Index: third_party/sqlite/sqlite-src-3080704/src/expr.c |
diff --git a/third_party/sqlite/sqlite-src-3080704/src/expr.c b/third_party/sqlite/sqlite-src-3080704/src/expr.c |
deleted file mode 100644 |
index 4012f6c297ecc3c74f47ab039cbe129968782c11..0000000000000000000000000000000000000000 |
--- a/third_party/sqlite/sqlite-src-3080704/src/expr.c |
+++ /dev/null |
@@ -1,4346 +0,0 @@ |
-/* |
-** 2001 September 15 |
-** |
-** The author disclaims copyright to this source code. In place of |
-** a legal notice, here is a blessing: |
-** |
-** May you do good and not evil. |
-** May you find forgiveness for yourself and forgive others. |
-** May you share freely, never taking more than you give. |
-** |
-************************************************************************* |
-** This file contains routines used for analyzing expressions and |
-** for generating VDBE code that evaluates expressions in SQLite. |
-*/ |
-#include "sqliteInt.h" |
- |
-/* |
-** Return the 'affinity' of the expression pExpr if any. |
-** |
-** If pExpr is a column, a reference to a column via an 'AS' alias, |
-** or a sub-select with a column as the return value, then the |
-** affinity of that column is returned. Otherwise, 0x00 is returned, |
-** indicating no affinity for the expression. |
-** |
-** i.e. the WHERE clause expressions in the following statements all |
-** have an affinity: |
-** |
-** CREATE TABLE t1(a); |
-** SELECT * FROM t1 WHERE a; |
-** SELECT a AS b FROM t1 WHERE b; |
-** SELECT * FROM t1 WHERE (select a from t1); |
-*/ |
-char sqlite3ExprAffinity(Expr *pExpr){ |
- int op; |
- pExpr = sqlite3ExprSkipCollate(pExpr); |
- if( pExpr->flags & EP_Generic ) return 0; |
- op = pExpr->op; |
- if( op==TK_SELECT ){ |
- assert( pExpr->flags&EP_xIsSelect ); |
- return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr); |
- } |
-#ifndef SQLITE_OMIT_CAST |
- if( op==TK_CAST ){ |
- assert( !ExprHasProperty(pExpr, EP_IntValue) ); |
- return sqlite3AffinityType(pExpr->u.zToken, 0); |
- } |
-#endif |
- if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER) |
- && pExpr->pTab!=0 |
- ){ |
- /* op==TK_REGISTER && pExpr->pTab!=0 happens when pExpr was originally |
- ** a TK_COLUMN but was previously evaluated and cached in a register */ |
- int j = pExpr->iColumn; |
- if( j<0 ) return SQLITE_AFF_INTEGER; |
- assert( pExpr->pTab && j<pExpr->pTab->nCol ); |
- return pExpr->pTab->aCol[j].affinity; |
- } |
- return pExpr->affinity; |
-} |
- |
-/* |
-** Set the collating sequence for expression pExpr to be the collating |
-** sequence named by pToken. Return a pointer to a new Expr node that |
-** implements the COLLATE operator. |
-** |
-** If a memory allocation error occurs, that fact is recorded in pParse->db |
-** and the pExpr parameter is returned unchanged. |
-*/ |
-Expr *sqlite3ExprAddCollateToken( |
- Parse *pParse, /* Parsing context */ |
- Expr *pExpr, /* Add the "COLLATE" clause to this expression */ |
- const Token *pCollName /* Name of collating sequence */ |
-){ |
- if( pCollName->n>0 ){ |
- Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, 1); |
- if( pNew ){ |
- pNew->pLeft = pExpr; |
- pNew->flags |= EP_Collate|EP_Skip; |
- pExpr = pNew; |
- } |
- } |
- return pExpr; |
-} |
-Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){ |
- Token s; |
- assert( zC!=0 ); |
- s.z = zC; |
- s.n = sqlite3Strlen30(s.z); |
- return sqlite3ExprAddCollateToken(pParse, pExpr, &s); |
-} |
- |
-/* |
-** Skip over any TK_COLLATE or TK_AS operators and any unlikely() |
-** or likelihood() function at the root of an expression. |
-*/ |
-Expr *sqlite3ExprSkipCollate(Expr *pExpr){ |
- while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){ |
- if( ExprHasProperty(pExpr, EP_Unlikely) ){ |
- assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); |
- assert( pExpr->x.pList->nExpr>0 ); |
- assert( pExpr->op==TK_FUNCTION ); |
- pExpr = pExpr->x.pList->a[0].pExpr; |
- }else{ |
- assert( pExpr->op==TK_COLLATE || pExpr->op==TK_AS ); |
- pExpr = pExpr->pLeft; |
- } |
- } |
- return pExpr; |
-} |
- |
-/* |
-** Return the collation sequence for the expression pExpr. If |
-** there is no defined collating sequence, return NULL. |
-** |
-** The collating sequence might be determined by a COLLATE operator |
-** or by the presence of a column with a defined collating sequence. |
-** COLLATE operators take first precedence. Left operands take |
-** precedence over right operands. |
-*/ |
-CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){ |
- sqlite3 *db = pParse->db; |
- CollSeq *pColl = 0; |
- Expr *p = pExpr; |
- while( p ){ |
- int op = p->op; |
- if( p->flags & EP_Generic ) break; |
- if( op==TK_CAST || op==TK_UPLUS ){ |
- p = p->pLeft; |
- continue; |
- } |
- if( op==TK_COLLATE || (op==TK_REGISTER && p->op2==TK_COLLATE) ){ |
- pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken); |
- break; |
- } |
- if( p->pTab!=0 |
- && (op==TK_AGG_COLUMN || op==TK_COLUMN |
- || op==TK_REGISTER || op==TK_TRIGGER) |
- ){ |
- /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally |
- ** a TK_COLUMN but was previously evaluated and cached in a register */ |
- int j = p->iColumn; |
- if( j>=0 ){ |
- const char *zColl = p->pTab->aCol[j].zColl; |
- pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); |
- } |
- break; |
- } |
- if( p->flags & EP_Collate ){ |
- if( ALWAYS(p->pLeft) && (p->pLeft->flags & EP_Collate)!=0 ){ |
- p = p->pLeft; |
- }else{ |
- p = p->pRight; |
- } |
- }else{ |
- break; |
- } |
- } |
- if( sqlite3CheckCollSeq(pParse, pColl) ){ |
- pColl = 0; |
- } |
- return pColl; |
-} |
- |
-/* |
-** pExpr is an operand of a comparison operator. aff2 is the |
-** type affinity of the other operand. This routine returns the |
-** type affinity that should be used for the comparison operator. |
-*/ |
-char sqlite3CompareAffinity(Expr *pExpr, char aff2){ |
- char aff1 = sqlite3ExprAffinity(pExpr); |
- if( aff1 && aff2 ){ |
- /* Both sides of the comparison are columns. If one has numeric |
- ** affinity, use that. Otherwise use no affinity. |
- */ |
- if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ |
- return SQLITE_AFF_NUMERIC; |
- }else{ |
- return SQLITE_AFF_NONE; |
- } |
- }else if( !aff1 && !aff2 ){ |
- /* Neither side of the comparison is a column. Compare the |
- ** results directly. |
- */ |
- return SQLITE_AFF_NONE; |
- }else{ |
- /* One side is a column, the other is not. Use the columns affinity. */ |
- assert( aff1==0 || aff2==0 ); |
- return (aff1 + aff2); |
- } |
-} |
- |
-/* |
-** pExpr is a comparison operator. Return the type affinity that should |
-** be applied to both operands prior to doing the comparison. |
-*/ |
-static char comparisonAffinity(Expr *pExpr){ |
- char aff; |
- assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || |
- pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || |
- pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT ); |
- assert( pExpr->pLeft ); |
- aff = sqlite3ExprAffinity(pExpr->pLeft); |
- if( pExpr->pRight ){ |
- aff = sqlite3CompareAffinity(pExpr->pRight, aff); |
- }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){ |
- aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff); |
- }else if( !aff ){ |
- aff = SQLITE_AFF_NONE; |
- } |
- return aff; |
-} |
- |
-/* |
-** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. |
-** idx_affinity is the affinity of an indexed column. Return true |
-** if the index with affinity idx_affinity may be used to implement |
-** the comparison in pExpr. |
-*/ |
-int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){ |
- char aff = comparisonAffinity(pExpr); |
- switch( aff ){ |
- case SQLITE_AFF_NONE: |
- return 1; |
- case SQLITE_AFF_TEXT: |
- return idx_affinity==SQLITE_AFF_TEXT; |
- default: |
- return sqlite3IsNumericAffinity(idx_affinity); |
- } |
-} |
- |
-/* |
-** Return the P5 value that should be used for a binary comparison |
-** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. |
-*/ |
-static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){ |
- u8 aff = (char)sqlite3ExprAffinity(pExpr2); |
- aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull; |
- return aff; |
-} |
- |
-/* |
-** Return a pointer to the collation sequence that should be used by |
-** a binary comparison operator comparing pLeft and pRight. |
-** |
-** If the left hand expression has a collating sequence type, then it is |
-** used. Otherwise the collation sequence for the right hand expression |
-** is used, or the default (BINARY) if neither expression has a collating |
-** type. |
-** |
-** Argument pRight (but not pLeft) may be a null pointer. In this case, |
-** it is not considered. |
-*/ |
-CollSeq *sqlite3BinaryCompareCollSeq( |
- Parse *pParse, |
- Expr *pLeft, |
- Expr *pRight |
-){ |
- CollSeq *pColl; |
- assert( pLeft ); |
- if( pLeft->flags & EP_Collate ){ |
- pColl = sqlite3ExprCollSeq(pParse, pLeft); |
- }else if( pRight && (pRight->flags & EP_Collate)!=0 ){ |
- pColl = sqlite3ExprCollSeq(pParse, pRight); |
- }else{ |
- pColl = sqlite3ExprCollSeq(pParse, pLeft); |
- if( !pColl ){ |
- pColl = sqlite3ExprCollSeq(pParse, pRight); |
- } |
- } |
- return pColl; |
-} |
- |
-/* |
-** Generate code for a comparison operator. |
-*/ |
-static int codeCompare( |
- Parse *pParse, /* The parsing (and code generating) context */ |
- Expr *pLeft, /* The left operand */ |
- Expr *pRight, /* The right operand */ |
- int opcode, /* The comparison opcode */ |
- int in1, int in2, /* Register holding operands */ |
- int dest, /* Jump here if true. */ |
- int jumpIfNull /* If true, jump if either operand is NULL */ |
-){ |
- int p5; |
- int addr; |
- CollSeq *p4; |
- |
- p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight); |
- p5 = binaryCompareP5(pLeft, pRight, jumpIfNull); |
- addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1, |
- (void*)p4, P4_COLLSEQ); |
- sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5); |
- return addr; |
-} |
- |
-#if SQLITE_MAX_EXPR_DEPTH>0 |
-/* |
-** Check that argument nHeight is less than or equal to the maximum |
-** expression depth allowed. If it is not, leave an error message in |
-** pParse. |
-*/ |
-int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){ |
- int rc = SQLITE_OK; |
- int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH]; |
- if( nHeight>mxHeight ){ |
- sqlite3ErrorMsg(pParse, |
- "Expression tree is too large (maximum depth %d)", mxHeight |
- ); |
- rc = SQLITE_ERROR; |
- } |
- return rc; |
-} |
- |
-/* The following three functions, heightOfExpr(), heightOfExprList() |
-** and heightOfSelect(), are used to determine the maximum height |
-** of any expression tree referenced by the structure passed as the |
-** first argument. |
-** |
-** If this maximum height is greater than the current value pointed |
-** to by pnHeight, the second parameter, then set *pnHeight to that |
-** value. |
-*/ |
-static void heightOfExpr(Expr *p, int *pnHeight){ |
- if( p ){ |
- if( p->nHeight>*pnHeight ){ |
- *pnHeight = p->nHeight; |
- } |
- } |
-} |
-static void heightOfExprList(ExprList *p, int *pnHeight){ |
- if( p ){ |
- int i; |
- for(i=0; i<p->nExpr; i++){ |
- heightOfExpr(p->a[i].pExpr, pnHeight); |
- } |
- } |
-} |
-static void heightOfSelect(Select *p, int *pnHeight){ |
- if( p ){ |
- heightOfExpr(p->pWhere, pnHeight); |
- heightOfExpr(p->pHaving, pnHeight); |
- heightOfExpr(p->pLimit, pnHeight); |
- heightOfExpr(p->pOffset, pnHeight); |
- heightOfExprList(p->pEList, pnHeight); |
- heightOfExprList(p->pGroupBy, pnHeight); |
- heightOfExprList(p->pOrderBy, pnHeight); |
- heightOfSelect(p->pPrior, pnHeight); |
- } |
-} |
- |
-/* |
-** Set the Expr.nHeight variable in the structure passed as an |
-** argument. An expression with no children, Expr.pList or |
-** Expr.pSelect member has a height of 1. Any other expression |
-** has a height equal to the maximum height of any other |
-** referenced Expr plus one. |
-*/ |
-static void exprSetHeight(Expr *p){ |
- int nHeight = 0; |
- heightOfExpr(p->pLeft, &nHeight); |
- heightOfExpr(p->pRight, &nHeight); |
- if( ExprHasProperty(p, EP_xIsSelect) ){ |
- heightOfSelect(p->x.pSelect, &nHeight); |
- }else{ |
- heightOfExprList(p->x.pList, &nHeight); |
- } |
- p->nHeight = nHeight + 1; |
-} |
- |
-/* |
-** Set the Expr.nHeight variable using the exprSetHeight() function. If |
-** the height is greater than the maximum allowed expression depth, |
-** leave an error in pParse. |
-*/ |
-void sqlite3ExprSetHeight(Parse *pParse, Expr *p){ |
- exprSetHeight(p); |
- sqlite3ExprCheckHeight(pParse, p->nHeight); |
-} |
- |
-/* |
-** Return the maximum height of any expression tree referenced |
-** by the select statement passed as an argument. |
-*/ |
-int sqlite3SelectExprHeight(Select *p){ |
- int nHeight = 0; |
- heightOfSelect(p, &nHeight); |
- return nHeight; |
-} |
-#else |
- #define exprSetHeight(y) |
-#endif /* SQLITE_MAX_EXPR_DEPTH>0 */ |
- |
-/* |
-** This routine is the core allocator for Expr nodes. |
-** |
-** Construct a new expression node and return a pointer to it. Memory |
-** for this node and for the pToken argument is a single allocation |
-** obtained from sqlite3DbMalloc(). The calling function |
-** is responsible for making sure the node eventually gets freed. |
-** |
-** If dequote is true, then the token (if it exists) is dequoted. |
-** If dequote is false, no dequoting is performance. The deQuote |
-** parameter is ignored if pToken is NULL or if the token does not |
-** appear to be quoted. If the quotes were of the form "..." (double-quotes) |
-** then the EP_DblQuoted flag is set on the expression node. |
-** |
-** Special case: If op==TK_INTEGER and pToken points to a string that |
-** can be translated into a 32-bit integer, then the token is not |
-** stored in u.zToken. Instead, the integer values is written |
-** into u.iValue and the EP_IntValue flag is set. No extra storage |
-** is allocated to hold the integer text and the dequote flag is ignored. |
-*/ |
-Expr *sqlite3ExprAlloc( |
- sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ |
- int op, /* Expression opcode */ |
- const Token *pToken, /* Token argument. Might be NULL */ |
- int dequote /* True to dequote */ |
-){ |
- Expr *pNew; |
- int nExtra = 0; |
- int iValue = 0; |
- |
- if( pToken ){ |
- if( op!=TK_INTEGER || pToken->z==0 |
- || sqlite3GetInt32(pToken->z, &iValue)==0 ){ |
- nExtra = pToken->n+1; |
- assert( iValue>=0 ); |
- } |
- } |
- pNew = sqlite3DbMallocZero(db, sizeof(Expr)+nExtra); |
- if( pNew ){ |
- pNew->op = (u8)op; |
- pNew->iAgg = -1; |
- if( pToken ){ |
- if( nExtra==0 ){ |
- pNew->flags |= EP_IntValue; |
- pNew->u.iValue = iValue; |
- }else{ |
- int c; |
- pNew->u.zToken = (char*)&pNew[1]; |
- assert( pToken->z!=0 || pToken->n==0 ); |
- if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n); |
- pNew->u.zToken[pToken->n] = 0; |
- if( dequote && nExtra>=3 |
- && ((c = pToken->z[0])=='\'' || c=='"' || c=='[' || c=='`') ){ |
- sqlite3Dequote(pNew->u.zToken); |
- if( c=='"' ) pNew->flags |= EP_DblQuoted; |
- } |
- } |
- } |
-#if SQLITE_MAX_EXPR_DEPTH>0 |
- pNew->nHeight = 1; |
-#endif |
- } |
- return pNew; |
-} |
- |
-/* |
-** Allocate a new expression node from a zero-terminated token that has |
-** already been dequoted. |
-*/ |
-Expr *sqlite3Expr( |
- sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ |
- int op, /* Expression opcode */ |
- const char *zToken /* Token argument. Might be NULL */ |
-){ |
- Token x; |
- x.z = zToken; |
- x.n = zToken ? sqlite3Strlen30(zToken) : 0; |
- return sqlite3ExprAlloc(db, op, &x, 0); |
-} |
- |
-/* |
-** Attach subtrees pLeft and pRight to the Expr node pRoot. |
-** |
-** If pRoot==NULL that means that a memory allocation error has occurred. |
-** In that case, delete the subtrees pLeft and pRight. |
-*/ |
-void sqlite3ExprAttachSubtrees( |
- sqlite3 *db, |
- Expr *pRoot, |
- Expr *pLeft, |
- Expr *pRight |
-){ |
- if( pRoot==0 ){ |
- assert( db->mallocFailed ); |
- sqlite3ExprDelete(db, pLeft); |
- sqlite3ExprDelete(db, pRight); |
- }else{ |
- if( pRight ){ |
- pRoot->pRight = pRight; |
- pRoot->flags |= EP_Collate & pRight->flags; |
- } |
- if( pLeft ){ |
- pRoot->pLeft = pLeft; |
- pRoot->flags |= EP_Collate & pLeft->flags; |
- } |
- exprSetHeight(pRoot); |
- } |
-} |
- |
-/* |
-** Allocate an Expr node which joins as many as two subtrees. |
-** |
-** One or both of the subtrees can be NULL. Return a pointer to the new |
-** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed, |
-** free the subtrees and return NULL. |
-*/ |
-Expr *sqlite3PExpr( |
- Parse *pParse, /* Parsing context */ |
- int op, /* Expression opcode */ |
- Expr *pLeft, /* Left operand */ |
- Expr *pRight, /* Right operand */ |
- const Token *pToken /* Argument token */ |
-){ |
- Expr *p; |
- if( op==TK_AND && pLeft && pRight ){ |
- /* Take advantage of short-circuit false optimization for AND */ |
- p = sqlite3ExprAnd(pParse->db, pLeft, pRight); |
- }else{ |
- p = sqlite3ExprAlloc(pParse->db, op, pToken, 1); |
- sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight); |
- } |
- if( p ) { |
- sqlite3ExprCheckHeight(pParse, p->nHeight); |
- } |
- return p; |
-} |
- |
-/* |
-** If the expression is always either TRUE or FALSE (respectively), |
-** then return 1. If one cannot determine the truth value of the |
-** expression at compile-time return 0. |
-** |
-** This is an optimization. If is OK to return 0 here even if |
-** the expression really is always false or false (a false negative). |
-** But it is a bug to return 1 if the expression might have different |
-** boolean values in different circumstances (a false positive.) |
-** |
-** Note that if the expression is part of conditional for a |
-** LEFT JOIN, then we cannot determine at compile-time whether or not |
-** is it true or false, so always return 0. |
-*/ |
-static int exprAlwaysTrue(Expr *p){ |
- int v = 0; |
- if( ExprHasProperty(p, EP_FromJoin) ) return 0; |
- if( !sqlite3ExprIsInteger(p, &v) ) return 0; |
- return v!=0; |
-} |
-static int exprAlwaysFalse(Expr *p){ |
- int v = 0; |
- if( ExprHasProperty(p, EP_FromJoin) ) return 0; |
- if( !sqlite3ExprIsInteger(p, &v) ) return 0; |
- return v==0; |
-} |
- |
-/* |
-** Join two expressions using an AND operator. If either expression is |
-** NULL, then just return the other expression. |
-** |
-** If one side or the other of the AND is known to be false, then instead |
-** of returning an AND expression, just return a constant expression with |
-** a value of false. |
-*/ |
-Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){ |
- if( pLeft==0 ){ |
- return pRight; |
- }else if( pRight==0 ){ |
- return pLeft; |
- }else if( exprAlwaysFalse(pLeft) || exprAlwaysFalse(pRight) ){ |
- sqlite3ExprDelete(db, pLeft); |
- sqlite3ExprDelete(db, pRight); |
- return sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[0], 0); |
- }else{ |
- Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0); |
- sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight); |
- return pNew; |
- } |
-} |
- |
-/* |
-** Construct a new expression node for a function with multiple |
-** arguments. |
-*/ |
-Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){ |
- Expr *pNew; |
- sqlite3 *db = pParse->db; |
- assert( pToken ); |
- pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1); |
- if( pNew==0 ){ |
- sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */ |
- return 0; |
- } |
- pNew->x.pList = pList; |
- assert( !ExprHasProperty(pNew, EP_xIsSelect) ); |
- sqlite3ExprSetHeight(pParse, pNew); |
- return pNew; |
-} |
- |
-/* |
-** Assign a variable number to an expression that encodes a wildcard |
-** in the original SQL statement. |
-** |
-** Wildcards consisting of a single "?" are assigned the next sequential |
-** variable number. |
-** |
-** Wildcards of the form "?nnn" are assigned the number "nnn". We make |
-** sure "nnn" is not too be to avoid a denial of service attack when |
-** the SQL statement comes from an external source. |
-** |
-** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number |
-** as the previous instance of the same wildcard. Or if this is the first |
-** instance of the wildcard, the next sequential variable number is |
-** assigned. |
-*/ |
-void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){ |
- sqlite3 *db = pParse->db; |
- const char *z; |
- |
- if( pExpr==0 ) return; |
- assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) ); |
- z = pExpr->u.zToken; |
- assert( z!=0 ); |
- assert( z[0]!=0 ); |
- if( z[1]==0 ){ |
- /* Wildcard of the form "?". Assign the next variable number */ |
- assert( z[0]=='?' ); |
- pExpr->iColumn = (ynVar)(++pParse->nVar); |
- }else{ |
- ynVar x = 0; |
- u32 n = sqlite3Strlen30(z); |
- if( z[0]=='?' ){ |
- /* Wildcard of the form "?nnn". Convert "nnn" to an integer and |
- ** use it as the variable number */ |
- i64 i; |
- int bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8); |
- pExpr->iColumn = x = (ynVar)i; |
- testcase( i==0 ); |
- testcase( i==1 ); |
- testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 ); |
- testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ); |
- if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ |
- sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", |
- db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]); |
- x = 0; |
- } |
- if( i>pParse->nVar ){ |
- pParse->nVar = (int)i; |
- } |
- }else{ |
- /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable |
- ** number as the prior appearance of the same name, or if the name |
- ** has never appeared before, reuse the same variable number |
- */ |
- ynVar i; |
- for(i=0; i<pParse->nzVar; i++){ |
- if( pParse->azVar[i] && strcmp(pParse->azVar[i],z)==0 ){ |
- pExpr->iColumn = x = (ynVar)i+1; |
- break; |
- } |
- } |
- if( x==0 ) x = pExpr->iColumn = (ynVar)(++pParse->nVar); |
- } |
- if( x>0 ){ |
- if( x>pParse->nzVar ){ |
- char **a; |
- a = sqlite3DbRealloc(db, pParse->azVar, x*sizeof(a[0])); |
- if( a==0 ) return; /* Error reported through db->mallocFailed */ |
- pParse->azVar = a; |
- memset(&a[pParse->nzVar], 0, (x-pParse->nzVar)*sizeof(a[0])); |
- pParse->nzVar = x; |
- } |
- if( z[0]!='?' || pParse->azVar[x-1]==0 ){ |
- sqlite3DbFree(db, pParse->azVar[x-1]); |
- pParse->azVar[x-1] = sqlite3DbStrNDup(db, z, n); |
- } |
- } |
- } |
- if( !pParse->nErr && pParse->nVar>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ |
- sqlite3ErrorMsg(pParse, "too many SQL variables"); |
- } |
-} |
- |
-/* |
-** Recursively delete an expression tree. |
-*/ |
-void sqlite3ExprDelete(sqlite3 *db, Expr *p){ |
- if( p==0 ) return; |
- /* Sanity check: Assert that the IntValue is non-negative if it exists */ |
- assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 ); |
- if( !ExprHasProperty(p, EP_TokenOnly) ){ |
- /* The Expr.x union is never used at the same time as Expr.pRight */ |
- assert( p->x.pList==0 || p->pRight==0 ); |
- sqlite3ExprDelete(db, p->pLeft); |
- sqlite3ExprDelete(db, p->pRight); |
- if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken); |
- if( ExprHasProperty(p, EP_xIsSelect) ){ |
- sqlite3SelectDelete(db, p->x.pSelect); |
- }else{ |
- sqlite3ExprListDelete(db, p->x.pList); |
- } |
- } |
- if( !ExprHasProperty(p, EP_Static) ){ |
- sqlite3DbFree(db, p); |
- } |
-} |
- |
-/* |
-** Return the number of bytes allocated for the expression structure |
-** passed as the first argument. This is always one of EXPR_FULLSIZE, |
-** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE. |
-*/ |
-static int exprStructSize(Expr *p){ |
- if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE; |
- if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE; |
- return EXPR_FULLSIZE; |
-} |
- |
-/* |
-** The dupedExpr*Size() routines each return the number of bytes required |
-** to store a copy of an expression or expression tree. They differ in |
-** how much of the tree is measured. |
-** |
-** dupedExprStructSize() Size of only the Expr structure |
-** dupedExprNodeSize() Size of Expr + space for token |
-** dupedExprSize() Expr + token + subtree components |
-** |
-*************************************************************************** |
-** |
-** The dupedExprStructSize() function returns two values OR-ed together: |
-** (1) the space required for a copy of the Expr structure only and |
-** (2) the EP_xxx flags that indicate what the structure size should be. |
-** The return values is always one of: |
-** |
-** EXPR_FULLSIZE |
-** EXPR_REDUCEDSIZE | EP_Reduced |
-** EXPR_TOKENONLYSIZE | EP_TokenOnly |
-** |
-** The size of the structure can be found by masking the return value |
-** of this routine with 0xfff. The flags can be found by masking the |
-** return value with EP_Reduced|EP_TokenOnly. |
-** |
-** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size |
-** (unreduced) Expr objects as they or originally constructed by the parser. |
-** During expression analysis, extra information is computed and moved into |
-** later parts of teh Expr object and that extra information might get chopped |
-** off if the expression is reduced. Note also that it does not work to |
-** make an EXPRDUP_REDUCE copy of a reduced expression. It is only legal |
-** to reduce a pristine expression tree from the parser. The implementation |
-** of dupedExprStructSize() contain multiple assert() statements that attempt |
-** to enforce this constraint. |
-*/ |
-static int dupedExprStructSize(Expr *p, int flags){ |
- int nSize; |
- assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */ |
- assert( EXPR_FULLSIZE<=0xfff ); |
- assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 ); |
- if( 0==(flags&EXPRDUP_REDUCE) ){ |
- nSize = EXPR_FULLSIZE; |
- }else{ |
- assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); |
- assert( !ExprHasProperty(p, EP_FromJoin) ); |
- assert( !ExprHasProperty(p, EP_MemToken) ); |
- assert( !ExprHasProperty(p, EP_NoReduce) ); |
- if( p->pLeft || p->x.pList ){ |
- nSize = EXPR_REDUCEDSIZE | EP_Reduced; |
- }else{ |
- assert( p->pRight==0 ); |
- nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly; |
- } |
- } |
- return nSize; |
-} |
- |
-/* |
-** This function returns the space in bytes required to store the copy |
-** of the Expr structure and a copy of the Expr.u.zToken string (if that |
-** string is defined.) |
-*/ |
-static int dupedExprNodeSize(Expr *p, int flags){ |
- int nByte = dupedExprStructSize(p, flags) & 0xfff; |
- if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ |
- nByte += sqlite3Strlen30(p->u.zToken)+1; |
- } |
- return ROUND8(nByte); |
-} |
- |
-/* |
-** Return the number of bytes required to create a duplicate of the |
-** expression passed as the first argument. The second argument is a |
-** mask containing EXPRDUP_XXX flags. |
-** |
-** The value returned includes space to create a copy of the Expr struct |
-** itself and the buffer referred to by Expr.u.zToken, if any. |
-** |
-** If the EXPRDUP_REDUCE flag is set, then the return value includes |
-** space to duplicate all Expr nodes in the tree formed by Expr.pLeft |
-** and Expr.pRight variables (but not for any structures pointed to or |
-** descended from the Expr.x.pList or Expr.x.pSelect variables). |
-*/ |
-static int dupedExprSize(Expr *p, int flags){ |
- int nByte = 0; |
- if( p ){ |
- nByte = dupedExprNodeSize(p, flags); |
- if( flags&EXPRDUP_REDUCE ){ |
- nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags); |
- } |
- } |
- return nByte; |
-} |
- |
-/* |
-** This function is similar to sqlite3ExprDup(), except that if pzBuffer |
-** is not NULL then *pzBuffer is assumed to point to a buffer large enough |
-** to store the copy of expression p, the copies of p->u.zToken |
-** (if applicable), and the copies of the p->pLeft and p->pRight expressions, |
-** if any. Before returning, *pzBuffer is set to the first byte past the |
-** portion of the buffer copied into by this function. |
-*/ |
-static Expr *exprDup(sqlite3 *db, Expr *p, int flags, u8 **pzBuffer){ |
- Expr *pNew = 0; /* Value to return */ |
- if( p ){ |
- const int isReduced = (flags&EXPRDUP_REDUCE); |
- u8 *zAlloc; |
- u32 staticFlag = 0; |
- |
- assert( pzBuffer==0 || isReduced ); |
- |
- /* Figure out where to write the new Expr structure. */ |
- if( pzBuffer ){ |
- zAlloc = *pzBuffer; |
- staticFlag = EP_Static; |
- }else{ |
- zAlloc = sqlite3DbMallocRaw(db, dupedExprSize(p, flags)); |
- } |
- pNew = (Expr *)zAlloc; |
- |
- if( pNew ){ |
- /* Set nNewSize to the size allocated for the structure pointed to |
- ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or |
- ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed |
- ** by the copy of the p->u.zToken string (if any). |
- */ |
- const unsigned nStructSize = dupedExprStructSize(p, flags); |
- const int nNewSize = nStructSize & 0xfff; |
- int nToken; |
- if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ |
- nToken = sqlite3Strlen30(p->u.zToken) + 1; |
- }else{ |
- nToken = 0; |
- } |
- if( isReduced ){ |
- assert( ExprHasProperty(p, EP_Reduced)==0 ); |
- memcpy(zAlloc, p, nNewSize); |
- }else{ |
- int nSize = exprStructSize(p); |
- memcpy(zAlloc, p, nSize); |
- memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize); |
- } |
- |
- /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */ |
- pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken); |
- pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly); |
- pNew->flags |= staticFlag; |
- |
- /* Copy the p->u.zToken string, if any. */ |
- if( nToken ){ |
- char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize]; |
- memcpy(zToken, p->u.zToken, nToken); |
- } |
- |
- if( 0==((p->flags|pNew->flags) & EP_TokenOnly) ){ |
- /* Fill in the pNew->x.pSelect or pNew->x.pList member. */ |
- if( ExprHasProperty(p, EP_xIsSelect) ){ |
- pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, isReduced); |
- }else{ |
- pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, isReduced); |
- } |
- } |
- |
- /* Fill in pNew->pLeft and pNew->pRight. */ |
- if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly) ){ |
- zAlloc += dupedExprNodeSize(p, flags); |
- if( ExprHasProperty(pNew, EP_Reduced) ){ |
- pNew->pLeft = exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc); |
- pNew->pRight = exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc); |
- } |
- if( pzBuffer ){ |
- *pzBuffer = zAlloc; |
- } |
- }else{ |
- if( !ExprHasProperty(p, EP_TokenOnly) ){ |
- pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0); |
- pNew->pRight = sqlite3ExprDup(db, p->pRight, 0); |
- } |
- } |
- |
- } |
- } |
- return pNew; |
-} |
- |
-/* |
-** Create and return a deep copy of the object passed as the second |
-** argument. If an OOM condition is encountered, NULL is returned |
-** and the db->mallocFailed flag set. |
-*/ |
-#ifndef SQLITE_OMIT_CTE |
-static With *withDup(sqlite3 *db, With *p){ |
- With *pRet = 0; |
- if( p ){ |
- int nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1); |
- pRet = sqlite3DbMallocZero(db, nByte); |
- if( pRet ){ |
- int i; |
- pRet->nCte = p->nCte; |
- for(i=0; i<p->nCte; i++){ |
- pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0); |
- pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0); |
- pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName); |
- } |
- } |
- } |
- return pRet; |
-} |
-#else |
-# define withDup(x,y) 0 |
-#endif |
- |
-/* |
-** The following group of routines make deep copies of expressions, |
-** expression lists, ID lists, and select statements. The copies can |
-** be deleted (by being passed to their respective ...Delete() routines) |
-** without effecting the originals. |
-** |
-** The expression list, ID, and source lists return by sqlite3ExprListDup(), |
-** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded |
-** by subsequent calls to sqlite*ListAppend() routines. |
-** |
-** Any tables that the SrcList might point to are not duplicated. |
-** |
-** The flags parameter contains a combination of the EXPRDUP_XXX flags. |
-** If the EXPRDUP_REDUCE flag is set, then the structure returned is a |
-** truncated version of the usual Expr structure that will be stored as |
-** part of the in-memory representation of the database schema. |
-*/ |
-Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){ |
- return exprDup(db, p, flags, 0); |
-} |
-ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){ |
- ExprList *pNew; |
- struct ExprList_item *pItem, *pOldItem; |
- int i; |
- if( p==0 ) return 0; |
- pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) ); |
- if( pNew==0 ) return 0; |
- pNew->nExpr = i = p->nExpr; |
- if( (flags & EXPRDUP_REDUCE)==0 ) for(i=1; i<p->nExpr; i+=i){} |
- pNew->a = pItem = sqlite3DbMallocRaw(db, i*sizeof(p->a[0]) ); |
- if( pItem==0 ){ |
- sqlite3DbFree(db, pNew); |
- return 0; |
- } |
- pOldItem = p->a; |
- for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ |
- Expr *pOldExpr = pOldItem->pExpr; |
- pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags); |
- pItem->zName = sqlite3DbStrDup(db, pOldItem->zName); |
- pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan); |
- pItem->sortOrder = pOldItem->sortOrder; |
- pItem->done = 0; |
- pItem->bSpanIsTab = pOldItem->bSpanIsTab; |
- pItem->u = pOldItem->u; |
- } |
- return pNew; |
-} |
- |
-/* |
-** If cursors, triggers, views and subqueries are all omitted from |
-** the build, then none of the following routines, except for |
-** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes |
-** called with a NULL argument. |
-*/ |
-#if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ |
- || !defined(SQLITE_OMIT_SUBQUERY) |
-SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){ |
- SrcList *pNew; |
- int i; |
- int nByte; |
- if( p==0 ) return 0; |
- nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); |
- pNew = sqlite3DbMallocRaw(db, nByte ); |
- if( pNew==0 ) return 0; |
- pNew->nSrc = pNew->nAlloc = p->nSrc; |
- for(i=0; i<p->nSrc; i++){ |
- struct SrcList_item *pNewItem = &pNew->a[i]; |
- struct SrcList_item *pOldItem = &p->a[i]; |
- Table *pTab; |
- pNewItem->pSchema = pOldItem->pSchema; |
- pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase); |
- pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); |
- pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); |
- pNewItem->jointype = pOldItem->jointype; |
- pNewItem->iCursor = pOldItem->iCursor; |
- pNewItem->addrFillSub = pOldItem->addrFillSub; |
- pNewItem->regReturn = pOldItem->regReturn; |
- pNewItem->isCorrelated = pOldItem->isCorrelated; |
- pNewItem->viaCoroutine = pOldItem->viaCoroutine; |
- pNewItem->isRecursive = pOldItem->isRecursive; |
- pNewItem->zIndex = sqlite3DbStrDup(db, pOldItem->zIndex); |
- pNewItem->notIndexed = pOldItem->notIndexed; |
- pNewItem->pIndex = pOldItem->pIndex; |
- pTab = pNewItem->pTab = pOldItem->pTab; |
- if( pTab ){ |
- pTab->nRef++; |
- } |
- pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags); |
- pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags); |
- pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing); |
- pNewItem->colUsed = pOldItem->colUsed; |
- } |
- return pNew; |
-} |
-IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){ |
- IdList *pNew; |
- int i; |
- if( p==0 ) return 0; |
- pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) ); |
- if( pNew==0 ) return 0; |
- pNew->nId = p->nId; |
- pNew->a = sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) ); |
- if( pNew->a==0 ){ |
- sqlite3DbFree(db, pNew); |
- return 0; |
- } |
- /* Note that because the size of the allocation for p->a[] is not |
- ** necessarily a power of two, sqlite3IdListAppend() may not be called |
- ** on the duplicate created by this function. */ |
- for(i=0; i<p->nId; i++){ |
- struct IdList_item *pNewItem = &pNew->a[i]; |
- struct IdList_item *pOldItem = &p->a[i]; |
- pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); |
- pNewItem->idx = pOldItem->idx; |
- } |
- return pNew; |
-} |
-Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ |
- Select *pNew, *pPrior; |
- if( p==0 ) return 0; |
- pNew = sqlite3DbMallocRaw(db, sizeof(*p) ); |
- if( pNew==0 ) return 0; |
- pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags); |
- pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags); |
- pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags); |
- pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags); |
- pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags); |
- pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags); |
- pNew->op = p->op; |
- pNew->pPrior = pPrior = sqlite3SelectDup(db, p->pPrior, flags); |
- if( pPrior ) pPrior->pNext = pNew; |
- pNew->pNext = 0; |
- pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags); |
- pNew->pOffset = sqlite3ExprDup(db, p->pOffset, flags); |
- pNew->iLimit = 0; |
- pNew->iOffset = 0; |
- pNew->selFlags = p->selFlags & ~SF_UsesEphemeral; |
- pNew->addrOpenEphm[0] = -1; |
- pNew->addrOpenEphm[1] = -1; |
- pNew->nSelectRow = p->nSelectRow; |
