| OLD | NEW |
| (Empty) |
| 1 /* | |
| 2 ** 2010 February 1 | |
| 3 ** | |
| 4 ** The author disclaims copyright to this source code. In place of | |
| 5 ** a legal notice, here is a blessing: | |
| 6 ** | |
| 7 ** May you do good and not evil. | |
| 8 ** May you find forgiveness for yourself and forgive others. | |
| 9 ** May you share freely, never taking more than you give. | |
| 10 ** | |
| 11 ************************************************************************* | |
| 12 ** | |
| 13 ** This file contains the implementation of a write-ahead log (WAL) used in | |
| 14 ** "journal_mode=WAL" mode. | |
| 15 ** | |
| 16 ** WRITE-AHEAD LOG (WAL) FILE FORMAT | |
| 17 ** | |
| 18 ** A WAL file consists of a header followed by zero or more "frames". | |
| 19 ** Each frame records the revised content of a single page from the | |
| 20 ** database file. All changes to the database are recorded by writing | |
| 21 ** frames into the WAL. Transactions commit when a frame is written that | |
| 22 ** contains a commit marker. A single WAL can and usually does record | |
| 23 ** multiple transactions. Periodically, the content of the WAL is | |
| 24 ** transferred back into the database file in an operation called a | |
| 25 ** "checkpoint". | |
| 26 ** | |
| 27 ** A single WAL file can be used multiple times. In other words, the | |
| 28 ** WAL can fill up with frames and then be checkpointed and then new | |
| 29 ** frames can overwrite the old ones. A WAL always grows from beginning | |
| 30 ** toward the end. Checksums and counters attached to each frame are | |
| 31 ** used to determine which frames within the WAL are valid and which | |
| 32 ** are leftovers from prior checkpoints. | |
| 33 ** | |
| 34 ** The WAL header is 32 bytes in size and consists of the following eight | |
| 35 ** big-endian 32-bit unsigned integer values: | |
| 36 ** | |
| 37 ** 0: Magic number. 0x377f0682 or 0x377f0683 | |
| 38 ** 4: File format version. Currently 3007000 | |
| 39 ** 8: Database page size. Example: 1024 | |
| 40 ** 12: Checkpoint sequence number | |
| 41 ** 16: Salt-1, random integer incremented with each checkpoint | |
| 42 ** 20: Salt-2, a different random integer changing with each ckpt | |
| 43 ** 24: Checksum-1 (first part of checksum for first 24 bytes of header). | |
| 44 ** 28: Checksum-2 (second part of checksum for first 24 bytes of header). | |
| 45 ** | |
| 46 ** Immediately following the wal-header are zero or more frames. Each | |
| 47 ** frame consists of a 24-byte frame-header followed by a <page-size> bytes | |
| 48 ** of page data. The frame-header is six big-endian 32-bit unsigned | |
| 49 ** integer values, as follows: | |
| 50 ** | |
| 51 ** 0: Page number. | |
| 52 ** 4: For commit records, the size of the database image in pages | |
| 53 ** after the commit. For all other records, zero. | |
| 54 ** 8: Salt-1 (copied from the header) | |
| 55 ** 12: Salt-2 (copied from the header) | |
| 56 ** 16: Checksum-1. | |
| 57 ** 20: Checksum-2. | |
| 58 ** | |
| 59 ** A frame is considered valid if and only if the following conditions are | |
| 60 ** true: | |
| 61 ** | |
| 62 ** (1) The salt-1 and salt-2 values in the frame-header match | |
| 63 ** salt values in the wal-header | |
| 64 ** | |
| 65 ** (2) The checksum values in the final 8 bytes of the frame-header | |
| 66 ** exactly match the checksum computed consecutively on the | |
| 67 ** WAL header and the first 8 bytes and the content of all frames | |
| 68 ** up to and including the current frame. | |
| 69 ** | |
| 70 ** The checksum is computed using 32-bit big-endian integers if the | |
| 71 ** magic number in the first 4 bytes of the WAL is 0x377f0683 and it | |
| 72 ** is computed using little-endian if the magic number is 0x377f0682. | |
| 73 ** The checksum values are always stored in the frame header in a | |
| 74 ** big-endian format regardless of which byte order is used to compute | |
| 75 ** the checksum. The checksum is computed by interpreting the input as | |
| 76 ** an even number of unsigned 32-bit integers: x[0] through x[N]. The | |
| 77 ** algorithm used for the checksum is as follows: | |
| 78 ** | |
| 79 ** for i from 0 to n-1 step 2: | |
| 80 ** s0 += x[i] + s1; | |
| 81 ** s1 += x[i+1] + s0; | |
| 82 ** endfor | |
| 83 ** | |
| 84 ** Note that s0 and s1 are both weighted checksums using fibonacci weights | |
| 85 ** in reverse order (the largest fibonacci weight occurs on the first element | |
| 86 ** of the sequence being summed.) The s1 value spans all 32-bit | |
| 87 ** terms of the sequence whereas s0 omits the final term. | |
| 88 ** | |
| 89 ** On a checkpoint, the WAL is first VFS.xSync-ed, then valid content of the | |
| 90 ** WAL is transferred into the database, then the database is VFS.xSync-ed. | |
| 91 ** The VFS.xSync operations serve as write barriers - all writes launched | |
| 92 ** before the xSync must complete before any write that launches after the | |
| 93 ** xSync begins. | |
| 94 ** | |
| 95 ** After each checkpoint, the salt-1 value is incremented and the salt-2 | |
| 96 ** value is randomized. This prevents old and new frames in the WAL from | |
| 97 ** being considered valid at the same time and being checkpointing together | |
| 98 ** following a crash. | |
| 99 ** | |
| 100 ** READER ALGORITHM | |
| 101 ** | |
| 102 ** To read a page from the database (call it page number P), a reader | |
| 103 ** first checks the WAL to see if it contains page P. If so, then the | |
| 104 ** last valid instance of page P that is a followed by a commit frame | |
| 105 ** or is a commit frame itself becomes the value read. If the WAL | |
| 106 ** contains no copies of page P that are valid and which are a commit | |
| 107 ** frame or are followed by a commit frame, then page P is read from | |
| 108 ** the database file. | |
| 109 ** | |
| 110 ** To start a read transaction, the reader records the index of the last | |
| 111 ** valid frame in the WAL. The reader uses this recorded "mxFrame" value | |
| 112 ** for all subsequent read operations. New transactions can be appended | |
| 113 ** to the WAL, but as long as the reader uses its original mxFrame value | |
| 114 ** and ignores the newly appended content, it will see a consistent snapshot | |
| 115 ** of the database from a single point in time. This technique allows | |
| 116 ** multiple concurrent readers to view different versions of the database | |
| 117 ** content simultaneously. | |
| 118 ** | |
| 119 ** The reader algorithm in the previous paragraphs works correctly, but | |
| 120 ** because frames for page P can appear anywhere within the WAL, the | |
| 121 ** reader has to scan the entire WAL looking for page P frames. If the | |
| 122 ** WAL is large (multiple megabytes is typical) that scan can be slow, | |
| 123 ** and read performance suffers. To overcome this problem, a separate | |
| 124 ** data structure called the wal-index is maintained to expedite the | |
| 125 ** search for frames of a particular page. | |
| 126 ** | |
| 127 ** WAL-INDEX FORMAT | |
| 128 ** | |
| 129 ** Conceptually, the wal-index is shared memory, though VFS implementations | |
| 130 ** might choose to implement the wal-index using a mmapped file. Because | |
| 131 ** the wal-index is shared memory, SQLite does not support journal_mode=WAL | |
| 132 ** on a network filesystem. All users of the database must be able to | |
| 133 ** share memory. | |
| 134 ** | |
| 135 ** The wal-index is transient. After a crash, the wal-index can (and should | |
| 136 ** be) reconstructed from the original WAL file. In fact, the VFS is required | |
| 137 ** to either truncate or zero the header of the wal-index when the last | |
| 138 ** connection to it closes. Because the wal-index is transient, it can | |
| 139 ** use an architecture-specific format; it does not have to be cross-platform. | |
| 140 ** Hence, unlike the database and WAL file formats which store all values | |
| 141 ** as big endian, the wal-index can store multi-byte values in the native | |
| 142 ** byte order of the host computer. | |
| 143 ** | |
| 144 ** The purpose of the wal-index is to answer this question quickly: Given | |
| 145 ** a page number P and a maximum frame index M, return the index of the | |
| 146 ** last frame in the wal before frame M for page P in the WAL, or return | |
| 147 ** NULL if there are no frames for page P in the WAL prior to M. | |
| 148 ** | |
| 149 ** The wal-index consists of a header region, followed by an one or | |
| 150 ** more index blocks. | |
| 151 ** | |
| 152 ** The wal-index header contains the total number of frames within the WAL | |
| 153 ** in the mxFrame field. | |
| 154 ** | |
| 155 ** Each index block except for the first contains information on | |
| 156 ** HASHTABLE_NPAGE frames. The first index block contains information on | |
| 157 ** HASHTABLE_NPAGE_ONE frames. The values of HASHTABLE_NPAGE_ONE and | |
| 158 ** HASHTABLE_NPAGE are selected so that together the wal-index header and | |
| 159 ** first index block are the same size as all other index blocks in the | |
| 160 ** wal-index. | |
| 161 ** | |
| 162 ** Each index block contains two sections, a page-mapping that contains the | |
| 163 ** database page number associated with each wal frame, and a hash-table | |
| 164 ** that allows readers to query an index block for a specific page number. | |
| 165 ** The page-mapping is an array of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE | |
| 166 ** for the first index block) 32-bit page numbers. The first entry in the | |
| 167 ** first index-block contains the database page number corresponding to the | |
| 168 ** first frame in the WAL file. The first entry in the second index block | |
| 169 ** in the WAL file corresponds to the (HASHTABLE_NPAGE_ONE+1)th frame in | |
| 170 ** the log, and so on. | |
| 171 ** | |
| 172 ** The last index block in a wal-index usually contains less than the full | |
| 173 ** complement of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE) page-numbers, | |
| 174 ** depending on the contents of the WAL file. This does not change the | |
| 175 ** allocated size of the page-mapping array - the page-mapping array merely | |
| 176 ** contains unused entries. | |
| 177 ** | |
| 178 ** Even without using the hash table, the last frame for page P | |
| 179 ** can be found by scanning the page-mapping sections of each index block | |
| 180 ** starting with the last index block and moving toward the first, and | |
