
| - goto exit_create_index;
|
| - }
|
| - }
|
| - if( sqlite3FindIndex(db, zName, pDb->zName)!=0 ){
|
| - if( !ifNotExist ){
|
| - sqlite3ErrorMsg(pParse, "index %s already exists", zName);
|
| - }else{
|
| - assert( !db->init.busy );
|
| - sqlite3CodeVerifySchema(pParse, iDb);
|
| - }
|
| - goto exit_create_index;
|
| - }
|
| - }else{
|
| - int n;
|
| - Index *pLoop;
|
| - for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){}
|
| - zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n);
|
| - if( zName==0 ){
|
| - goto exit_create_index;
|
| - }
|
| - }
|
| -
|
| - /* Check for authorization to create an index.
|
| - */
|
| -#ifndef SQLITE_OMIT_AUTHORIZATION
|
| - {
|
| - const char *zDb = pDb->zName;
|
| - if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){
|
| - goto exit_create_index;
|
| - }
|
| - i = SQLITE_CREATE_INDEX;
|
| - if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX;
|
| - if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){
|
| - goto exit_create_index;
|
| - }
|
| - }
|
| -#endif
|
| -
|
| - /* If pList==0, it means this routine was called to make a primary
|
| - ** key out of the last column added to the table under construction.
|
| - ** So create a fake list to simulate this.
|
| - */
|
| - if( pList==0 ){
|
| - pList = sqlite3ExprListAppend(pParse, 0, 0);
|
| - if( pList==0 ) goto exit_create_index;
|
| - pList->a[0].zName = sqlite3DbStrDup(pParse->db,
|
| - pTab->aCol[pTab->nCol-1].zName);
|
| - pList->a[0].sortOrder = (u8)sortOrder;
|
| - }
|
| -
|
| - /* Figure out how many bytes of space are required to store explicitly
|
| - ** specified collation sequence names.
|
| - */
|
| - for(i=0; i<pList->nExpr; i++){
|
| - Expr *pExpr = pList->a[i].pExpr;
|
| - if( pExpr ){
|
| - assert( pExpr->op==TK_COLLATE );
|
| - nExtra += (1 + sqlite3Strlen30(pExpr->u.zToken));
|
| - }
|
| - }
|
| -
|
| - /*
|
| - ** Allocate the index structure.
|
| - */
|
| - nName = sqlite3Strlen30(zName);
|
| - nExtraCol = pPk ? pPk->nKeyCol : 1;
|
| - pIndex = sqlite3AllocateIndexObject(db, pList->nExpr + nExtraCol,
|
| - nName + nExtra + 1, &zExtra);
|
| - if( db->mallocFailed ){
|
| - goto exit_create_index;
|
| - }
|
| - assert( EIGHT_BYTE_ALIGNMENT(pIndex->aiRowLogEst) );
|
| - assert( EIGHT_BYTE_ALIGNMENT(pIndex->azColl) );
|
| - pIndex->zName = zExtra;
|
| - zExtra += nName + 1;
|
| - memcpy(pIndex->zName, zName, nName+1);
|
| - pIndex->pTable = pTab;
|
| - pIndex->onError = (u8)onError;
|
| - pIndex->uniqNotNull = onError!=OE_None;
|
| - pIndex->idxType = pName ? SQLITE_IDXTYPE_APPDEF : SQLITE_IDXTYPE_UNIQUE;
|
| - pIndex->pSchema = db->aDb[iDb].pSchema;
|
| - pIndex->nKeyCol = pList->nExpr;
|
| - if( pPIWhere ){
|
| - sqlite3ResolveSelfReference(pParse, pTab, NC_PartIdx, pPIWhere, 0);
|
| - pIndex->pPartIdxWhere = pPIWhere;
|
| - pPIWhere = 0;
|
| - }
|
| - assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
|
| -
|
| - /* Check to see if we should honor DESC requests on index columns
|
| - */
|
| - if( pDb->pSchema->file_format>=4 ){
|
| - sortOrderMask = -1; /* Honor DESC */
|
| - }else{
|
| - sortOrderMask = 0; /* Ignore DESC */
|
| - }
|
| -
|
| - /* Scan the names of the columns of the table to be indexed and
|
| - ** load the column indices into the Index structure. Report an error
|
| - ** if any column is not found.
|
| - **
|
| - ** TODO: Add a test to make sure that the same column is not named
|
| - ** more than once within the same index. Only the first instance of
|
| - ** the column will ever be used by the optimizer. Note that using the
|
| - ** same column more than once cannot be an error because that would
|
| - ** break backwards compatibility - it needs to be a warning.
|
| - */
|
| - for(i=0, pListItem=pList->a; i<pList->nExpr; i++, pListItem++){
|
| - const char *zColName = pListItem->zName;
|
| - int requestedSortOrder;
|
| - char *zColl; /* Collation sequence name */
|
| -
|
| - for(j=0, pTabCol=pTab->aCol; j<pTab->nCol; j++, pTabCol++){
|
| - if( sqlite3StrICmp(zColName, pTabCol->zName)==0 ) break;
|
| - }
|
| - if( j>=pTab->nCol ){
|
| - sqlite3ErrorMsg(pParse, "table %s has no column named %s",
|
| - pTab->zName, zColName);
|
| - pParse->checkSchema = 1;
|
| - goto exit_create_index;
|
| - }
|
| - assert( j<=0x7fff );
|
| - pIndex->aiColumn[i] = (i16)j;
|
| - if( pListItem->pExpr ){
|
| - int nColl;
|
| - assert( pListItem->pExpr->op==TK_COLLATE );
|
| - zColl = pListItem->pExpr->u.zToken;
|
| - nColl = sqlite3Strlen30(zColl) + 1;
|
| - assert( nExtra>=nColl );
|
| - memcpy(zExtra, zColl, nColl);
|
| - zColl = zExtra;
|
| - zExtra += nColl;
|
| - nExtra -= nColl;
|
| - }else{
|
| - zColl = pTab->aCol[j].zColl;
|
| - if( !zColl ) zColl = "BINARY";
|
| - }
|
| - if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){
|
| - goto exit_create_index;
|
| - }
|
| - pIndex->azColl[i] = zColl;
|
| - requestedSortOrder = pListItem->sortOrder & sortOrderMask;
|
| - pIndex->aSortOrder[i] = (u8)requestedSortOrder;
|
| - if( pTab->aCol[j].notNull==0 ) pIndex->uniqNotNull = 0;
|
| - }
|
| - if( pPk ){
|
| - for(j=0; j<pPk->nKeyCol; j++){
|
| - int x = pPk->aiColumn[j];
|
| - if( hasColumn(pIndex->aiColumn, pIndex->nKeyCol, x) ){
|
| - pIndex->nColumn--;
|
| - }else{
|
| - pIndex->aiColumn[i] = x;
|
| - pIndex->azColl[i] = pPk->azColl[j];
|
| - pIndex->aSortOrder[i] = pPk->aSortOrder[j];
|
| - i++;
|
| - }
|
| - }
|
| - assert( i==pIndex->nColumn );
|
| - }else{
|
| - pIndex->aiColumn[i] = -1;
|
| - pIndex->azColl[i] = "BINARY";
|
| - }
|
| - sqlite3DefaultRowEst(pIndex);
|
| - if( pParse->pNewTable==0 ) estimateIndexWidth(pIndex);
|
| -
|
| - if( pTab==pParse->pNewTable ){
|
| - /* This routine has been called to create an automatic index as a
|
| - ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or
|
| - ** a PRIMARY KEY or UNIQUE clause following the column definitions.