- pNew->pWith = withDup(db, p->pWith); |
- sqlite3SelectSetName(pNew, p->zSelName); |
- return pNew; |
-} |
-#else |
-Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ |
- assert( p==0 ); |
- return 0; |
-} |
-#endif |
- |
- |
-/* |
-** Add a new element to the end of an expression list. If pList is |
-** initially NULL, then create a new expression list. |
-** |
-** If a memory allocation error occurs, the entire list is freed and |
-** NULL is returned. If non-NULL is returned, then it is guaranteed |
-** that the new entry was successfully appended. |
-*/ |
-ExprList *sqlite3ExprListAppend( |
- Parse *pParse, /* Parsing context */ |
- ExprList *pList, /* List to which to append. Might be NULL */ |
- Expr *pExpr /* Expression to be appended. Might be NULL */ |
-){ |
- sqlite3 *db = pParse->db; |
- if( pList==0 ){ |
- pList = sqlite3DbMallocZero(db, sizeof(ExprList) ); |
- if( pList==0 ){ |
- goto no_mem; |
- } |
- pList->a = sqlite3DbMallocRaw(db, sizeof(pList->a[0])); |
- if( pList->a==0 ) goto no_mem; |
- }else if( (pList->nExpr & (pList->nExpr-1))==0 ){ |
- struct ExprList_item *a; |
- assert( pList->nExpr>0 ); |
- a = sqlite3DbRealloc(db, pList->a, pList->nExpr*2*sizeof(pList->a[0])); |
- if( a==0 ){ |
- goto no_mem; |
- } |
- pList->a = a; |
- } |
- assert( pList->a!=0 ); |
- if( 1 ){ |
- struct ExprList_item *pItem = &pList->a[pList->nExpr++]; |
- memset(pItem, 0, sizeof(*pItem)); |
- pItem->pExpr = pExpr; |
- } |
- return pList; |
- |
-no_mem: |
- /* Avoid leaking memory if malloc has failed. */ |
- sqlite3ExprDelete(db, pExpr); |
- sqlite3ExprListDelete(db, pList); |
- return 0; |
-} |
- |
-/* |
-** Set the ExprList.a[].zName element of the most recently added item |
-** on the expression list. |
-** |
-** pList might be NULL following an OOM error. But pName should never be |
-** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag |
-** is set. |
-*/ |
-void sqlite3ExprListSetName( |
- Parse *pParse, /* Parsing context */ |
- ExprList *pList, /* List to which to add the span. */ |
- Token *pName, /* Name to be added */ |
- int dequote /* True to cause the name to be dequoted */ |
-){ |
- assert( pList!=0 || pParse->db->mallocFailed!=0 ); |
- if( pList ){ |
- struct ExprList_item *pItem; |
- assert( pList->nExpr>0 ); |
- pItem = &pList->a[pList->nExpr-1]; |
- assert( pItem->zName==0 ); |
- pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n); |
- if( dequote && pItem->zName ) sqlite3Dequote(pItem->zName); |
- } |
-} |
- |
-/* |
-** Set the ExprList.a[].zSpan element of the most recently added item |
-** on the expression list. |
-** |
-** pList might be NULL following an OOM error. But pSpan should never be |
-** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag |
-** is set. |
-*/ |
-void sqlite3ExprListSetSpan( |
- Parse *pParse, /* Parsing context */ |
- ExprList *pList, /* List to which to add the span. */ |
- ExprSpan *pSpan /* The span to be added */ |
-){ |
- sqlite3 *db = pParse->db; |
- assert( pList!=0 || db->mallocFailed!=0 ); |
- if( pList ){ |
- struct ExprList_item *pItem = &pList->a[pList->nExpr-1]; |
- assert( pList->nExpr>0 ); |
- assert( db->mallocFailed || pItem->pExpr==pSpan->pExpr ); |
- sqlite3DbFree(db, pItem->zSpan); |
- pItem->zSpan = sqlite3DbStrNDup(db, (char*)pSpan->zStart, |
- (int)(pSpan->zEnd - pSpan->zStart)); |
- } |
-} |
- |
-/* |
-** If the expression list pEList contains more than iLimit elements, |
-** leave an error message in pParse. |
-*/ |
-void sqlite3ExprListCheckLength( |
- Parse *pParse, |
- ExprList *pEList, |
- const char *zObject |
-){ |
- int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN]; |
- testcase( pEList && pEList->nExpr==mx ); |
- testcase( pEList && pEList->nExpr==mx+1 ); |
- if( pEList && pEList->nExpr>mx ){ |
- sqlite3ErrorMsg(pParse, "too many columns in %s", zObject); |
- } |
-} |
- |
-/* |
-** Delete an entire expression list. |
-*/ |
-void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){ |
- int i; |
- struct ExprList_item *pItem; |
- if( pList==0 ) return; |
- assert( pList->a!=0 || pList->nExpr==0 ); |
- for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ |
- sqlite3ExprDelete(db, pItem->pExpr); |
- sqlite3DbFree(db, pItem->zName); |
- sqlite3DbFree(db, pItem->zSpan); |
- } |
- sqlite3DbFree(db, pList->a); |
- sqlite3DbFree(db, pList); |
-} |
- |
-/* |
-** These routines are Walker callbacks. Walker.u.pi is a pointer |
-** to an integer. These routines are checking an expression to see |
-** if it is a constant. Set *Walker.u.i to 0 if the expression is |
-** not constant. |
-** |
-** These callback routines are used to implement the following: |
-** |
-** sqlite3ExprIsConstant() pWalker->u.i==1 |
-** sqlite3ExprIsConstantNotJoin() pWalker->u.i==2 |
-** sqlite3ExprIsConstantOrFunction() pWalker->u.i==3 or 4 |
-** |
-** The sqlite3ExprIsConstantOrFunction() is used for evaluating expressions |
-** in a CREATE TABLE statement. The Walker.u.i value is 4 when parsing |
-** an existing schema and 3 when processing a new statement. A bound |
-** parameter raises an error for new statements, but is silently converted |
-** to NULL for existing schemas. This allows sqlite_master tables that |
-** contain a bound parameter because they were generated by older versions |
-** of SQLite to be parsed by newer versions of SQLite without raising a |
-** malformed schema error. |
-*/ |
-static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){ |
- |
- /* If pWalker->u.i is 2 then any term of the expression that comes from |
- ** the ON or USING clauses of a join disqualifies the expression |
- ** from being considered constant. */ |
- if( pWalker->u.i==2 && ExprHasProperty(pExpr, EP_FromJoin) ){ |
- pWalker->u.i = 0; |
- return WRC_Abort; |
- } |
- |
- switch( pExpr->op ){ |
- /* Consider functions to be constant if all their arguments are constant |
- ** and either pWalker->u.i==3 or 4 or the function as the SQLITE_FUNC_CONST |
- ** flag. */ |
- case TK_FUNCTION: |
- if( pWalker->u.i>=3 || ExprHasProperty(pExpr,EP_Constant) ){ |
- return WRC_Continue; |
- } |
- /* Fall through */ |
- case TK_ID: |
- case TK_COLUMN: |
- case TK_AGG_FUNCTION: |
- case TK_AGG_COLUMN: |
- testcase( pExpr->op==TK_ID ); |
- testcase( pExpr->op==TK_COLUMN ); |
- testcase( pExpr->op==TK_AGG_FUNCTION ); |
- testcase( pExpr->op==TK_AGG_COLUMN ); |
- pWalker->u.i = 0; |
- return WRC_Abort; |
- case TK_VARIABLE: |
- if( pWalker->u.i==4 ){ |
- /* Silently convert bound parameters that appear inside of CREATE |
- ** statements into a NULL when parsing the CREATE statement text out |
- ** of the sqlite_master table */ |
- pExpr->op = TK_NULL; |
- }else if( pWalker->u.i==3 ){ |
- /* A bound parameter in a CREATE statement that originates from |
- ** sqlite3_prepare() causes an error */ |
- pWalker->u.i = 0; |
- return WRC_Abort; |
- } |
- /* Fall through */ |
- default: |
- testcase( pExpr->op==TK_SELECT ); /* selectNodeIsConstant will disallow */ |
- testcase( pExpr->op==TK_EXISTS ); /* selectNodeIsConstant will disallow */ |
- return WRC_Continue; |
- } |
-} |
-static int selectNodeIsConstant(Walker *pWalker, Select *NotUsed){ |
- UNUSED_PARAMETER(NotUsed); |
- pWalker->u.i = 0; |
- return WRC_Abort; |
-} |
-static int exprIsConst(Expr *p, int initFlag){ |
- Walker w; |
- memset(&w, 0, sizeof(w)); |
- w.u.i = initFlag; |
- w.xExprCallback = exprNodeIsConstant; |
- w.xSelectCallback = selectNodeIsConstant; |
- sqlite3WalkExpr(&w, p); |
- return w.u.i; |
-} |
- |
-/* |
-** Walk an expression tree. Return 1 if the expression is constant |
-** and 0 if it involves variables or function calls. |
-** |
-** For the purposes of this function, a double-quoted string (ex: "abc") |
-** is considered a variable but a single-quoted string (ex: 'abc') is |
-** a constant. |
-*/ |
-int sqlite3ExprIsConstant(Expr *p){ |
- return exprIsConst(p, 1); |
-} |
- |
-/* |
-** Walk an expression tree. Return 1 if the expression is constant |
-** that does no originate from the ON or USING clauses of a join. |
-** Return 0 if it involves variables or function calls or terms from |
-** an ON or USING clause. |
-*/ |
-int sqlite3ExprIsConstantNotJoin(Expr *p){ |
- return exprIsConst(p, 2); |
-} |
- |
-/* |
-** Walk an expression tree. Return 1 if the expression is constant |
-** or a function call with constant arguments. Return and 0 if there |
-** are any variables. |
-** |
-** For the purposes of this function, a double-quoted string (ex: "abc") |
-** is considered a variable but a single-quoted string (ex: 'abc') is |
-** a constant. |
-*/ |
-int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){ |
- assert( isInit==0 || isInit==1 ); |
- return exprIsConst(p, 3+isInit); |
-} |
- |
-/* |
-** If the expression p codes a constant integer that is small enough |
-** to fit in a 32-bit integer, return 1 and put the value of the integer |
-** in *pValue. If the expression is not an integer or if it is too big |
-** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. |
-*/ |
-int sqlite3ExprIsInteger(Expr *p, int *pValue){ |
- int rc = 0; |
- |
- /* If an expression is an integer literal that fits in a signed 32-bit |
- ** integer, then the EP_IntValue flag will have already been set */ |
- assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0 |
- || sqlite3GetInt32(p->u.zToken, &rc)==0 ); |
- |
- if( p->flags & EP_IntValue ){ |
- *pValue = p->u.iValue; |
- return 1; |
- } |
- switch( p->op ){ |
- case TK_UPLUS: { |
- rc = sqlite3ExprIsInteger(p->pLeft, pValue); |
- break; |
- } |
- case TK_UMINUS: { |
- int v; |
- if( sqlite3ExprIsInteger(p->pLeft, &v) ){ |
- assert( v!=(-2147483647-1) ); |
- *pValue = -v; |
- rc = 1; |
- } |
- break; |
- } |
- default: break; |
- } |
- return rc; |
-} |
- |
-/* |
-** Return FALSE if there is no chance that the expression can be NULL. |
-** |
-** If the expression might be NULL or if the expression is too complex |
-** to tell return TRUE. |
-** |
-** This routine is used as an optimization, to skip OP_IsNull opcodes |
-** when we know that a value cannot be NULL. Hence, a false positive |
-** (returning TRUE when in fact the expression can never be NULL) might |
-** be a small performance hit but is otherwise harmless. On the other |
-** hand, a false negative (returning FALSE when the result could be NULL) |
-** will likely result in an incorrect answer. So when in doubt, return |
-** TRUE. |
-*/ |
-int sqlite3ExprCanBeNull(const Expr *p){ |
- u8 op; |
- while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; } |
- op = p->op; |
- if( op==TK_REGISTER ) op = p->op2; |
- switch( op ){ |
- case TK_INTEGER: |
- case TK_STRING: |
- case TK_FLOAT: |
- case TK_BLOB: |
- return 0; |
- case TK_COLUMN: |
- assert( p->pTab!=0 ); |
- return ExprHasProperty(p, EP_CanBeNull) || |
- (p->iColumn>=0 && p->pTab->aCol[p->iColumn].notNull==0); |
- default: |
- return 1; |
- } |
-} |
- |
-/* |
-** Return TRUE if the given expression is a constant which would be |
-** unchanged by OP_Affinity with the affinity given in the second |
-** argument. |
-** |
-** This routine is used to determine if the OP_Affinity operation |
-** can be omitted. When in doubt return FALSE. A false negative |
-** is harmless. A false positive, however, can result in the wrong |
-** answer. |
-*/ |
-int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){ |
- u8 op; |
- if( aff==SQLITE_AFF_NONE ) return 1; |
- while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; } |
- op = p->op; |
- if( op==TK_REGISTER ) op = p->op2; |
- switch( op ){ |
- case TK_INTEGER: { |
- return aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC; |
- } |
- case TK_FLOAT: { |
- return aff==SQLITE_AFF_REAL || aff==SQLITE_AFF_NUMERIC; |
- } |
- case TK_STRING: { |
- return aff==SQLITE_AFF_TEXT; |
- } |
- case TK_BLOB: { |
- return 1; |
- } |
- case TK_COLUMN: { |
- assert( p->iTable>=0 ); /* p cannot be part of a CHECK constraint */ |
- return p->iColumn<0 |
- && (aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC); |
- } |
- default: { |
- return 0; |
- } |
- } |
-} |
- |
-/* |
-** Return TRUE if the given string is a row-id column name. |
-*/ |
-int sqlite3IsRowid(const char *z){ |
- if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; |
- if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; |
- if( sqlite3StrICmp(z, "OID")==0 ) return 1; |
- return 0; |
-} |
- |
-/* |
-** Return true if we are able to the IN operator optimization on a |
-** query of the form |
-** |
-** x IN (SELECT ...) |
-** |
-** Where the SELECT... clause is as specified by the parameter to this |
-** routine. |
-** |
-** The Select object passed in has already been preprocessed and no |
-** errors have been found. |
-*/ |
-#ifndef SQLITE_OMIT_SUBQUERY |
-static int isCandidateForInOpt(Select *p){ |
- SrcList *pSrc; |
- ExprList *pEList; |
- Table *pTab; |
- if( p==0 ) return 0; /* right-hand side of IN is SELECT */ |
- if( p->pPrior ) return 0; /* Not a compound SELECT */ |
- if( p->selFlags & (SF_Distinct|SF_Aggregate) ){ |
- testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); |
- testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); |
- return 0; /* No DISTINCT keyword and no aggregate functions */ |
- } |
- assert( p->pGroupBy==0 ); /* Has no GROUP BY clause */ |
- if( p->pLimit ) return 0; /* Has no LIMIT clause */ |
- assert( p->pOffset==0 ); /* No LIMIT means no OFFSET */ |
- if( p->pWhere ) return 0; /* Has no WHERE clause */ |
- pSrc = p->pSrc; |
- assert( pSrc!=0 ); |
- if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */ |
- if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */ |
- pTab = pSrc->a[0].pTab; |
- if( NEVER(pTab==0) ) return 0; |
- assert( pTab->pSelect==0 ); /* FROM clause is not a view */ |
- if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */ |
- pEList = p->pEList; |
- if( pEList->nExpr!=1 ) return 0; /* One column in the result set */ |
- if( pEList->a[0].pExpr->op!=TK_COLUMN ) return 0; /* Result is a column */ |
- return 1; |
-} |
-#endif /* SQLITE_OMIT_SUBQUERY */ |
- |
-/* |
-** Code an OP_Once instruction and allocate space for its flag. Return the |
-** address of the new instruction. |
-*/ |
-int sqlite3CodeOnce(Parse *pParse){ |
- Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ |
- return sqlite3VdbeAddOp1(v, OP_Once, pParse->nOnce++); |
-} |
- |
-/* |
-** Generate code that checks the left-most column of index table iCur to see if |
-** it contains any NULL entries. Cause the register at regHasNull to be set |
-** to a non-NULL value if iCur contains no NULLs. Cause register regHasNull |
-** to be set to NULL if iCur contains one or more NULL values. |
-*/ |
-static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){ |
- int j1; |
- sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull); |
- j1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v); |
- sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull); |
- sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG); |
- VdbeComment((v, "first_entry_in(%d)", iCur)); |
- sqlite3VdbeJumpHere(v, j1); |
-} |
- |
- |
-#ifndef SQLITE_OMIT_SUBQUERY |
-/* |
-** The argument is an IN operator with a list (not a subquery) on the |
-** right-hand side. Return TRUE if that list is constant. |
-*/ |
-static int sqlite3InRhsIsConstant(Expr *pIn){ |
- Expr *pLHS; |
- int res; |
- assert( !ExprHasProperty(pIn, EP_xIsSelect) ); |
- pLHS = pIn->pLeft; |
- pIn->pLeft = 0; |
- res = sqlite3ExprIsConstant(pIn); |
- pIn->pLeft = pLHS; |
- return res; |
-} |
-#endif |
- |
-/* |
-** This function is used by the implementation of the IN (...) operator. |
-** The pX parameter is the expression on the RHS of the IN operator, which |
-** might be either a list of expressions or a subquery. |
-** |
-** The job of this routine is to find or create a b-tree object that can |
-** be used either to test for membership in the RHS set or to iterate through |
-** all members of the RHS set, skipping duplicates. |
-** |
-** A cursor is opened on the b-tree object that is the RHS of the IN operator |
-** and pX->iTable is set to the index of that cursor. |
-** |
-** The returned value of this function indicates the b-tree type, as follows: |
-** |
-** IN_INDEX_ROWID - The cursor was opened on a database table. |
-** IN_INDEX_INDEX_ASC - The cursor was opened on an ascending index. |
-** IN_INDEX_INDEX_DESC - The cursor was opened on a descending index. |
-** IN_INDEX_EPH - The cursor was opened on a specially created and |
-** populated epheremal table. |
-** IN_INDEX_NOOP - No cursor was allocated. The IN operator must be |
-** implemented as a sequence of comparisons. |
-** |
-** An existing b-tree might be used if the RHS expression pX is a simple |
-** subquery such as: |
-** |
-** SELECT <column> FROM <table> |
-** |
-** If the RHS of the IN operator is a list or a more complex subquery, then |
-** an ephemeral table might need to be generated from the RHS and then |
-** pX->iTable made to point to the ephemeral table instead of an |
-** existing table. |
-** |
-** The inFlags parameter must contain exactly one of the bits |
-** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP. If inFlags contains |
-** IN_INDEX_MEMBERSHIP, then the generated table will be used for a |
-** fast membership test. When the IN_INDEX_LOOP bit is set, the |
-** IN index will be used to loop over all values of the RHS of the |
-** IN operator. |
-** |
-** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate |
-** through the set members) then the b-tree must not contain duplicates. |
-** An epheremal table must be used unless the selected <column> is guaranteed |
-** to be unique - either because it is an INTEGER PRIMARY KEY or it |
-** has a UNIQUE constraint or UNIQUE index. |
-** |
-** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used |
-** for fast set membership tests) then an epheremal table must |
-** be used unless <column> is an INTEGER PRIMARY KEY or an index can |
-** be found with <column> as its left-most column. |
-** |
-** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and |
-** if the RHS of the IN operator is a list (not a subquery) then this |
-** routine might decide that creating an ephemeral b-tree for membership |
-** testing is too expensive and return IN_INDEX_NOOP. In that case, the |
-** calling routine should implement the IN operator using a sequence |
-** of Eq or Ne comparison operations. |
-** |
-** When the b-tree is being used for membership tests, the calling function |