| 181 ** within each index block, starting at the end and moving toward the | |
| 182 ** beginning. The first entry that equals P corresponds to the frame | |
| 183 ** holding the content for that page. | |
| 184 ** | |
| 185 ** The hash table consists of HASHTABLE_NSLOT 16-bit unsigned integers. | |
| 186 ** HASHTABLE_NSLOT = 2*HASHTABLE_NPAGE, and there is one entry in the | |
| 187 ** hash table for each page number in the mapping section, so the hash | |
| 188 ** table is never more than half full. The expected number of collisions | |
| 189 ** prior to finding a match is 1. Each entry of the hash table is an | |
| 190 ** 1-based index of an entry in the mapping section of the same | |
| 191 ** index block. Let K be the 1-based index of the largest entry in | |
| 192 ** the mapping section. (For index blocks other than the last, K will | |
| 193 ** always be exactly HASHTABLE_NPAGE (4096) and for the last index block | |
| 194 ** K will be (mxFrame%HASHTABLE_NPAGE).) Unused slots of the hash table | |
| 195 ** contain a value of 0. | |
| 196 ** | |
| 197 ** To look for page P in the hash table, first compute a hash iKey on | |
| 198 ** P as follows: | |
| 199 ** | |
| 200 ** iKey = (P * 383) % HASHTABLE_NSLOT | |
| 201 ** | |
| 202 ** Then start scanning entries of the hash table, starting with iKey | |
| 203 ** (wrapping around to the beginning when the end of the hash table is | |
| 204 ** reached) until an unused hash slot is found. Let the first unused slot | |
| 205 ** be at index iUnused. (iUnused might be less than iKey if there was | |
| 206 ** wrap-around.) Because the hash table is never more than half full, | |
| 207 ** the search is guaranteed to eventually hit an unused entry. Let | |
| 208 ** iMax be the value between iKey and iUnused, closest to iUnused, | |
| 209 ** where aHash[iMax]==P. If there is no iMax entry (if there exists | |
| 210 ** no hash slot such that aHash[i]==p) then page P is not in the | |
| 211 ** current index block. Otherwise the iMax-th mapping entry of the | |
| 212 ** current index block corresponds to the last entry that references | |
| 213 ** page P. | |
| 214 ** | |
| 215 ** A hash search begins with the last index block and moves toward the | |
| 216 ** first index block, looking for entries corresponding to page P. On | |
| 217 ** average, only two or three slots in each index block need to be | |
| 218 ** examined in order to either find the last entry for page P, or to | |
| 219 ** establish that no such entry exists in the block. Each index block | |
| 220 ** holds over 4000 entries. So two or three index blocks are sufficient | |
| 221 ** to cover a typical 10 megabyte WAL file, assuming 1K pages. 8 or 10 | |
| 222 ** comparisons (on average) suffice to either locate a frame in the | |
| 223 ** WAL or to establish that the frame does not exist in the WAL. This | |
| 224 ** is much faster than scanning the entire 10MB WAL. | |
| 225 ** | |
| 226 ** Note that entries are added in order of increasing K. Hence, one | |
| 227 ** reader might be using some value K0 and a second reader that started | |
| 228 ** at a later time (after additional transactions were added to the WAL | |
| 229 ** and to the wal-index) might be using a different value K1, where K1>K0. | |
| 230 ** Both readers can use the same hash table and mapping section to get | |
| 231 ** the correct result. There may be entries in the hash table with | |
| 232 ** K>K0 but to the first reader, those entries will appear to be unused | |
| 233 ** slots in the hash table and so the first reader will get an answer as | |
| 234 ** if no values greater than K0 had ever been inserted into the hash table | |
| 235 ** in the first place - which is what reader one wants. Meanwhile, the | |
| 236 ** second reader using K1 will see additional values that were inserted | |
| 237 ** later, which is exactly what reader two wants. | |
| 238 ** | |
| 239 ** When a rollback occurs, the value of K is decreased. Hash table entries | |
| 240 ** that correspond to frames greater than the new K value are removed | |
| 241 ** from the hash table at this point. | |
| 242 */ | |
| 243 #ifndef SQLITE_OMIT_WAL | |
| 244 | |
| 245 #include "wal.h" | |
| 246 | |
| 247 /* | |
| 248 ** Trace output macros | |
| 249 */ | |
| 250 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) | |
| 251 int sqlite3WalTrace = 0; | |
| 252 # define WALTRACE(X) if(sqlite3WalTrace) sqlite3DebugPrintf X | |
| 253 #else | |
| 254 # define WALTRACE(X) | |
| 255 #endif | |
| 256 | |
| 257 /* | |
| 258 ** The maximum (and only) versions of the wal and wal-index formats | |
| 259 ** that may be interpreted by this version of SQLite. | |
| 260 ** | |
| 261 ** If a client begins recovering a WAL file and finds that (a) the checksum | |
| 262 ** values in the wal-header are correct and (b) the version field is not | |
| 263 ** WAL_MAX_VERSION, recovery fails and SQLite returns SQLITE_CANTOPEN. | |
| 264 ** | |
| 265 ** Similarly, if a client successfully reads a wal-index header (i.e. the | |
| 266 ** checksum test is successful) and finds that the version field is not | |
| 267 ** WALINDEX_MAX_VERSION, then no read-transaction is opened and SQLite | |
| 268 ** returns SQLITE_CANTOPEN. | |
| 269 */ | |
| 270 #define WAL_MAX_VERSION 3007000 | |
| 271 #define WALINDEX_MAX_VERSION 3007000 | |
| 272 | |
| 273 /* | |
| 274 ** Indices of various locking bytes. WAL_NREADER is the number | |
| 275 ** of available reader locks and should be at least 3. | |
| 276 */ | |
| 277 #define WAL_WRITE_LOCK 0 | |
| 278 #define WAL_ALL_BUT_WRITE 1 | |
| 279 #define WAL_CKPT_LOCK 1 | |
| 280 #define WAL_RECOVER_LOCK 2 | |
| 281 #define WAL_READ_LOCK(I) (3+(I)) | |
| 282 #define WAL_NREADER (SQLITE_SHM_NLOCK-3) | |
| 283 | |
| 284 | |
| 285 /* Object declarations */ | |
| 286 typedef struct WalIndexHdr WalIndexHdr; | |
| 287 typedef struct WalIterator WalIterator; | |
| 288 typedef struct WalCkptInfo WalCkptInfo; | |
| 289 | |
| 290 | |
| 291 /* | |
| 292 ** The following object holds a copy of the wal-index header content. | |
| 293 ** | |
| 294 ** The actual header in the wal-index consists of two copies of this | |
| 295 ** object. | |
| 296 ** | |
| 297 ** The szPage value can be any power of 2 between 512 and 32768, inclusive. | |
| 298 ** Or it can be 1 to represent a 65536-byte page. The latter case was | |
| 299 ** added in 3.7.1 when support for 64K pages was added. | |
| 300 */ | |
| 301 struct WalIndexHdr { | |
| 302 u32 iVersion; /* Wal-index version */ | |
| 303 u32 unused; /* Unused (padding) field */ | |
| 304 u32 iChange; /* Counter incremented each transaction */ | |
| 305 u8 isInit; /* 1 when initialized */ | |
| 306 u8 bigEndCksum; /* True if checksums in WAL are big-endian */ | |
| 307 u16 szPage; /* Database page size in bytes. 1==64K */ | |
| 308 u32 mxFrame; /* Index of last valid frame in the WAL */ | |
| 309 u32 nPage; /* Size of database in pages */ | |
| 310 u32 aFrameCksum[2]; /* Checksum of last frame in log */ | |
| 311 u32 aSalt[2]; /* Two salt values copied from WAL header */ | |
| 312 u32 aCksum[2]; /* Checksum over all prior fields */ | |
| 313 }; | |
| 314 | |
| 315 /* | |
| 316 ** A copy of the following object occurs in the wal-index immediately | |
| 317 ** following the second copy of the WalIndexHdr. This object stores | |
| 318 ** information used by checkpoint. | |
| 319 ** | |
| 320 ** nBackfill is the number of frames in the WAL that have been written | |
| 321 ** back into the database. (We call the act of moving content from WAL to | |
| 322 ** database "backfilling".) The nBackfill number is never greater than | |
| 323 ** WalIndexHdr.mxFrame. nBackfill can only be increased by threads | |
| 324 ** holding the WAL_CKPT_LOCK lock (which includes a recovery thread). | |
| 325 ** However, a WAL_WRITE_LOCK thread can move the value of nBackfill from | |
| 326 ** mxFrame back to zero when the WAL is reset. | |
| 327 ** | |
| 328 ** There is one entry in aReadMark[] for each reader lock. If a reader | |
| 329 ** holds read-lock K, then the value in aReadMark[K] is no greater than | |
| 330 ** the mxFrame for that reader. The value READMARK_NOT_USED (0xffffffff) | |
| 331 ** for any aReadMark[] means that entry is unused. aReadMark[0] is | |
| 332 ** a special case; its value is never used and it exists as a place-holder | |
| 333 ** to avoid having to offset aReadMark[] indexs by one. Readers holding | |
| 334 ** WAL_READ_LOCK(0) always ignore the entire WAL and read all content | |
| 335 ** directly from the database. | |
| 336 ** | |
| 337 ** The value of aReadMark[K] may only be changed by a thread that | |
| 338 ** is holding an exclusive lock on WAL_READ_LOCK(K). Thus, the value of | |
| 339 ** aReadMark[K] cannot changed while there is a reader is using that mark | |
| 340 ** since the reader will be holding a shared lock on WAL_READ_LOCK(K). | |
| 341 ** | |
| 342 ** The checkpointer may only transfer frames from WAL to database where | |
| 343 ** the frame numbers are less than or equal to every aReadMark[] that is | |
| 344 ** in use (that is, every aReadMark[j] for which there is a corresponding | |
| 345 ** WAL_READ_LOCK(j)). New readers (usually) pick the aReadMark[] with the | |
| 346 ** largest value and will increase an unused aReadMark[] to mxFrame if there | |
| 347 ** is not already an aReadMark[] equal to mxFrame. The exception to the | |
| 348 ** previous sentence is when nBackfill equals mxFrame (meaning that everything | |
| 349 ** in the WAL has been backfilled into the database) then new readers | |
| 350 ** will choose aReadMark[0] which has value 0 and hence such reader will | |
| 351 ** get all their all content directly from the database file and ignore | |
| 352 ** the WAL. | |
| 353 ** | |
| 354 ** Writers normally append new frames to the end of the WAL. However, | |
| 355 ** if nBackfill equals mxFrame (meaning that all WAL content has been | |
| 356 ** written back into the database) and if no readers are using the WAL | |
| 357 ** (in other words, if there are no WAL_READ_LOCK(i) where i>0) then | |
| 358 ** the writer will first "reset" the WAL back to the beginning and start | |
| 359 ** writing new content beginning at frame 1. | |
| 360 ** | |
| 361 ** We assume that 32-bit loads are atomic and so no locks are needed in | |
| 362 ** order to read from any aReadMark[] entries. | |
| 363 */ | |
| 364 struct WalCkptInfo { | |
| 365 u32 nBackfill; /* Number of WAL frames backfilled into DB */ | |
