Index: third_party/sqlite/sqlite-src-3080704/src/rowset.c |
diff --git a/third_party/sqlite/sqlite-src-3080704/src/rowset.c b/third_party/sqlite/sqlite-src-3080704/src/rowset.c |
deleted file mode 100644 |
index ff5593892ab3f5af79ff1d5a768c6529a82fadf9..0000000000000000000000000000000000000000 |
--- a/third_party/sqlite/sqlite-src-3080704/src/rowset.c |
+++ /dev/null |
@@ -1,508 +0,0 @@ |
-/* |
-** 2008 December 3 |
-** |
-** The author disclaims copyright to this source code. In place of |
-** a legal notice, here is a blessing: |
-** |
-** May you do good and not evil. |
-** May you find forgiveness for yourself and forgive others. |
-** May you share freely, never taking more than you give. |
-** |
-************************************************************************* |
-** |
-** This module implements an object we call a "RowSet". |
-** |
-** The RowSet object is a collection of rowids. Rowids |
-** are inserted into the RowSet in an arbitrary order. Inserts |
-** can be intermixed with tests to see if a given rowid has been |
-** previously inserted into the RowSet. |
-** |
-** After all inserts are finished, it is possible to extract the |
-** elements of the RowSet in sorted order. Once this extraction |
-** process has started, no new elements may be inserted. |
-** |
-** Hence, the primitive operations for a RowSet are: |
-** |
-** CREATE |
-** INSERT |
-** TEST |
-** SMALLEST |
-** DESTROY |
-** |
-** The CREATE and DESTROY primitives are the constructor and destructor, |
-** obviously. The INSERT primitive adds a new element to the RowSet. |
-** TEST checks to see if an element is already in the RowSet. SMALLEST |
-** extracts the least value from the RowSet. |
-** |
-** The INSERT primitive might allocate additional memory. Memory is |
-** allocated in chunks so most INSERTs do no allocation. There is an |
-** upper bound on the size of allocated memory. No memory is freed |
-** until DESTROY. |
-** |
-** The TEST primitive includes a "batch" number. The TEST primitive |
-** will only see elements that were inserted before the last change |
-** in the batch number. In other words, if an INSERT occurs between |
-** two TESTs where the TESTs have the same batch nubmer, then the |
-** value added by the INSERT will not be visible to the second TEST. |
-** The initial batch number is zero, so if the very first TEST contains |
-** a non-zero batch number, it will see all prior INSERTs. |
-** |
-** No INSERTs may occurs after a SMALLEST. An assertion will fail if |
-** that is attempted. |
-** |
-** The cost of an INSERT is roughly constant. (Sometimes new memory |
-** has to be allocated on an INSERT.) The cost of a TEST with a new |
-** batch number is O(NlogN) where N is the number of elements in the RowSet. |
-** The cost of a TEST using the same batch number is O(logN). The cost |
-** of the first SMALLEST is O(NlogN). Second and subsequent SMALLEST |
-** primitives are constant time. The cost of DESTROY is O(N). |
-** |
-** There is an added cost of O(N) when switching between TEST and |
-** SMALLEST primitives. |
-*/ |
-#include "sqliteInt.h" |
- |
- |
-/* |
-** Target size for allocation chunks. |
-*/ |
-#define ROWSET_ALLOCATION_SIZE 1024 |
- |
-/* |
-** The number of rowset entries per allocation chunk. |
-*/ |