|
| - ** i.e. one of:
|
| - **
|
| - ** CREATE TABLE t(x PRIMARY KEY, y);
|
| - ** CREATE TABLE t(x, y, UNIQUE(x, y));
|
| - **
|
| - ** Either way, check to see if the table already has such an index. If
|
| - ** so, don't bother creating this one. This only applies to
|
| - ** automatically created indices. Users can do as they wish with
|
| - ** explicit indices.
|
| - **
|
| - ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent
|
| - ** (and thus suppressing the second one) even if they have different
|
| - ** sort orders.
|
| - **
|
| - ** If there are different collating sequences or if the columns of
|
| - ** the constraint occur in different orders, then the constraints are
|
| - ** considered distinct and both result in separate indices.
|
| - */
|
| - Index *pIdx;
|
| - for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
|
| - int k;
|
| - assert( IsUniqueIndex(pIdx) );
|
| - assert( pIdx->idxType!=SQLITE_IDXTYPE_APPDEF );
|
| - assert( IsUniqueIndex(pIndex) );
|
| -
|
| - if( pIdx->nKeyCol!=pIndex->nKeyCol ) continue;
|
| - for(k=0; k<pIdx->nKeyCol; k++){
|
| - const char *z1;
|
| - const char *z2;
|
| - if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break;
|
| - z1 = pIdx->azColl[k];
|
| - z2 = pIndex->azColl[k];
|
| - if( z1!=z2 && sqlite3StrICmp(z1, z2) ) break;
|
| - }
|
| - if( k==pIdx->nKeyCol ){
|
| - if( pIdx->onError!=pIndex->onError ){
|
| - /* This constraint creates the same index as a previous
|
| - ** constraint specified somewhere in the CREATE TABLE statement.
|
| - ** However the ON CONFLICT clauses are different. If both this
|
| - ** constraint and the previous equivalent constraint have explicit
|
| - ** ON CONFLICT clauses this is an error. Otherwise, use the
|
| - ** explicitly specified behavior for the index.
|
| - */
|
| - if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){
|
| - sqlite3ErrorMsg(pParse,
|
| - "conflicting ON CONFLICT clauses specified", 0);
|
| - }
|
| - if( pIdx->onError==OE_Default ){
|
| - pIdx->onError = pIndex->onError;
|
| - }
|
| - }
|
| - goto exit_create_index;
|
| - }
|
| - }
|
| - }
|
| -
|
| - /* Link the new Index structure to its table and to the other
|
| - ** in-memory database structures.
|
| - */
|
| - if( db->init.busy ){
|
| - Index *p;
|
| - assert( sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) );
|
| - p = sqlite3HashInsert(&pIndex->pSchema->idxHash,
|
| - pIndex->zName, pIndex);
|
| - if( p ){
|
| - assert( p==pIndex ); /* Malloc must have failed */
|
| - db->mallocFailed = 1;
|
| - goto exit_create_index;
|
| - }
|
| - db->flags |= SQLITE_InternChanges;
|
| - if( pTblName!=0 ){
|
| - pIndex->tnum = db->init.newTnum;
|
| - }
|
| - }
|
| -
|
| - /* If this is the initial CREATE INDEX statement (or CREATE TABLE if the
|
| - ** index is an implied index for a UNIQUE or PRIMARY KEY constraint) then
|
| - ** emit code to allocate the index rootpage on disk and make an entry for
|
| - ** the index in the sqlite_master table and populate the index with
|
| - ** content. But, do not do this if we are simply reading the sqlite_master
|
| - ** table to parse the schema, or if this index is the PRIMARY KEY index
|
| - ** of a WITHOUT ROWID table.
|
| - **
|
| - ** If pTblName==0 it means this index is generated as an implied PRIMARY KEY
|
| - ** or UNIQUE index in a CREATE TABLE statement. Since the table
|
| - ** has just been created, it contains no data and the index initialization
|
| - ** step can be skipped.
|
| - */
|
| - else if( pParse->nErr==0 && (HasRowid(pTab) || pTblName!=0) ){
|
| - Vdbe *v;
|
| - char *zStmt;
|
| - int iMem = ++pParse->nMem;
|
| -
|
| - v = sqlite3GetVdbe(pParse);
|
| - if( v==0 ) goto exit_create_index;
|
| -
|
| -
|
| - /* Create the rootpage for the index
|
| - */
|
| - sqlite3BeginWriteOperation(pParse, 1, iDb);
|
| - sqlite3VdbeAddOp2(v, OP_CreateIndex, iDb, iMem);
|
| -
|
| - /* Gather the complete text of the CREATE INDEX statement into
|
| - ** the zStmt variable
|
| - */
|
| - if( pStart ){
|
| - int n = (int)(pParse->sLastToken.z - pName->z) + pParse->sLastToken.n;
|
| - if( pName->z[n-1]==';' ) n--;
|
| - /* A named index with an explicit CREATE INDEX statement */
|
| - zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s",
|
| - onError==OE_None ? "" : " UNIQUE", n, pName->z);
|
| - }else{
|
| - /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */
|
| - /* zStmt = sqlite3MPrintf(""); */
|
| - zStmt = 0;
|
| - }
|
| -
|
| - /* Add an entry in sqlite_master for this index
|
| - */
|
| - sqlite3NestedParse(pParse,
|
| - "INSERT INTO %Q.%s VALUES('index',%Q,%Q,#%d,%Q);",
|
| - db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
|
| - pIndex->zName,
|
| - pTab->zName,
|
| - iMem,
|
| - zStmt
|
| - );
|
| - sqlite3DbFree(db, zStmt);
|
| -
|
| - /* Fill the index with data and reparse the schema. Code an OP_Expire
|
| - ** to invalidate all pre-compiled statements.
|
| - */
|
| - if( pTblName ){
|
| - sqlite3RefillIndex(pParse, pIndex, iMem);
|
| - sqlite3ChangeCookie(pParse, iDb);
|
| - sqlite3VdbeAddParseSchemaOp(v, iDb,
|
| - sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName));
|
| - sqlite3VdbeAddOp1(v, OP_Expire, 0);
|
| - }
|
| - }
|
| -
|
| - /* When adding an index to the list of indices for a table, make
|
| - ** sure all indices labeled OE_Replace come after all those labeled
|
| - ** OE_Ignore. This is necessary for the correct constraint check
|
| - ** processing (in sqlite3GenerateConstraintChecks()) as part of
|
| - ** UPDATE and INSERT statements.
|
| - */
|
| - if( db->init.busy || pTblName==0 ){
|
| - if( onError!=OE_Replace || pTab->pIndex==0
|
| - || pTab->pIndex->onError==OE_Replace){
|
| - pIndex->pNext = pTab->pIndex;
|
| - pTab->pIndex = pIndex;
|
| - }else{
|
| - Index *pOther = pTab->pIndex;
|
| - while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){
|
| - pOther = pOther->pNext;
|
| - }
|
| - pIndex->pNext = pOther->pNext;
|
| - pOther->pNext = pIndex;
|
| - }
|
| - pRet = pIndex;
|
| - pIndex = 0;
|
| - }
|
| -
|
| - /* Clean up before exiting */
|
| -exit_create_index:
|
| - if( pIndex ) freeIndex(db, pIndex);
|
| - sqlite3ExprDelete(db, pPIWhere);
|
| - sqlite3ExprListDelete(db, pList);
|
| - sqlite3SrcListDelete(db, pTblName);
|
| - sqlite3DbFree(db, zName);
|
| - return pRet;
|
| -}
|
| -
|
| -/*
|
| -** Fill the Index.aiRowEst[] array with default information - information
|
| -** to be used when we have not run the ANALYZE command.