| 366 u32 aReadMark[WAL_NREADER]; /* Reader marks */ | |
| 367 }; | |
| 368 #define READMARK_NOT_USED 0xffffffff | |
| 369 | |
| 370 | |
| 371 /* A block of WALINDEX_LOCK_RESERVED bytes beginning at | |
| 372 ** WALINDEX_LOCK_OFFSET is reserved for locks. Since some systems | |
| 373 ** only support mandatory file-locks, we do not read or write data | |
| 374 ** from the region of the file on which locks are applied. | |
| 375 */ | |
| 376 #define WALINDEX_LOCK_OFFSET (sizeof(WalIndexHdr)*2 + sizeof(WalCkptInfo)) | |
| 377 #define WALINDEX_LOCK_RESERVED 16 | |
| 378 #define WALINDEX_HDR_SIZE (WALINDEX_LOCK_OFFSET+WALINDEX_LOCK_RESERVED) | |
| 379 | |
| 380 /* Size of header before each frame in wal */ | |
| 381 #define WAL_FRAME_HDRSIZE 24 | |
| 382 | |
| 383 /* Size of write ahead log header, including checksum. */ | |
| 384 /* #define WAL_HDRSIZE 24 */ | |
| 385 #define WAL_HDRSIZE 32 | |
| 386 | |
| 387 /* WAL magic value. Either this value, or the same value with the least | |
| 388 ** significant bit also set (WAL_MAGIC | 0x00000001) is stored in 32-bit | |
| 389 ** big-endian format in the first 4 bytes of a WAL file. | |
| 390 ** | |
| 391 ** If the LSB is set, then the checksums for each frame within the WAL | |
| 392 ** file are calculated by treating all data as an array of 32-bit | |
| 393 ** big-endian words. Otherwise, they are calculated by interpreting | |
| 394 ** all data as 32-bit little-endian words. | |
| 395 */ | |
| 396 #define WAL_MAGIC 0x377f0682 | |
| 397 | |
| 398 /* | |
| 399 ** Return the offset of frame iFrame in the write-ahead log file, | |
| 400 ** assuming a database page size of szPage bytes. The offset returned | |
| 401 ** is to the start of the write-ahead log frame-header. | |
| 402 */ | |
| 403 #define walFrameOffset(iFrame, szPage) ( \ | |
| 404 WAL_HDRSIZE + ((iFrame)-1)*(i64)((szPage)+WAL_FRAME_HDRSIZE) \ | |
| 405 ) | |
| 406 | |
| 407 /* | |
| 408 ** An open write-ahead log file is represented by an instance of the | |
| 409 ** following object. | |
| 410 */ | |
| 411 struct Wal { | |
| 412 sqlite3_vfs *pVfs; /* The VFS used to create pDbFd */ | |
| 413 sqlite3_file *pDbFd; /* File handle for the database file */ | |
| 414 sqlite3_file *pWalFd; /* File handle for WAL file */ | |
| 415 u32 iCallback; /* Value to pass to log callback (or 0) */ | |
| 416 i64 mxWalSize; /* Truncate WAL to this size upon reset */ | |
| 417 int nWiData; /* Size of array apWiData */ | |
| 418 int szFirstBlock; /* Size of first block written to WAL file */ | |
| 419 volatile u32 **apWiData; /* Pointer to wal-index content in memory */ | |
| 420 u32 szPage; /* Database page size */ | |
| 421 i16 readLock; /* Which read lock is being held. -1 for none */ | |
| 422 u8 syncFlags; /* Flags to use to sync header writes */ | |
| 423 u8 exclusiveMode; /* Non-zero if connection is in exclusive mode */ | |
| 424 u8 writeLock; /* True if in a write transaction */ | |
| 425 u8 ckptLock; /* True if holding a checkpoint lock */ | |
| 426 u8 readOnly; /* WAL_RDWR, WAL_RDONLY, or WAL_SHM_RDONLY */ | |
| 427 u8 truncateOnCommit; /* True to truncate WAL file on commit */ | |
| 428 u8 syncHeader; /* Fsync the WAL header if true */ | |
| 429 u8 padToSectorBoundary; /* Pad transactions out to the next sector */ | |
| 430 WalIndexHdr hdr; /* Wal-index header for current transaction */ | |
| 431 const char *zWalName; /* Name of WAL file */ | |
| 432 u32 nCkpt; /* Checkpoint sequence counter in the wal-header */ | |
| 433 #ifdef SQLITE_DEBUG | |
| 434 u8 lockError; /* True if a locking error has occurred */ | |
| 435 #endif | |
| 436 }; | |
| 437 | |
| 438 /* | |
| 439 ** Candidate values for Wal.exclusiveMode. | |
| 440 */ | |
| 441 #define WAL_NORMAL_MODE 0 | |
| 442 #define WAL_EXCLUSIVE_MODE 1 | |
| 443 #define WAL_HEAPMEMORY_MODE 2 | |
| 444 | |
| 445 /* | |
| 446 ** Possible values for WAL.readOnly | |
| 447 */ | |
| 448 #define WAL_RDWR 0 /* Normal read/write connection */ | |
| 449 #define WAL_RDONLY 1 /* The WAL file is readonly */ | |
| 450 #define WAL_SHM_RDONLY 2 /* The SHM file is readonly */ | |
| 451 | |
| 452 /* | |
| 453 ** Each page of the wal-index mapping contains a hash-table made up of | |
| 454 ** an array of HASHTABLE_NSLOT elements of the following type. | |
| 455 */ | |
| 456 typedef u16 ht_slot; | |
| 457 | |
| 458 /* | |
| 459 ** This structure is used to implement an iterator that loops through | |
| 460 ** all frames in the WAL in database page order. Where two or more frames | |
| 461 ** correspond to the same database page, the iterator visits only the | |
| 462 ** frame most recently written to the WAL (in other words, the frame with | |
| 463 ** the largest index). | |
| 464 ** | |
| 465 ** The internals of this structure are only accessed by: | |
| 466 ** | |
| 467 ** walIteratorInit() - Create a new iterator, | |
| 468 ** walIteratorNext() - Step an iterator, | |
| 469 ** walIteratorFree() - Free an iterator. | |
| 470 ** | |
| 471 ** This functionality is used by the checkpoint code (see walCheckpoint()). | |
| 472 */ | |
| 473 struct WalIterator { | |
| 474 int iPrior; /* Last result returned from the iterator */ | |
| 475 int nSegment; /* Number of entries in aSegment[] */ | |
| 476 struct WalSegment { | |
| 477 int iNext; /* Next slot in aIndex[] not yet returned */ | |
| 478 ht_slot *aIndex; /* i0, i1, i2... such that aPgno[iN] ascend */ | |
| 479 u32 *aPgno; /* Array of page numbers. */ | |
| 480 int nEntry; /* Nr. of entries in aPgno[] and aIndex[] */ | |
| 481 int iZero; /* Frame number associated with aPgno[0] */ | |
| 482 } aSegment[1]; /* One for every 32KB page in the wal-index */ | |
| 483 }; | |
| 484 | |
| 485 /* | |
| 486 ** Define the parameters of the hash tables in the wal-index file. There | |
| 487 ** is a hash-table following every HASHTABLE_NPAGE page numbers in the | |
| 488 ** wal-index. | |
| 489 ** | |
| 490 ** Changing any of these constants will alter the wal-index format and | |
| 491 ** create incompatibilities. | |
| 492 */ | |
| 493 #define HASHTABLE_NPAGE 4096 /* Must be power of 2 */ | |
| 494 #define HASHTABLE_HASH_1 383 /* Should be prime */ | |
| 495 #define HASHTABLE_NSLOT (HASHTABLE_NPAGE*2) /* Must be a power of 2 */ | |
| 496 | |
| 497 /* | |
| 498 ** The block of page numbers associated with the first hash-table in a | |
| 499 ** wal-index is smaller than usual. This is so that there is a complete | |
| 500 ** hash-table on each aligned 32KB page of the wal-index. | |
| 501 */ | |
| 502 #define HASHTABLE_NPAGE_ONE (HASHTABLE_NPAGE - (WALINDEX_HDR_SIZE/sizeof(u32))) | |
| 503 | |
| 504 /* The wal-index is divided into pages of WALINDEX_PGSZ bytes each. */ | |
| 505 #define WALINDEX_PGSZ ( \ | |
| 506 sizeof(ht_slot)*HASHTABLE_NSLOT + HASHTABLE_NPAGE*sizeof(u32) \ | |
| 507 ) | |
| 508 | |
| 509 /* | |
| 510 ** Obtain a pointer to the iPage'th page of the wal-index. The wal-index | |
| 511 ** is broken into pages of WALINDEX_PGSZ bytes. Wal-index pages are | |
| 512 ** numbered from zero. | |
| 513 ** | |
| 514 ** If this call is successful, *ppPage is set to point to the wal-index | |
| 515 ** page and SQLITE_OK is returned. If an error (an OOM or VFS error) occurs, | |
| 516 ** then an SQLite error code is returned and *ppPage is set to 0. | |
| 517 */ | |
| 518 static int walIndexPage(Wal *pWal, int iPage, volatile u32 **ppPage){ | |
| 519 int rc = SQLITE_OK; | |
| 520 | |
| 521 /* Enlarge the pWal->apWiData[] array if required */ | |
| 522 if( pWal->nWiData<=iPage ){ | |
| 523 int nByte = sizeof(u32*)*(iPage+1); | |
| 524 volatile u32 **apNew; | |
| 525 apNew = (volatile u32 **)sqlite3_realloc((void *)pWal->apWiData, nByte); | |
| 526 if( !apNew ){ | |
| 527 *ppPage = 0; | |
| 528 return SQLITE_NOMEM; | |
| 529 } | |
| 530 memset((void*)&apNew[pWal->nWiData], 0, | |
| 531 sizeof(u32*)*(iPage+1-pWal->nWiData)); | |
| 532 pWal->apWiData = apNew; | |
| 533 pWal->nWiData = iPage+1; | |
| 534 } | |
| 535 | |
| 536 /* Request a pointer to the required page from the VFS */ | |
| 537 if( pWal->apWiData[iPage]==0 ){ | |
| 538 if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){ | |
| 539 pWal->apWiData[iPage] = (u32 volatile *)sqlite3MallocZero(WALINDEX_PGSZ); | |
| 540 if( !pWal->apWiData[iPage] ) rc = SQLITE_NOMEM; | |
| 541 }else{ | |
| 542 rc = sqlite3OsShmMap(pWal->pDbFd, iPage, WALINDEX_PGSZ, | |
| 543 pWal->writeLock, (void volatile **)&pWal->apWiData[iPage] | |
| 544 ); | |
| 545 if( rc==SQLITE_READONLY ){ | |
| 546 pWal->readOnly |= WAL_SHM_RDONLY; | |
| 547 rc = SQLITE_OK; | |
| 548 } | |
| 549 } | |
| 550 } | |
| 551 | |
| 552 *ppPage = pWal->apWiData[iPage]; | |
| 553 assert( iPage==0 || *ppPage || rc!=SQLITE_OK ); | |
| 554 return rc; | |
| 555 } | |
| 556 | |
| 557 /* | |
| 558 ** Return a pointer to the WalCkptInfo structure in the wal-index. | |
| 559 */ | |
| 560 static volatile WalCkptInfo *walCkptInfo(Wal *pWal){ | |
| 561 assert( pWal->nWiData>0 && pWal->apWiData[0] ); | |
| 562 return (volatile WalCkptInfo*)&(pWal->apWiData[0][sizeof(WalIndexHdr)/2]); | |
| 563 } | |
| 564 | |
| 565 /* | |
| 566 ** Return a pointer to the WalIndexHdr structure in the wal-index. | |
| 567 */ | |
| 568 static volatile WalIndexHdr *walIndexHdr(Wal *pWal){ | |
| 569 assert( pWal->nWiData>0 && pWal->apWiData[0] ); | |
| 570 return (volatile WalIndexHdr*)pWal->apWiData[0]; | |
| 571 } | |
| 572 | |
| 573 /* | |
| 574 ** The argument to this macro must be of type u32. On a little-endian | |
| 575 ** architecture, it returns the u32 value that results from interpreting | |
| 576 ** the 4 bytes as a big-endian value. On a big-endian architecture, it | |
| 577 ** returns the value that would be produced by interpreting the 4 bytes | |
| 578 ** of the input value as a little-endian integer. | |
| 579 */ | |
| 580 #define BYTESWAP32(x) ( \ | |
| 581 (((x)&0x000000FF)<<24) + (((x)&0x0000FF00)<<8) \ | |
| 582 + (((x)&0x00FF0000)>>8) + (((x)&0xFF000000)>>24) \ | |
| 583 ) | |
| 584 | |
| 585 /* | |
| 586 ** Generate or extend an 8 byte checksum based on the data in | |
| 587 ** array aByte[] and the initial values of aIn[0] and aIn[1] (or | |
| 588 ** initial values of 0 and 0 if aIn==NULL). | |
| 589 ** | |
| 590 ** The checksum is written back into aOut[] before returning. | |
| 591 ** | |
| 592 ** nByte must be a positive multiple of 8. | |
| 593 */ | |
| 594 static void walChecksumBytes( | |
| 595 int nativeCksum, /* True for native byte-order, false for non-native */ | |
| 596 u8 *a, /* Content to be checksummed */ | |