-#define ROWSET_ENTRY_PER_CHUNK \ |
- ((ROWSET_ALLOCATION_SIZE-8)/sizeof(struct RowSetEntry)) |
- |
-/* |
-** Each entry in a RowSet is an instance of the following object. |
-** |
-** This same object is reused to store a linked list of trees of RowSetEntry |
-** objects. In that alternative use, pRight points to the next entry |
-** in the list, pLeft points to the tree, and v is unused. The |
-** RowSet.pForest value points to the head of this forest list. |
-*/ |
-struct RowSetEntry { |
- i64 v; /* ROWID value for this entry */ |
- struct RowSetEntry *pRight; /* Right subtree (larger entries) or list */ |
- struct RowSetEntry *pLeft; /* Left subtree (smaller entries) */ |
-}; |
- |
-/* |
-** RowSetEntry objects are allocated in large chunks (instances of the |
-** following structure) to reduce memory allocation overhead. The |
-** chunks are kept on a linked list so that they can be deallocated |
-** when the RowSet is destroyed. |
-*/ |
-struct RowSetChunk { |
- struct RowSetChunk *pNextChunk; /* Next chunk on list of them all */ |
- struct RowSetEntry aEntry[ROWSET_ENTRY_PER_CHUNK]; /* Allocated entries */ |
-}; |
- |
-/* |
-** A RowSet in an instance of the following structure. |
-** |
-** A typedef of this structure if found in sqliteInt.h. |
-*/ |
-struct RowSet { |
- struct RowSetChunk *pChunk; /* List of all chunk allocations */ |
- sqlite3 *db; /* The database connection */ |
- struct RowSetEntry *pEntry; /* List of entries using pRight */ |
- struct RowSetEntry *pLast; /* Last entry on the pEntry list */ |
- struct RowSetEntry *pFresh; /* Source of new entry objects */ |
- struct RowSetEntry *pForest; /* List of binary trees of entries */ |
- u16 nFresh; /* Number of objects on pFresh */ |
- u16 rsFlags; /* Various flags */ |
- int iBatch; /* Current insert batch */ |
-}; |
- |
-/* |
-** Allowed values for RowSet.rsFlags |
-*/ |
-#define ROWSET_SORTED 0x01 /* True if RowSet.pEntry is sorted */ |
-#define ROWSET_NEXT 0x02 /* True if sqlite3RowSetNext() has been called */ |
- |
-/* |
-** Turn bulk memory into a RowSet object. N bytes of memory |
-** are available at pSpace. The db pointer is used as a memory context |
-** for any subsequent allocations that need to occur. |
-** Return a pointer to the new RowSet object. |
-** |
-** It must be the case that N is sufficient to make a Rowset. If not |
-** an assertion fault occurs. |
-** |
-** If N is larger than the minimum, use the surplus as an initial |
-** allocation of entries available to be filled. |
-*/ |
-RowSet *sqlite3RowSetInit(sqlite3 *db, void *pSpace, unsigned int N){ |
- RowSet *p; |
- assert( N >= ROUND8(sizeof(*p)) ); |
- p = pSpace; |
- p->pChunk = 0; |
- p->db = db; |
- p->pEntry = 0; |
- p->pLast = 0; |
- p->pForest = 0; |
- p->pFresh = (struct RowSetEntry*)(ROUND8(sizeof(*p)) + (char*)p); |
- p->nFresh = (u16)((N - ROUND8(sizeof(*p)))/sizeof(struct RowSetEntry)); |
- p->rsFlags = ROWSET_SORTED; |
- p->iBatch = 0; |
- return p; |
-} |
- |
-/* |
-** Deallocate all chunks from a RowSet. This frees all memory that |
-** the RowSet has allocated over its lifetime. This routine is |
-** the destructor for the RowSet. |
-*/ |
-void sqlite3RowSetClear(RowSet *p){ |
- struct RowSetChunk *pChunk, *pNextChunk; |
- for(pChunk=p->pChunk; pChunk; pChunk = pNextChunk){ |