|
| -**
|
| -** aiRowEst[0] is supposed to contain the number of elements in the index.
|
| -** Since we do not know, guess 1 million. aiRowEst[1] is an estimate of the
|
| -** number of rows in the table that match any particular value of the
|
| -** first column of the index. aiRowEst[2] is an estimate of the number
|
| -** of rows that match any particular combination of the first 2 columns
|
| -** of the index. And so forth. It must always be the case that
|
| -*
|
| -** aiRowEst[N]<=aiRowEst[N-1]
|
| -** aiRowEst[N]>=1
|
| -**
|
| -** Apart from that, we have little to go on besides intuition as to
|
| -** how aiRowEst[] should be initialized. The numbers generated here
|
| -** are based on typical values found in actual indices.
|
| -*/
|
| -void sqlite3DefaultRowEst(Index *pIdx){
|
| - /* 10, 9, 8, 7, 6 */
|
| - LogEst aVal[] = { 33, 32, 30, 28, 26 };
|
| - LogEst *a = pIdx->aiRowLogEst;
|
| - int nCopy = MIN(ArraySize(aVal), pIdx->nKeyCol);
|
| - int i;
|
| -
|
| - /* Set the first entry (number of rows in the index) to the estimated
|
| - ** number of rows in the table. Or 10, if the estimated number of rows
|
| - ** in the table is less than that. */
|
| - a[0] = pIdx->pTable->nRowLogEst;
|
| - if( a[0]<33 ) a[0] = 33; assert( 33==sqlite3LogEst(10) );
|
| -
|
| - /* Estimate that a[1] is 10, a[2] is 9, a[3] is 8, a[4] is 7, a[5] is
|
| - ** 6 and each subsequent value (if any) is 5. */
|
| - memcpy(&a[1], aVal, nCopy*sizeof(LogEst));
|
| - for(i=nCopy+1; i<=pIdx->nKeyCol; i++){
|
| - a[i] = 23; assert( 23==sqlite3LogEst(5) );
|
| - }
|
| -
|
| - assert( 0==sqlite3LogEst(1) );
|
| - if( IsUniqueIndex(pIdx) ) a[pIdx->nKeyCol] = 0;
|
| -}
|
| -
|
| -/*
|
| -** This routine will drop an existing named index. This routine
|
| -** implements the DROP INDEX statement.
|
| -*/
|
| -void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){
|
| - Index *pIndex;
|
| - Vdbe *v;
|
| - sqlite3 *db = pParse->db;
|
| - int iDb;
|
| -
|
| - assert( pParse->nErr==0 ); /* Never called with prior errors */
|
| - if( db->mallocFailed ){
|
| - goto exit_drop_index;
|
| - }
|
| - assert( pName->nSrc==1 );
|
| - if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
|
| - goto exit_drop_index;
|
| - }
|
| - pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase);
|
| - if( pIndex==0 ){
|
| - if( !ifExists ){
|
| - sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0);
|
| - }else{
|
| - sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase);
|
| - }
|
| - pParse->checkSchema = 1;
|
| - goto exit_drop_index;
|
| - }
|
| - if( pIndex->idxType!=SQLITE_IDXTYPE_APPDEF ){
|
| - sqlite3ErrorMsg(pParse, "index associated with UNIQUE "
|
| - "or PRIMARY KEY constraint cannot be dropped", 0);
|
| - goto exit_drop_index;
|
| - }
|
| - iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
|
| -#ifndef SQLITE_OMIT_AUTHORIZATION
|
| - {
|
| - int code = SQLITE_DROP_INDEX;
|
| - Table *pTab = pIndex->pTable;
|
| - const char *zDb = db->aDb[iDb].zName;
|
| - const char *zTab = SCHEMA_TABLE(iDb);
|
| - if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){
|
| - goto exit_drop_index;
|
| - }
|
| - if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX;
|
| - if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){
|
| - goto exit_drop_index;
|
| - }
|
| - }
|
| -#endif
|
| -
|
| - /* Generate code to remove the index and from the master table */
|
| - v = sqlite3GetVdbe(pParse);
|
| - if( v ){
|
| - sqlite3BeginWriteOperation(pParse, 1, iDb);
|
| - sqlite3NestedParse(pParse,
|
| - "DELETE FROM %Q.%s WHERE name=%Q AND type='index'",
|
| - db->aDb[iDb].zName, SCHEMA_TABLE(iDb), pIndex->zName
|
| - );
|
| - sqlite3ClearStatTables(pParse, iDb, "idx", pIndex->zName);
|
| - sqlite3ChangeCookie(pParse, iDb);
|
| - destroyRootPage(pParse, pIndex->tnum, iDb);
|
| - sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0);
|
| - }
|
| -
|
| -exit_drop_index:
|
| - sqlite3SrcListDelete(db, pName);
|
| -}
|
| -
|
| -/*
|
| -** pArray is a pointer to an array of objects. Each object in the
|
| -** array is szEntry bytes in size. This routine uses sqlite3DbRealloc()
|
| -** to extend the array so that there is space for a new object at the end.
|
| -**
|
| -** When this function is called, *pnEntry contains the current size of
|
| -** the array (in entries - so the allocation is ((*pnEntry) * szEntry) bytes
|
| -** in total).
|
| -**
|
| -** If the realloc() is successful (i.e. if no OOM condition occurs), the
|
| -** space allocated for the new object is zeroed, *pnEntry updated to
|
| -** reflect the new size of the array and a pointer to the new allocation
|
| -** returned. *pIdx is set to the index of the new array entry in this case.
|
| -**
|
| -** Otherwise, if the realloc() fails, *pIdx is set to -1, *pnEntry remains
|
| -** unchanged and a copy of pArray returned.
|
| -*/
|
| -void *sqlite3ArrayAllocate(
|
| - sqlite3 *db, /* Connection to notify of malloc failures */
|
| - void *pArray, /* Array of objects. Might be reallocated */
|
| - int szEntry, /* Size of each object in the array */
|
| - int *pnEntry, /* Number of objects currently in use */
|
| - int *pIdx /* Write the index of a new slot here */
|
| -){
|
| - char *z;
|
| - int n = *pnEntry;
|
| - if( (n & (n-1))==0 ){
|
| - int sz = (n==0) ? 1 : 2*n;
|
| - void *pNew = sqlite3DbRealloc(db, pArray, sz*szEntry);
|
| - if( pNew==0 ){
|
| - *pIdx = -1;
|
| - return pArray;
|
| - }
|
| - pArray = pNew;
|
| - }
|
| - z = (char*)pArray;
|
| - memset(&z[n * szEntry], 0, szEntry);
|
| - *pIdx = n;
|
| - ++*pnEntry;
|
| - return pArray;
|
| -}
|
| -
|
| -/*
|
| -** Append a new element to the given IdList. Create a new IdList if
|
| -** need be.
|
| -**
|
| -** A new IdList is returned, or NULL if malloc() fails.