-** might need to know whether or not the RHS side of the IN operator |
-** contains a NULL. If prRhsHasNull is not a NULL pointer and |
-** if there is any chance that the (...) might contain a NULL value at |
-** runtime, then a register is allocated and the register number written |
-** to *prRhsHasNull. If there is no chance that the (...) contains a |
-** NULL value, then *prRhsHasNull is left unchanged. |
-** |
-** If a register is allocated and its location stored in *prRhsHasNull, then |
-** the value in that register will be NULL if the b-tree contains one or more |
-** NULL values, and it will be some non-NULL value if the b-tree contains no |
-** NULL values. |
-*/ |
-#ifndef SQLITE_OMIT_SUBQUERY |
-int sqlite3FindInIndex(Parse *pParse, Expr *pX, u32 inFlags, int *prRhsHasNull){ |
- Select *p; /* SELECT to the right of IN operator */ |
- int eType = 0; /* Type of RHS table. IN_INDEX_* */ |
- int iTab = pParse->nTab++; /* Cursor of the RHS table */ |
- int mustBeUnique; /* True if RHS must be unique */ |
- Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ |
- |
- assert( pX->op==TK_IN ); |
- mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0; |
- |
- /* Check to see if an existing table or index can be used to |
- ** satisfy the query. This is preferable to generating a new |
- ** ephemeral table. |
- */ |
- p = (ExprHasProperty(pX, EP_xIsSelect) ? pX->x.pSelect : 0); |
- if( ALWAYS(pParse->nErr==0) && isCandidateForInOpt(p) ){ |
- sqlite3 *db = pParse->db; /* Database connection */ |
- Table *pTab; /* Table <table>. */ |
- Expr *pExpr; /* Expression <column> */ |
- i16 iCol; /* Index of column <column> */ |
- i16 iDb; /* Database idx for pTab */ |
- |
- assert( p ); /* Because of isCandidateForInOpt(p) */ |
- assert( p->pEList!=0 ); /* Because of isCandidateForInOpt(p) */ |
- assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */ |
- assert( p->pSrc!=0 ); /* Because of isCandidateForInOpt(p) */ |
- pTab = p->pSrc->a[0].pTab; |
- pExpr = p->pEList->a[0].pExpr; |
- iCol = (i16)pExpr->iColumn; |
- |
- /* Code an OP_Transaction and OP_TableLock for <table>. */ |
- iDb = sqlite3SchemaToIndex(db, pTab->pSchema); |
- sqlite3CodeVerifySchema(pParse, iDb); |
- sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); |
- |
- /* This function is only called from two places. In both cases the vdbe |
- ** has already been allocated. So assume sqlite3GetVdbe() is always |
- ** successful here. |
- */ |
- assert(v); |
- if( iCol<0 ){ |
- int iAddr = sqlite3CodeOnce(pParse); |
- VdbeCoverage(v); |
- |
- sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); |
- eType = IN_INDEX_ROWID; |
- |
- sqlite3VdbeJumpHere(v, iAddr); |
- }else{ |
- Index *pIdx; /* Iterator variable */ |
- |
- /* The collation sequence used by the comparison. If an index is to |
- ** be used in place of a temp-table, it must be ordered according |
- ** to this collation sequence. */ |
- CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr); |
- |
- /* Check that the affinity that will be used to perform the |
- ** comparison is the same as the affinity of the column. If |
- ** it is not, it is not possible to use any index. |
- */ |
- int affinity_ok = sqlite3IndexAffinityOk(pX, pTab->aCol[iCol].affinity); |
- |
- for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){ |
- if( (pIdx->aiColumn[0]==iCol) |
- && sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], 0)==pReq |
- && (!mustBeUnique || (pIdx->nKeyCol==1 && IsUniqueIndex(pIdx))) |
- ){ |
- int iAddr = sqlite3CodeOnce(pParse); VdbeCoverage(v); |
- sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb); |
- sqlite3VdbeSetP4KeyInfo(pParse, pIdx); |
- VdbeComment((v, "%s", pIdx->zName)); |
- assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 ); |
- eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0]; |
- |
- if( prRhsHasNull && !pTab->aCol[iCol].notNull ){ |
- *prRhsHasNull = ++pParse->nMem; |
- sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull); |
- } |
- sqlite3VdbeJumpHere(v, iAddr); |
- } |
- } |
- } |
- } |
- |
- /* If no preexisting index is available for the IN clause |
- ** and IN_INDEX_NOOP is an allowed reply |
- ** and the RHS of the IN operator is a list, not a subquery |
- ** and the RHS is not contant or has two or fewer terms, |
- ** then it is not worth creating an ephemeral table to evaluate |
- ** the IN operator so return IN_INDEX_NOOP. |
- */ |
- if( eType==0 |
- && (inFlags & IN_INDEX_NOOP_OK) |
- && !ExprHasProperty(pX, EP_xIsSelect) |
- && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2) |
- ){ |
- eType = IN_INDEX_NOOP; |
- } |
- |
- |
- if( eType==0 ){ |
- /* Could not find an existing table or index to use as the RHS b-tree. |
- ** We will have to generate an ephemeral table to do the job. |
- */ |
- u32 savedNQueryLoop = pParse->nQueryLoop; |
- int rMayHaveNull = 0; |
- eType = IN_INDEX_EPH; |
- if( inFlags & IN_INDEX_LOOP ){ |
- pParse->nQueryLoop = 0; |
- if( pX->pLeft->iColumn<0 && !ExprHasProperty(pX, EP_xIsSelect) ){ |
- eType = IN_INDEX_ROWID; |
- } |
- }else if( prRhsHasNull ){ |
- *prRhsHasNull = rMayHaveNull = ++pParse->nMem; |
- } |
- sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID); |
- pParse->nQueryLoop = savedNQueryLoop; |
- }else{ |
- pX->iTable = iTab; |
- } |
- return eType; |
-} |
-#endif |
- |
-/* |
-** Generate code for scalar subqueries used as a subquery expression, EXISTS, |
-** or IN operators. Examples: |
-** |
-** (SELECT a FROM b) -- subquery |
-** EXISTS (SELECT a FROM b) -- EXISTS subquery |
-** x IN (4,5,11) -- IN operator with list on right-hand side |
-** x IN (SELECT a FROM b) -- IN operator with subquery on the right |
-** |
-** The pExpr parameter describes the expression that contains the IN |
-** operator or subquery. |
-** |
-** If parameter isRowid is non-zero, then expression pExpr is guaranteed |
-** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference |
-** to some integer key column of a table B-Tree. In this case, use an |
-** intkey B-Tree to store the set of IN(...) values instead of the usual |
-** (slower) variable length keys B-Tree. |
-** |
-** If rMayHaveNull is non-zero, that means that the operation is an IN |
-** (not a SELECT or EXISTS) and that the RHS might contains NULLs. |
-** All this routine does is initialize the register given by rMayHaveNull |
-** to NULL. Calling routines will take care of changing this register |
-** value to non-NULL if the RHS is NULL-free. |
-** |
-** For a SELECT or EXISTS operator, return the register that holds the |
-** result. For IN operators or if an error occurs, the return value is 0. |
-*/ |
-#ifndef SQLITE_OMIT_SUBQUERY |
-int sqlite3CodeSubselect( |
- Parse *pParse, /* Parsing context */ |
- Expr *pExpr, /* The IN, SELECT, or EXISTS operator */ |
- int rHasNullFlag, /* Register that records whether NULLs exist in RHS */ |
- int isRowid /* If true, LHS of IN operator is a rowid */ |
-){ |
- int jmpIfDynamic = -1; /* One-time test address */ |
- int rReg = 0; /* Register storing resulting */ |
- Vdbe *v = sqlite3GetVdbe(pParse); |
- if( NEVER(v==0) ) return 0; |
- sqlite3ExprCachePush(pParse); |
- |
- /* This code must be run in its entirety every time it is encountered |
- ** if any of the following is true: |
- ** |
- ** * The right-hand side is a correlated subquery |
- ** * The right-hand side is an expression list containing variables |
- ** * We are inside a trigger |
- ** |
- ** If all of the above are false, then we can run this code just once |
- ** save the results, and reuse the same result on subsequent invocations. |
- */ |
- if( !ExprHasProperty(pExpr, EP_VarSelect) ){ |
- jmpIfDynamic = sqlite3CodeOnce(pParse); VdbeCoverage(v); |
- } |
- |
-#ifndef SQLITE_OMIT_EXPLAIN |
- if( pParse->explain==2 ){ |
- char *zMsg = sqlite3MPrintf( |
- pParse->db, "EXECUTE %s%s SUBQUERY %d", jmpIfDynamic>=0?"":"CORRELATED ", |
- pExpr->op==TK_IN?"LIST":"SCALAR", pParse->iNextSelectId |
- ); |
- sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); |
- } |
-#endif |
- |
- switch( pExpr->op ){ |
- case TK_IN: { |
- char affinity; /* Affinity of the LHS of the IN */ |
- int addr; /* Address of OP_OpenEphemeral instruction */ |
- Expr *pLeft = pExpr->pLeft; /* the LHS of the IN operator */ |
- KeyInfo *pKeyInfo = 0; /* Key information */ |
- |
- affinity = sqlite3ExprAffinity(pLeft); |
- |
- /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)' |
- ** expression it is handled the same way. An ephemeral table is |
- ** filled with single-field index keys representing the results |
- ** from the SELECT or the <exprlist>. |
- ** |
- ** If the 'x' expression is a column value, or the SELECT... |
- ** statement returns a column value, then the affinity of that |
- ** column is used to build the index keys. If both 'x' and the |
- ** SELECT... statement are columns, then numeric affinity is used |
- ** if either column has NUMERIC or INTEGER affinity. If neither |
- ** 'x' nor the SELECT... statement are columns, then numeric affinity |
- ** is used. |
- */ |
- pExpr->iTable = pParse->nTab++; |
- addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, !isRowid); |
- pKeyInfo = isRowid ? 0 : sqlite3KeyInfoAlloc(pParse->db, 1, 1); |
- |
- if( ExprHasProperty(pExpr, EP_xIsSelect) ){ |
- /* Case 1: expr IN (SELECT ...) |
- ** |
- ** Generate code to write the results of the select into the temporary |
- ** table allocated and opened above. |
- */ |
- Select *pSelect = pExpr->x.pSelect; |
- SelectDest dest; |
- ExprList *pEList; |
- |
- assert( !isRowid ); |
- sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable); |
- dest.affSdst = (u8)affinity; |
- assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable ); |
- pSelect->iLimit = 0; |
- testcase( pSelect->selFlags & SF_Distinct ); |
- testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */ |
- if( sqlite3Select(pParse, pSelect, &dest) ){ |
- sqlite3KeyInfoUnref(pKeyInfo); |
- return 0; |
- } |
- pEList = pSelect->pEList; |
- assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */ |
- assert( pEList!=0 ); |
- assert( pEList->nExpr>0 ); |
- assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); |
- pKeyInfo->aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft, |
- pEList->a[0].pExpr); |
- }else if( ALWAYS(pExpr->x.pList!=0) ){ |
- /* Case 2: expr IN (exprlist) |
- ** |
- ** For each expression, build an index key from the evaluation and |
- ** store it in the temporary table. If <expr> is a column, then use |
- ** that columns affinity when building index keys. If <expr> is not |
- ** a column, use numeric affinity. |
- */ |
- int i; |
- ExprList *pList = pExpr->x.pList; |
- struct ExprList_item *pItem; |
- int r1, r2, r3; |
- |
- if( !affinity ){ |
- affinity = SQLITE_AFF_NONE; |
- } |
- if( pKeyInfo ){ |
- assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); |
- pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft); |
- } |
- |
- /* Loop through each expression in <exprlist>. */ |
- r1 = sqlite3GetTempReg(pParse); |
- r2 = sqlite3GetTempReg(pParse); |
- if( isRowid ) sqlite3VdbeAddOp2(v, OP_Null, 0, r2); |
- for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ |
- Expr *pE2 = pItem->pExpr; |
- int iValToIns; |
- |
- /* If the expression is not constant then we will need to |
- ** disable the test that was generated above that makes sure |
- ** this code only executes once. Because for a non-constant |
- ** expression we need to rerun this code each time. |
- */ |
- if( jmpIfDynamic>=0 && !sqlite3ExprIsConstant(pE2) ){ |
- sqlite3VdbeChangeToNoop(v, jmpIfDynamic); |
- jmpIfDynamic = -1; |
- } |
- |
- /* Evaluate the expression and insert it into the temp table */ |
- if( isRowid && sqlite3ExprIsInteger(pE2, &iValToIns) ){ |
- sqlite3VdbeAddOp3(v, OP_InsertInt, pExpr->iTable, r2, iValToIns); |
- }else{ |
- r3 = sqlite3ExprCodeTarget(pParse, pE2, r1); |
- if( isRowid ){ |
- sqlite3VdbeAddOp2(v, OP_MustBeInt, r3, |
- sqlite3VdbeCurrentAddr(v)+2); |
- VdbeCoverage(v); |
- sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3); |
- }else{ |
- sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1); |
- sqlite3ExprCacheAffinityChange(pParse, r3, 1); |
- sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2); |
- } |
- } |
- } |
- sqlite3ReleaseTempReg(pParse, r1); |
- sqlite3ReleaseTempReg(pParse, r2); |
- } |
- if( pKeyInfo ){ |
- sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO); |
- } |
- break; |
- } |
- |
- case TK_EXISTS: |
- case TK_SELECT: |
- default: { |
- /* If this has to be a scalar SELECT. Generate code to put the |
- ** value of this select in a memory cell and record the number |
- ** of the memory cell in iColumn. If this is an EXISTS, write |
- ** an integer 0 (not exists) or 1 (exists) into a memory cell |
- ** and record that memory cell in iColumn. |
- */ |
- Select *pSel; /* SELECT statement to encode */ |
- SelectDest dest; /* How to deal with SELECt result */ |
- |
- testcase( pExpr->op==TK_EXISTS ); |
- testcase( pExpr->op==TK_SELECT ); |
- assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT ); |
- |
- assert( ExprHasProperty(pExpr, EP_xIsSelect) ); |
- pSel = pExpr->x.pSelect; |
- sqlite3SelectDestInit(&dest, 0, ++pParse->nMem); |
- if( pExpr->op==TK_SELECT ){ |
- dest.eDest = SRT_Mem; |
- dest.iSdst = dest.iSDParm; |
- sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iSDParm); |
- VdbeComment((v, "Init subquery result")); |
- }else{ |
- dest.eDest = SRT_Exists; |
- sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm); |
- VdbeComment((v, "Init EXISTS result")); |
- } |
- sqlite3ExprDelete(pParse->db, pSel->pLimit); |
- pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, |
- &sqlite3IntTokens[1]); |
- pSel->iLimit = 0; |
- if( sqlite3Select(pParse, pSel, &dest) ){ |
- return 0; |
- } |
- rReg = dest.iSDParm; |
- ExprSetVVAProperty(pExpr, EP_NoReduce); |
- break; |
- } |
- } |
- |
- if( rHasNullFlag ){ |
- sqlite3SetHasNullFlag(v, pExpr->iTable, rHasNullFlag); |
- } |
- |
- if( jmpIfDynamic>=0 ){ |
- sqlite3VdbeJumpHere(v, jmpIfDynamic); |
- } |
- sqlite3ExprCachePop(pParse); |
- |
- return rReg; |
-} |
-#endif /* SQLITE_OMIT_SUBQUERY */ |
- |
-#ifndef SQLITE_OMIT_SUBQUERY |
-/* |
-** Generate code for an IN expression. |
-** |
-** x IN (SELECT ...) |
-** x IN (value, value, ...) |
-** |
-** The left-hand side (LHS) is a scalar expression. The right-hand side (RHS) |
-** is an array of zero or more values. The expression is true if the LHS is |
-** contained within the RHS. The value of the expression is unknown (NULL) |
-** if the LHS is NULL or if the LHS is not contained within the RHS and the |
-** RHS contains one or more NULL values. |
-** |
-** This routine generates code that jumps to destIfFalse if the LHS is not |
-** contained within the RHS. If due to NULLs we cannot determine if the LHS |
-** is contained in the RHS then jump to destIfNull. If the LHS is contained |
-** within the RHS then fall through. |
-*/ |
-static void sqlite3ExprCodeIN( |
- Parse *pParse, /* Parsing and code generating context */ |
- Expr *pExpr, /* The IN expression */ |
- int destIfFalse, /* Jump here if LHS is not contained in the RHS */ |
- int destIfNull /* Jump here if the results are unknown due to NULLs */ |
-){ |
- int rRhsHasNull = 0; /* Register that is true if RHS contains NULL values */ |
- char affinity; /* Comparison affinity to use */ |
- int eType; /* Type of the RHS */ |
- int r1; /* Temporary use register */ |
- Vdbe *v; /* Statement under construction */ |
- |
- /* Compute the RHS. After this step, the table with cursor |
- ** pExpr->iTable will contains the values that make up the RHS. |
- */ |
- v = pParse->pVdbe; |
- assert( v!=0 ); /* OOM detected prior to this routine */ |
- VdbeNoopComment((v, "begin IN expr")); |
- eType = sqlite3FindInIndex(pParse, pExpr, |
- IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK, |
- destIfFalse==destIfNull ? 0 : &rRhsHasNull); |
- |
- /* Figure out the affinity to use to create a key from the results |
- ** of the expression. affinityStr stores a static string suitable for |
- ** P4 of OP_MakeRecord. |
- */ |
- affinity = comparisonAffinity(pExpr); |
- |
- /* Code the LHS, the <expr> from "<expr> IN (...)". |
- */ |
- sqlite3ExprCachePush(pParse); |
- r1 = sqlite3GetTempReg(pParse); |
- sqlite3ExprCode(pParse, pExpr->pLeft, r1); |
- |
- /* If sqlite3FindInIndex() did not find or create an index that is |
- ** suitable for evaluating the IN operator, then evaluate using a |
- ** sequence of comparisons. |
- */ |
- if( eType==IN_INDEX_NOOP ){ |
- ExprList *pList = pExpr->x.pList; |
- CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft); |
- int labelOk = sqlite3VdbeMakeLabel(v); |
- int r2, regToFree; |
- int regCkNull = 0; |
- int ii; |
- assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); |
- if( destIfNull!=destIfFalse ){ |
- regCkNull = sqlite3GetTempReg(pParse); |
- sqlite3VdbeAddOp3(v, OP_BitAnd, r1, r1, regCkNull); |
- } |
- for(ii=0; ii<pList->nExpr; ii++){ |
- r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, ®ToFree); |
- if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){ |
- sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull); |
- } |
- if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){ |
- sqlite3VdbeAddOp4(v, OP_Eq, r1, labelOk, r2, |
- (void*)pColl, P4_COLLSEQ); |
- VdbeCoverageIf(v, ii<pList->nExpr-1); |
- VdbeCoverageIf(v, ii==pList->nExpr-1); |
- sqlite3VdbeChangeP5(v, affinity); |
- }else{ |
- assert( destIfNull==destIfFalse ); |
- sqlite3VdbeAddOp4(v, OP_Ne, r1, destIfFalse, r2, |
- (void*)pColl, P4_COLLSEQ); VdbeCoverage(v); |
- sqlite3VdbeChangeP5(v, affinity | SQLITE_JUMPIFNULL); |
- } |
- sqlite3ReleaseTempReg(pParse, regToFree); |
- } |
- if( regCkNull ){ |
- sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v); |
- sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse); |
- } |
- sqlite3VdbeResolveLabel(v, labelOk); |
- sqlite3ReleaseTempReg(pParse, regCkNull); |
- }else{ |
- |
- /* If the LHS is NULL, then the result is either false or NULL depending |
- ** on whether the RHS is empty or not, respectively. |
- */ |
- if( sqlite3ExprCanBeNull(pExpr->pLeft) ){ |
- if( destIfNull==destIfFalse ){ |
- /* Shortcut for the common case where the false and NULL outcomes are |
- ** the same. */ |
- sqlite3VdbeAddOp2(v, OP_IsNull, r1, destIfNull); VdbeCoverage(v); |
- }else{ |
- int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, r1); VdbeCoverage(v); |
- sqlite3VdbeAddOp2(v, OP_Rewind, pExpr->iTable, destIfFalse); |