- pNextChunk = pChunk->pNextChunk; |
- sqlite3DbFree(p->db, pChunk); |
- } |
- p->pChunk = 0; |
- p->nFresh = 0; |
- p->pEntry = 0; |
- p->pLast = 0; |
- p->pForest = 0; |
- p->rsFlags = ROWSET_SORTED; |
-} |
- |
-/* |
-** Allocate a new RowSetEntry object that is associated with the |
-** given RowSet. Return a pointer to the new and completely uninitialized |
-** objected. |
-** |
-** In an OOM situation, the RowSet.db->mallocFailed flag is set and this |
-** routine returns NULL. |
-*/ |
-static struct RowSetEntry *rowSetEntryAlloc(RowSet *p){ |
- assert( p!=0 ); |
- if( p->nFresh==0 ){ |
- struct RowSetChunk *pNew; |
- pNew = sqlite3DbMallocRaw(p->db, sizeof(*pNew)); |
- if( pNew==0 ){ |
- return 0; |
- } |
- pNew->pNextChunk = p->pChunk; |
- p->pChunk = pNew; |
- p->pFresh = pNew->aEntry; |
- p->nFresh = ROWSET_ENTRY_PER_CHUNK; |
- } |
- p->nFresh--; |
- return p->pFresh++; |
-} |
- |
-/* |
-** Insert a new value into a RowSet. |
-** |
-** The mallocFailed flag of the database connection is set if a |
-** memory allocation fails. |
-*/ |
-void sqlite3RowSetInsert(RowSet *p, i64 rowid){ |
- struct RowSetEntry *pEntry; /* The new entry */ |
- struct RowSetEntry *pLast; /* The last prior entry */ |
- |
- /* This routine is never called after sqlite3RowSetNext() */ |
- assert( p!=0 && (p->rsFlags & ROWSET_NEXT)==0 ); |
- |
- pEntry = rowSetEntryAlloc(p); |
- if( pEntry==0 ) return; |
- pEntry->v = rowid; |
- pEntry->pRight = 0; |
- pLast = p->pLast; |
- if( pLast ){ |
- if( (p->rsFlags & ROWSET_SORTED)!=0 && rowid<=pLast->v ){ |
- p->rsFlags &= ~ROWSET_SORTED; |
- } |
- pLast->pRight = pEntry; |
- }else{ |
- p->pEntry = pEntry; |
- } |
- p->pLast = pEntry; |
-} |
- |
-/* |
-** Merge two lists of RowSetEntry objects. Remove duplicates. |
-** |
-** The input lists are connected via pRight pointers and are |
-** assumed to each already be in sorted order. |
-*/ |
-static struct RowSetEntry *rowSetEntryMerge( |
- struct RowSetEntry *pA, /* First sorted list to be merged */ |
- struct RowSetEntry *pB /* Second sorted list to be merged */ |
-){ |
- struct RowSetEntry head; |
- struct RowSetEntry *pTail; |
- |
- pTail = &head; |
- while( pA && pB ){ |
- assert( pA->pRight==0 || pA->v<=pA->pRight->v ); |
- assert( pB->pRight==0 || pB->v<=pB->pRight->v ); |
- if( pA->v<pB->v ){ |
- pTail->pRight = pA; |
- pA = pA->pRight; |
- pTail = pTail->pRight; |
- }else if( pB->v<pA->v ){ |
- pTail->pRight = pB; |
- pB = pB->pRight; |
- pTail = pTail->pRight; |
- }else{ |
- pA = pA->pRight; |
- } |
- } |
- if( pA ){ |
- assert( pA->pRight==0 || pA->v<=pA->pRight->v ); |
- pTail->pRight = pA; |
- }else{ |
- assert( pB==0 || pB->pRight==0 || pB->v<=pB->pRight->v ); |
- pTail->pRight = pB; |
- } |
- return head.pRight; |
-} |
- |
-/* |
-** Sort all elements on the list of RowSetEntry objects into order of |
-** increasing v. |
-*/ |
-static struct RowSetEntry *rowSetEntrySort(struct RowSetEntry *pIn){ |
- unsigned int i; |
- struct RowSetEntry *pNext, *aBucket[40]; |
- |
- memset(aBucket, 0, sizeof(aBucket)); |
- while( pIn ){ |
- pNext = pIn->pRight; |
- pIn->pRight = 0; |
- for(i=0; aBucket[i]; i++){ |
- pIn = rowSetEntryMerge(aBucket[i], pIn); |
- aBucket[i] = 0; |
- } |
- aBucket[i] = pIn; |
- pIn = pNext; |
- } |
- pIn = 0; |