|
| -*/
|
| -IdList *sqlite3IdListAppend(sqlite3 *db, IdList *pList, Token *pToken){
|
| - int i;
|
| - if( pList==0 ){
|
| - pList = sqlite3DbMallocZero(db, sizeof(IdList) );
|
| - if( pList==0 ) return 0;
|
| - }
|
| - pList->a = sqlite3ArrayAllocate(
|
| - db,
|
| - pList->a,
|
| - sizeof(pList->a[0]),
|
| - &pList->nId,
|
| - &i
|
| - );
|
| - if( i<0 ){
|
| - sqlite3IdListDelete(db, pList);
|
| - return 0;
|
| - }
|
| - pList->a[i].zName = sqlite3NameFromToken(db, pToken);
|
| - return pList;
|
| -}
|
| -
|
| -/*
|
| -** Delete an IdList.
|
| -*/
|
| -void sqlite3IdListDelete(sqlite3 *db, IdList *pList){
|
| - int i;
|
| - if( pList==0 ) return;
|
| - for(i=0; i<pList->nId; i++){
|
| - sqlite3DbFree(db, pList->a[i].zName);
|
| - }
|
| - sqlite3DbFree(db, pList->a);
|
| - sqlite3DbFree(db, pList);
|
| -}
|
| -
|
| -/*
|
| -** Return the index in pList of the identifier named zId. Return -1
|
| -** if not found.
|
| -*/
|
| -int sqlite3IdListIndex(IdList *pList, const char *zName){
|
| - int i;
|
| - if( pList==0 ) return -1;
|
| - for(i=0; i<pList->nId; i++){
|
| - if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i;
|
| - }
|
| - return -1;
|
| -}
|
| -
|
| -/*
|
| -** Expand the space allocated for the given SrcList object by
|
| -** creating nExtra new slots beginning at iStart. iStart is zero based.
|
| -** New slots are zeroed.
|
| -**
|
| -** For example, suppose a SrcList initially contains two entries: A,B.
|
| -** To append 3 new entries onto the end, do this:
|
| -**
|
| -** sqlite3SrcListEnlarge(db, pSrclist, 3, 2);
|
| -**
|
| -** After the call above it would contain: A, B, nil, nil, nil.
|
| -** If the iStart argument had been 1 instead of 2, then the result
|
| -** would have been: A, nil, nil, nil, B. To prepend the new slots,
|
| -** the iStart value would be 0. The result then would
|
| -** be: nil, nil, nil, A, B.
|
| -**
|
| -** If a memory allocation fails the SrcList is unchanged. The
|
| -** db->mallocFailed flag will be set to true.
|
| -*/
|
| -SrcList *sqlite3SrcListEnlarge(
|
| - sqlite3 *db, /* Database connection to notify of OOM errors */
|
| - SrcList *pSrc, /* The SrcList to be enlarged */
|
| - int nExtra, /* Number of new slots to add to pSrc->a[] */
|
| - int iStart /* Index in pSrc->a[] of first new slot */
|
| -){
|
| - int i;
|
| -
|
| - /* Sanity checking on calling parameters */
|
| - assert( iStart>=0 );
|
| - assert( nExtra>=1 );
|
| - assert( pSrc!=0 );
|
| - assert( iStart<=pSrc->nSrc );
|
| -
|
| - /* Allocate additional space if needed */
|
| - if( (u32)pSrc->nSrc+nExtra>pSrc->nAlloc ){
|
| - SrcList *pNew;
|
| - int nAlloc = pSrc->nSrc+nExtra;
|
| - int nGot;
|
| - pNew = sqlite3DbRealloc(db, pSrc,
|
| - sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) );
|
| - if( pNew==0 ){
|
| - assert( db->mallocFailed );
|
| - return pSrc;
|
| - }
|
| - pSrc = pNew;
|
| - nGot = (sqlite3DbMallocSize(db, pNew) - sizeof(*pSrc))/sizeof(pSrc->a[0])+1;
|
| - pSrc->nAlloc = nGot;
|
| - }
|
| -
|
| - /* Move existing slots that come after the newly inserted slots
|
| - ** out of the way */
|
| - for(i=pSrc->nSrc-1; i>=iStart; i--){
|
| - pSrc->a[i+nExtra] = pSrc->a[i];
|
| - }
|
| - pSrc->nSrc += nExtra;
|
| -
|
| - /* Zero the newly allocated slots */
|
| - memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra);
|
| - for(i=iStart; i<iStart+nExtra; i++){
|
| - pSrc->a[i].iCursor = -1;
|
| - }
|
| -
|
| - /* Return a pointer to the enlarged SrcList */
|
| - return pSrc;
|
| -}
|
| -
|
| -
|
| -/*
|
| -** Append a new table name to the given SrcList. Create a new SrcList if
|
| -** need be. A new entry is created in the SrcList even if pTable is NULL.
|
| -**
|
| -** A SrcList is returned, or NULL if there is an OOM error. The returned
|
| -** SrcList might be the same as the SrcList that was input or it might be
|
| -** a new one. If an OOM error does occurs, then the prior value of pList
|
| -** that is input to this routine is automatically freed.
|
| -**
|
| -** If pDatabase is not null, it means that the table has an optional
|
| -** database name prefix. Like this: "database.table". The pDatabase
|
| -** points to the table name and the pTable points to the database name.
|
| -** The SrcList.a[].zName field is filled with the table name which might
|
| -** come from pTable (if pDatabase is NULL) or from pDatabase.
|
| -** SrcList.a[].zDatabase is filled with the database name from pTable,
|
| -** or with NULL if no database is specified.
|
| -**
|
| -** In other words, if call like this:
|
| -**
|
| -** sqlite3SrcListAppend(D,A,B,0);
|
| -**
|
| -** Then B is a table name and the database name is unspecified. If called
|
| -** like this:
|
| -**
|
| -** sqlite3SrcListAppend(D,A,B,C);
|
| -**
|
| -** Then C is the table name and B is the database name. If C is defined
|
| -** then so is B. In other words, we never have a case where:
|
| -**
|
| -** sqlite3SrcListAppend(D,A,0,C);
|
| -**
|
| -** Both pTable and pDatabase are assumed to be quoted. They are dequoted
|
| -** before being added to the SrcList.
|
| -*/
|
| -SrcList *sqlite3SrcListAppend(
|
| - sqlite3 *db, /* Connection to notify of malloc failures */
|
| - SrcList *pList, /* Append to this SrcList. NULL creates a new SrcList */
|
| - Token *pTable, /* Table to append */
|
| - Token *pDatabase /* Database of the table */
|
| -){
|
| - struct SrcList_item *pItem;
|
| - assert( pDatabase==0 || pTable!=0 ); /* Cannot have C without B */
|
| - if( pList==0 ){
|
| - pList = sqlite3DbMallocZero(db, sizeof(SrcList) );
|
| - if( pList==0 ) return 0;
|
| - pList->nAlloc = 1;
|
| - }
|
| - pList = sqlite3SrcListEnlarge(db, pList, 1, pList->nSrc);
|
| - if( db->mallocFailed ){
|
| - sqlite3SrcListDelete(db, pList);
|
| - return 0;
|
| - }
|
| - pItem = &pList->a[pList->nSrc-1];
|
| - if( pDatabase && pDatabase->z==0 ){
|
| - pDatabase = 0;
|
| - }
|
| - if( pDatabase ){
|
| - Token *pTemp = pDatabase;
|
| - pDatabase = pTable;
|
| - pTable = pTemp;
|
| - }
|
| - pItem->zName = sqlite3NameFromToken(db, pTable);
|
| - pItem->zDatabase = sqlite3NameFromToken(db, pDatabase);
|
| - return pList;
|
| -}
|
| -
|
| -/*
|
| -** Assign VdbeCursor index numbers to all tables in a SrcList
|
| -*/
|
| -void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){
|
| - int i;
|
| - struct SrcList_item *pItem;
|
| - assert(pList || pParse->db->mallocFailed );
|
| - if( pList ){
|
| - for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){
|
| - if( pItem->iCursor>=0 ) break;
|
| - pItem->iCursor = pParse->nTab++;
|
| - if( pItem->pSelect ){
|
| - sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc);
|
| - }
|
| - }
|
| - }
|
| -}
|
| -
|
| -/*
|
| -** Delete an entire SrcList including all its substructure.