| 597 int nByte, /* Bytes of content in a[]. Must be a multiple of 8. */ | |
| 598 const u32 *aIn, /* Initial checksum value input */ | |
| 599 u32 *aOut /* OUT: Final checksum value output */ | |
| 600 ){ | |
| 601 u32 s1, s2; | |
| 602 u32 *aData = (u32 *)a; | |
| 603 u32 *aEnd = (u32 *)&a[nByte]; | |
| 604 | |
| 605 if( aIn ){ | |
| 606 s1 = aIn[0]; | |
| 607 s2 = aIn[1]; | |
| 608 }else{ | |
| 609 s1 = s2 = 0; | |
| 610 } | |
| 611 | |
| 612 assert( nByte>=8 ); | |
| 613 assert( (nByte&0x00000007)==0 ); | |
| 614 | |
| 615 if( nativeCksum ){ | |
| 616 do { | |
| 617 s1 += *aData++ + s2; | |
| 618 s2 += *aData++ + s1; | |
| 619 }while( aData<aEnd ); | |
| 620 }else{ | |
| 621 do { | |
| 622 s1 += BYTESWAP32(aData[0]) + s2; | |
| 623 s2 += BYTESWAP32(aData[1]) + s1; | |
| 624 aData += 2; | |
| 625 }while( aData<aEnd ); | |
| 626 } | |
| 627 | |
| 628 aOut[0] = s1; | |
| 629 aOut[1] = s2; | |
| 630 } | |
| 631 | |
| 632 static void walShmBarrier(Wal *pWal){ | |
| 633 if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){ | |
| 634 sqlite3OsShmBarrier(pWal->pDbFd); | |
| 635 } | |
| 636 } | |
| 637 | |
| 638 /* | |
| 639 ** Write the header information in pWal->hdr into the wal-index. | |
| 640 ** | |
| 641 ** The checksum on pWal->hdr is updated before it is written. | |
| 642 */ | |
| 643 static void walIndexWriteHdr(Wal *pWal){ | |
| 644 volatile WalIndexHdr *aHdr = walIndexHdr(pWal); | |
| 645 const int nCksum = offsetof(WalIndexHdr, aCksum); | |
| 646 | |
| 647 assert( pWal->writeLock ); | |
| 648 pWal->hdr.isInit = 1; | |
| 649 pWal->hdr.iVersion = WALINDEX_MAX_VERSION; | |
| 650 walChecksumBytes(1, (u8*)&pWal->hdr, nCksum, 0, pWal->hdr.aCksum); | |
| 651 memcpy((void *)&aHdr[1], (void *)&pWal->hdr, sizeof(WalIndexHdr)); | |
| 652 walShmBarrier(pWal); | |
| 653 memcpy((void *)&aHdr[0], (void *)&pWal->hdr, sizeof(WalIndexHdr)); | |
| 654 } | |
| 655 | |
| 656 /* | |
| 657 ** This function encodes a single frame header and writes it to a buffer | |
| 658 ** supplied by the caller. A frame-header is made up of a series of | |
| 659 ** 4-byte big-endian integers, as follows: | |
| 660 ** | |
| 661 ** 0: Page number. | |
| 662 ** 4: For commit records, the size of the database image in pages | |
| 663 ** after the commit. For all other records, zero. | |
| 664 ** 8: Salt-1 (copied from the wal-header) | |
| 665 ** 12: Salt-2 (copied from the wal-header) | |
| 666 ** 16: Checksum-1. | |
| 667 ** 20: Checksum-2. | |
| 668 */ | |
| 669 static void walEncodeFrame( | |
| 670 Wal *pWal, /* The write-ahead log */ | |
| 671 u32 iPage, /* Database page number for frame */ | |
| 672 u32 nTruncate, /* New db size (or 0 for non-commit frames) */ | |
| 673 u8 *aData, /* Pointer to page data */ | |
| 674 u8 *aFrame /* OUT: Write encoded frame here */ | |
| 675 ){ | |
| 676 int nativeCksum; /* True for native byte-order checksums */ | |
| 677 u32 *aCksum = pWal->hdr.aFrameCksum; | |
| 678 assert( WAL_FRAME_HDRSIZE==24 ); | |
| 679 sqlite3Put4byte(&aFrame[0], iPage); | |
| 680 sqlite3Put4byte(&aFrame[4], nTruncate); | |
| 681 memcpy(&aFrame[8], pWal->hdr.aSalt, 8); | |
| 682 | |
| 683 nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN); | |
| 684 walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum); | |
| 685 walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum); | |
| 686 | |
| 687 sqlite3Put4byte(&aFrame[16], aCksum[0]); | |
| 688 sqlite3Put4byte(&aFrame[20], aCksum[1]); | |
| 689 } | |
| 690 | |
| 691 /* | |
| 692 ** Check to see if the frame with header in aFrame[] and content | |
| 693 ** in aData[] is valid. If it is a valid frame, fill *piPage and | |
| 694 ** *pnTruncate and return true. Return if the frame is not valid. | |
| 695 */ | |
| 696 static int walDecodeFrame( | |
| 697 Wal *pWal, /* The write-ahead log */ | |
| 698 u32 *piPage, /* OUT: Database page number for frame */ | |
| 699 u32 *pnTruncate, /* OUT: New db size (or 0 if not commit) */ | |
| 700 u8 *aData, /* Pointer to page data (for checksum) */ | |
| 701 u8 *aFrame /* Frame data */ | |
| 702 ){ | |
| 703 int nativeCksum; /* True for native byte-order checksums */ | |
| 704 u32 *aCksum = pWal->hdr.aFrameCksum; | |
| 705 u32 pgno; /* Page number of the frame */ | |
| 706 assert( WAL_FRAME_HDRSIZE==24 ); | |
| 707 | |
| 708 /* A frame is only valid if the salt values in the frame-header | |
| 709 ** match the salt values in the wal-header. | |
| 710 */ | |
| 711 if( memcmp(&pWal->hdr.aSalt, &aFrame[8], 8)!=0 ){ | |
| 712 return 0; | |
| 713 } | |
| 714 | |
| 715 /* A frame is only valid if the page number is creater than zero. | |
| 716 */ | |
| 717 pgno = sqlite3Get4byte(&aFrame[0]); | |
| 718 if( pgno==0 ){ | |
| 719 return 0; | |
| 720 } | |
| 721 | |
| 722 /* A frame is only valid if a checksum of the WAL header, | |
| 723 ** all prior frams, the first 16 bytes of this frame-header, | |
| 724 ** and the frame-data matches the checksum in the last 8 | |
| 725 ** bytes of this frame-header. | |
| 726 */ | |
| 727 nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN); | |
| 728 walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum); | |
| 729 walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum); | |
| 730 if( aCksum[0]!=sqlite3Get4byte(&aFrame[16]) | |
| 731 || aCksum[1]!=sqlite3Get4byte(&aFrame[20]) | |
| 732 ){ | |
| 733 /* Checksum failed. */ | |
| 734 return 0; | |
| 735 } | |
| 736 | |
| 737 /* If we reach this point, the frame is valid. Return the page number | |
| 738 ** and the new database size. | |
| 739 */ | |
| 740 *piPage = pgno; | |
| 741 *pnTruncate = sqlite3Get4byte(&aFrame[4]); | |
| 742 return 1; | |
| 743 } | |
| 744 | |
| 745 | |
| 746 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) | |
| 747 /* | |
| 748 ** Names of locks. This routine is used to provide debugging output and is not | |
| 749 ** a part of an ordinary build. | |
| 750 */ | |
| 751 static const char *walLockName(int lockIdx){ | |
| 752 if( lockIdx==WAL_WRITE_LOCK ){ | |
| 753 return "WRITE-LOCK"; | |
| 754 }else if( lockIdx==WAL_CKPT_LOCK ){ | |
| 755 return "CKPT-LOCK"; | |
| 756 }else if( lockIdx==WAL_RECOVER_LOCK ){ | |
| 757 return "RECOVER-LOCK"; | |
| 758 }else{ | |
| 759 static char zName[15]; | |
| 760 sqlite3_snprintf(sizeof(zName), zName, "READ-LOCK[%d]", | |
| 761 lockIdx-WAL_READ_LOCK(0)); | |
| 762 return zName; | |
| 763 } | |
| 764 } | |
| 765 #endif /*defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */ | |
| 766 | |
| 767 | |
| 768 /* | |
| 769 ** Set or release locks on the WAL. Locks are either shared or exclusive. | |
| 770 ** A lock cannot be moved directly between shared and exclusive - it must go | |
| 771 ** through the unlocked state first. | |
| 772 ** | |
| 773 ** In locking_mode=EXCLUSIVE, all of these routines become no-ops. | |
| 774 */ | |
| 775 static int walLockShared(Wal *pWal, int lockIdx){ | |
| 776 int rc; | |
| 777 if( pWal->exclusiveMode ) return SQLITE_OK; | |
| 778 rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1, | |
| 779 SQLITE_SHM_LOCK | SQLITE_SHM_SHARED); | |
| 780 WALTRACE(("WAL%p: acquire SHARED-%s %s\n", pWal, | |
| 781 walLockName(lockIdx), rc ? "failed" : "ok")); | |
| 782 VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); ) | |
| 783 return rc; | |
| 784 } | |
| 785 static void walUnlockShared(Wal *pWal, int lockIdx){ | |
| 786 if( pWal->exclusiveMode ) return; | |
| 787 (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1, | |
| 788 SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED); | |
| 789 WALTRACE(("WAL%p: release SHARED-%s\n", pWal, walLockName(lockIdx))); | |
| 790 } | |
| 791 static int walLockExclusive(Wal *pWal, int lockIdx, int n){ | |
| 792 int rc; | |
| 793 if( pWal->exclusiveMode ) return SQLITE_OK; | |
| 794 rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, n, | |
| 795 SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE); | |
| 796 WALTRACE(("WAL%p: acquire EXCLUSIVE-%s cnt=%d %s\n", pWal, | |
| 797 walLockName(lockIdx), n, rc ? "failed" : "ok")); | |
| 798 VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); ) | |
| 799 return rc; | |
| 800 } | |
| 801 static void walUnlockExclusive(Wal *pWal, int lockIdx, int n){ | |
| 802 if( pWal->exclusiveMode ) return; | |
| 803 (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, n, | |
| 804 SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE); | |
| 805 WALTRACE(("WAL%p: release EXCLUSIVE-%s cnt=%d\n", pWal, | |
| 806 walLockName(lockIdx), n)); | |
| 807 } | |
| 808 | |
| 809 /* | |
| 810 ** Compute a hash on a page number. The resulting hash value must land | |
| 811 ** between 0 and (HASHTABLE_NSLOT-1). The walHashNext() function advances | |
| 812 ** the hash to the next value in the event of a collision. | |
| 813 */ | |
| 814 static int walHash(u32 iPage){ | |
| 815 assert( iPage>0 ); | |
| 816 assert( (HASHTABLE_NSLOT & (HASHTABLE_NSLOT-1))==0 ); | |
| 817 return (iPage*HASHTABLE_HASH_1) & (HASHTABLE_NSLOT-1); | |
| 818 } | |
| 819 static int walNextHash(int iPriorHash){ | |
| 820 return (iPriorHash+1)&(HASHTABLE_NSLOT-1); | |
| 821 } | |
| 822 | |
| 823 /* | |
| 824 ** Return pointers to the hash table and page number array stored on | |
| 825 ** page iHash of the wal-index. The wal-index is broken into 32KB pages | |
| 826 ** numbered starting from 0. | |
| 827 ** | |
| 828 ** Set output variable *paHash to point to the start of the hash table | |
| 829 ** in the wal-index file. Set *piZero to one less than the frame | |
| 830 ** number of the first frame indexed by this hash table. If a | |
| 831 ** slot in the hash table is set to N, it refers to frame number | |
| 832 ** (*piZero+N) in the log. | |
| 833 ** | |
| 834 ** Finally, set *paPgno so that *paPgno[1] is the page number of the | |
| 835 ** first frame indexed by the hash table, frame (*piZero+1). | |
| 836 */ | |
| 837 static int walHashGet( | |
| 838 Wal *pWal, /* WAL handle */ | |
| 839 int iHash, /* Find the iHash'th table */ | |
| 840 volatile ht_slot **paHash, /* OUT: Pointer to hash index */ | |
| 841 volatile u32 **paPgno, /* OUT: Pointer to page number array */ | |
| 842 u32 *piZero /* OUT: Frame associated with *paPgno[0] */ | |
| 843 ){ | |
| 844 int rc; /* Return code */ | |
| 845 volatile u32 *aPgno; | |
| 846 | |
| 847 rc = walIndexPage(pWal, iHash, &aPgno); | |
| 848 assert( rc==SQLITE_OK || iHash>0 ); | |
| 849 | |
| 850 if( rc==SQLITE_OK ){ | |
| 851 u32 iZero; | |
| 852 volatile ht_slot *aHash; | |
| 853 | |
| 854 aHash = (volatile ht_slot *)&aPgno[HASHTABLE_NPAGE]; | |
| 855 if( iHash==0 ){ | |