- for(i=0; i<sizeof(aBucket)/sizeof(aBucket[0]); i++){ |
- pIn = rowSetEntryMerge(pIn, aBucket[i]); |
- } |
- return pIn; |
-} |
- |
- |
-/* |
-** The input, pIn, is a binary tree (or subtree) of RowSetEntry objects. |
-** Convert this tree into a linked list connected by the pRight pointers |
-** and return pointers to the first and last elements of the new list. |
-*/ |
-static void rowSetTreeToList( |
- struct RowSetEntry *pIn, /* Root of the input tree */ |
- struct RowSetEntry **ppFirst, /* Write head of the output list here */ |
- struct RowSetEntry **ppLast /* Write tail of the output list here */ |
-){ |
- assert( pIn!=0 ); |
- if( pIn->pLeft ){ |
- struct RowSetEntry *p; |
- rowSetTreeToList(pIn->pLeft, ppFirst, &p); |
- p->pRight = pIn; |
- }else{ |
- *ppFirst = pIn; |
- } |
- if( pIn->pRight ){ |
- rowSetTreeToList(pIn->pRight, &pIn->pRight, ppLast); |
- }else{ |
- *ppLast = pIn; |
- } |
- assert( (*ppLast)->pRight==0 ); |
-} |
- |
- |
-/* |
-** Convert a sorted list of elements (connected by pRight) into a binary |
-** tree with depth of iDepth. A depth of 1 means the tree contains a single |
-** node taken from the head of *ppList. A depth of 2 means a tree with |
-** three nodes. And so forth. |
-** |
-** Use as many entries from the input list as required and update the |
-** *ppList to point to the unused elements of the list. If the input |
-** list contains too few elements, then construct an incomplete tree |
-** and leave *ppList set to NULL. |
-** |
-** Return a pointer to the root of the constructed binary tree. |
-*/ |
-static struct RowSetEntry *rowSetNDeepTree( |
- struct RowSetEntry **ppList, |
- int iDepth |
-){ |
- struct RowSetEntry *p; /* Root of the new tree */ |
- struct RowSetEntry *pLeft; /* Left subtree */ |
- if( *ppList==0 ){ |
- return 0; |
- } |
- if( iDepth==1 ){ |
- p = *ppList; |
- *ppList = p->pRight; |
- p->pLeft = p->pRight = 0; |
- return p; |
- } |
- pLeft = rowSetNDeepTree(ppList, iDepth-1); |
- p = *ppList; |
- if( p==0 ){ |
- return pLeft; |
- } |
- p->pLeft = pLeft; |
- *ppList = p->pRight; |
- p->pRight = rowSetNDeepTree(ppList, iDepth-1); |
- return p; |
-} |
- |
-/* |
-** Convert a sorted list of elements into a binary tree. Make the tree |
-** as deep as it needs to be in order to contain the entire list. |
-*/ |
-static struct RowSetEntry *rowSetListToTree(struct RowSetEntry *pList){ |
- int iDepth; /* Depth of the tree so far */ |
- struct RowSetEntry *p; /* Current tree root */ |
- struct RowSetEntry *pLeft; /* Left subtree */ |
- |
- assert( pList!=0 ); |
- p = pList; |
- pList = p->pRight; |
- p->pLeft = p->pRight = 0; |
- for(iDepth=1; pList; iDepth++){ |
- pLeft = p; |
- p = pList; |
- pList = p->pRight; |
- p->pLeft = pLeft; |
- p->pRight = rowSetNDeepTree(&pList, iDepth); |
- } |
- return p; |
-} |
- |
-/* |
-** Take all the entries on p->pEntry and on the trees in p->pForest and |
-** sort them all together into one big ordered list on p->pEntry. |
-** |
-** This routine should only be called once in the life of a RowSet. |
-*/ |
-static void rowSetToList(RowSet *p){ |
- |
- /* This routine is called only once */ |
- assert( p!=0 && (p->rsFlags & ROWSET_NEXT)==0 ); |
- |
- if( (p->rsFlags & ROWSET_SORTED)==0 ){ |
- p->pEntry = rowSetEntrySort(p->pEntry); |
- } |
- |