|
| -*/
|
| -void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){
|
| - int i;
|
| - struct SrcList_item *pItem;
|
| - if( pList==0 ) return;
|
| - for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){
|
| - sqlite3DbFree(db, pItem->zDatabase);
|
| - sqlite3DbFree(db, pItem->zName);
|
| - sqlite3DbFree(db, pItem->zAlias);
|
| - sqlite3DbFree(db, pItem->zIndex);
|
| - sqlite3DeleteTable(db, pItem->pTab);
|
| - sqlite3SelectDelete(db, pItem->pSelect);
|
| - sqlite3ExprDelete(db, pItem->pOn);
|
| - sqlite3IdListDelete(db, pItem->pUsing);
|
| - }
|
| - sqlite3DbFree(db, pList);
|
| -}
|
| -
|
| -/*
|
| -** This routine is called by the parser to add a new term to the
|
| -** end of a growing FROM clause. The "p" parameter is the part of
|
| -** the FROM clause that has already been constructed. "p" is NULL
|
| -** if this is the first term of the FROM clause. pTable and pDatabase
|
| -** are the name of the table and database named in the FROM clause term.
|
| -** pDatabase is NULL if the database name qualifier is missing - the
|
| -** usual case. If the term has an alias, then pAlias points to the
|
| -** alias token. If the term is a subquery, then pSubquery is the
|
| -** SELECT statement that the subquery encodes. The pTable and
|
| -** pDatabase parameters are NULL for subqueries. The pOn and pUsing
|
| -** parameters are the content of the ON and USING clauses.
|
| -**
|
| -** Return a new SrcList which encodes is the FROM with the new
|
| -** term added.
|
| -*/
|
| -SrcList *sqlite3SrcListAppendFromTerm(
|
| - Parse *pParse, /* Parsing context */
|
| - SrcList *p, /* The left part of the FROM clause already seen */
|
| - Token *pTable, /* Name of the table to add to the FROM clause */
|
| - Token *pDatabase, /* Name of the database containing pTable */
|
| - Token *pAlias, /* The right-hand side of the AS subexpression */
|
| - Select *pSubquery, /* A subquery used in place of a table name */
|
| - Expr *pOn, /* The ON clause of a join */
|
| - IdList *pUsing /* The USING clause of a join */
|
| -){
|
| - struct SrcList_item *pItem;
|
| - sqlite3 *db = pParse->db;
|
| - if( !p && (pOn || pUsing) ){
|
| - sqlite3ErrorMsg(pParse, "a JOIN clause is required before %s",
|
| - (pOn ? "ON" : "USING")
|
| - );
|
| - goto append_from_error;
|
| - }
|
| - p = sqlite3SrcListAppend(db, p, pTable, pDatabase);
|
| - if( p==0 || NEVER(p->nSrc==0) ){
|
| - goto append_from_error;
|
| - }
|
| - pItem = &p->a[p->nSrc-1];
|
| - assert( pAlias!=0 );
|
| - if( pAlias->n ){
|
| - pItem->zAlias = sqlite3NameFromToken(db, pAlias);
|
| - }
|
| - pItem->pSelect = pSubquery;
|
| - pItem->pOn = pOn;
|
| - pItem->pUsing = pUsing;
|
| - return p;
|
| -
|
| - append_from_error:
|
| - assert( p==0 );
|
| - sqlite3ExprDelete(db, pOn);
|
| - sqlite3IdListDelete(db, pUsing);
|
| - sqlite3SelectDelete(db, pSubquery);
|
| - return 0;
|
| -}
|
| -
|
| -/*
|
| -** Add an INDEXED BY or NOT INDEXED clause to the most recently added
|
| -** element of the source-list passed as the second argument.
|
| -*/
|
| -void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){
|
| - assert( pIndexedBy!=0 );
|
| - if( p && ALWAYS(p->nSrc>0) ){
|
| - struct SrcList_item *pItem = &p->a[p->nSrc-1];
|
| - assert( pItem->notIndexed==0 && pItem->zIndex==0 );
|
| - if( pIndexedBy->n==1 && !pIndexedBy->z ){
|
| - /* A "NOT INDEXED" clause was supplied. See parse.y
|
| - ** construct "indexed_opt" for details. */
|
| - pItem->notIndexed = 1;
|
| - }else{
|
| - pItem->zIndex = sqlite3NameFromToken(pParse->db, pIndexedBy);
|
| - }
|
| - }
|
| -}
|
| -
|
| -/*
|
| -** When building up a FROM clause in the parser, the join operator
|
| -** is initially attached to the left operand. But the code generator
|
| -** expects the join operator to be on the right operand. This routine
|
| -** Shifts all join operators from left to right for an entire FROM
|
| -** clause.
|
| -**
|
| -** Example: Suppose the join is like this:
|
| -**
|
| -** A natural cross join B
|
| -**
|
| -** The operator is "natural cross join". The A and B operands are stored
|
| -** in p->a[0] and p->a[1], respectively. The parser initially stores the
|
| -** operator with A. This routine shifts that operator over to B.
|
| -*/
|
| -void sqlite3SrcListShiftJoinType(SrcList *p){
|
| - if( p ){
|
| - int i;
|
| - assert( p->a || p->nSrc==0 );
|
| - for(i=p->nSrc-1; i>0; i--){
|
| - p->a[i].jointype = p->a[i-1].jointype;
|
| - }
|
| - p->a[0].jointype = 0;
|
| - }
|
| -}
|
| -
|
| -/*
|
| -** Begin a transaction
|
| -*/
|
| -void sqlite3BeginTransaction(Parse *pParse, int type){
|
| - sqlite3 *db;
|
| - Vdbe *v;
|
| - int i;
|
| -
|
| - assert( pParse!=0 );
|
| - db = pParse->db;
|
| - assert( db!=0 );
|
| -/* if( db->aDb[0].pBt==0 ) return; */
|
| - if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){
|
| - return;
|
| - }
|
| - v = sqlite3GetVdbe(pParse);
|
| - if( !v ) return;
|
| - if( type!=TK_DEFERRED ){
|
| - for(i=0; i<db->nDb; i++){
|
| - sqlite3VdbeAddOp2(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1);
|
| - sqlite3VdbeUsesBtree(v, i);
|
| - }
|
| - }
|
| - sqlite3VdbeAddOp2(v, OP_AutoCommit, 0, 0);
|
| -}
|
| -
|
| -/*
|
| -** Commit a transaction
|
| -*/
|
| -void sqlite3CommitTransaction(Parse *pParse){
|
| - Vdbe *v;
|
| -
|
| - assert( pParse!=0 );
|
| - assert( pParse->db!=0 );
|
| - if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "COMMIT", 0, 0) ){
|
| - return;
|
| - }
|
| - v = sqlite3GetVdbe(pParse);
|
| - if( v ){
|
| - sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 0);
|
| - }
|
| -}
|
| -
|
| -/*
|
| -** Rollback a transaction
|
| -*/
|
| -void sqlite3RollbackTransaction(Parse *pParse){
|
| - Vdbe *v;
|
| -
|
| - assert( pParse!=0 );
|
| - assert( pParse->db!=0 );
|
| - if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "ROLLBACK", 0, 0) ){
|
| - return;
|
| - }
|
| - v = sqlite3GetVdbe(pParse);
|
| - if( v ){
|
| - sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 1);
|
| - }
|
| -}
|
| -
|
| -/*
|
| -** This function is called by the parser when it parses a command to create,
|
| -** release or rollback an SQL savepoint.