| 856 aPgno = &aPgno[WALINDEX_HDR_SIZE/sizeof(u32)]; | |
| 857 iZero = 0; | |
| 858 }else{ | |
| 859 iZero = HASHTABLE_NPAGE_ONE + (iHash-1)*HASHTABLE_NPAGE; | |
| 860 } | |
| 861 | |
| 862 *paPgno = &aPgno[-1]; | |
| 863 *paHash = aHash; | |
| 864 *piZero = iZero; | |
| 865 } | |
| 866 return rc; | |
| 867 } | |
| 868 | |
| 869 /* | |
| 870 ** Return the number of the wal-index page that contains the hash-table | |
| 871 ** and page-number array that contain entries corresponding to WAL frame | |
| 872 ** iFrame. The wal-index is broken up into 32KB pages. Wal-index pages | |
| 873 ** are numbered starting from 0. | |
| 874 */ | |
| 875 static int walFramePage(u32 iFrame){ | |
| 876 int iHash = (iFrame+HASHTABLE_NPAGE-HASHTABLE_NPAGE_ONE-1) / HASHTABLE_NPAGE; | |
| 877 assert( (iHash==0 || iFrame>HASHTABLE_NPAGE_ONE) | |
| 878 && (iHash>=1 || iFrame<=HASHTABLE_NPAGE_ONE) | |
| 879 && (iHash<=1 || iFrame>(HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE)) | |
| 880 && (iHash>=2 || iFrame<=HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE) | |
| 881 && (iHash<=2 || iFrame>(HASHTABLE_NPAGE_ONE+2*HASHTABLE_NPAGE)) | |
| 882 ); | |
| 883 return iHash; | |
| 884 } | |
| 885 | |
| 886 /* | |
| 887 ** Return the page number associated with frame iFrame in this WAL. | |
| 888 */ | |
| 889 static u32 walFramePgno(Wal *pWal, u32 iFrame){ | |
| 890 int iHash = walFramePage(iFrame); | |
| 891 if( iHash==0 ){ | |
| 892 return pWal->apWiData[0][WALINDEX_HDR_SIZE/sizeof(u32) + iFrame - 1]; | |
| 893 } | |
| 894 return pWal->apWiData[iHash][(iFrame-1-HASHTABLE_NPAGE_ONE)%HASHTABLE_NPAGE]; | |
| 895 } | |
| 896 | |
| 897 /* | |
| 898 ** Remove entries from the hash table that point to WAL slots greater | |
| 899 ** than pWal->hdr.mxFrame. | |
| 900 ** | |
| 901 ** This function is called whenever pWal->hdr.mxFrame is decreased due | |
| 902 ** to a rollback or savepoint. | |
| 903 ** | |
| 904 ** At most only the hash table containing pWal->hdr.mxFrame needs to be | |
| 905 ** updated. Any later hash tables will be automatically cleared when | |
| 906 ** pWal->hdr.mxFrame advances to the point where those hash tables are | |
| 907 ** actually needed. | |
| 908 */ | |
| 909 static void walCleanupHash(Wal *pWal){ | |
| 910 volatile ht_slot *aHash = 0; /* Pointer to hash table to clear */ | |
| 911 volatile u32 *aPgno = 0; /* Page number array for hash table */ | |
| 912 u32 iZero = 0; /* frame == (aHash[x]+iZero) */ | |
| 913 int iLimit = 0; /* Zero values greater than this */ | |
| 914 int nByte; /* Number of bytes to zero in aPgno[] */ | |
| 915 int i; /* Used to iterate through aHash[] */ | |
| 916 | |
| 917 assert( pWal->writeLock ); | |
| 918 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE-1 ); | |
| 919 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE ); | |
| 920 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE+1 ); | |
| 921 | |
| 922 if( pWal->hdr.mxFrame==0 ) return; | |
| 923 | |
| 924 /* Obtain pointers to the hash-table and page-number array containing | |
| 925 ** the entry that corresponds to frame pWal->hdr.mxFrame. It is guaranteed | |
| 926 ** that the page said hash-table and array reside on is already mapped. | |
| 927 */ | |
| 928 assert( pWal->nWiData>walFramePage(pWal->hdr.mxFrame) ); | |
| 929 assert( pWal->apWiData[walFramePage(pWal->hdr.mxFrame)] ); | |
| 930 walHashGet(pWal, walFramePage(pWal->hdr.mxFrame), &aHash, &aPgno, &iZero); | |
| 931 | |
| 932 /* Zero all hash-table entries that correspond to frame numbers greater | |
| 933 ** than pWal->hdr.mxFrame. | |
| 934 */ | |
| 935 iLimit = pWal->hdr.mxFrame - iZero; | |
| 936 assert( iLimit>0 ); | |
| 937 for(i=0; i<HASHTABLE_NSLOT; i++){ | |
| 938 if( aHash[i]>iLimit ){ | |
| 939 aHash[i] = 0; | |
| 940 } | |
| 941 } | |
| 942 | |
| 943 /* Zero the entries in the aPgno array that correspond to frames with | |
| 944 ** frame numbers greater than pWal->hdr.mxFrame. | |
| 945 */ | |
| 946 nByte = (int)((char *)aHash - (char *)&aPgno[iLimit+1]); | |
| 947 memset((void *)&aPgno[iLimit+1], 0, nByte); | |
| 948 | |
| 949 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT | |
| 950 /* Verify that the every entry in the mapping region is still reachable | |
| 951 ** via the hash table even after the cleanup. | |
| 952 */ | |
| 953 if( iLimit ){ | |
| 954 int i; /* Loop counter */ | |
| 955 int iKey; /* Hash key */ | |
| 956 for(i=1; i<=iLimit; i++){ | |
| 957 for(iKey=walHash(aPgno[i]); aHash[iKey]; iKey=walNextHash(iKey)){ | |
| 958 if( aHash[iKey]==i ) break; | |
| 959 } | |
| 960 assert( aHash[iKey]==i ); | |
| 961 } | |
| 962 } | |
| 963 #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */ | |
| 964 } | |
| 965 | |
| 966 | |
| 967 /* | |
| 968 ** Set an entry in the wal-index that will map database page number | |
| 969 ** pPage into WAL frame iFrame. | |
| 970 */ | |
| 971 static int walIndexAppend(Wal *pWal, u32 iFrame, u32 iPage){ | |
| 972 int rc; /* Return code */ | |
| 973 u32 iZero = 0; /* One less than frame number of aPgno[1] */ | |
| 974 volatile u32 *aPgno = 0; /* Page number array */ | |
| 975 volatile ht_slot *aHash = 0; /* Hash table */ | |
| 976 | |
| 977 rc = walHashGet(pWal, walFramePage(iFrame), &aHash, &aPgno, &iZero); | |
| 978 | |
| 979 /* Assuming the wal-index file was successfully mapped, populate the | |
| 980 ** page number array and hash table entry. | |
| 981 */ | |
| 982 if( rc==SQLITE_OK ){ | |
| 983 int iKey; /* Hash table key */ | |
| 984 int idx; /* Value to write to hash-table slot */ | |
| 985 int nCollide; /* Number of hash collisions */ | |
| 986 | |
| 987 idx = iFrame - iZero; | |
| 988 assert( idx <= HASHTABLE_NSLOT/2 + 1 ); | |
| 989 | |
| 990 /* If this is the first entry to be added to this hash-table, zero the | |
| 991 ** entire hash table and aPgno[] array before proceeding. | |
| 992 */ | |
| 993 if( idx==1 ){ | |
| 994 int nByte = (int)((u8 *)&aHash[HASHTABLE_NSLOT] - (u8 *)&aPgno[1]); | |
| 995 memset((void*)&aPgno[1], 0, nByte); | |
| 996 } | |
| 997 | |
| 998 /* If the entry in aPgno[] is already set, then the previous writer | |
| 999 ** must have exited unexpectedly in the middle of a transaction (after | |
| 1000 ** writing one or more dirty pages to the WAL to free up memory). | |
| 1001 ** Remove the remnants of that writers uncommitted transaction from | |
| 1002 ** the hash-table before writing any new entries. | |
| 1003 */ | |
| 1004 if( aPgno[idx] ){ | |
| 1005 walCleanupHash(pWal); | |
| 1006 assert( !aPgno[idx] ); | |
| 1007 } | |
| 1008 | |
| 1009 /* Write the aPgno[] array entry and the hash-table slot. */ | |
| 1010 nCollide = idx; | |
| 1011 for(iKey=walHash(iPage); aHash[iKey]; iKey=walNextHash(iKey)){ | |
| 1012 if( (nCollide--)==0 ) return SQLITE_CORRUPT_BKPT; | |
| 1013 } | |
| 1014 aPgno[idx] = iPage; | |
| 1015 aHash[iKey] = (ht_slot)idx; | |
| 1016 | |
| 1017 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT | |
| 1018 /* Verify that the number of entries in the hash table exactly equals | |
| 1019 ** the number of entries in the mapping region. | |
| 1020 */ | |
| 1021 { | |
| 1022 int i; /* Loop counter */ | |
| 1023 int nEntry = 0; /* Number of entries in the hash table */ | |
| 1024 for(i=0; i<HASHTABLE_NSLOT; i++){ if( aHash[i] ) nEntry++; } | |
| 1025 assert( nEntry==idx ); | |
| 1026 } | |
| 1027 | |
| 1028 /* Verify that the every entry in the mapping region is reachable | |
| 1029 ** via the hash table. This turns out to be a really, really expensive | |
| 1030 ** thing to check, so only do this occasionally - not on every | |
| 1031 ** iteration. | |
| 1032 */ | |
| 1033 if( (idx&0x3ff)==0 ){ | |
| 1034 int i; /* Loop counter */ | |
| 1035 for(i=1; i<=idx; i++){ | |
| 1036 for(iKey=walHash(aPgno[i]); aHash[iKey]; iKey=walNextHash(iKey)){ | |
| 1037 if( aHash[iKey]==i ) break; | |
| 1038 } | |
| 1039 assert( aHash[iKey]==i ); | |
| 1040 } | |
| 1041 } | |
| 1042 #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */ | |
| 1043 } | |
| 1044 | |
| 1045 | |
| 1046 return rc; | |
| 1047 } | |
| 1048 | |
| 1049 | |
| 1050 /* | |
| 1051 ** Recover the wal-index by reading the write-ahead log file. | |
| 1052 ** | |
| 1053 ** This routine first tries to establish an exclusive lock on the | |
| 1054 ** wal-index to prevent other threads/processes from doing anything | |
| 1055 ** with the WAL or wal-index while recovery is running. The | |
| 1056 ** WAL_RECOVER_LOCK is also held so that other threads will know | |
| 1057 ** that this thread is running recovery. If unable to establish | |
| 1058 ** the necessary locks, this routine returns SQLITE_BUSY. | |
| 1059 */ | |
| 1060 static int walIndexRecover(Wal *pWal){ | |
| 1061 int rc; /* Return Code */ | |
| 1062 i64 nSize; /* Size of log file */ | |
| 1063 u32 aFrameCksum[2] = {0, 0}; | |
| 1064 int iLock; /* Lock offset to lock for checkpoint */ | |
| 1065 int nLock; /* Number of locks to hold */ | |
| 1066 | |
| 1067 /* Obtain an exclusive lock on all byte in the locking range not already | |
| 1068 ** locked by the caller. The caller is guaranteed to have locked the | |
| 1069 ** WAL_WRITE_LOCK byte, and may have also locked the WAL_CKPT_LOCK byte. | |
| 1070 ** If successful, the same bytes that are locked here are unlocked before | |
| 1071 ** this function returns. | |
| 1072 */ | |
| 1073 assert( pWal->ckptLock==1 || pWal->ckptLock==0 ); | |
| 1074 assert( WAL_ALL_BUT_WRITE==WAL_WRITE_LOCK+1 ); | |
| 1075 assert( WAL_CKPT_LOCK==WAL_ALL_BUT_WRITE ); | |
| 1076 assert( pWal->writeLock ); | |
| 1077 iLock = WAL_ALL_BUT_WRITE + pWal->ckptLock; | |
| 1078 nLock = SQLITE_SHM_NLOCK - iLock; | |
| 1079 rc = walLockExclusive(pWal, iLock, nLock); | |
| 1080 if( rc ){ | |
| 1081 return rc; | |
| 1082 } | |
| 1083 WALTRACE(("WAL%p: recovery begin...\n", pWal)); | |
| 1084 | |
| 1085 memset(&pWal->hdr, 0, sizeof(WalIndexHdr)); | |
| 1086 | |
| 1087 rc = sqlite3OsFileSize(pWal->pWalFd, &nSize); | |
| 1088 if( rc!=SQLITE_OK ){ | |
| 1089 goto recovery_error; | |
| 1090 } | |
| 1091 | |
| 1092 if( nSize>WAL_HDRSIZE ){ | |
| 1093 u8 aBuf[WAL_HDRSIZE]; /* Buffer to load WAL header into */ | |
| 1094 u8 *aFrame = 0; /* Malloc'd buffer to load entire frame */ | |
| 1095 int szFrame; /* Number of bytes in buffer aFrame[] */ | |
| 1096 u8 *aData; /* Pointer to data part of aFrame buffer */ | |
| 1097 int iFrame; /* Index of last frame read */ | |
| 1098 i64 iOffset; /* Next offset to read from log file */ | |
| 1099 int szPage; /* Page size according to the log */ | |
| 1100 u32 magic; /* Magic value read from WAL header */ | |