- VdbeCoverage(v); |
- sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull); |
- sqlite3VdbeJumpHere(v, addr1); |
- } |
- } |
- |
- if( eType==IN_INDEX_ROWID ){ |
- /* In this case, the RHS is the ROWID of table b-tree |
- */ |
- sqlite3VdbeAddOp2(v, OP_MustBeInt, r1, destIfFalse); VdbeCoverage(v); |
- sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, destIfFalse, r1); |
- VdbeCoverage(v); |
- }else{ |
- /* In this case, the RHS is an index b-tree. |
- */ |
- sqlite3VdbeAddOp4(v, OP_Affinity, r1, 1, 0, &affinity, 1); |
- |
- /* If the set membership test fails, then the result of the |
- ** "x IN (...)" expression must be either 0 or NULL. If the set |
- ** contains no NULL values, then the result is 0. If the set |
- ** contains one or more NULL values, then the result of the |
- ** expression is also NULL. |
- */ |
- assert( destIfFalse!=destIfNull || rRhsHasNull==0 ); |
- if( rRhsHasNull==0 ){ |
- /* This branch runs if it is known at compile time that the RHS |
- ** cannot contain NULL values. This happens as the result |
- ** of a "NOT NULL" constraint in the database schema. |
- ** |
- ** Also run this branch if NULL is equivalent to FALSE |
- ** for this particular IN operator. |
- */ |
- sqlite3VdbeAddOp4Int(v, OP_NotFound, pExpr->iTable, destIfFalse, r1, 1); |
- VdbeCoverage(v); |
- }else{ |
- /* In this branch, the RHS of the IN might contain a NULL and |
- ** the presence of a NULL on the RHS makes a difference in the |
- ** outcome. |
- */ |
- int j1; |
- |
- /* First check to see if the LHS is contained in the RHS. If so, |
- ** then the answer is TRUE the presence of NULLs in the RHS does |
- ** not matter. If the LHS is not contained in the RHS, then the |
- ** answer is NULL if the RHS contains NULLs and the answer is |
- ** FALSE if the RHS is NULL-free. |
- */ |
- j1 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, r1, 1); |
- VdbeCoverage(v); |
- sqlite3VdbeAddOp2(v, OP_IsNull, rRhsHasNull, destIfNull); |
- VdbeCoverage(v); |
- sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse); |
- sqlite3VdbeJumpHere(v, j1); |
- } |
- } |
- } |
- sqlite3ReleaseTempReg(pParse, r1); |
- sqlite3ExprCachePop(pParse); |
- VdbeComment((v, "end IN expr")); |
-} |
-#endif /* SQLITE_OMIT_SUBQUERY */ |
- |
-/* |
-** Duplicate an 8-byte value |
-*/ |
-static char *dup8bytes(Vdbe *v, const char *in){ |
- char *out = sqlite3DbMallocRaw(sqlite3VdbeDb(v), 8); |
- if( out ){ |
- memcpy(out, in, 8); |
- } |
- return out; |
-} |
- |
-#ifndef SQLITE_OMIT_FLOATING_POINT |
-/* |
-** Generate an instruction that will put the floating point |
-** value described by z[0..n-1] into register iMem. |
-** |
-** The z[] string will probably not be zero-terminated. But the |
-** z[n] character is guaranteed to be something that does not look |
-** like the continuation of the number. |
-*/ |
-static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){ |
- if( ALWAYS(z!=0) ){ |
- double value; |
- char *zV; |
- sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8); |
- assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */ |
- if( negateFlag ) value = -value; |
- zV = dup8bytes(v, (char*)&value); |
- sqlite3VdbeAddOp4(v, OP_Real, 0, iMem, 0, zV, P4_REAL); |
- } |
-} |
-#endif |
- |
- |
-/* |
-** Generate an instruction that will put the integer describe by |
-** text z[0..n-1] into register iMem. |
-** |
-** Expr.u.zToken is always UTF8 and zero-terminated. |
-*/ |
-static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){ |
- Vdbe *v = pParse->pVdbe; |
- if( pExpr->flags & EP_IntValue ){ |
- int i = pExpr->u.iValue; |
- assert( i>=0 ); |
- if( negFlag ) i = -i; |
- sqlite3VdbeAddOp2(v, OP_Integer, i, iMem); |
- }else{ |
- int c; |
- i64 value; |
- const char *z = pExpr->u.zToken; |
- assert( z!=0 ); |
- c = sqlite3DecOrHexToI64(z, &value); |
- if( c==0 || (c==2 && negFlag) ){ |
- char *zV; |
- if( negFlag ){ value = c==2 ? SMALLEST_INT64 : -value; } |
- zV = dup8bytes(v, (char*)&value); |
- sqlite3VdbeAddOp4(v, OP_Int64, 0, iMem, 0, zV, P4_INT64); |
- }else{ |
-#ifdef SQLITE_OMIT_FLOATING_POINT |
- sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z); |
-#else |
-#ifndef SQLITE_OMIT_HEX_INTEGER |
- if( sqlite3_strnicmp(z,"0x",2)==0 ){ |
- sqlite3ErrorMsg(pParse, "hex literal too big: %s", z); |
- }else |
-#endif |
- { |
- codeReal(v, z, negFlag, iMem); |
- } |
-#endif |
- } |
- } |
-} |
- |
-/* |
-** Clear a cache entry. |
-*/ |
-static void cacheEntryClear(Parse *pParse, struct yColCache *p){ |
- if( p->tempReg ){ |
- if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){ |
- pParse->aTempReg[pParse->nTempReg++] = p->iReg; |
- } |
- p->tempReg = 0; |
- } |
-} |
- |
- |
-/* |
-** Record in the column cache that a particular column from a |
-** particular table is stored in a particular register. |
-*/ |
-void sqlite3ExprCacheStore(Parse *pParse, int iTab, int iCol, int iReg){ |
- int i; |
- int minLru; |
- int idxLru; |
- struct yColCache *p; |
- |
- assert( iReg>0 ); /* Register numbers are always positive */ |
- assert( iCol>=-1 && iCol<32768 ); /* Finite column numbers */ |
- |
- /* The SQLITE_ColumnCache flag disables the column cache. This is used |
- ** for testing only - to verify that SQLite always gets the same answer |
- ** with and without the column cache. |
- */ |
- if( OptimizationDisabled(pParse->db, SQLITE_ColumnCache) ) return; |
- |
- /* First replace any existing entry. |
- ** |
- ** Actually, the way the column cache is currently used, we are guaranteed |
- ** that the object will never already be in cache. Verify this guarantee. |
- */ |
-#ifndef NDEBUG |
- for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ |
- assert( p->iReg==0 || p->iTable!=iTab || p->iColumn!=iCol ); |
- } |
-#endif |
- |
- /* Find an empty slot and replace it */ |
- for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ |
- if( p->iReg==0 ){ |
- p->iLevel = pParse->iCacheLevel; |
- p->iTable = iTab; |
- p->iColumn = iCol; |
- p->iReg = iReg; |
- p->tempReg = 0; |
- p->lru = pParse->iCacheCnt++; |
- return; |
- } |
- } |
- |
- /* Replace the last recently used */ |
- minLru = 0x7fffffff; |
- idxLru = -1; |
- for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ |
- if( p->lru<minLru ){ |
- idxLru = i; |
- minLru = p->lru; |
- } |
- } |
- if( ALWAYS(idxLru>=0) ){ |
- p = &pParse->aColCache[idxLru]; |
- p->iLevel = pParse->iCacheLevel; |
- p->iTable = iTab; |
- p->iColumn = iCol; |
- p->iReg = iReg; |
- p->tempReg = 0; |
- p->lru = pParse->iCacheCnt++; |
- return; |
- } |
-} |
- |
-/* |
-** Indicate that registers between iReg..iReg+nReg-1 are being overwritten. |
-** Purge the range of registers from the column cache. |
-*/ |
-void sqlite3ExprCacheRemove(Parse *pParse, int iReg, int nReg){ |
- int i; |
- int iLast = iReg + nReg - 1; |
- struct yColCache *p; |
- for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ |
- int r = p->iReg; |
- if( r>=iReg && r<=iLast ){ |
- cacheEntryClear(pParse, p); |
- p->iReg = 0; |
- } |
- } |
-} |
- |
-/* |
-** Remember the current column cache context. Any new entries added |
-** added to the column cache after this call are removed when the |
-** corresponding pop occurs. |
-*/ |
-void sqlite3ExprCachePush(Parse *pParse){ |
- pParse->iCacheLevel++; |
-#ifdef SQLITE_DEBUG |
- if( pParse->db->flags & SQLITE_VdbeAddopTrace ){ |
- printf("PUSH to %d\n", pParse->iCacheLevel); |
- } |
-#endif |
-} |
- |
-/* |
-** Remove from the column cache any entries that were added since the |
-** the previous sqlite3ExprCachePush operation. In other words, restore |
-** the cache to the state it was in prior the most recent Push. |
-*/ |
-void sqlite3ExprCachePop(Parse *pParse){ |
- int i; |
- struct yColCache *p; |
- assert( pParse->iCacheLevel>=1 ); |
- pParse->iCacheLevel--; |
-#ifdef SQLITE_DEBUG |
- if( pParse->db->flags & SQLITE_VdbeAddopTrace ){ |
- printf("POP to %d\n", pParse->iCacheLevel); |
- } |
-#endif |
- for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ |
- if( p->iReg && p->iLevel>pParse->iCacheLevel ){ |
- cacheEntryClear(pParse, p); |
- p->iReg = 0; |
- } |
- } |
-} |
- |
-/* |
-** When a cached column is reused, make sure that its register is |
-** no longer available as a temp register. ticket #3879: that same |
-** register might be in the cache in multiple places, so be sure to |
-** get them all. |
-*/ |
-static void sqlite3ExprCachePinRegister(Parse *pParse, int iReg){ |
- int i; |
- struct yColCache *p; |
- for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ |
- if( p->iReg==iReg ){ |
- p->tempReg = 0; |
- } |
- } |
-} |
- |
-/* |
-** Generate code to extract the value of the iCol-th column of a table. |
-*/ |
-void sqlite3ExprCodeGetColumnOfTable( |
- Vdbe *v, /* The VDBE under construction */ |
- Table *pTab, /* The table containing the value */ |
- int iTabCur, /* The table cursor. Or the PK cursor for WITHOUT ROWID */ |
- int iCol, /* Index of the column to extract */ |
- int regOut /* Extract the value into this register */ |
-){ |
- if( iCol<0 || iCol==pTab->iPKey ){ |
- sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut); |
- }else{ |
- int op = IsVirtual(pTab) ? OP_VColumn : OP_Column; |
- int x = iCol; |
- if( !HasRowid(pTab) ){ |
- x = sqlite3ColumnOfIndex(sqlite3PrimaryKeyIndex(pTab), iCol); |
- } |
- sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut); |
- } |
- if( iCol>=0 ){ |
- sqlite3ColumnDefault(v, pTab, iCol, regOut); |
- } |
-} |
- |
-/* |
-** Generate code that will extract the iColumn-th column from |
-** table pTab and store the column value in a register. An effort |
-** is made to store the column value in register iReg, but this is |
-** not guaranteed. The location of the column value is returned. |
-** |
-** There must be an open cursor to pTab in iTable when this routine |
-** is called. If iColumn<0 then code is generated that extracts the rowid. |
-*/ |
-int sqlite3ExprCodeGetColumn( |
- Parse *pParse, /* Parsing and code generating context */ |
- Table *pTab, /* Description of the table we are reading from */ |
- int iColumn, /* Index of the table column */ |
- int iTable, /* The cursor pointing to the table */ |
- int iReg, /* Store results here */ |
- u8 p5 /* P5 value for OP_Column */ |
-){ |
- Vdbe *v = pParse->pVdbe; |
- int i; |
- struct yColCache *p; |
- |
- for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ |
- if( p->iReg>0 && p->iTable==iTable && p->iColumn==iColumn ){ |
- p->lru = pParse->iCacheCnt++; |
- sqlite3ExprCachePinRegister(pParse, p->iReg); |
- return p->iReg; |
- } |
- } |
- assert( v!=0 ); |
- sqlite3ExprCodeGetColumnOfTable(v, pTab, iTable, iColumn, iReg); |
- if( p5 ){ |
- sqlite3VdbeChangeP5(v, p5); |
- }else{ |
- sqlite3ExprCacheStore(pParse, iTable, iColumn, iReg); |
- } |
- return iReg; |
-} |
- |
-/* |
-** Clear all column cache entries. |
-*/ |
-void sqlite3ExprCacheClear(Parse *pParse){ |
- int i; |
- struct yColCache *p; |
- |
-#if SQLITE_DEBUG |
- if( pParse->db->flags & SQLITE_VdbeAddopTrace ){ |
- printf("CLEAR\n"); |
- } |
-#endif |
- for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ |
- if( p->iReg ){ |
- cacheEntryClear(pParse, p); |
- p->iReg = 0; |
- } |
- } |
-} |
- |
-/* |
-** Record the fact that an affinity change has occurred on iCount |
-** registers starting with iStart. |
-*/ |
-void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){ |
- sqlite3ExprCacheRemove(pParse, iStart, iCount); |
-} |
- |
-/* |
-** Generate code to move content from registers iFrom...iFrom+nReg-1 |
-** over to iTo..iTo+nReg-1. Keep the column cache up-to-date. |
-*/ |
-void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){ |
- assert( iFrom>=iTo+nReg || iFrom+nReg<=iTo ); |
- sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg); |
- sqlite3ExprCacheRemove(pParse, iFrom, nReg); |
-} |
- |
-#if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST) |
-/* |
-** Return true if any register in the range iFrom..iTo (inclusive) |
-** is used as part of the column cache. |
-** |
-** This routine is used within assert() and testcase() macros only |
-** and does not appear in a normal build. |
-*/ |
-static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){ |
- int i; |
- struct yColCache *p; |
- for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ |
- int r = p->iReg; |
- if( r>=iFrom && r<=iTo ) return 1; /*NO_TEST*/ |
- } |
- return 0; |
-} |
-#endif /* SQLITE_DEBUG || SQLITE_COVERAGE_TEST */ |
- |
-/* |
-** Convert an expression node to a TK_REGISTER |
-*/ |
-static void exprToRegister(Expr *p, int iReg){ |
- p->op2 = p->op; |
- p->op = TK_REGISTER; |
- p->iTable = iReg; |
- ExprClearProperty(p, EP_Skip); |
-} |
- |
-/* |
-** Generate code into the current Vdbe to evaluate the given |
-** expression. Attempt to store the results in register "target". |
-** Return the register where results are stored. |
-** |
-** With this routine, there is no guarantee that results will |
-** be stored in target. The result might be stored in some other |
-** register if it is convenient to do so. The calling function |
-** must check the return code and move the results to the desired |
-** register. |
-*/ |
-int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){ |
- Vdbe *v = pParse->pVdbe; /* The VM under construction */ |
- int op; /* The opcode being coded */ |
- int inReg = target; /* Results stored in register inReg */ |
- int regFree1 = 0; /* If non-zero free this temporary register */ |
- int regFree2 = 0; /* If non-zero free this temporary register */ |
- int r1, r2, r3, r4; /* Various register numbers */ |
- sqlite3 *db = pParse->db; /* The database connection */ |
- Expr tempX; /* Temporary expression node */ |
- |
- assert( target>0 && target<=pParse->nMem ); |
- if( v==0 ){ |
- assert( pParse->db->mallocFailed ); |
- return 0; |
- } |
- |
- if( pExpr==0 ){ |
- op = TK_NULL; |
- }else{ |
- op = pExpr->op; |
- } |
- switch( op ){ |
- case TK_AGG_COLUMN: { |
- AggInfo *pAggInfo = pExpr->pAggInfo; |
- struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg]; |
- if( !pAggInfo->directMode ){ |
- assert( pCol->iMem>0 ); |
- inReg = pCol->iMem; |
- break; |
- }else if( pAggInfo->useSortingIdx ){ |
- sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab, |
- pCol->iSorterColumn, target); |
- break; |
- } |
- /* Otherwise, fall thru into the TK_COLUMN case */ |
- } |
- case TK_COLUMN: { |
- int iTab = pExpr->iTable; |
- if( iTab<0 ){ |
- if( pParse->ckBase>0 ){ |
- /* Generating CHECK constraints or inserting into partial index */ |
- inReg = pExpr->iColumn + pParse->ckBase; |
- break; |
- }else{ |
- /* Deleting from a partial index */ |
- iTab = pParse->iPartIdxTab; |
- } |
- } |
- inReg = sqlite3ExprCodeGetColumn(pParse, pExpr->pTab, |
- pExpr->iColumn, iTab, target, |
- pExpr->op2); |
- break; |
- } |
- case TK_INTEGER: { |
- codeInteger(pParse, pExpr, 0, target); |
- break; |
- } |
-#ifndef SQLITE_OMIT_FLOATING_POINT |
- case TK_FLOAT: { |
- assert( !ExprHasProperty(pExpr, EP_IntValue) ); |
- codeReal(v, pExpr->u.zToken, 0, target); |
- break; |
- } |
-#endif |
- case TK_STRING: { |
- assert( !ExprHasProperty(pExpr, EP_IntValue) ); |
- sqlite3VdbeAddOp4(v, OP_String8, 0, target, 0, pExpr->u.zToken, 0); |
- break; |
- } |
- case TK_NULL: { |
- sqlite3VdbeAddOp2(v, OP_Null, 0, target); |
- break; |
- } |
-#ifndef SQLITE_OMIT_BLOB_LITERAL |
- case TK_BLOB: { |
- int n; |
- const char *z; |
- char *zBlob; |
- assert( !ExprHasProperty(pExpr, EP_IntValue) ); |
- assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); |
- assert( pExpr->u.zToken[1]=='\'' ); |
- z = &pExpr->u.zToken[2]; |
- n = sqlite3Strlen30(z) - 1; |
- assert( z[n]=='\'' ); |
- zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n); |
- sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC); |
- break; |
- } |
-#endif |
- case TK_VARIABLE: { |
- assert( !ExprHasProperty(pExpr, EP_IntValue) ); |
- assert( pExpr->u.zToken!=0 ); |
- assert( pExpr->u.zToken[0]!=0 ); |
- sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target); |
- if( pExpr->u.zToken[1]!=0 ){ |
- assert( pExpr->u.zToken[0]=='?' |
- || strcmp(pExpr->u.zToken, pParse->azVar[pExpr->iColumn-1])==0 ); |
- sqlite3VdbeChangeP4(v, -1, pParse->azVar[pExpr->iColumn-1], P4_STATIC); |
- } |
- break; |
- } |
- case TK_REGISTER: { |
- inReg = pExpr->iTable; |
- break; |
- } |
- case TK_AS: { |
- inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); |
- break; |
- } |
-#ifndef SQLITE_OMIT_CAST |
- case TK_CAST: { |
- /* Expressions of the form: CAST(pLeft AS token) */ |
- inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); |
- if( inReg!=target ){ |
- sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target); |
- inReg = target; |
- } |
- sqlite3VdbeAddOp2(v, OP_Cast, target, |
- sqlite3AffinityType(pExpr->u.zToken, 0)); |
- testcase( usedAsColumnCache(pParse, inReg, inReg) ); |
- sqlite3ExprCacheAffinityChange(pParse, inReg, 1); |
- break; |
- } |
-#endif /* SQLITE_OMIT_CAST */ |
- case TK_LT: |
- case TK_LE: |
- case TK_GT: |
- case TK_GE: |
- case TK_NE: |
- case TK_EQ: { |
- r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); |
- r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); |
- codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, |
- r1, r2, inReg, SQLITE_STOREP2); |
- assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); |
- assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); |
- assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); |
- assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); |
- assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); |
- assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); |
- testcase( regFree1==0 ); |
- testcase( regFree2==0 ); |
- break; |
- } |
- case TK_IS: |
- case TK_ISNOT: { |
- testcase( op==TK_IS ); |
- testcase( op==TK_ISNOT ); |
- r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); |
- r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); |
- op = (op==TK_IS) ? TK_EQ : TK_NE; |
- codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, |
- r1, r2, inReg, SQLITE_STOREP2 | SQLITE_NULLEQ); |
- VdbeCoverageIf(v, op==TK_EQ); |
- VdbeCoverageIf(v, op==TK_NE); |
- testcase( regFree1==0 ); |
- testcase( regFree2==0 ); |
- break; |
- } |
- case TK_AND: |
- case TK_OR: |
- case TK_PLUS: |
- case TK_STAR: |
- case TK_MINUS: |
- case TK_REM: |
- case TK_BITAND: |
- case TK_BITOR: |
- case TK_SLASH: |
- case TK_LSHIFT: |
- case TK_RSHIFT: |
- case TK_CONCAT: { |
- assert( TK_AND==OP_And ); testcase( op==TK_AND ); |