|
| -*/
|
| -void sqlite3Savepoint(Parse *pParse, int op, Token *pName){
|
| - char *zName = sqlite3NameFromToken(pParse->db, pName);
|
| - if( zName ){
|
| - Vdbe *v = sqlite3GetVdbe(pParse);
|
| -#ifndef SQLITE_OMIT_AUTHORIZATION
|
| - static const char * const az[] = { "BEGIN", "RELEASE", "ROLLBACK" };
|
| - assert( !SAVEPOINT_BEGIN && SAVEPOINT_RELEASE==1 && SAVEPOINT_ROLLBACK==2 );
|
| -#endif
|
| - if( !v || sqlite3AuthCheck(pParse, SQLITE_SAVEPOINT, az[op], zName, 0) ){
|
| - sqlite3DbFree(pParse->db, zName);
|
| - return;
|
| - }
|
| - sqlite3VdbeAddOp4(v, OP_Savepoint, op, 0, 0, zName, P4_DYNAMIC);
|
| - }
|
| -}
|
| -
|
| -/*
|
| -** Make sure the TEMP database is open and available for use. Return
|
| -** the number of errors. Leave any error messages in the pParse structure.
|
| -*/
|
| -int sqlite3OpenTempDatabase(Parse *pParse){
|
| - sqlite3 *db = pParse->db;
|
| - if( db->aDb[1].pBt==0 && !pParse->explain ){
|
| - int rc;
|
| - Btree *pBt;
|
| - static const int flags =
|
| - SQLITE_OPEN_READWRITE |
|
| - SQLITE_OPEN_CREATE |
|
| - SQLITE_OPEN_EXCLUSIVE |
|
| - SQLITE_OPEN_DELETEONCLOSE |
|
| - SQLITE_OPEN_TEMP_DB;
|
| -
|
| - rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pBt, 0, flags);
|
| - if( rc!=SQLITE_OK ){
|
| - sqlite3ErrorMsg(pParse, "unable to open a temporary database "
|
| - "file for storing temporary tables");
|
| - pParse->rc = rc;
|
| - return 1;
|
| - }
|
| - db->aDb[1].pBt = pBt;
|
| - assert( db->aDb[1].pSchema );
|
| - if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, -1, 0) ){
|
| - db->mallocFailed = 1;
|
| - return 1;
|
| - }
|
| - }
|
| - return 0;
|
| -}
|
| -
|
| -/*
|
| -** Record the fact that the schema cookie will need to be verified
|
| -** for database iDb. The code to actually verify the schema cookie
|
| -** will occur at the end of the top-level VDBE and will be generated
|
| -** later, by sqlite3FinishCoding().
|
| -*/
|
| -void sqlite3CodeVerifySchema(Parse *pParse, int iDb){
|
| - Parse *pToplevel = sqlite3ParseToplevel(pParse);
|
| - sqlite3 *db = pToplevel->db;
|
| -
|
| - assert( iDb>=0 && iDb<db->nDb );
|
| - assert( db->aDb[iDb].pBt!=0 || iDb==1 );
|
| - assert( iDb<SQLITE_MAX_ATTACHED+2 );
|
| - assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
|
| - if( DbMaskTest(pToplevel->cookieMask, iDb)==0 ){
|
| - DbMaskSet(pToplevel->cookieMask, iDb);
|
| - pToplevel->cookieValue[iDb] = db->aDb[iDb].pSchema->schema_cookie;
|
| - if( !OMIT_TEMPDB && iDb==1 ){
|
| - sqlite3OpenTempDatabase(pToplevel);
|
| - }
|
| - }
|
| -}
|
| -
|
| -/*
|
| -** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each
|
| -** attached database. Otherwise, invoke it for the database named zDb only.
|
| -*/
|
| -void sqlite3CodeVerifyNamedSchema(Parse *pParse, const char *zDb){
|
| - sqlite3 *db = pParse->db;
|
| - int i;
|
| - for(i=0; i<db->nDb; i++){
|
| - Db *pDb = &db->aDb[i];
|
| - if( pDb->pBt && (!zDb || 0==sqlite3StrICmp(zDb, pDb->zName)) ){
|
| - sqlite3CodeVerifySchema(pParse, i);
|
| - }
|
| - }
|
| -}
|
| -
|
| -/*
|
| -** Generate VDBE code that prepares for doing an operation that
|
| -** might change the database.
|
| -**
|
| -** This routine starts a new transaction if we are not already within
|
| -** a transaction. If we are already within a transaction, then a checkpoint
|
| -** is set if the setStatement parameter is true. A checkpoint should
|
| -** be set for operations that might fail (due to a constraint) part of
|
| -** the way through and which will need to undo some writes without having to
|
| -** rollback the whole transaction. For operations where all constraints
|
| -** can be checked before any changes are made to the database, it is never
|
| -** necessary to undo a write and the checkpoint should not be set.
|
| -*/
|
| -void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){
|
| - Parse *pToplevel = sqlite3ParseToplevel(pParse);
|
| - sqlite3CodeVerifySchema(pParse, iDb);
|
| - DbMaskSet(pToplevel->writeMask, iDb);
|
| - pToplevel->isMultiWrite |= setStatement;
|
| -}
|
| -
|
| -/*
|
| -** Indicate that the statement currently under construction might write
|
| -** more than one entry (example: deleting one row then inserting another,
|
| -** inserting multiple rows in a table, or inserting a row and index entries.)
|
| -** If an abort occurs after some of these writes have completed, then it will
|
| -** be necessary to undo the completed writes.
|
| -*/
|
| -void sqlite3MultiWrite(Parse *pParse){
|
| - Parse *pToplevel = sqlite3ParseToplevel(pParse);
|
| - pToplevel->isMultiWrite = 1;
|
| -}
|
| -
|
| -/*
|
| -** The code generator calls this routine if is discovers that it is
|
| -** possible to abort a statement prior to completion. In order to
|
| -** perform this abort without corrupting the database, we need to make
|
| -** sure that the statement is protected by a statement transaction.
|
| -**
|
| -** Technically, we only need to set the mayAbort flag if the
|
| -** isMultiWrite flag was previously set. There is a time dependency
|
| -** such that the abort must occur after the multiwrite. This makes
|
| -** some statements involving the REPLACE conflict resolution algorithm
|
| -** go a little faster. But taking advantage of this time dependency
|
| -** makes it more difficult to prove that the code is correct (in
|
| -** particular, it prevents us from writing an effective
|
| -** implementation of sqlite3AssertMayAbort()) and so we have chosen
|
| -** to take the safe route and skip the optimization.