| 1101 u32 version; /* Magic value read from WAL header */ | |
| 1102 int isValid; /* True if this frame is valid */ | |
| 1103 | |
| 1104 /* Read in the WAL header. */ | |
| 1105 rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0); | |
| 1106 if( rc!=SQLITE_OK ){ | |
| 1107 goto recovery_error; | |
| 1108 } | |
| 1109 | |
| 1110 /* If the database page size is not a power of two, or is greater than | |
| 1111 ** SQLITE_MAX_PAGE_SIZE, conclude that the WAL file contains no valid | |
| 1112 ** data. Similarly, if the 'magic' value is invalid, ignore the whole | |
| 1113 ** WAL file. | |
| 1114 */ | |
| 1115 magic = sqlite3Get4byte(&aBuf[0]); | |
| 1116 szPage = sqlite3Get4byte(&aBuf[8]); | |
| 1117 if( (magic&0xFFFFFFFE)!=WAL_MAGIC | |
| 1118 || szPage&(szPage-1) | |
| 1119 || szPage>SQLITE_MAX_PAGE_SIZE | |
| 1120 || szPage<512 | |
| 1121 ){ | |
| 1122 goto finished; | |
| 1123 } | |
| 1124 pWal->hdr.bigEndCksum = (u8)(magic&0x00000001); | |
| 1125 pWal->szPage = szPage; | |
| 1126 pWal->nCkpt = sqlite3Get4byte(&aBuf[12]); | |
| 1127 memcpy(&pWal->hdr.aSalt, &aBuf[16], 8); | |
| 1128 | |
| 1129 /* Verify that the WAL header checksum is correct */ | |
| 1130 walChecksumBytes(pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN, | |
| 1131 aBuf, WAL_HDRSIZE-2*4, 0, pWal->hdr.aFrameCksum | |
| 1132 ); | |
| 1133 if( pWal->hdr.aFrameCksum[0]!=sqlite3Get4byte(&aBuf[24]) | |
| 1134 || pWal->hdr.aFrameCksum[1]!=sqlite3Get4byte(&aBuf[28]) | |
| 1135 ){ | |
| 1136 goto finished; | |
| 1137 } | |
| 1138 | |
| 1139 /* Verify that the version number on the WAL format is one that | |
| 1140 ** are able to understand */ | |
| 1141 version = sqlite3Get4byte(&aBuf[4]); | |
| 1142 if( version!=WAL_MAX_VERSION ){ | |
| 1143 rc = SQLITE_CANTOPEN_BKPT; | |
| 1144 goto finished; | |
| 1145 } | |
| 1146 | |
| 1147 /* Malloc a buffer to read frames into. */ | |
| 1148 szFrame = szPage + WAL_FRAME_HDRSIZE; | |
| 1149 aFrame = (u8 *)sqlite3_malloc(szFrame); | |
| 1150 if( !aFrame ){ | |
| 1151 rc = SQLITE_NOMEM; | |
| 1152 goto recovery_error; | |
| 1153 } | |
| 1154 aData = &aFrame[WAL_FRAME_HDRSIZE]; | |
| 1155 | |
| 1156 /* Read all frames from the log file. */ | |
| 1157 iFrame = 0; | |
| 1158 for(iOffset=WAL_HDRSIZE; (iOffset+szFrame)<=nSize; iOffset+=szFrame){ | |
| 1159 u32 pgno; /* Database page number for frame */ | |
| 1160 u32 nTruncate; /* dbsize field from frame header */ | |
| 1161 | |
| 1162 /* Read and decode the next log frame. */ | |
| 1163 iFrame++; | |
| 1164 rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset); | |
| 1165 if( rc!=SQLITE_OK ) break; | |
| 1166 isValid = walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame); | |
| 1167 if( !isValid ) break; | |
| 1168 rc = walIndexAppend(pWal, iFrame, pgno); | |
| 1169 if( rc!=SQLITE_OK ) break; | |
| 1170 | |
| 1171 /* If nTruncate is non-zero, this is a commit record. */ | |
| 1172 if( nTruncate ){ | |
| 1173 pWal->hdr.mxFrame = iFrame; | |
| 1174 pWal->hdr.nPage = nTruncate; | |
| 1175 pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16)); | |
| 1176 testcase( szPage<=32768 ); | |
| 1177 testcase( szPage>=65536 ); | |
| 1178 aFrameCksum[0] = pWal->hdr.aFrameCksum[0]; | |
| 1179 aFrameCksum[1] = pWal->hdr.aFrameCksum[1]; | |
| 1180 } | |
| 1181 } | |
| 1182 | |
| 1183 sqlite3_free(aFrame); | |
| 1184 } | |
| 1185 | |
| 1186 finished: | |
| 1187 if( rc==SQLITE_OK ){ | |
| 1188 volatile WalCkptInfo *pInfo; | |
| 1189 int i; | |
| 1190 pWal->hdr.aFrameCksum[0] = aFrameCksum[0]; | |
| 1191 pWal->hdr.aFrameCksum[1] = aFrameCksum[1]; | |
| 1192 walIndexWriteHdr(pWal); | |
| 1193 | |
| 1194 /* Reset the checkpoint-header. This is safe because this thread is | |
| 1195 ** currently holding locks that exclude all other readers, writers and | |
| 1196 ** checkpointers. | |
| 1197 */ | |
| 1198 pInfo = walCkptInfo(pWal); | |
| 1199 pInfo->nBackfill = 0; | |
| 1200 pInfo->aReadMark[0] = 0; | |
| 1201 for(i=1; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED; | |
| 1202 if( pWal->hdr.mxFrame ) pInfo->aReadMark[1] = pWal->hdr.mxFrame; | |
| 1203 | |
| 1204 /* If more than one frame was recovered from the log file, report an | |
| 1205 ** event via sqlite3_log(). This is to help with identifying performance | |
| 1206 ** problems caused by applications routinely shutting down without | |
| 1207 ** checkpointing the log file. | |
| 1208 */ | |
| 1209 if( pWal->hdr.nPage ){ | |
| 1210 sqlite3_log(SQLITE_NOTICE_RECOVER_WAL, | |
| 1211 "recovered %d frames from WAL file %s", | |
| 1212 pWal->hdr.mxFrame, pWal->zWalName | |
| 1213 ); | |
| 1214 } | |
| 1215 } | |
| 1216 | |
| 1217 recovery_error: | |
| 1218 WALTRACE(("WAL%p: recovery %s\n", pWal, rc ? "failed" : "ok")); | |
| 1219 walUnlockExclusive(pWal, iLock, nLock); | |
| 1220 return rc; | |
| 1221 } | |
| 1222 | |
| 1223 /* | |
| 1224 ** Close an open wal-index. | |
| 1225 */ | |
| 1226 static void walIndexClose(Wal *pWal, int isDelete){ | |
| 1227 if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){ | |
| 1228 int i; | |
| 1229 for(i=0; i<pWal->nWiData; i++){ | |
| 1230 sqlite3_free((void *)pWal->apWiData[i]); | |
| 1231 pWal->apWiData[i] = 0; | |
| 1232 } | |
| 1233 }else{ | |
| 1234 sqlite3OsShmUnmap(pWal->pDbFd, isDelete); | |
| 1235 } | |
| 1236 } | |
| 1237 | |
| 1238 /* | |
| 1239 ** Open a connection to the WAL file zWalName. The database file must | |
| 1240 ** already be opened on connection pDbFd. The buffer that zWalName points | |
| 1241 ** to must remain valid for the lifetime of the returned Wal* handle. | |
| 1242 ** | |
| 1243 ** A SHARED lock should be held on the database file when this function | |
| 1244 ** is called. The purpose of this SHARED lock is to prevent any other | |
| 1245 ** client from unlinking the WAL or wal-index file. If another process | |
| 1246 ** were to do this just after this client opened one of these files, the | |
| 1247 ** system would be badly broken. | |
| 1248 ** | |
| 1249 ** If the log file is successfully opened, SQLITE_OK is returned and | |
| 1250 ** *ppWal is set to point to a new WAL handle. If an error occurs, | |
| 1251 ** an SQLite error code is returned and *ppWal is left unmodified. | |
| 1252 */ | |
| 1253 int sqlite3WalOpen( | |
| 1254 sqlite3_vfs *pVfs, /* vfs module to open wal and wal-index */ | |
| 1255 sqlite3_file *pDbFd, /* The open database file */ | |
| 1256 const char *zWalName, /* Name of the WAL file */ | |
| 1257 int bNoShm, /* True to run in heap-memory mode */ | |
| 1258 i64 mxWalSize, /* Truncate WAL to this size on reset */ | |
| 1259 Wal **ppWal /* OUT: Allocated Wal handle */ | |
| 1260 ){ | |
| 1261 int rc; /* Return Code */ | |
| 1262 Wal *pRet; /* Object to allocate and return */ | |
| 1263 int flags; /* Flags passed to OsOpen() */ | |
| 1264 | |
| 1265 assert( zWalName && zWalName[0] ); | |
| 1266 assert( pDbFd ); | |
| 1267 | |
| 1268 /* In the amalgamation, the os_unix.c and os_win.c source files come before | |
| 1269 ** this source file. Verify that the #defines of the locking byte offsets | |
| 1270 ** in os_unix.c and os_win.c agree with the WALINDEX_LOCK_OFFSET value. | |
| 1271 */ | |
| 1272 #ifdef WIN_SHM_BASE | |
| 1273 assert( WIN_SHM_BASE==WALINDEX_LOCK_OFFSET ); | |
| 1274 #endif | |
| 1275 #ifdef UNIX_SHM_BASE | |
| 1276 assert( UNIX_SHM_BASE==WALINDEX_LOCK_OFFSET ); | |
| 1277 #endif | |
| 1278 | |
| 1279 | |
| 1280 /* Allocate an instance of struct Wal to return. */ | |
| 1281 *ppWal = 0; | |
| 1282 pRet = (Wal*)sqlite3MallocZero(sizeof(Wal) + pVfs->szOsFile); | |
| 1283 if( !pRet ){ | |
| 1284 return SQLITE_NOMEM; | |
| 1285 } | |
| 1286 | |
| 1287 pRet->pVfs = pVfs; | |
| 1288 pRet->pWalFd = (sqlite3_file *)&pRet[1]; | |
| 1289 pRet->pDbFd = pDbFd; | |
| 1290 pRet->readLock = -1; | |
| 1291 pRet->mxWalSize = mxWalSize; | |
| 1292 pRet->zWalName = zWalName; | |
| 1293 pRet->syncHeader = 1; | |
| 1294 pRet->padToSectorBoundary = 1; | |
| 1295 pRet->exclusiveMode = (bNoShm ? WAL_HEAPMEMORY_MODE: WAL_NORMAL_MODE); | |
| 1296 | |
| 1297 /* Open file handle on the write-ahead log file. */ | |
| 1298 flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_WAL); | |
| 1299 rc = sqlite3OsOpen(pVfs, zWalName, pRet->pWalFd, flags, &flags); | |
| 1300 if( rc==SQLITE_OK && flags&SQLITE_OPEN_READONLY ){ | |
| 1301 pRet->readOnly = WAL_RDONLY; | |
| 1302 } | |
| 1303 | |
| 1304 if( rc!=SQLITE_OK ){ | |
| 1305 walIndexClose(pRet, 0); | |
| 1306 sqlite3OsClose(pRet->pWalFd); | |
| 1307 sqlite3_free(pRet); | |
| 1308 }else{ | |
| 1309 int iDC = sqlite3OsDeviceCharacteristics(pDbFd); | |
| 1310 if( iDC & SQLITE_IOCAP_SEQUENTIAL ){ pRet->syncHeader = 0; } | |
| 1311 if( iDC & SQLITE_IOCAP_POWERSAFE_OVERWRITE ){ | |
| 1312 pRet->padToSectorBoundary = 0; | |
| 1313 } | |
| 1314 *ppWal = pRet; | |
| 1315 WALTRACE(("WAL%d: opened\n", pRet)); | |
| 1316 } | |
| 1317 return rc; | |
| 1318 } | |
| 1319 | |
| 1320 /* | |
| 1321 ** Change the size to which the WAL file is trucated on each reset. | |
| 1322 */ | |
| 1323 void sqlite3WalLimit(Wal *pWal, i64 iLimit){ | |
| 1324 if( pWal ) pWal->mxWalSize = iLimit; | |
| 1325 } | |
| 1326 | |
| 1327 /* | |
| 1328 ** Find the smallest page number out of all pages held in the WAL that | |
| 1329 ** has not been returned by any prior invocation of this method on the | |
| 1330 ** same WalIterator object. Write into *piFrame the frame index where | |
| 1331 ** that page was last written into the WAL. Write into *piPage the page | |
| 1332 ** number. | |
| 1333 ** | |
| 1334 ** Return 0 on success. If there are no pages in the WAL with a page | |
| 1335 ** number larger than *piPage, then return 1. | |
| 1336 */ | |
| 1337 static int walIteratorNext( | |
| 1338 WalIterator *p, /* Iterator */ | |
| 1339 u32 *piPage, /* OUT: The page number of the next page */ | |
| 1340 u32 *piFrame /* OUT: Wal frame index of next page */ | |
| 1341 ){ | |
| 1342 u32 iMin; /* Result pgno must be greater than iMin */ | |
| 1343 u32 iRet = 0xFFFFFFFF; /* 0xffffffff is never a valid page number */ | |
| 1344 int i; /* For looping through segments */ | |
| 1345 | |
| 1346 iMin = p->iPrior; | |
| 1347 assert( iMin<0xffffffff ); | |
| 1348 for(i=p->nSegment-1; i>=0; i--){ | |
| 1349 struct WalSegment *pSegment = &p->aSegment[i]; | |
| 1350 while( pSegment->iNext<pSegment->nEntry ){ | |
| 1351 u32 iPg = pSegment->aPgno[pSegment->aIndex[pSegment->iNext]]; | |
| 1352 if( iPg>iMin ){ | |
| 1353 if( iPg<iRet ){ | |
| 1354 iRet = iPg; | |
| 1355 *piFrame = pSegment->iZero + pSegment->aIndex[pSegment->iNext]; | |