- /* While this module could theoretically support it, sqlite3RowSetNext() |
- ** is never called after sqlite3RowSetText() for the same RowSet. So |
- ** there is never a forest to deal with. Should this change, simply |
- ** remove the assert() and the #if 0. */ |
- assert( p->pForest==0 ); |
-#if 0 |
- while( p->pForest ){ |
- struct RowSetEntry *pTree = p->pForest->pLeft; |
- if( pTree ){ |
- struct RowSetEntry *pHead, *pTail; |
- rowSetTreeToList(pTree, &pHead, &pTail); |
- p->pEntry = rowSetEntryMerge(p->pEntry, pHead); |
- } |
- p->pForest = p->pForest->pRight; |
- } |
-#endif |
- p->rsFlags |= ROWSET_NEXT; /* Verify this routine is never called again */ |
-} |
- |
-/* |
-** Extract the smallest element from the RowSet. |
-** Write the element into *pRowid. Return 1 on success. Return |
-** 0 if the RowSet is already empty. |
-** |
-** After this routine has been called, the sqlite3RowSetInsert() |
-** routine may not be called again. |
-*/ |
-int sqlite3RowSetNext(RowSet *p, i64 *pRowid){ |
- assert( p!=0 ); |
- |
- /* Merge the forest into a single sorted list on first call */ |
- if( (p->rsFlags & ROWSET_NEXT)==0 ) rowSetToList(p); |
- |
- /* Return the next entry on the list */ |
- if( p->pEntry ){ |
- *pRowid = p->pEntry->v; |
- p->pEntry = p->pEntry->pRight; |
- if( p->pEntry==0 ){ |
- sqlite3RowSetClear(p); |
- } |
- return 1; |
- }else{ |
- return 0; |
- } |
-} |
- |
-/* |
-** Check to see if element iRowid was inserted into the rowset as |
-** part of any insert batch prior to iBatch. Return 1 or 0. |
-** |
-** If this is the first test of a new batch and if there exist entries |
-** on pRowSet->pEntry, then sort those entries into the forest at |
-** pRowSet->pForest so that they can be tested. |
-*/ |
-int sqlite3RowSetTest(RowSet *pRowSet, int iBatch, sqlite3_int64 iRowid){ |
- struct RowSetEntry *p, *pTree; |
- |
- /* This routine is never called after sqlite3RowSetNext() */ |
- assert( pRowSet!=0 && (pRowSet->rsFlags & ROWSET_NEXT)==0 ); |
- |
- /* Sort entries into the forest on the first test of a new batch |
- */ |
- if( iBatch!=pRowSet->iBatch ){ |
- p = pRowSet->pEntry; |
- if( p ){ |
- struct RowSetEntry **ppPrevTree = &pRowSet->pForest; |
- if( (pRowSet->rsFlags & ROWSET_SORTED)==0 ){ |
- p = rowSetEntrySort(p); |
- } |
- for(pTree = pRowSet->pForest; pTree; pTree=pTree->pRight){ |
- ppPrevTree = &pTree->pRight; |
- if( pTree->pLeft==0 ){ |
- pTree->pLeft = rowSetListToTree(p); |
- break; |
- }else{ |
- struct RowSetEntry *pAux, *pTail; |
- rowSetTreeToList(pTree->pLeft, &pAux, &pTail); |
- pTree->pLeft = 0; |
- p = rowSetEntryMerge(pAux, p); |
- } |
- } |
- if( pTree==0 ){ |
- *ppPrevTree = pTree = rowSetEntryAlloc(pRowSet); |
- if( pTree ){ |
- pTree->v = 0; |
- pTree->pRight = 0; |
- pTree->pLeft = rowSetListToTree(p); |
- } |
- } |
- pRowSet->pEntry = 0; |
- pRowSet->pLast = 0; |
- pRowSet->rsFlags |= ROWSET_SORTED; |
- } |
- pRowSet->iBatch = iBatch; |
- } |
- |
- /* Test to see if the iRowid value appears anywhere in the forest. |
- ** Return 1 if it does and 0 if not. |
- */ |
- for(pTree = pRowSet->pForest; pTree; pTree=pTree->pRight){ |
- p = pTree->pLeft; |
- while( p ){ |
- if( p->v<iRowid ){ |
- p = p->pRight; |
- }else if( p->v>iRowid ){ |
- p = p->pLeft; |
- }else{ |
- return 1; |
- } |
- } |
- } |
- return 0; |
-} |