|
| -*/
|
| -void sqlite3MayAbort(Parse *pParse){
|
| - Parse *pToplevel = sqlite3ParseToplevel(pParse);
|
| - pToplevel->mayAbort = 1;
|
| -}
|
| -
|
| -/*
|
| -** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT
|
| -** error. The onError parameter determines which (if any) of the statement
|
| -** and/or current transaction is rolled back.
|
| -*/
|
| -void sqlite3HaltConstraint(
|
| - Parse *pParse, /* Parsing context */
|
| - int errCode, /* extended error code */
|
| - int onError, /* Constraint type */
|
| - char *p4, /* Error message */
|
| - i8 p4type, /* P4_STATIC or P4_TRANSIENT */
|
| - u8 p5Errmsg /* P5_ErrMsg type */
|
| -){
|
| - Vdbe *v = sqlite3GetVdbe(pParse);
|
| - assert( (errCode&0xff)==SQLITE_CONSTRAINT );
|
| - if( onError==OE_Abort ){
|
| - sqlite3MayAbort(pParse);
|
| - }
|
| - sqlite3VdbeAddOp4(v, OP_Halt, errCode, onError, 0, p4, p4type);
|
| - if( p5Errmsg ) sqlite3VdbeChangeP5(v, p5Errmsg);
|
| -}
|
| -
|
| -/*
|
| -** Code an OP_Halt due to UNIQUE or PRIMARY KEY constraint violation.
|
| -*/
|
| -void sqlite3UniqueConstraint(
|
| - Parse *pParse, /* Parsing context */
|
| - int onError, /* Constraint type */
|
| - Index *pIdx /* The index that triggers the constraint */
|
| -){
|
| - char *zErr;
|
| - int j;
|
| - StrAccum errMsg;
|
| - Table *pTab = pIdx->pTable;
|
| -
|
| - sqlite3StrAccumInit(&errMsg, 0, 0, 200);
|
| - errMsg.db = pParse->db;
|
| - for(j=0; j<pIdx->nKeyCol; j++){
|
| - char *zCol = pTab->aCol[pIdx->aiColumn[j]].zName;
|
| - if( j ) sqlite3StrAccumAppend(&errMsg, ", ", 2);
|
| - sqlite3StrAccumAppendAll(&errMsg, pTab->zName);
|
| - sqlite3StrAccumAppend(&errMsg, ".", 1);
|
| - sqlite3StrAccumAppendAll(&errMsg, zCol);
|
| - }
|
| - zErr = sqlite3StrAccumFinish(&errMsg);
|
| - sqlite3HaltConstraint(pParse,
|
| - IsPrimaryKeyIndex(pIdx) ? SQLITE_CONSTRAINT_PRIMARYKEY
|
| - : SQLITE_CONSTRAINT_UNIQUE,
|
| - onError, zErr, P4_DYNAMIC, P5_ConstraintUnique);
|
| -}
|
| -
|
| -
|
| -/*
|
| -** Code an OP_Halt due to non-unique rowid.
|
| -*/
|
| -void sqlite3RowidConstraint(
|
| - Parse *pParse, /* Parsing context */
|
| - int onError, /* Conflict resolution algorithm */
|
| - Table *pTab /* The table with the non-unique rowid */
|
| -){
|
| - char *zMsg;
|
| - int rc;
|
| - if( pTab->iPKey>=0 ){
|
| - zMsg = sqlite3MPrintf(pParse->db, "%s.%s", pTab->zName,
|
| - pTab->aCol[pTab->iPKey].zName);
|
| - rc = SQLITE_CONSTRAINT_PRIMARYKEY;
|
| - }else{
|
| - zMsg = sqlite3MPrintf(pParse->db, "%s.rowid", pTab->zName);
|
| - rc = SQLITE_CONSTRAINT_ROWID;
|
| - }
|
| - sqlite3HaltConstraint(pParse, rc, onError, zMsg, P4_DYNAMIC,
|
| - P5_ConstraintUnique);
|
| -}
|
| -
|
| -/*
|
| -** Check to see if pIndex uses the collating sequence pColl. Return
|
| -** true if it does and false if it does not.
|
| -*/
|
| -#ifndef SQLITE_OMIT_REINDEX
|
| -static int collationMatch(const char *zColl, Index *pIndex){
|
| - int i;
|
| - assert( zColl!=0 );
|
| - for(i=0; i<pIndex->nColumn; i++){
|
| - const char *z = pIndex->azColl[i];
|
| - assert( z!=0 || pIndex->aiColumn[i]<0 );
|
| - if( pIndex->aiColumn[i]>=0 && 0==sqlite3StrICmp(z, zColl) ){
|
| - return 1;
|
| - }
|
| - }
|
| - return 0;
|
| -}
|
| -#endif
|
| -
|
| -/*
|
| -** Recompute all indices of pTab that use the collating sequence pColl.
|
| -** If pColl==0 then recompute all indices of pTab.
|
| -*/
|
| -#ifndef SQLITE_OMIT_REINDEX
|
| -static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){
|
| - Index *pIndex; /* An index associated with pTab */
|
| -
|
| - for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
|
| - if( zColl==0 || collationMatch(zColl, pIndex) ){
|
| - int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
|
| - sqlite3BeginWriteOperation(pParse, 0, iDb);
|
| - sqlite3RefillIndex(pParse, pIndex, -1);
|
| - }
|
| - }
|
| -}
|
| -#endif
|
| -
|
| -/*
|
| -** Recompute all indices of all tables in all databases where the
|
| -** indices use the collating sequence pColl. If pColl==0 then recompute
|
| -** all indices everywhere.
|
| -*/
|
| -#ifndef SQLITE_OMIT_REINDEX
|
| -static void reindexDatabases(Parse *pParse, char const *zColl){
|
| - Db *pDb; /* A single database */
|
| - int iDb; /* The database index number */
|
| - sqlite3 *db = pParse->db; /* The database connection */
|
| - HashElem *k; /* For looping over tables in pDb */
|
| - Table *pTab; /* A table in the database */
|
| -
|
| - assert( sqlite3BtreeHoldsAllMutexes(db) ); /* Needed for schema access */
|
| - for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){
|
| - assert( pDb!=0 );
|
| - for(k=sqliteHashFirst(&pDb->pSchema->tblHash); k; k=sqliteHashNext(k)){
|
| - pTab = (Table*)sqliteHashData(k);
|
| - reindexTable(pParse, pTab, zColl);
|
| - }
|
| - }
|
| -}
|
| -#endif
|
| -
|
| -/*
|
| -** Generate code for the REINDEX command.
|
| -**
|
| -** REINDEX -- 1
|
| -** REINDEX <collation> -- 2
|
| -** REINDEX ?<database>.?<tablename> -- 3
|
| -** REINDEX ?<database>.?<indexname> -- 4
|
| -**
|
| -** Form 1 causes all indices in all attached databases to be rebuilt.
|
| -** Form 2 rebuilds all indices in all databases that use the named
|
| -** collating function. Forms 3 and 4 rebuild the named index or all
|
| -** indices associated with the named table.