| 1356 } | |
| 1357 break; | |
| 1358 } | |
| 1359 pSegment->iNext++; | |
| 1360 } | |
| 1361 } | |
| 1362 | |
| 1363 *piPage = p->iPrior = iRet; | |
| 1364 return (iRet==0xFFFFFFFF); | |
| 1365 } | |
| 1366 | |
| 1367 /* | |
| 1368 ** This function merges two sorted lists into a single sorted list. | |
| 1369 ** | |
| 1370 ** aLeft[] and aRight[] are arrays of indices. The sort key is | |
| 1371 ** aContent[aLeft[]] and aContent[aRight[]]. Upon entry, the following | |
| 1372 ** is guaranteed for all J<K: | |
| 1373 ** | |
| 1374 ** aContent[aLeft[J]] < aContent[aLeft[K]] | |
| 1375 ** aContent[aRight[J]] < aContent[aRight[K]] | |
| 1376 ** | |
| 1377 ** This routine overwrites aRight[] with a new (probably longer) sequence | |
| 1378 ** of indices such that the aRight[] contains every index that appears in | |
| 1379 ** either aLeft[] or the old aRight[] and such that the second condition | |
| 1380 ** above is still met. | |
| 1381 ** | |
| 1382 ** The aContent[aLeft[X]] values will be unique for all X. And the | |
| 1383 ** aContent[aRight[X]] values will be unique too. But there might be | |
| 1384 ** one or more combinations of X and Y such that | |
| 1385 ** | |
| 1386 ** aLeft[X]!=aRight[Y] && aContent[aLeft[X]] == aContent[aRight[Y]] | |
| 1387 ** | |
| 1388 ** When that happens, omit the aLeft[X] and use the aRight[Y] index. | |
| 1389 */ | |
| 1390 static void walMerge( | |
| 1391 const u32 *aContent, /* Pages in wal - keys for the sort */ | |
| 1392 ht_slot *aLeft, /* IN: Left hand input list */ | |
| 1393 int nLeft, /* IN: Elements in array *paLeft */ | |
| 1394 ht_slot **paRight, /* IN/OUT: Right hand input list */ | |
| 1395 int *pnRight, /* IN/OUT: Elements in *paRight */ | |
| 1396 ht_slot *aTmp /* Temporary buffer */ | |
| 1397 ){ | |
| 1398 int iLeft = 0; /* Current index in aLeft */ | |
| 1399 int iRight = 0; /* Current index in aRight */ | |
| 1400 int iOut = 0; /* Current index in output buffer */ | |
| 1401 int nRight = *pnRight; | |
| 1402 ht_slot *aRight = *paRight; | |
| 1403 | |
| 1404 assert( nLeft>0 && nRight>0 ); | |
| 1405 while( iRight<nRight || iLeft<nLeft ){ | |
| 1406 ht_slot logpage; | |
| 1407 Pgno dbpage; | |
| 1408 | |
| 1409 if( (iLeft<nLeft) | |
| 1410 && (iRight>=nRight || aContent[aLeft[iLeft]]<aContent[aRight[iRight]]) | |
| 1411 ){ | |
| 1412 logpage = aLeft[iLeft++]; | |
| 1413 }else{ | |
| 1414 logpage = aRight[iRight++]; | |
| 1415 } | |
| 1416 dbpage = aContent[logpage]; | |
| 1417 | |
| 1418 aTmp[iOut++] = logpage; | |
| 1419 if( iLeft<nLeft && aContent[aLeft[iLeft]]==dbpage ) iLeft++; | |
| 1420 | |
| 1421 assert( iLeft>=nLeft || aContent[aLeft[iLeft]]>dbpage ); | |
| 1422 assert( iRight>=nRight || aContent[aRight[iRight]]>dbpage ); | |
| 1423 } | |
| 1424 | |
| 1425 *paRight = aLeft; | |
| 1426 *pnRight = iOut; | |
| 1427 memcpy(aLeft, aTmp, sizeof(aTmp[0])*iOut); | |
| 1428 } | |
| 1429 | |
| 1430 /* | |
| 1431 ** Sort the elements in list aList using aContent[] as the sort key. | |
| 1432 ** Remove elements with duplicate keys, preferring to keep the | |
| 1433 ** larger aList[] values. | |
| 1434 ** | |
| 1435 ** The aList[] entries are indices into aContent[]. The values in | |
| 1436 ** aList[] are to be sorted so that for all J<K: | |
| 1437 ** | |
| 1438 ** aContent[aList[J]] < aContent[aList[K]] | |
| 1439 ** | |
| 1440 ** For any X and Y such that | |
| 1441 ** | |
| 1442 ** aContent[aList[X]] == aContent[aList[Y]] | |
| 1443 ** | |
| 1444 ** Keep the larger of the two values aList[X] and aList[Y] and discard | |
| 1445 ** the smaller. | |
| 1446 */ | |
| 1447 static void walMergesort( | |
| 1448 const u32 *aContent, /* Pages in wal */ | |
| 1449 ht_slot *aBuffer, /* Buffer of at least *pnList items to use */ | |
| 1450 ht_slot *aList, /* IN/OUT: List to sort */ | |
| 1451 int *pnList /* IN/OUT: Number of elements in aList[] */ | |
| 1452 ){ | |
| 1453 struct Sublist { | |
| 1454 int nList; /* Number of elements in aList */ | |
| 1455 ht_slot *aList; /* Pointer to sub-list content */ | |
| 1456 }; | |
| 1457 | |
| 1458 const int nList = *pnList; /* Size of input list */ | |
| 1459 int nMerge = 0; /* Number of elements in list aMerge */ | |
| 1460 ht_slot *aMerge = 0; /* List to be merged */ | |
| 1461 int iList; /* Index into input list */ | |
| 1462 int iSub = 0; /* Index into aSub array */ | |
| 1463 struct Sublist aSub[13]; /* Array of sub-lists */ | |
| 1464 | |
| 1465 memset(aSub, 0, sizeof(aSub)); | |
| 1466 assert( nList<=HASHTABLE_NPAGE && nList>0 ); | |
| 1467 assert( HASHTABLE_NPAGE==(1<<(ArraySize(aSub)-1)) ); | |
| 1468 | |
| 1469 for(iList=0; iList<nList; iList++){ | |
| 1470 nMerge = 1; | |
| 1471 aMerge = &aList[iList]; | |
| 1472 for(iSub=0; iList & (1<<iSub); iSub++){ | |
| 1473 struct Sublist *p = &aSub[iSub]; | |
| 1474 assert( p->aList && p->nList<=(1<<iSub) ); | |
| 1475 assert( p->aList==&aList[iList&~((2<<iSub)-1)] ); | |
| 1476 walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer); | |
| 1477 } | |
| 1478 aSub[iSub].aList = aMerge; | |
| 1479 aSub[iSub].nList = nMerge; | |
| 1480 } | |
| 1481 | |
| 1482 for(iSub++; iSub<ArraySize(aSub); iSub++){ | |
| 1483 if( nList & (1<<iSub) ){ | |
| 1484 struct Sublist *p = &aSub[iSub]; | |
| 1485 assert( p->nList<=(1<<iSub) ); | |
| 1486 assert( p->aList==&aList[nList&~((2<<iSub)-1)] ); | |
| 1487 walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer); | |
| 1488 } | |
| 1489 } | |
| 1490 assert( aMerge==aList ); | |
| 1491 *pnList = nMerge; | |
| 1492 | |
| 1493 #ifdef SQLITE_DEBUG | |
| 1494 { | |
| 1495 int i; | |
| 1496 for(i=1; i<*pnList; i++){ | |
| 1497 assert( aContent[aList[i]] > aContent[aList[i-1]] ); | |
| 1498 } | |
| 1499 } | |
| 1500 #endif | |
| 1501 } | |
| 1502 | |
| 1503 /* | |
| 1504 ** Free an iterator allocated by walIteratorInit(). | |
| 1505 */ | |
| 1506 static void walIteratorFree(WalIterator *p){ | |
| 1507 sqlite3ScratchFree(p); | |
| 1508 } | |
| 1509 | |
| 1510 /* | |
| 1511 ** Construct a WalInterator object that can be used to loop over all | |
| 1512 ** pages in the WAL in ascending order. The caller must hold the checkpoint | |
| 1513 ** lock. | |
| 1514 ** | |
| 1515 ** On success, make *pp point to the newly allocated WalInterator object | |
| 1516 ** return SQLITE_OK. Otherwise, return an error code. If this routine | |
| 1517 ** returns an error, the value of *pp is undefined. | |
| 1518 ** | |
| 1519 ** The calling routine should invoke walIteratorFree() to destroy the | |
| 1520 ** WalIterator object when it has finished with it. | |
| 1521 */ | |
| 1522 static int walIteratorInit(Wal *pWal, WalIterator **pp){ | |
| 1523 WalIterator *p; /* Return value */ | |
| 1524 int nSegment; /* Number of segments to merge */ | |
| 1525 u32 iLast; /* Last frame in log */ | |
| 1526 int nByte; /* Number of bytes to allocate */ | |
| 1527 int i; /* Iterator variable */ | |
| 1528 ht_slot *aTmp; /* Temp space used by merge-sort */ | |
| 1529 int rc = SQLITE_OK; /* Return Code */ | |
| 1530 | |
| 1531 /* This routine only runs while holding the checkpoint lock. And | |
| 1532 ** it only runs if there is actually content in the log (mxFrame>0). | |
| 1533 */ | |
| 1534 assert( pWal->ckptLock && pWal->hdr.mxFrame>0 ); | |
| 1535 iLast = pWal->hdr.mxFrame; | |
| 1536 | |
| 1537 /* Allocate space for the WalIterator object. */ | |
| 1538 nSegment = walFramePage(iLast) + 1; | |
| 1539 nByte = sizeof(WalIterator) | |
| 1540 + (nSegment-1)*sizeof(struct WalSegment) | |
| 1541 + iLast*sizeof(ht_slot); | |
| 1542 p = (WalIterator *)sqlite3ScratchMalloc(nByte); | |
| 1543 if( !p ){ | |
| 1544 return SQLITE_NOMEM; | |
| 1545 } | |
| 1546 memset(p, 0, nByte); | |
| 1547 p->nSegment = nSegment; | |
| 1548 | |
| 1549 /* Allocate temporary space used by the merge-sort routine. This block | |
| 1550 ** of memory will be freed before this function returns. | |
| 1551 */ | |
| 1552 aTmp = (ht_slot *)sqlite3ScratchMalloc( | |
| 1553 sizeof(ht_slot) * (iLast>HASHTABLE_NPAGE?HASHTABLE_NPAGE:iLast) | |
| 1554 ); | |
| 1555 if( !aTmp ){ | |
| 1556 rc = SQLITE_NOMEM; | |
| 1557 } | |
| 1558 | |
| 1559 for(i=0; rc==SQLITE_OK && i<nSegment; i++){ | |
| 1560 volatile ht_slot *aHash; | |
| 1561 u32 iZero; | |
| 1562 volatile u32 *aPgno; | |
| 1563 | |
| 1564 rc = walHashGet(pWal, i, &aHash, &aPgno, &iZero); | |
| 1565 if( rc==SQLITE_OK ){ | |
| 1566 int j; /* Counter variable */ | |
| 1567 int nEntry; /* Number of entries in this segment */ | |
| 1568 ht_slot *aIndex; /* Sorted index for this segment */ | |
| 1569 | |
| 1570 aPgno++; | |
| 1571 if( (i+1)==nSegment ){ | |
| 1572 nEntry = (int)(iLast - iZero); | |
| 1573 }else{ | |
| 1574 nEntry = (int)((u32*)aHash - (u32*)aPgno); | |
| 1575 } | |
| 1576 aIndex = &((ht_slot *)&p->aSegment[p->nSegment])[iZero]; | |
| 1577 iZero++; | |
| 1578 | |
| 1579 for(j=0; j<nEntry; j++){ | |
| 1580 aIndex[j] = (ht_slot)j; | |
| 1581 } | |
| 1582 walMergesort((u32 *)aPgno, aTmp, aIndex, &nEntry); | |
| 1583 p->aSegment[i].iZero = iZero; | |
| 1584 p->aSegment[i].nEntry = nEntry; | |
| 1585 p->aSegment[i].aIndex = aIndex; | |
| 1586 p->aSegment[i].aPgno = (u32 *)aPgno; | |
| 1587 } | |
| 1588 } | |
| 1589 sqlite3ScratchFree(aTmp); | |
| 1590 | |
| 1591 if( rc!=SQLITE_OK ){ | |
| 1592 walIteratorFree(p); | |
| 1593 } | |
| 1594 *pp = p; | |
| 1595 return rc; | |
| 1596 } | |
| 1597 | |
| 1598 /* | |
| 1599 ** Attempt to obtain the exclusive WAL lock defined by parameters lockIdx and | |
| 1600 ** n. If the attempt fails and parameter xBusy is not NULL, then it is a | |
| 1601 ** busy-handler function. Invoke it and retry the lock until either the | |
| 1602 ** lock is successfully obtained or the busy-handler returns 0. | |
| 1603 */ | |
| 1604 static int walBusyLock( | |
| 1605 Wal *pWal, /* WAL connection */ | |
| 1606 int (*xBusy)(void*), /* Function to call when busy */ | |
| 1607 void *pBusyArg, /* Context argument for xBusyHandler */ | |
| 1608 int lockIdx, /* Offset of first byte to lock */ | |
| 1609 int n /* Number of bytes to lock */ | |
| 1610 ){ | |
| 1611 int rc; | |
| 1612 do { | |
| 1613 rc = walLockExclusive(pWal, lockIdx, n); | |
| 1614 }while( xBusy && rc==SQLITE_BUSY && xBusy(pBusyArg) ); | |
| 1615 return rc; | |
| 1616 } | |
| 1617 | |
| 1618 /* | |
| 1619 ** The cache of the wal-index header must be valid to call this function. | |
| 1620 ** Return the page-size in bytes used by the database. | |
| 1621 */ | |
| 1622 static int walPagesize(Wal *pWal){ | |