- assert( TK_OR==OP_Or ); testcase( op==TK_OR ); |
- assert( TK_PLUS==OP_Add ); testcase( op==TK_PLUS ); |
- assert( TK_MINUS==OP_Subtract ); testcase( op==TK_MINUS ); |
- assert( TK_REM==OP_Remainder ); testcase( op==TK_REM ); |
- assert( TK_BITAND==OP_BitAnd ); testcase( op==TK_BITAND ); |
- assert( TK_BITOR==OP_BitOr ); testcase( op==TK_BITOR ); |
- assert( TK_SLASH==OP_Divide ); testcase( op==TK_SLASH ); |
- assert( TK_LSHIFT==OP_ShiftLeft ); testcase( op==TK_LSHIFT ); |
- assert( TK_RSHIFT==OP_ShiftRight ); testcase( op==TK_RSHIFT ); |
- assert( TK_CONCAT==OP_Concat ); testcase( op==TK_CONCAT ); |
- r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); |
- r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); |
- sqlite3VdbeAddOp3(v, op, r2, r1, target); |
- testcase( regFree1==0 ); |
- testcase( regFree2==0 ); |
- break; |
- } |
- case TK_UMINUS: { |
- Expr *pLeft = pExpr->pLeft; |
- assert( pLeft ); |
- if( pLeft->op==TK_INTEGER ){ |
- codeInteger(pParse, pLeft, 1, target); |
-#ifndef SQLITE_OMIT_FLOATING_POINT |
- }else if( pLeft->op==TK_FLOAT ){ |
- assert( !ExprHasProperty(pExpr, EP_IntValue) ); |
- codeReal(v, pLeft->u.zToken, 1, target); |
-#endif |
- }else{ |
- tempX.op = TK_INTEGER; |
- tempX.flags = EP_IntValue|EP_TokenOnly; |
- tempX.u.iValue = 0; |
- r1 = sqlite3ExprCodeTemp(pParse, &tempX, ®Free1); |
- r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free2); |
- sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target); |
- testcase( regFree2==0 ); |
- } |
- inReg = target; |
- break; |
- } |
- case TK_BITNOT: |
- case TK_NOT: { |
- assert( TK_BITNOT==OP_BitNot ); testcase( op==TK_BITNOT ); |
- assert( TK_NOT==OP_Not ); testcase( op==TK_NOT ); |
- r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); |
- testcase( regFree1==0 ); |
- inReg = target; |
- sqlite3VdbeAddOp2(v, op, r1, inReg); |
- break; |
- } |
- case TK_ISNULL: |
- case TK_NOTNULL: { |
- int addr; |
- assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); |
- assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); |
- sqlite3VdbeAddOp2(v, OP_Integer, 1, target); |
- r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); |
- testcase( regFree1==0 ); |
- addr = sqlite3VdbeAddOp1(v, op, r1); |
- VdbeCoverageIf(v, op==TK_ISNULL); |
- VdbeCoverageIf(v, op==TK_NOTNULL); |
- sqlite3VdbeAddOp2(v, OP_Integer, 0, target); |
- sqlite3VdbeJumpHere(v, addr); |
- break; |
- } |
- case TK_AGG_FUNCTION: { |
- AggInfo *pInfo = pExpr->pAggInfo; |
- if( pInfo==0 ){ |
- assert( !ExprHasProperty(pExpr, EP_IntValue) ); |
- sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken); |
- }else{ |
- inReg = pInfo->aFunc[pExpr->iAgg].iMem; |
- } |
- break; |
- } |
- case TK_FUNCTION: { |
- ExprList *pFarg; /* List of function arguments */ |
- int nFarg; /* Number of function arguments */ |
- FuncDef *pDef; /* The function definition object */ |
- int nId; /* Length of the function name in bytes */ |
- const char *zId; /* The function name */ |
- u32 constMask = 0; /* Mask of function arguments that are constant */ |
- int i; /* Loop counter */ |
- u8 enc = ENC(db); /* The text encoding used by this database */ |
- CollSeq *pColl = 0; /* A collating sequence */ |
- |
- assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); |
- if( ExprHasProperty(pExpr, EP_TokenOnly) ){ |
- pFarg = 0; |
- }else{ |
- pFarg = pExpr->x.pList; |
- } |
- nFarg = pFarg ? pFarg->nExpr : 0; |
- assert( !ExprHasProperty(pExpr, EP_IntValue) ); |
- zId = pExpr->u.zToken; |
- nId = sqlite3Strlen30(zId); |
- pDef = sqlite3FindFunction(db, zId, nId, nFarg, enc, 0); |
- if( pDef==0 || pDef->xFunc==0 ){ |
- sqlite3ErrorMsg(pParse, "unknown function: %.*s()", nId, zId); |
- break; |
- } |
- |
- /* Attempt a direct implementation of the built-in COALESCE() and |
- ** IFNULL() functions. This avoids unnecessary evaluation of |
- ** arguments past the first non-NULL argument. |
- */ |
- if( pDef->funcFlags & SQLITE_FUNC_COALESCE ){ |
- int endCoalesce = sqlite3VdbeMakeLabel(v); |
- assert( nFarg>=2 ); |
- sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); |
- for(i=1; i<nFarg; i++){ |
- sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce); |
- VdbeCoverage(v); |
- sqlite3ExprCacheRemove(pParse, target, 1); |
- sqlite3ExprCachePush(pParse); |
- sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target); |
- sqlite3ExprCachePop(pParse); |
- } |
- sqlite3VdbeResolveLabel(v, endCoalesce); |
- break; |
- } |
- |
- /* The UNLIKELY() function is a no-op. The result is the value |
- ** of the first argument. |
- */ |
- if( pDef->funcFlags & SQLITE_FUNC_UNLIKELY ){ |
- assert( nFarg>=1 ); |
- sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); |
- break; |
- } |
- |
- for(i=0; i<nFarg; i++){ |
- if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){ |
- testcase( i==31 ); |
- constMask |= MASKBIT32(i); |
- } |
- if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){ |
- pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr); |
- } |
- } |
- if( pFarg ){ |
- if( constMask ){ |
- r1 = pParse->nMem+1; |
- pParse->nMem += nFarg; |
- }else{ |
- r1 = sqlite3GetTempRange(pParse, nFarg); |
- } |
- |
- /* For length() and typeof() functions with a column argument, |
- ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG |
- ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data |
- ** loading. |
- */ |
- if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){ |
- u8 exprOp; |
- assert( nFarg==1 ); |
- assert( pFarg->a[0].pExpr!=0 ); |
- exprOp = pFarg->a[0].pExpr->op; |
- if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){ |
- assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG ); |
- assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG ); |
- testcase( pDef->funcFlags & OPFLAG_LENGTHARG ); |
- pFarg->a[0].pExpr->op2 = |
- pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG); |
- } |
- } |
- |
- sqlite3ExprCachePush(pParse); /* Ticket 2ea2425d34be */ |
- sqlite3ExprCodeExprList(pParse, pFarg, r1, |
- SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR); |
- sqlite3ExprCachePop(pParse); /* Ticket 2ea2425d34be */ |
- }else{ |
- r1 = 0; |
- } |
-#ifndef SQLITE_OMIT_VIRTUALTABLE |
- /* Possibly overload the function if the first argument is |
- ** a virtual table column. |
- ** |
- ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the |
- ** second argument, not the first, as the argument to test to |
- ** see if it is a column in a virtual table. This is done because |
- ** the left operand of infix functions (the operand we want to |
- ** control overloading) ends up as the second argument to the |
- ** function. The expression "A glob B" is equivalent to |
- ** "glob(B,A). We want to use the A in "A glob B" to test |
- ** for function overloading. But we use the B term in "glob(B,A)". |
- */ |
- if( nFarg>=2 && (pExpr->flags & EP_InfixFunc) ){ |
- pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr); |
- }else if( nFarg>0 ){ |
- pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr); |
- } |
-#endif |
- if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){ |
- if( !pColl ) pColl = db->pDfltColl; |
- sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); |
- } |
- sqlite3VdbeAddOp4(v, OP_Function, constMask, r1, target, |
- (char*)pDef, P4_FUNCDEF); |
- sqlite3VdbeChangeP5(v, (u8)nFarg); |
- if( nFarg && constMask==0 ){ |
- sqlite3ReleaseTempRange(pParse, r1, nFarg); |
- } |
- break; |
- } |
-#ifndef SQLITE_OMIT_SUBQUERY |
- case TK_EXISTS: |
- case TK_SELECT: { |
- testcase( op==TK_EXISTS ); |
- testcase( op==TK_SELECT ); |
- inReg = sqlite3CodeSubselect(pParse, pExpr, 0, 0); |
- break; |
- } |
- case TK_IN: { |
- int destIfFalse = sqlite3VdbeMakeLabel(v); |
- int destIfNull = sqlite3VdbeMakeLabel(v); |
- sqlite3VdbeAddOp2(v, OP_Null, 0, target); |
- sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); |
- sqlite3VdbeAddOp2(v, OP_Integer, 1, target); |
- sqlite3VdbeResolveLabel(v, destIfFalse); |
- sqlite3VdbeAddOp2(v, OP_AddImm, target, 0); |
- sqlite3VdbeResolveLabel(v, destIfNull); |
- break; |
- } |
-#endif /* SQLITE_OMIT_SUBQUERY */ |
- |
- |
- /* |
- ** x BETWEEN y AND z |
- ** |
- ** This is equivalent to |
- ** |
- ** x>=y AND x<=z |
- ** |
- ** X is stored in pExpr->pLeft. |
- ** Y is stored in pExpr->pList->a[0].pExpr. |
- ** Z is stored in pExpr->pList->a[1].pExpr. |
- */ |
- case TK_BETWEEN: { |
- Expr *pLeft = pExpr->pLeft; |
- struct ExprList_item *pLItem = pExpr->x.pList->a; |
- Expr *pRight = pLItem->pExpr; |
- |
- r1 = sqlite3ExprCodeTemp(pParse, pLeft, ®Free1); |
- r2 = sqlite3ExprCodeTemp(pParse, pRight, ®Free2); |
- testcase( regFree1==0 ); |
- testcase( regFree2==0 ); |
- r3 = sqlite3GetTempReg(pParse); |
- r4 = sqlite3GetTempReg(pParse); |
- codeCompare(pParse, pLeft, pRight, OP_Ge, |
- r1, r2, r3, SQLITE_STOREP2); VdbeCoverage(v); |
- pLItem++; |
- pRight = pLItem->pExpr; |
- sqlite3ReleaseTempReg(pParse, regFree2); |
- r2 = sqlite3ExprCodeTemp(pParse, pRight, ®Free2); |
- testcase( regFree2==0 ); |
- codeCompare(pParse, pLeft, pRight, OP_Le, r1, r2, r4, SQLITE_STOREP2); |
- VdbeCoverage(v); |
- sqlite3VdbeAddOp3(v, OP_And, r3, r4, target); |
- sqlite3ReleaseTempReg(pParse, r3); |
- sqlite3ReleaseTempReg(pParse, r4); |
- break; |
- } |
- case TK_COLLATE: |
- case TK_UPLUS: { |
- inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); |
- break; |
- } |
- |
- case TK_TRIGGER: { |
- /* If the opcode is TK_TRIGGER, then the expression is a reference |
- ** to a column in the new.* or old.* pseudo-tables available to |
- ** trigger programs. In this case Expr.iTable is set to 1 for the |
- ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn |
- ** is set to the column of the pseudo-table to read, or to -1 to |
- ** read the rowid field. |
- ** |
- ** The expression is implemented using an OP_Param opcode. The p1 |
- ** parameter is set to 0 for an old.rowid reference, or to (i+1) |
- ** to reference another column of the old.* pseudo-table, where |
- ** i is the index of the column. For a new.rowid reference, p1 is |
- ** set to (n+1), where n is the number of columns in each pseudo-table. |
- ** For a reference to any other column in the new.* pseudo-table, p1 |
- ** is set to (n+2+i), where n and i are as defined previously. For |
- ** example, if the table on which triggers are being fired is |
- ** declared as: |
- ** |
- ** CREATE TABLE t1(a, b); |
- ** |
- ** Then p1 is interpreted as follows: |
- ** |
- ** p1==0 -> old.rowid p1==3 -> new.rowid |
- ** p1==1 -> old.a p1==4 -> new.a |
- ** p1==2 -> old.b p1==5 -> new.b |
- */ |
- Table *pTab = pExpr->pTab; |
- int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn; |
- |
- assert( pExpr->iTable==0 || pExpr->iTable==1 ); |
- assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol ); |
- assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey ); |
- assert( p1>=0 && p1<(pTab->nCol*2+2) ); |
- |
- sqlite3VdbeAddOp2(v, OP_Param, p1, target); |
- VdbeComment((v, "%s.%s -> $%d", |
- (pExpr->iTable ? "new" : "old"), |
- (pExpr->iColumn<0 ? "rowid" : pExpr->pTab->aCol[pExpr->iColumn].zName), |
- target |
- )); |
- |
-#ifndef SQLITE_OMIT_FLOATING_POINT |
- /* If the column has REAL affinity, it may currently be stored as an |
- ** integer. Use OP_RealAffinity to make sure it is really real. */ |
- if( pExpr->iColumn>=0 |
- && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL |
- ){ |
- sqlite3VdbeAddOp1(v, OP_RealAffinity, target); |
- } |
-#endif |
- break; |
- } |
- |
- |
- /* |
- ** Form A: |
- ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END |
- ** |
- ** Form B: |
- ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END |
- ** |
- ** Form A is can be transformed into the equivalent form B as follows: |
- ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ... |
- ** WHEN x=eN THEN rN ELSE y END |
- ** |
- ** X (if it exists) is in pExpr->pLeft. |
- ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is |
- ** odd. The Y is also optional. If the number of elements in x.pList |
- ** is even, then Y is omitted and the "otherwise" result is NULL. |
- ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1]. |
- ** |
- ** The result of the expression is the Ri for the first matching Ei, |
- ** or if there is no matching Ei, the ELSE term Y, or if there is |
- ** no ELSE term, NULL. |
- */ |
- default: assert( op==TK_CASE ); { |
- int endLabel; /* GOTO label for end of CASE stmt */ |
- int nextCase; /* GOTO label for next WHEN clause */ |
- int nExpr; /* 2x number of WHEN terms */ |
- int i; /* Loop counter */ |
- ExprList *pEList; /* List of WHEN terms */ |
- struct ExprList_item *aListelem; /* Array of WHEN terms */ |
- Expr opCompare; /* The X==Ei expression */ |
- Expr *pX; /* The X expression */ |
- Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */ |
- VVA_ONLY( int iCacheLevel = pParse->iCacheLevel; ) |
- |
- assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList ); |
- assert(pExpr->x.pList->nExpr > 0); |
- pEList = pExpr->x.pList; |
- aListelem = pEList->a; |
- nExpr = pEList->nExpr; |
- endLabel = sqlite3VdbeMakeLabel(v); |
- if( (pX = pExpr->pLeft)!=0 ){ |
- tempX = *pX; |
- testcase( pX->op==TK_COLUMN ); |
- exprToRegister(&tempX, sqlite3ExprCodeTemp(pParse, pX, ®Free1)); |
- testcase( regFree1==0 ); |
- opCompare.op = TK_EQ; |
- opCompare.pLeft = &tempX; |
- pTest = &opCompare; |
- /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001: |
- ** The value in regFree1 might get SCopy-ed into the file result. |
- ** So make sure that the regFree1 register is not reused for other |
- ** purposes and possibly overwritten. */ |
- regFree1 = 0; |
- } |
- for(i=0; i<nExpr-1; i=i+2){ |
- sqlite3ExprCachePush(pParse); |
- if( pX ){ |
- assert( pTest!=0 ); |
- opCompare.pRight = aListelem[i].pExpr; |
- }else{ |
- pTest = aListelem[i].pExpr; |
- } |
- nextCase = sqlite3VdbeMakeLabel(v); |
- testcase( pTest->op==TK_COLUMN ); |
- sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL); |
- testcase( aListelem[i+1].pExpr->op==TK_COLUMN ); |
- sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target); |
- sqlite3VdbeAddOp2(v, OP_Goto, 0, endLabel); |
- sqlite3ExprCachePop(pParse); |
- sqlite3VdbeResolveLabel(v, nextCase); |
- } |
- if( (nExpr&1)!=0 ){ |
- sqlite3ExprCachePush(pParse); |
- sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target); |
- sqlite3ExprCachePop(pParse); |
- }else{ |
- sqlite3VdbeAddOp2(v, OP_Null, 0, target); |
- } |
- assert( db->mallocFailed || pParse->nErr>0 |
- || pParse->iCacheLevel==iCacheLevel ); |
- sqlite3VdbeResolveLabel(v, endLabel); |
- break; |
- } |
-#ifndef SQLITE_OMIT_TRIGGER |
- case TK_RAISE: { |
- assert( pExpr->affinity==OE_Rollback |
- || pExpr->affinity==OE_Abort |
- || pExpr->affinity==OE_Fail |
- || pExpr->affinity==OE_Ignore |
- ); |
- if( !pParse->pTriggerTab ){ |
- sqlite3ErrorMsg(pParse, |
- "RAISE() may only be used within a trigger-program"); |
- return 0; |
- } |
- if( pExpr->affinity==OE_Abort ){ |
- sqlite3MayAbort(pParse); |
- } |
- assert( !ExprHasProperty(pExpr, EP_IntValue) ); |
- if( pExpr->affinity==OE_Ignore ){ |
- sqlite3VdbeAddOp4( |
- v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0); |
- VdbeCoverage(v); |
- }else{ |
- sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_TRIGGER, |
- pExpr->affinity, pExpr->u.zToken, 0, 0); |
- } |
- |
- break; |
- } |
-#endif |
- } |
- sqlite3ReleaseTempReg(pParse, regFree1); |
- sqlite3ReleaseTempReg(pParse, regFree2); |
- return inReg; |
-} |
- |
-/* |
-** Factor out the code of the given expression to initialization time. |
-*/ |
-void sqlite3ExprCodeAtInit( |
- Parse *pParse, /* Parsing context */ |
- Expr *pExpr, /* The expression to code when the VDBE initializes */ |
- int regDest, /* Store the value in this register */ |
- u8 reusable /* True if this expression is reusable */ |
-){ |
- ExprList *p; |
- assert( ConstFactorOk(pParse) ); |
- p = pParse->pConstExpr; |
- pExpr = sqlite3ExprDup(pParse->db, pExpr, 0); |
- p = sqlite3ExprListAppend(pParse, p, pExpr); |
- if( p ){ |
- struct ExprList_item *pItem = &p->a[p->nExpr-1]; |
- pItem->u.iConstExprReg = regDest; |
- pItem->reusable = reusable; |
- } |
- pParse->pConstExpr = p; |
-} |
- |
-/* |
-** Generate code to evaluate an expression and store the results |
-** into a register. Return the register number where the results |
-** are stored. |
-** |
-** If the register is a temporary register that can be deallocated, |
-** then write its number into *pReg. If the result register is not |
-** a temporary, then set *pReg to zero. |
-** |
-** If pExpr is a constant, then this routine might generate this |
-** code to fill the register in the initialization section of the |
-** VDBE program, in order to factor it out of the evaluation loop. |
-*/ |
-int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){ |
- int r2; |
- pExpr = sqlite3ExprSkipCollate(pExpr); |
- if( ConstFactorOk(pParse) |
- && pExpr->op!=TK_REGISTER |
- && sqlite3ExprIsConstantNotJoin(pExpr) |
- ){ |
- ExprList *p = pParse->pConstExpr; |
- int i; |
- *pReg = 0; |
- if( p ){ |
- struct ExprList_item *pItem; |
- for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){ |
- if( pItem->reusable && sqlite3ExprCompare(pItem->pExpr,pExpr,-1)==0 ){ |
- return pItem->u.iConstExprReg; |
- } |
- } |
- } |
- r2 = ++pParse->nMem; |
- sqlite3ExprCodeAtInit(pParse, pExpr, r2, 1); |
- }else{ |
- int r1 = sqlite3GetTempReg(pParse); |
- r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); |
- if( r2==r1 ){ |
- *pReg = r1; |
- }else{ |
- sqlite3ReleaseTempReg(pParse, r1); |
- *pReg = 0; |
- } |
- } |
- return r2; |
-} |
- |
-/* |
-** Generate code that will evaluate expression pExpr and store the |
-** results in register target. The results are guaranteed to appear |
-** in register target. |
-*/ |
-void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){ |
- int inReg; |
- |
- assert( target>0 && target<=pParse->nMem ); |
- if( pExpr && pExpr->op==TK_REGISTER ){ |
- sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target); |
- }else{ |
- inReg = sqlite3ExprCodeTarget(pParse, pExpr, target); |
- assert( pParse->pVdbe || pParse->db->mallocFailed ); |
- if( inReg!=target && pParse->pVdbe ){ |
- sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target); |
- } |
- } |
-} |
- |
-/* |
-** Generate code that will evaluate expression pExpr and store the |
-** results in register target. The results are guaranteed to appear |