|
| -*/
|
| -#ifndef SQLITE_OMIT_REINDEX
|
| -void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){
|
| - CollSeq *pColl; /* Collating sequence to be reindexed, or NULL */
|
| - char *z; /* Name of a table or index */
|
| - const char *zDb; /* Name of the database */
|
| - Table *pTab; /* A table in the database */
|
| - Index *pIndex; /* An index associated with pTab */
|
| - int iDb; /* The database index number */
|
| - sqlite3 *db = pParse->db; /* The database connection */
|
| - Token *pObjName; /* Name of the table or index to be reindexed */
|
| -
|
| - /* Read the database schema. If an error occurs, leave an error message
|
| - ** and code in pParse and return NULL. */
|
| - if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
|
| - return;
|
| - }
|
| -
|
| - if( pName1==0 ){
|
| - reindexDatabases(pParse, 0);
|
| - return;
|
| - }else if( NEVER(pName2==0) || pName2->z==0 ){
|
| - char *zColl;
|
| - assert( pName1->z );
|
| - zColl = sqlite3NameFromToken(pParse->db, pName1);
|
| - if( !zColl ) return;
|
| - pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
|
| - if( pColl ){
|
| - reindexDatabases(pParse, zColl);
|
| - sqlite3DbFree(db, zColl);
|
| - return;
|
| - }
|
| - sqlite3DbFree(db, zColl);
|
| - }
|
| - iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName);
|
| - if( iDb<0 ) return;
|
| - z = sqlite3NameFromToken(db, pObjName);
|
| - if( z==0 ) return;
|
| - zDb = db->aDb[iDb].zName;
|
| - pTab = sqlite3FindTable(db, z, zDb);
|
| - if( pTab ){
|
| - reindexTable(pParse, pTab, 0);
|
| - sqlite3DbFree(db, z);
|
| - return;
|
| - }
|
| - pIndex = sqlite3FindIndex(db, z, zDb);
|
| - sqlite3DbFree(db, z);
|
| - if( pIndex ){
|
| - sqlite3BeginWriteOperation(pParse, 0, iDb);
|
| - sqlite3RefillIndex(pParse, pIndex, -1);
|
| - return;
|
| - }
|
| - sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed");
|
| -}
|
| -#endif
|
| -
|
| -/*
|
| -** Return a KeyInfo structure that is appropriate for the given Index.
|
| -**
|
| -** The KeyInfo structure for an index is cached in the Index object.
|
| -** So there might be multiple references to the returned pointer. The
|
| -** caller should not try to modify the KeyInfo object.
|
| -**
|
| -** The caller should invoke sqlite3KeyInfoUnref() on the returned object
|
| -** when it has finished using it.
|
| -*/
|
| -KeyInfo *sqlite3KeyInfoOfIndex(Parse *pParse, Index *pIdx){
|
| - if( pParse->nErr ) return 0;
|
| -#ifndef SQLITE_OMIT_SHARED_CACHE
|
| - if( pIdx->pKeyInfo && pIdx->pKeyInfo->db!=pParse->db ){
|
| - sqlite3KeyInfoUnref(pIdx->pKeyInfo);
|
| - pIdx->pKeyInfo = 0;
|
| - }
|
| -#endif
|
| - if( pIdx->pKeyInfo==0 ){
|
| - int i;
|
| - int nCol = pIdx->nColumn;
|
| - int nKey = pIdx->nKeyCol;
|
| - KeyInfo *pKey;
|
| - if( pIdx->uniqNotNull ){
|
| - pKey = sqlite3KeyInfoAlloc(pParse->db, nKey, nCol-nKey);
|
| - }else{
|
| - pKey = sqlite3KeyInfoAlloc(pParse->db, nCol, 0);
|
| - }
|
| - if( pKey ){
|
| - assert( sqlite3KeyInfoIsWriteable(pKey) );
|
| - for(i=0; i<nCol; i++){
|
| - char *zColl = pIdx->azColl[i];
|
| - assert( zColl!=0 );
|
| - pKey->aColl[i] = strcmp(zColl,"BINARY")==0 ? 0 :
|
| - sqlite3LocateCollSeq(pParse, zColl);
|
| - pKey->aSortOrder[i] = pIdx->aSortOrder[i];
|
| - }
|
| - if( pParse->nErr ){
|
| - sqlite3KeyInfoUnref(pKey);
|
| - }else{
|
| - pIdx->pKeyInfo = pKey;
|
| - }
|
| - }
|
| - }
|
| - return sqlite3KeyInfoRef(pIdx->pKeyInfo);
|
| -}
|
| -
|
| -#ifndef SQLITE_OMIT_CTE
|
| -/*
|
| -** This routine is invoked once per CTE by the parser while parsing a
|
| -** WITH clause.
|
| -*/
|
| -With *sqlite3WithAdd(
|
| - Parse *pParse, /* Parsing context */
|
| - With *pWith, /* Existing WITH clause, or NULL */
|
| - Token *pName, /* Name of the common-table */
|
| - ExprList *pArglist, /* Optional column name list for the table */
|
| - Select *pQuery /* Query used to initialize the table */
|
| -){
|
| - sqlite3 *db = pParse->db;
|
| - With *pNew;
|
| - char *zName;
|
| -
|
| - /* Check that the CTE name is unique within this WITH clause. If
|
| - ** not, store an error in the Parse structure. */
|
| - zName = sqlite3NameFromToken(pParse->db, pName);
|
| - if( zName && pWith ){
|
| - int i;
|
| - for(i=0; i<pWith->nCte; i++){
|
| - if( sqlite3StrICmp(zName, pWith->a[i].zName)==0 ){
|
| - sqlite3ErrorMsg(pParse, "duplicate WITH table name: %s", zName);
|
| - }
|
| - }
|
| - }
|
| -
|
| - if( pWith ){
|
| - int nByte = sizeof(*pWith) + (sizeof(pWith->a[1]) * pWith->nCte);
|
| - pNew = sqlite3DbRealloc(db, pWith, nByte);
|
| - }else{
|
| - pNew = sqlite3DbMallocZero(db, sizeof(*pWith));
|
| - }
|
| - assert( zName!=0 || pNew==0 );
|
| - assert( db->mallocFailed==0 || pNew==0 );
|
| -
|
| - if( pNew==0 ){
|
| - sqlite3ExprListDelete(db, pArglist);
|
| - sqlite3SelectDelete(db, pQuery);
|
| - sqlite3DbFree(db, zName);
|
| - pNew = pWith;
|
| - }else{
|
| - pNew->a[pNew->nCte].pSelect = pQuery;
|
| - pNew->a[pNew->nCte].pCols = pArglist;
|
| - pNew->a[pNew->nCte].zName = zName;
|
| - pNew->a[pNew->nCte].zErr = 0;
|
| - pNew->nCte++;
|
| - }
|
| -
|
| - return pNew;
|
| -}
|
| -
|
| -/*
|
| -** Free the contents of the With object passed as the second argument.
|
| -*/
|
| -void sqlite3WithDelete(sqlite3 *db, With *pWith){
|
| - if( pWith ){
|
| - int i;
|
| - for(i=0; i<pWith->nCte; i++){
|
| - struct Cte *pCte = &pWith->a[i];
|
| - sqlite3ExprListDelete(db, pCte->pCols);
|
| - sqlite3SelectDelete(db, pCte->pSelect);
|
| - sqlite3DbFree(db, pCte->zName);
|
| - }
|
| - sqlite3DbFree(db, pWith);
|
| - }
|
| -}
|
| -#endif /* !defined(SQLITE_OMIT_CTE) */
|
|
|