-** in register target. If the expression is constant, then this routine |
-** might choose to code the expression at initialization time. |
-*/ |
-void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){ |
- if( pParse->okConstFactor && sqlite3ExprIsConstant(pExpr) ){ |
- sqlite3ExprCodeAtInit(pParse, pExpr, target, 0); |
- }else{ |
- sqlite3ExprCode(pParse, pExpr, target); |
- } |
-} |
- |
-/* |
-** Generate code that evaluates the given expression and puts the result |
-** in register target. |
-** |
-** Also make a copy of the expression results into another "cache" register |
-** and modify the expression so that the next time it is evaluated, |
-** the result is a copy of the cache register. |
-** |
-** This routine is used for expressions that are used multiple |
-** times. They are evaluated once and the results of the expression |
-** are reused. |
-*/ |
-void sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){ |
- Vdbe *v = pParse->pVdbe; |
- int iMem; |
- |
- assert( target>0 ); |
- assert( pExpr->op!=TK_REGISTER ); |
- sqlite3ExprCode(pParse, pExpr, target); |
- iMem = ++pParse->nMem; |
- sqlite3VdbeAddOp2(v, OP_Copy, target, iMem); |
- exprToRegister(pExpr, iMem); |
-} |
- |
-#ifdef SQLITE_DEBUG |
-/* |
-** Generate a human-readable explanation of an expression tree. |
-*/ |
-void sqlite3TreeViewExpr(TreeView *pView, const Expr *pExpr, u8 moreToFollow){ |
- const char *zBinOp = 0; /* Binary operator */ |
- const char *zUniOp = 0; /* Unary operator */ |
- pView = sqlite3TreeViewPush(pView, moreToFollow); |
- if( pExpr==0 ){ |
- sqlite3TreeViewLine(pView, "nil"); |
- sqlite3TreeViewPop(pView); |
- return; |
- } |
- switch( pExpr->op ){ |
- case TK_AGG_COLUMN: { |
- sqlite3TreeViewLine(pView, "AGG{%d:%d}", |
- pExpr->iTable, pExpr->iColumn); |
- break; |
- } |
- case TK_COLUMN: { |
- if( pExpr->iTable<0 ){ |
- /* This only happens when coding check constraints */ |
- sqlite3TreeViewLine(pView, "COLUMN(%d)", pExpr->iColumn); |
- }else{ |
- sqlite3TreeViewLine(pView, "{%d:%d}", |
- pExpr->iTable, pExpr->iColumn); |
- } |
- break; |
- } |
- case TK_INTEGER: { |
- if( pExpr->flags & EP_IntValue ){ |
- sqlite3TreeViewLine(pView, "%d", pExpr->u.iValue); |
- }else{ |
- sqlite3TreeViewLine(pView, "%s", pExpr->u.zToken); |
- } |
- break; |
- } |
-#ifndef SQLITE_OMIT_FLOATING_POINT |
- case TK_FLOAT: { |
- sqlite3TreeViewLine(pView,"%s", pExpr->u.zToken); |
- break; |
- } |
-#endif |
- case TK_STRING: { |
- sqlite3TreeViewLine(pView,"%Q", pExpr->u.zToken); |
- break; |
- } |
- case TK_NULL: { |
- sqlite3TreeViewLine(pView,"NULL"); |
- break; |
- } |
-#ifndef SQLITE_OMIT_BLOB_LITERAL |
- case TK_BLOB: { |
- sqlite3TreeViewLine(pView,"%s", pExpr->u.zToken); |
- break; |
- } |
-#endif |
- case TK_VARIABLE: { |
- sqlite3TreeViewLine(pView,"VARIABLE(%s,%d)", |
- pExpr->u.zToken, pExpr->iColumn); |
- break; |
- } |
- case TK_REGISTER: { |
- sqlite3TreeViewLine(pView,"REGISTER(%d)", pExpr->iTable); |
- break; |
- } |
- case TK_AS: { |
- sqlite3TreeViewLine(pView,"AS %Q", pExpr->u.zToken); |
- sqlite3TreeViewExpr(pView, pExpr->pLeft, 0); |
- break; |
- } |
- case TK_ID: { |
- sqlite3TreeViewLine(pView,"ID %Q", pExpr->u.zToken); |
- break; |
- } |
-#ifndef SQLITE_OMIT_CAST |
- case TK_CAST: { |
- /* Expressions of the form: CAST(pLeft AS token) */ |
- sqlite3TreeViewLine(pView,"CAST %Q", pExpr->u.zToken); |
- sqlite3TreeViewExpr(pView, pExpr->pLeft, 0); |
- break; |
- } |
-#endif /* SQLITE_OMIT_CAST */ |
- case TK_LT: zBinOp = "LT"; break; |
- case TK_LE: zBinOp = "LE"; break; |
- case TK_GT: zBinOp = "GT"; break; |
- case TK_GE: zBinOp = "GE"; break; |
- case TK_NE: zBinOp = "NE"; break; |
- case TK_EQ: zBinOp = "EQ"; break; |
- case TK_IS: zBinOp = "IS"; break; |
- case TK_ISNOT: zBinOp = "ISNOT"; break; |
- case TK_AND: zBinOp = "AND"; break; |
- case TK_OR: zBinOp = "OR"; break; |
- case TK_PLUS: zBinOp = "ADD"; break; |
- case TK_STAR: zBinOp = "MUL"; break; |
- case TK_MINUS: zBinOp = "SUB"; break; |
- case TK_REM: zBinOp = "REM"; break; |
- case TK_BITAND: zBinOp = "BITAND"; break; |
- case TK_BITOR: zBinOp = "BITOR"; break; |
- case TK_SLASH: zBinOp = "DIV"; break; |
- case TK_LSHIFT: zBinOp = "LSHIFT"; break; |
- case TK_RSHIFT: zBinOp = "RSHIFT"; break; |
- case TK_CONCAT: zBinOp = "CONCAT"; break; |
- case TK_DOT: zBinOp = "DOT"; break; |
- |
- case TK_UMINUS: zUniOp = "UMINUS"; break; |
- case TK_UPLUS: zUniOp = "UPLUS"; break; |
- case TK_BITNOT: zUniOp = "BITNOT"; break; |
- case TK_NOT: zUniOp = "NOT"; break; |
- case TK_ISNULL: zUniOp = "ISNULL"; break; |
- case TK_NOTNULL: zUniOp = "NOTNULL"; break; |
- |
- case TK_COLLATE: { |
- sqlite3TreeViewLine(pView, "COLLATE %Q", pExpr->u.zToken); |
- sqlite3TreeViewExpr(pView, pExpr->pLeft, 0); |
- break; |
- } |
- |
- case TK_AGG_FUNCTION: |
- case TK_FUNCTION: { |
- ExprList *pFarg; /* List of function arguments */ |
- if( ExprHasProperty(pExpr, EP_TokenOnly) ){ |
- pFarg = 0; |
- }else{ |
- pFarg = pExpr->x.pList; |
- } |
- if( pExpr->op==TK_AGG_FUNCTION ){ |
- sqlite3TreeViewLine(pView, "AGG_FUNCTION%d %Q", |
- pExpr->op2, pExpr->u.zToken); |
- }else{ |
- sqlite3TreeViewLine(pView, "FUNCTION %Q", pExpr->u.zToken); |
- } |
- if( pFarg ){ |
- sqlite3TreeViewExprList(pView, pFarg, 0, 0); |
- } |
- break; |
- } |
-#ifndef SQLITE_OMIT_SUBQUERY |
- case TK_EXISTS: { |
- sqlite3TreeViewLine(pView, "EXISTS-expr"); |
- sqlite3TreeViewSelect(pView, pExpr->x.pSelect, 0); |
- break; |
- } |
- case TK_SELECT: { |
- sqlite3TreeViewLine(pView, "SELECT-expr"); |
- sqlite3TreeViewSelect(pView, pExpr->x.pSelect, 0); |
- break; |
- } |
- case TK_IN: { |
- sqlite3TreeViewLine(pView, "IN"); |
- sqlite3TreeViewExpr(pView, pExpr->pLeft, 1); |
- if( ExprHasProperty(pExpr, EP_xIsSelect) ){ |
- sqlite3TreeViewSelect(pView, pExpr->x.pSelect, 0); |
- }else{ |
- sqlite3TreeViewExprList(pView, pExpr->x.pList, 0, 0); |
- } |
- break; |
- } |
-#endif /* SQLITE_OMIT_SUBQUERY */ |
- |
- /* |
- ** x BETWEEN y AND z |
- ** |
- ** This is equivalent to |
- ** |
- ** x>=y AND x<=z |
- ** |
- ** X is stored in pExpr->pLeft. |
- ** Y is stored in pExpr->pList->a[0].pExpr. |
- ** Z is stored in pExpr->pList->a[1].pExpr. |
- */ |
- case TK_BETWEEN: { |
- Expr *pX = pExpr->pLeft; |
- Expr *pY = pExpr->x.pList->a[0].pExpr; |
- Expr *pZ = pExpr->x.pList->a[1].pExpr; |
- sqlite3TreeViewLine(pView, "BETWEEN"); |
- sqlite3TreeViewExpr(pView, pX, 1); |
- sqlite3TreeViewExpr(pView, pY, 1); |
- sqlite3TreeViewExpr(pView, pZ, 0); |
- break; |
- } |
- case TK_TRIGGER: { |
- /* If the opcode is TK_TRIGGER, then the expression is a reference |
- ** to a column in the new.* or old.* pseudo-tables available to |
- ** trigger programs. In this case Expr.iTable is set to 1 for the |
- ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn |
- ** is set to the column of the pseudo-table to read, or to -1 to |
- ** read the rowid field. |
- */ |
- sqlite3TreeViewLine(pView, "%s(%d)", |
- pExpr->iTable ? "NEW" : "OLD", pExpr->iColumn); |
- break; |
- } |
- case TK_CASE: { |
- sqlite3TreeViewLine(pView, "CASE"); |
- sqlite3TreeViewExpr(pView, pExpr->pLeft, 1); |
- sqlite3TreeViewExprList(pView, pExpr->x.pList, 0, 0); |
- break; |
- } |
-#ifndef SQLITE_OMIT_TRIGGER |
- case TK_RAISE: { |
- const char *zType = "unk"; |
- switch( pExpr->affinity ){ |
- case OE_Rollback: zType = "rollback"; break; |
- case OE_Abort: zType = "abort"; break; |
- case OE_Fail: zType = "fail"; break; |
- case OE_Ignore: zType = "ignore"; break; |
- } |
- sqlite3TreeViewLine(pView, "RAISE %s(%Q)", zType, pExpr->u.zToken); |
- break; |
- } |
-#endif |
- default: { |
- sqlite3TreeViewLine(pView, "op=%d", pExpr->op); |
- break; |
- } |
- } |
- if( zBinOp ){ |
- sqlite3TreeViewLine(pView, "%s", zBinOp); |
- sqlite3TreeViewExpr(pView, pExpr->pLeft, 1); |
- sqlite3TreeViewExpr(pView, pExpr->pRight, 0); |
- }else if( zUniOp ){ |
- sqlite3TreeViewLine(pView, "%s", zUniOp); |
- sqlite3TreeViewExpr(pView, pExpr->pLeft, 0); |
- } |
- sqlite3TreeViewPop(pView); |
-} |
-#endif /* SQLITE_DEBUG */ |
- |
-#ifdef SQLITE_DEBUG |
-/* |
-** Generate a human-readable explanation of an expression list. |
-*/ |
-void sqlite3TreeViewExprList( |
- TreeView *pView, |
- const ExprList *pList, |
- u8 moreToFollow, |
- const char *zLabel |
-){ |
- int i; |
- pView = sqlite3TreeViewPush(pView, moreToFollow); |
- if( zLabel==0 || zLabel[0]==0 ) zLabel = "LIST"; |
- if( pList==0 ){ |
- sqlite3TreeViewLine(pView, "%s (empty)", zLabel); |
- }else{ |
- sqlite3TreeViewLine(pView, "%s", zLabel); |
- for(i=0; i<pList->nExpr; i++){ |
- sqlite3TreeViewExpr(pView, pList->a[i].pExpr, i<pList->nExpr-1); |
-#if 0 |
- if( pList->a[i].zName ){ |
- sqlite3ExplainPrintf(pOut, " AS %s", pList->a[i].zName); |
- } |
- if( pList->a[i].bSpanIsTab ){ |
- sqlite3ExplainPrintf(pOut, " (%s)", pList->a[i].zSpan); |
- } |
-#endif |
- } |
- } |
- sqlite3TreeViewPop(pView); |
-} |
-#endif /* SQLITE_DEBUG */ |
- |
-/* |
-** Generate code that pushes the value of every element of the given |
-** expression list into a sequence of registers beginning at target. |
-** |
-** Return the number of elements evaluated. |
-** |
-** The SQLITE_ECEL_DUP flag prevents the arguments from being |
-** filled using OP_SCopy. OP_Copy must be used instead. |
-** |
-** The SQLITE_ECEL_FACTOR argument allows constant arguments to be |
-** factored out into initialization code. |
-*/ |
-int sqlite3ExprCodeExprList( |
- Parse *pParse, /* Parsing context */ |
- ExprList *pList, /* The expression list to be coded */ |
- int target, /* Where to write results */ |
- u8 flags /* SQLITE_ECEL_* flags */ |
-){ |
- struct ExprList_item *pItem; |
- int i, n; |
- u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy; |
- assert( pList!=0 ); |
- assert( target>0 ); |
- assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */ |
- n = pList->nExpr; |
- if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR; |
- for(pItem=pList->a, i=0; i<n; i++, pItem++){ |
- Expr *pExpr = pItem->pExpr; |
- if( (flags & SQLITE_ECEL_FACTOR)!=0 && sqlite3ExprIsConstant(pExpr) ){ |
- sqlite3ExprCodeAtInit(pParse, pExpr, target+i, 0); |
- }else{ |
- int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i); |
- if( inReg!=target+i ){ |
- VdbeOp *pOp; |
- Vdbe *v = pParse->pVdbe; |
- if( copyOp==OP_Copy |
- && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy |
- && pOp->p1+pOp->p3+1==inReg |
- && pOp->p2+pOp->p3+1==target+i |
- ){ |
- pOp->p3++; |
- }else{ |
- sqlite3VdbeAddOp2(v, copyOp, inReg, target+i); |
- } |
- } |
- } |
- } |
- return n; |
-} |
- |
-/* |
-** Generate code for a BETWEEN operator. |
-** |
-** x BETWEEN y AND z |
-** |
-** The above is equivalent to |
-** |
-** x>=y AND x<=z |
-** |
-** Code it as such, taking care to do the common subexpression |
-** elimination of x. |
-*/ |
-static void exprCodeBetween( |
- Parse *pParse, /* Parsing and code generating context */ |
- Expr *pExpr, /* The BETWEEN expression */ |
- int dest, /* Jump here if the jump is taken */ |
- int jumpIfTrue, /* Take the jump if the BETWEEN is true */ |
- int jumpIfNull /* Take the jump if the BETWEEN is NULL */ |
-){ |
- Expr exprAnd; /* The AND operator in x>=y AND x<=z */ |
- Expr compLeft; /* The x>=y term */ |
- Expr compRight; /* The x<=z term */ |
- Expr exprX; /* The x subexpression */ |
- int regFree1 = 0; /* Temporary use register */ |
- |
- assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); |
- exprX = *pExpr->pLeft; |
- exprAnd.op = TK_AND; |
- exprAnd.pLeft = &compLeft; |
- exprAnd.pRight = &compRight; |
- compLeft.op = TK_GE; |
- compLeft.pLeft = &exprX; |
- compLeft.pRight = pExpr->x.pList->a[0].pExpr; |
- compRight.op = TK_LE; |
- compRight.pLeft = &exprX; |
- compRight.pRight = pExpr->x.pList->a[1].pExpr; |
- exprToRegister(&exprX, sqlite3ExprCodeTemp(pParse, &exprX, ®Free1)); |
- if( jumpIfTrue ){ |
- sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull); |
- }else{ |
- sqlite3ExprIfFalse(pParse, &exprAnd, dest, jumpIfNull); |
- } |
- sqlite3ReleaseTempReg(pParse, regFree1); |
- |
- /* Ensure adequate test coverage */ |
- testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1==0 ); |
- testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1!=0 ); |
- testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1==0 ); |
- testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1!=0 ); |
- testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1==0 ); |
- testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1!=0 ); |
- testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1==0 ); |
- testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1!=0 ); |
-} |
- |
-/* |
-** Generate code for a boolean expression such that a jump is made |
-** to the label "dest" if the expression is true but execution |
-** continues straight thru if the expression is false. |
-** |
-** If the expression evaluates to NULL (neither true nor false), then |
-** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL. |
-** |
-** This code depends on the fact that certain token values (ex: TK_EQ) |
-** are the same as opcode values (ex: OP_Eq) that implement the corresponding |
-** operation. Special comments in vdbe.c and the mkopcodeh.awk script in |
-** the make process cause these values to align. Assert()s in the code |
-** below verify that the numbers are aligned correctly. |
-*/ |
-void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ |
- Vdbe *v = pParse->pVdbe; |
- int op = 0; |
- int regFree1 = 0; |
- int regFree2 = 0; |
- int r1, r2; |
- |
- assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); |
- if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ |
- if( NEVER(pExpr==0) ) return; /* No way this can happen */ |
- op = pExpr->op; |
- switch( op ){ |
- case TK_AND: { |
- int d2 = sqlite3VdbeMakeLabel(v); |
- testcase( jumpIfNull==0 ); |
- sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL); |
- sqlite3ExprCachePush(pParse); |
- sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); |
- sqlite3VdbeResolveLabel(v, d2); |
- sqlite3ExprCachePop(pParse); |
- break; |
- } |
- case TK_OR: { |
- testcase( jumpIfNull==0 ); |
- sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); |
- sqlite3ExprCachePush(pParse); |
- sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); |
- sqlite3ExprCachePop(pParse); |
- break; |
- } |
- case TK_NOT: { |
- testcase( jumpIfNull==0 ); |
- sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); |
- break; |
- } |
- case TK_LT: |
- case TK_LE: |
- case TK_GT: |
- case TK_GE: |
- case TK_NE: |
- case TK_EQ: { |
- testcase( jumpIfNull==0 ); |
- r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); |
- r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); |
- codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, |
- r1, r2, dest, jumpIfNull); |
- assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); |
- assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); |
- assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); |
- assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); |
- assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); |
- assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); |
- testcase( regFree1==0 ); |
- testcase( regFree2==0 ); |
- break; |
- } |
- case TK_IS: |
- case TK_ISNOT: { |
- testcase( op==TK_IS ); |
- testcase( op==TK_ISNOT ); |
- r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); |
- r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); |
- op = (op==TK_IS) ? TK_EQ : TK_NE; |
- codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, |
- r1, r2, dest, SQLITE_NULLEQ); |
- VdbeCoverageIf(v, op==TK_EQ); |
- VdbeCoverageIf(v, op==TK_NE); |
- testcase( regFree1==0 ); |
- testcase( regFree2==0 ); |
- break; |
- } |
- case TK_ISNULL: |
- case TK_NOTNULL: { |
- assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); |
- assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); |
- r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); |
- sqlite3VdbeAddOp2(v, op, r1, dest); |
- VdbeCoverageIf(v, op==TK_ISNULL); |
- VdbeCoverageIf(v, op==TK_NOTNULL); |
- testcase( regFree1==0 ); |
- break; |
- } |
- case TK_BETWEEN: { |
- testcase( jumpIfNull==0 ); |
- exprCodeBetween(pParse, pExpr, dest, 1, jumpIfNull); |
- break; |
- } |
-#ifndef SQLITE_OMIT_SUBQUERY |
- case TK_IN: { |
- int destIfFalse = sqlite3VdbeMakeLabel(v); |
- int destIfNull = jumpIfNull ? dest : destIfFalse; |
- sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); |
- sqlite3VdbeAddOp2(v, OP_Goto, 0, dest); |
- sqlite3VdbeResolveLabel(v, destIfFalse); |
- break; |
- } |
-#endif |
- default: { |
- if( exprAlwaysTrue(pExpr) ){ |
- sqlite3VdbeAddOp2(v, OP_Goto, 0, dest); |
- }else if( exprAlwaysFalse(pExpr) ){ |
- /* No-op */ |
- }else{ |
- r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); |
- sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0); |
- VdbeCoverage(v); |
- testcase( regFree1==0 ); |
- testcase( jumpIfNull==0 ); |
- } |
- break; |
- } |
- } |
- sqlite3ReleaseTempReg(pParse, regFree1); |
- sqlite3ReleaseTempReg(pParse, regFree2); |
-} |
- |
-/* |
-** Generate code for a boolean expression such that a jump is made |
-** to the label "dest" if the expression is false but execution |
-** continues straight thru if the expression is true. |
-** |
-** If the expression evaluates to NULL (neither true nor false) then |
-** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull |
-** is 0. |
-*/ |
-void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ |
- Vdbe *v = pParse->pVdbe; |
- int op = 0; |
- int regFree1 = 0; |
- int regFree2 = 0; |
- int r1, r2; |
- |
- assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); |
- if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ |
- if( pExpr==0 ) return; |
- |
- /* The value of pExpr->op and op are related as follows: |
- ** |
- ** pExpr->op op |
- ** --------- ---------- |
- ** TK_ISNULL OP_NotNull |
- ** TK_NOTNULL OP_IsNull |
- ** TK_NE OP_Eq |
- ** TK_EQ OP_Ne |
- ** TK_GT OP_Le |
- ** TK_LE OP_Gt |
- ** TK_GE OP_Lt |
- ** TK_LT OP_Ge |
- ** |
- ** For other values of pExpr->op, op is undefined and unused. |
- ** The value of TK_ and OP_ constants are arranged such that we |
- ** can compute the mapping above using the following expression. |
- ** Assert()s verify that the computation is correct. |
- */ |
- op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); |
- |
- /* Verify correct alignment of TK_ and OP_ constants |
- */ |
- assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); |
- assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); |
- assert( pExpr->op!=TK_NE || op==OP_Eq ); |
- assert( pExpr->op!=TK_EQ || op==OP_Ne ); |
- assert( pExpr->op!=TK_LT || op==OP_Ge ); |
- assert( pExpr->op!=TK_LE || op==OP_Gt ); |
- assert( pExpr->op!=TK_GT || op==OP_Le ); |
- assert( pExpr->op!=TK_GE || op==OP_Lt ); |
- |
- switch( pExpr->op ){ |
- case TK_AND: { |
- testcase( jumpIfNull==0 ); |
- sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); |
- sqlite3ExprCachePush(pParse); |
- sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); |
- sqlite3ExprCachePop(pParse); |
- break; |
- } |
- case TK_OR: { |
- int d2 = sqlite3VdbeMakeLabel(v); |
- testcase( jumpIfNull==0 ); |
- sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL); |
- sqlite3ExprCachePush(pParse); |
- sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); |
- sqlite3VdbeResolveLabel(v, d2); |
- sqlite3ExprCachePop(pParse); |
- break; |
- } |
- case TK_NOT: { |
- testcase( jumpIfNull==0 ); |
- sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); |
- break; |
- } |
- case TK_LT: |
- case TK_LE: |
- case TK_GT: |
- case TK_GE: |
- case TK_NE: |
- case TK_EQ: { |
- testcase( jumpIfNull==0 ); |
- r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); |
- r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); |
- codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, |
- r1, r2, dest, jumpIfNull); |
- assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); |
- assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); |
- assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); |
- assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); |
- assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); |
- assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); |
- testcase( regFree1==0 ); |
- testcase( regFree2==0 ); |
- break; |
- } |
- case TK_IS: |
- case TK_ISNOT: { |
- testcase( pExpr->op==TK_IS ); |
- testcase( pExpr->op==TK_ISNOT ); |
- r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); |
- r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); |
- op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ; |
- codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, |
- r1, r2, dest, SQLITE_NULLEQ); |
- VdbeCoverageIf(v, op==TK_EQ); |
- VdbeCoverageIf(v, op==TK_NE); |
- testcase( regFree1==0 ); |
- testcase( regFree2==0 ); |
- break; |
- } |
- case TK_ISNULL: |
- case TK_NOTNULL: { |
- r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); |
- sqlite3VdbeAddOp2(v, op, r1, dest); |
- testcase( op==TK_ISNULL ); VdbeCoverageIf(v, op==TK_ISNULL); |
- testcase( op==TK_NOTNULL ); VdbeCoverageIf(v, op==TK_NOTNULL); |
- testcase( regFree1==0 ); |
- break; |
- } |
- case TK_BETWEEN: { |
- testcase( jumpIfNull==0 ); |
- exprCodeBetween(pParse, pExpr, dest, 0, jumpIfNull); |
- break; |
- } |
-#ifndef SQLITE_OMIT_SUBQUERY |
- case TK_IN: { |
- if( jumpIfNull ){ |
- sqlite3ExprCodeIN(pParse, pExpr, dest, dest); |
- }else{ |
- int destIfNull = sqlite3VdbeMakeLabel(v); |
- sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull); |
- sqlite3VdbeResolveLabel(v, destIfNull); |
- } |
- break; |
- } |
-#endif |
- default: { |
- if( exprAlwaysFalse(pExpr) ){ |
- sqlite3VdbeAddOp2(v, OP_Goto, 0, dest); |
- }else if( exprAlwaysTrue(pExpr) ){ |
- /* no-op */ |
- }else{ |
- r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); |
- sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0); |
- VdbeCoverage(v); |
- testcase( regFree1==0 ); |
- testcase( jumpIfNull==0 ); |
- } |
- break; |
- } |
- } |
- sqlite3ReleaseTempReg(pParse, regFree1); |
- sqlite3ReleaseTempReg(pParse, regFree2); |
-} |
- |
-/* |
-** Do a deep comparison of two expression trees. Return 0 if the two |
-** expressions are completely identical. Return 1 if they differ only |
-** by a COLLATE operator at the top level. Return 2 if there are differences |
-** other than the top-level COLLATE operator. |
-** |
-** If any subelement of pB has Expr.iTable==(-1) then it is allowed |
-** to compare equal to an equivalent element in pA with Expr.iTable==iTab. |
-** |
-** The pA side might be using TK_REGISTER. If that is the case and pB is |
-** not using TK_REGISTER but is otherwise equivalent, then still return 0. |
-** |
-** Sometimes this routine will return 2 even if the two expressions |
-** really are equivalent. If we cannot prove that the expressions are |
-** identical, we return 2 just to be safe. So if this routine |
-** returns 2, then you do not really know for certain if the two |
-** expressions are the same. But if you get a 0 or 1 return, then you |
-** can be sure the expressions are the same. In the places where |
-** this routine is used, it does not hurt to get an extra 2 - that |
-** just might result in some slightly slower code. But returning |
-** an incorrect 0 or 1 could lead to a malfunction. |
-*/ |
-int sqlite3ExprCompare(Expr *pA, Expr *pB, int iTab){ |
- u32 combinedFlags; |
- if( pA==0 || pB==0 ){ |
- return pB==pA ? 0 : 2; |
- } |
- combinedFlags = pA->flags | pB->flags; |
- if( combinedFlags & EP_IntValue ){ |
- if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){ |
- return 0; |
- } |
- return 2; |
- } |
- if( pA->op!=pB->op ){ |
- if( pA->op==TK_COLLATE && sqlite3ExprCompare(pA->pLeft, pB, iTab)<2 ){ |
- return 1; |
- } |
- if( pB->op==TK_COLLATE && sqlite3ExprCompare(pA, pB->pLeft, iTab)<2 ){ |
- return 1; |
- } |
- return 2; |
- } |
- if( pA->op!=TK_COLUMN && ALWAYS(pA->op!=TK_AGG_COLUMN) && pA->u.zToken ){ |
- if( strcmp(pA->u.zToken,pB->u.zToken)!=0 ){ |
- return pA->op==TK_COLLATE ? 1 : 2; |
- } |
- } |
- if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2; |
- if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){ |
- if( combinedFlags & EP_xIsSelect ) return 2; |
- if( sqlite3ExprCompare(pA->pLeft, pB->pLeft, iTab) ) return 2; |
- if( sqlite3ExprCompare(pA->pRight, pB->pRight, iTab) ) return 2; |
- if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2; |
- if( ALWAYS((combinedFlags & EP_Reduced)==0) ){ |
- if( pA->iColumn!=pB->iColumn ) return 2; |
- if( pA->iTable!=pB->iTable |
- && (pA->iTable!=iTab || NEVER(pB->iTable>=0)) ) return 2; |
- } |
- } |
- return 0; |
-} |
- |
-/* |
-** Compare two ExprList objects. Return 0 if they are identical and |
-** non-zero if they differ in any way. |
-** |
-** If any subelement of pB has Expr.iTable==(-1) then it is allowed |
-** to compare equal to an equivalent element in pA with Expr.iTable==iTab. |
-** |
-** This routine might return non-zero for equivalent ExprLists. The |
-** only consequence will be disabled optimizations. But this routine |
-** must never return 0 if the two ExprList objects are different, or |
-** a malfunction will result. |
-** |
-** Two NULL pointers are considered to be the same. But a NULL pointer |
-** always differs from a non-NULL pointer. |
-*/ |
-int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){ |
- int i; |
- if( pA==0 && pB==0 ) return 0; |
- if( pA==0 || pB==0 ) return 1; |
- if( pA->nExpr!=pB->nExpr ) return 1; |
- for(i=0; i<pA->nExpr; i++){ |
- Expr *pExprA = pA->a[i].pExpr; |
- Expr *pExprB = pB->a[i].pExpr; |
- if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1; |
- if( sqlite3ExprCompare(pExprA, pExprB, iTab) ) return 1; |
- } |
- return 0; |
-} |
- |
-/* |
-** Return true if we can prove the pE2 will always be true if pE1 is |
-** true. Return false if we cannot complete the proof or if pE2 might |
-** be false. Examples: |
-** |
-** pE1: x==5 pE2: x==5 Result: true |
-** pE1: x>0 pE2: x==5 Result: false |
-** pE1: x=21 pE2: x=21 OR y=43 Result: true |
-** pE1: x!=123 pE2: x IS NOT NULL Result: true |
-** pE1: x!=?1 pE2: x IS NOT NULL Result: true |
-** pE1: x IS NULL pE2: x IS NOT NULL Result: false |
-** pE1: x IS ?2 pE2: x IS NOT NULL Reuslt: false |
-** |
-** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has |
-** Expr.iTable<0 then assume a table number given by iTab. |
-** |
-** When in doubt, return false. Returning true might give a performance |
-** improvement. Returning false might cause a performance reduction, but |
-** it will always give the correct answer and is hence always safe. |
-*/ |
-int sqlite3ExprImpliesExpr(Expr *pE1, Expr *pE2, int iTab){ |
- if( sqlite3ExprCompare(pE1, pE2, iTab)==0 ){ |
- return 1; |
- } |
- if( pE2->op==TK_OR |
- && (sqlite3ExprImpliesExpr(pE1, pE2->pLeft, iTab) |
- || sqlite3ExprImpliesExpr(pE1, pE2->pRight, iTab) ) |
- ){ |
- return 1; |
- } |
- if( pE2->op==TK_NOTNULL |
- && sqlite3ExprCompare(pE1->pLeft, pE2->pLeft, iTab)==0 |
- && (pE1->op!=TK_ISNULL && pE1->op!=TK_IS) |
- ){ |
- return 1; |
- } |
- return 0; |
-} |
- |
-/* |
-** An instance of the following structure is used by the tree walker |
-** to count references to table columns in the arguments of an |
-** aggregate function, in order to implement the |
-** sqlite3FunctionThisSrc() routine. |
-*/ |
-struct SrcCount { |
- SrcList *pSrc; /* One particular FROM clause in a nested query */ |
- int nThis; /* Number of references to columns in pSrcList */ |
- int nOther; /* Number of references to columns in other FROM clauses */ |
-}; |
- |
-/* |
-** Count the number of references to columns. |
-*/ |
-static int exprSrcCount(Walker *pWalker, Expr *pExpr){ |
- /* The NEVER() on the second term is because sqlite3FunctionUsesThisSrc() |
- ** is always called before sqlite3ExprAnalyzeAggregates() and so the |
- ** TK_COLUMNs have not yet been converted into TK_AGG_COLUMN. If |
- ** sqlite3FunctionUsesThisSrc() is used differently in the future, the |
- ** NEVER() will need to be removed. */ |
- if( pExpr->op==TK_COLUMN || NEVER(pExpr->op==TK_AGG_COLUMN) ){ |
- int i; |
- struct SrcCount *p = pWalker->u.pSrcCount; |
- SrcList *pSrc = p->pSrc; |
- for(i=0; i<pSrc->nSrc; i++){ |
- if( pExpr->iTable==pSrc->a[i].iCursor ) break; |
- } |
- if( i<pSrc->nSrc ){ |
- p->nThis++; |
- }else{ |
- p->nOther++; |
- } |
- } |
- return WRC_Continue; |
-} |
- |
-/* |
-** Determine if any of the arguments to the pExpr Function reference |
-** pSrcList. Return true if they do. Also return true if the function |
-** has no arguments or has only constant arguments. Return false if pExpr |
-** references columns but not columns of tables found in pSrcList. |
-*/ |
-int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){ |
- Walker w; |
- struct SrcCount cnt; |
- assert( pExpr->op==TK_AGG_FUNCTION ); |
- memset(&w, 0, sizeof(w)); |
- w.xExprCallback = exprSrcCount; |
- w.u.pSrcCount = &cnt; |
- cnt.pSrc = pSrcList; |
- cnt.nThis = 0; |
- cnt.nOther = 0; |
- sqlite3WalkExprList(&w, pExpr->x.pList); |
- return cnt.nThis>0 || cnt.nOther==0; |
-} |
- |
-/* |
-** Add a new element to the pAggInfo->aCol[] array. Return the index of |
-** the new element. Return a negative number if malloc fails. |
-*/ |
-static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){ |
- int i; |
- pInfo->aCol = sqlite3ArrayAllocate( |
- db, |
- pInfo->aCol, |
- sizeof(pInfo->aCol[0]), |
- &pInfo->nColumn, |
- &i |
- ); |
- return i; |
-} |
- |
-/* |
-** Add a new element to the pAggInfo->aFunc[] array. Return the index of |
-** the new element. Return a negative number if malloc fails. |
-*/ |
-static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){ |
- int i; |
- pInfo->aFunc = sqlite3ArrayAllocate( |
- db, |
- pInfo->aFunc, |
- sizeof(pInfo->aFunc[0]), |
- &pInfo->nFunc, |
- &i |
- ); |
- return i; |
-} |
- |
-/* |
-** This is the xExprCallback for a tree walker. It is used to |
-** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates |
-** for additional information. |
-*/ |
-static int analyzeAggregate(Walker *pWalker, Expr *pExpr){ |
- int i; |
- NameContext *pNC = pWalker->u.pNC; |
- Parse *pParse = pNC->pParse; |
- SrcList *pSrcList = pNC->pSrcList; |
- AggInfo *pAggInfo = pNC->pAggInfo; |
- |
- switch( pExpr->op ){ |
- case TK_AGG_COLUMN: |
- case TK_COLUMN: { |
- testcase( pExpr->op==TK_AGG_COLUMN ); |
- testcase( pExpr->op==TK_COLUMN ); |
- /* Check to see if the column is in one of the tables in the FROM |
- ** clause of the aggregate query */ |
- if( ALWAYS(pSrcList!=0) ){ |
- struct SrcList_item *pItem = pSrcList->a; |
- for(i=0; i<pSrcList->nSrc; i++, pItem++){ |
- struct AggInfo_col *pCol; |
- assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); |
- if( pExpr->iTable==pItem->iCursor ){ |
- /* If we reach this point, it means that pExpr refers to a table |
- ** that is in the FROM clause of the aggregate query. |
- ** |
- ** Make an entry for the column in pAggInfo->aCol[] if there |
- ** is not an entry there already. |
- */ |
- int k; |
- pCol = pAggInfo->aCol; |
- for(k=0; k<pAggInfo->nColumn; k++, pCol++){ |
- if( pCol->iTable==pExpr->iTable && |
- pCol->iColumn==pExpr->iColumn ){ |
- break; |
- } |
- } |
- if( (k>=pAggInfo->nColumn) |
- && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 |
- ){ |
- pCol = &pAggInfo->aCol[k]; |
- pCol->pTab = pExpr->pTab; |
- pCol->iTable = pExpr->iTable; |
- pCol->iColumn = pExpr->iColumn; |
- pCol->iMem = ++pParse->nMem; |
- pCol->iSorterColumn = -1; |
- pCol->pExpr = pExpr; |
- if( pAggInfo->pGroupBy ){ |
- int j, n; |
- ExprList *pGB = pAggInfo->pGroupBy; |
- struct ExprList_item *pTerm = pGB->a; |
- n = pGB->nExpr; |
- for(j=0; j<n; j++, pTerm++){ |
- Expr *pE = pTerm->pExpr; |
- if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable && |
- pE->iColumn==pExpr->iColumn ){ |
- pCol->iSorterColumn = j; |
- break; |
- } |
- } |
- } |
- if( pCol->iSorterColumn<0 ){ |
- pCol->iSorterColumn = pAggInfo->nSortingColumn++; |
- } |
- } |
- /* There is now an entry for pExpr in pAggInfo->aCol[] (either |
- ** because it was there before or because we just created it). |
- ** Convert the pExpr to be a TK_AGG_COLUMN referring to that |
- ** pAggInfo->aCol[] entry. |
- */ |
- ExprSetVVAProperty(pExpr, EP_NoReduce); |
- pExpr->pAggInfo = pAggInfo; |
- pExpr->op = TK_AGG_COLUMN; |
- pExpr->iAgg = (i16)k; |
- break; |
- } /* endif pExpr->iTable==pItem->iCursor */ |
- } /* end loop over pSrcList */ |
- } |
- return WRC_Prune; |
- } |
- case TK_AGG_FUNCTION: { |
- if( (pNC->ncFlags & NC_InAggFunc)==0 |
- && pWalker->walkerDepth==pExpr->op2 |
- ){ |
- /* Check to see if pExpr is a duplicate of another aggregate |
- ** function that is already in the pAggInfo structure |
- */ |
- struct AggInfo_func *pItem = pAggInfo->aFunc; |
- for(i=0; i<pAggInfo->nFunc; i++, pItem++){ |
- if( sqlite3ExprCompare(pItem->pExpr, pExpr, -1)==0 ){ |
- break; |
- } |
- } |
- if( i>=pAggInfo->nFunc ){ |
- /* pExpr is original. Make a new entry in pAggInfo->aFunc[] |
- */ |
- u8 enc = ENC(pParse->db); |
- i = addAggInfoFunc(pParse->db, pAggInfo); |
- if( i>=0 ){ |
- assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); |
- pItem = &pAggInfo->aFunc[i]; |
- pItem->pExpr = pExpr; |
- pItem->iMem = ++pParse->nMem; |
- assert( !ExprHasProperty(pExpr, EP_IntValue) ); |
- pItem->pFunc = sqlite3FindFunction(pParse->db, |
- pExpr->u.zToken, sqlite3Strlen30(pExpr->u.zToken), |
- pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0); |
- if( pExpr->flags & EP_Distinct ){ |
- pItem->iDistinct = pParse->nTab++; |
- }else{ |
- pItem->iDistinct = -1; |
- } |
- } |
- } |
- /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry |
- */ |
- assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); |
- ExprSetVVAProperty(pExpr, EP_NoReduce); |
- pExpr->iAgg = (i16)i; |
- pExpr->pAggInfo = pAggInfo; |
- return WRC_Prune; |
- }else{ |
- return WRC_Continue; |
- } |
- } |
- } |
- return WRC_Continue; |
-} |
-static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){ |
- UNUSED_PARAMETER(pWalker); |
- UNUSED_PARAMETER(pSelect); |
- return WRC_Continue; |
-} |
- |
-/* |
-** Analyze the pExpr expression looking for aggregate functions and |
-** for variables that need to be added to AggInfo object that pNC->pAggInfo |
-** points to. Additional entries are made on the AggInfo object as |
-** necessary. |
-** |
-** This routine should only be called after the expression has been |
-** analyzed by sqlite3ResolveExprNames(). |
-*/ |
-void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ |
- Walker w; |
- memset(&w, 0, sizeof(w)); |
- w.xExprCallback = analyzeAggregate; |
- w.xSelectCallback = analyzeAggregatesInSelect; |
- w.u.pNC = pNC; |
- assert( pNC->pSrcList!=0 ); |
- sqlite3WalkExpr(&w, pExpr); |
-} |
- |
-/* |
-** Call sqlite3ExprAnalyzeAggregates() for every expression in an |
-** expression list. Return the number of errors. |
-** |
-** If an error is found, the analysis is cut short. |
-*/ |
-void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ |
- struct ExprList_item *pItem; |
- int i; |
- if( pList ){ |
- for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ |
- sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); |
- } |
- } |
-} |
- |
-/* |
-** Allocate a single new register for use to hold some intermediate result. |
-*/ |
-int sqlite3GetTempReg(Parse *pParse){ |
- if( pParse->nTempReg==0 ){ |
- return ++pParse->nMem; |
- } |
- return pParse->aTempReg[--pParse->nTempReg]; |
-} |
- |
-/* |
-** Deallocate a register, making available for reuse for some other |
-** purpose. |
-** |
-** If a register is currently being used by the column cache, then |
-** the deallocation is deferred until the column cache line that uses |
-** the register becomes stale. |
-*/ |
-void sqlite3ReleaseTempReg(Parse *pParse, int iReg){ |
- if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){ |
- int i; |
- struct yColCache *p; |
- for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ |
- if( p->iReg==iReg ){ |
- p->tempReg = 1; |
- return; |
- } |
- } |
- pParse->aTempReg[pParse->nTempReg++] = iReg; |
- } |
-} |
- |
-/* |
-** Allocate or deallocate a block of nReg consecutive registers |
-*/ |
-int sqlite3GetTempRange(Parse *pParse, int nReg){ |
- int i, n; |
- i = pParse->iRangeReg; |
- n = pParse->nRangeReg; |
- if( nReg<=n ){ |
- assert( !usedAsColumnCache(pParse, i, i+n-1) ); |
- pParse->iRangeReg += nReg; |
- pParse->nRangeReg -= nReg; |
- }else{ |
- i = pParse->nMem+1; |
- pParse->nMem += nReg; |
- } |
- return i; |
-} |
-void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){ |
- sqlite3ExprCacheRemove(pParse, iReg, nReg); |
- if( nReg>pParse->nRangeReg ){ |
- pParse->nRangeReg = nReg; |
- pParse->iRangeReg = iReg; |
- } |
-} |
- |
-/* |
-** Mark all temporary registers as being unavailable for reuse. |
-*/ |
-void sqlite3ClearTempRegCache(Parse *pParse){ |
- pParse->nTempReg = 0; |
- pParse->nRangeReg = 0; |
-} |