| 1623 return (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16); | |
| 1624 } | |
| 1625 | |
| 1626 /* | |
| 1627 ** Copy as much content as we can from the WAL back into the database file | |
| 1628 ** in response to an sqlite3_wal_checkpoint() request or the equivalent. | |
| 1629 ** | |
| 1630 ** The amount of information copies from WAL to database might be limited | |
| 1631 ** by active readers. This routine will never overwrite a database page | |
| 1632 ** that a concurrent reader might be using. | |
| 1633 ** | |
| 1634 ** All I/O barrier operations (a.k.a fsyncs) occur in this routine when | |
| 1635 ** SQLite is in WAL-mode in synchronous=NORMAL. That means that if | |
| 1636 ** checkpoints are always run by a background thread or background | |
| 1637 ** process, foreground threads will never block on a lengthy fsync call. | |
| 1638 ** | |
| 1639 ** Fsync is called on the WAL before writing content out of the WAL and | |
| 1640 ** into the database. This ensures that if the new content is persistent | |
| 1641 ** in the WAL and can be recovered following a power-loss or hard reset. | |
| 1642 ** | |
| 1643 ** Fsync is also called on the database file if (and only if) the entire | |
| 1644 ** WAL content is copied into the database file. This second fsync makes | |
| 1645 ** it safe to delete the WAL since the new content will persist in the | |
| 1646 ** database file. | |
| 1647 ** | |
| 1648 ** This routine uses and updates the nBackfill field of the wal-index header. | |
| 1649 ** This is the only routine that will increase the value of nBackfill. | |
| 1650 ** (A WAL reset or recovery will revert nBackfill to zero, but not increase | |
| 1651 ** its value.) | |
| 1652 ** | |
| 1653 ** The caller must be holding sufficient locks to ensure that no other | |
| 1654 ** checkpoint is running (in any other thread or process) at the same | |
| 1655 ** time. | |
| 1656 */ | |
| 1657 static int walCheckpoint( | |
| 1658 Wal *pWal, /* Wal connection */ | |
| 1659 int eMode, /* One of PASSIVE, FULL or RESTART */ | |
| 1660 int (*xBusyCall)(void*), /* Function to call when busy */ | |
| 1661 void *pBusyArg, /* Context argument for xBusyHandler */ | |
| 1662 int sync_flags, /* Flags for OsSync() (or 0) */ | |
| 1663 u8 *zBuf /* Temporary buffer to use */ | |
| 1664 ){ | |
| 1665 int rc; /* Return code */ | |
| 1666 int szPage; /* Database page-size */ | |
| 1667 WalIterator *pIter = 0; /* Wal iterator context */ | |
| 1668 u32 iDbpage = 0; /* Next database page to write */ | |
| 1669 u32 iFrame = 0; /* Wal frame containing data for iDbpage */ | |
| 1670 u32 mxSafeFrame; /* Max frame that can be backfilled */ | |
| 1671 u32 mxPage; /* Max database page to write */ | |
| 1672 int i; /* Loop counter */ | |
| 1673 volatile WalCkptInfo *pInfo; /* The checkpoint status information */ | |
| 1674 int (*xBusy)(void*) = 0; /* Function to call when waiting for locks */ | |
| 1675 | |
| 1676 szPage = walPagesize(pWal); | |
| 1677 testcase( szPage<=32768 ); | |
| 1678 testcase( szPage>=65536 ); | |
| 1679 pInfo = walCkptInfo(pWal); | |
| 1680 if( pInfo->nBackfill>=pWal->hdr.mxFrame ) return SQLITE_OK; | |
| 1681 | |
| 1682 /* Allocate the iterator */ | |
| 1683 rc = walIteratorInit(pWal, &pIter); | |
| 1684 if( rc!=SQLITE_OK ){ | |
| 1685 return rc; | |
| 1686 } | |
| 1687 assert( pIter ); | |
| 1688 | |
| 1689 if( eMode!=SQLITE_CHECKPOINT_PASSIVE ) xBusy = xBusyCall; | |
| 1690 | |
| 1691 /* Compute in mxSafeFrame the index of the last frame of the WAL that is | |
| 1692 ** safe to write into the database. Frames beyond mxSafeFrame might | |
| 1693 ** overwrite database pages that are in use by active readers and thus | |
| 1694 ** cannot be backfilled from the WAL. | |
| 1695 */ | |
| 1696 mxSafeFrame = pWal->hdr.mxFrame; | |
| 1697 mxPage = pWal->hdr.nPage; | |
| 1698 for(i=1; i<WAL_NREADER; i++){ | |
| 1699 u32 y = pInfo->aReadMark[i]; | |
| 1700 if( mxSafeFrame>y ){ | |
| 1701 assert( y<=pWal->hdr.mxFrame ); | |
| 1702 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(i), 1); | |
| 1703 if( rc==SQLITE_OK ){ | |
| 1704 pInfo->aReadMark[i] = (i==1 ? mxSafeFrame : READMARK_NOT_USED); | |
| 1705 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1); | |
| 1706 }else if( rc==SQLITE_BUSY ){ | |
| 1707 mxSafeFrame = y; | |
| 1708 xBusy = 0; | |
| 1709 }else{ | |
| 1710 goto walcheckpoint_out; | |
| 1711 } | |
| 1712 } | |
| 1713 } | |
| 1714 | |
| 1715 if( pInfo->nBackfill<mxSafeFrame | |
| 1716 && (rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(0), 1))==SQLITE_OK | |
| 1717 ){ | |
| 1718 i64 nSize; /* Current size of database file */ | |
| 1719 u32 nBackfill = pInfo->nBackfill; | |
| 1720 | |
| 1721 /* Sync the WAL to disk */ | |
| 1722 if( sync_flags ){ | |
| 1723 rc = sqlite3OsSync(pWal->pWalFd, sync_flags); | |
| 1724 } | |
| 1725 | |
| 1726 /* If the database may grow as a result of this checkpoint, hint | |
| 1727 ** about the eventual size of the db file to the VFS layer. | |
| 1728 */ | |
| 1729 if( rc==SQLITE_OK ){ | |
| 1730 i64 nReq = ((i64)mxPage * szPage); | |
| 1731 rc = sqlite3OsFileSize(pWal->pDbFd, &nSize); | |
| 1732 if( rc==SQLITE_OK && nSize<nReq ){ | |
| 1733 sqlite3OsFileControlHint(pWal->pDbFd, SQLITE_FCNTL_SIZE_HINT, &nReq); | |
| 1734 } | |
| 1735 } | |
| 1736 | |
| 1737 | |
| 1738 /* Iterate through the contents of the WAL, copying data to the db file. */ | |
| 1739 while( rc==SQLITE_OK && 0==walIteratorNext(pIter, &iDbpage, &iFrame) ){ | |
| 1740 i64 iOffset; | |
| 1741 assert( walFramePgno(pWal, iFrame)==iDbpage ); | |
| 1742 if( iFrame<=nBackfill || iFrame>mxSafeFrame || iDbpage>mxPage ) continue; | |
| 1743 iOffset = walFrameOffset(iFrame, szPage) + WAL_FRAME_HDRSIZE; | |
| 1744 /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL file */ | |
| 1745 rc = sqlite3OsRead(pWal->pWalFd, zBuf, szPage, iOffset); | |
| 1746 if( rc!=SQLITE_OK ) break; | |
| 1747 iOffset = (iDbpage-1)*(i64)szPage; | |
| 1748 testcase( IS_BIG_INT(iOffset) ); | |
| 1749 rc = sqlite3OsWrite(pWal->pDbFd, zBuf, szPage, iOffset); | |
| 1750 if( rc!=SQLITE_OK ) break; | |
| 1751 } | |
| 1752 | |
| 1753 /* If work was actually accomplished... */ | |
| 1754 if( rc==SQLITE_OK ){ | |
| 1755 if( mxSafeFrame==walIndexHdr(pWal)->mxFrame ){ | |
| 1756 i64 szDb = pWal->hdr.nPage*(i64)szPage; | |
| 1757 testcase( IS_BIG_INT(szDb) ); | |
| 1758 rc = sqlite3OsTruncate(pWal->pDbFd, szDb); | |
| 1759 if( rc==SQLITE_OK && sync_flags ){ | |
| 1760 rc = sqlite3OsSync(pWal->pDbFd, sync_flags); | |
| 1761 } | |
| 1762 } | |
| 1763 if( rc==SQLITE_OK ){ | |
| 1764 pInfo->nBackfill = mxSafeFrame; | |
| 1765 } | |
| 1766 } | |
| 1767 | |
| 1768 /* Release the reader lock held while backfilling */ | |
| 1769 walUnlockExclusive(pWal, WAL_READ_LOCK(0), 1); | |
| 1770 } | |
| 1771 | |
| 1772 if( rc==SQLITE_BUSY ){ | |
| 1773 /* Reset the return code so as not to report a checkpoint failure | |
| 1774 ** just because there are active readers. */ | |
| 1775 rc = SQLITE_OK; | |
| 1776 } | |
| 1777 | |
| 1778 /* If this is an SQLITE_CHECKPOINT_RESTART operation, and the entire wal | |
| 1779 ** file has been copied into the database file, then block until all | |
| 1780 ** readers have finished using the wal file. This ensures that the next | |
| 1781 ** process to write to the database restarts the wal file. | |
| 1782 */ | |
| 1783 if( rc==SQLITE_OK && eMode!=SQLITE_CHECKPOINT_PASSIVE ){ | |
| 1784 assert( pWal->writeLock ); | |
| 1785 if( pInfo->nBackfill<pWal->hdr.mxFrame ){ | |
| 1786 rc = SQLITE_BUSY; | |
| 1787 }else if( eMode==SQLITE_CHECKPOINT_RESTART ){ | |
| 1788 assert( mxSafeFrame==pWal->hdr.mxFrame ); | |
| 1789 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(1), WAL_NREADER-1); | |
| 1790 if( rc==SQLITE_OK ){ | |
| 1791 walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1); | |
| 1792 } | |
| 1793 } | |
| 1794 } | |
| 1795 | |
| 1796 walcheckpoint_out: | |
| 1797 walIteratorFree(pIter); | |
| 1798 return rc; | |
| 1799 } | |
| 1800 | |
| 1801 /* | |
| 1802 ** If the WAL file is currently larger than nMax bytes in size, truncate | |
| 1803 ** it to exactly nMax bytes. If an error occurs while doing so, ignore it. | |
| 1804 */ | |
| 1805 static void walLimitSize(Wal *pWal, i64 nMax){ | |
| 1806 i64 sz; | |
| 1807 int rx; | |
| 1808 sqlite3BeginBenignMalloc(); | |
| 1809 rx = sqlite3OsFileSize(pWal->pWalFd, &sz); | |
| 1810 if( rx==SQLITE_OK && (sz > nMax ) ){ | |
| 1811 rx = sqlite3OsTruncate(pWal->pWalFd, nMax); | |
| 1812 } | |
| 1813 sqlite3EndBenignMalloc(); | |
| 1814 if( rx ){ | |
| 1815 sqlite3_log(rx, "cannot limit WAL size: %s", pWal->zWalName); | |
| 1816 } | |
| 1817 } | |
| 1818 | |
| 1819 /* | |
| 1820 ** Close a connection to a log file. | |
| 1821 */ | |
| 1822 int sqlite3WalClose( | |
| 1823 Wal *pWal, /* Wal to close */ | |
| 1824 int sync_flags, /* Flags to pass to OsSync() (or 0) */ | |
| 1825 int nBuf, | |
| 1826 u8 *zBuf /* Buffer of at least nBuf bytes */ | |
| 1827 ){ | |
| 1828 int rc = SQLITE_OK; | |
| 1829 if( pWal ){ | |
| 1830 int isDelete = 0; /* True to unlink wal and wal-index files */ | |
| 1831 | |
| 1832 /* If an EXCLUSIVE lock can be obtained on the database file (using the | |
| 1833 ** ordinary, rollback-mode locking methods, this guarantees that the | |
| 1834 ** connection associated with this log file is the only connection to | |
| 1835 ** the database. In this case checkpoint the database and unlink both | |
| 1836 ** the wal and wal-index files. | |
| 1837 ** | |
| 1838 ** The EXCLUSIVE lock is not released before returning. | |
| 1839 */ | |
| 1840 rc = sqlite3OsLock(pWal->pDbFd, SQLITE_LOCK_EXCLUSIVE); | |
| 1841 if( rc==SQLITE_OK ){ | |
| 1842 if( pWal->exclusiveMode==WAL_NORMAL_MODE ){ | |
| 1843 pWal->exclusiveMode = WAL_EXCLUSIVE_MODE; | |
| 1844 } | |
| 1845 rc = sqlite3WalCheckpoint( | |
| 1846 pWal, SQLITE_CHECKPOINT_PASSIVE, 0, 0, sync_flags, nBuf, zBuf, 0, 0 | |
| 1847 ); | |
| 1848 if( rc==SQLITE_OK ){ | |
| 1849 int bPersist = -1; | |
| 1850 sqlite3OsFileControlHint( | |
| 1851 pWal->pDbFd, SQLITE_FCNTL_PERSIST_WAL, &bPersist | |
| 1852 ); | |
| 1853 if( bPersist!=1 ){ | |
| 1854 /* Try to delete the WAL file if the checkpoint completed and | |
| 1855 ** fsyned (rc==SQLITE_OK) and if we are not in persistent-wal | |
| 1856 ** mode (!bPersist) */ | |
| 1857 isDelete = 1; | |
| 1858 }else if( pWal->mxWalSize>=0 ){ | |
| 1859 /* Try to truncate the WAL file to zero bytes if the checkpoint | |
| 1860 ** completed and fsynced (rc==SQLITE_OK) and we are in persistent | |
| 1861 ** WAL mode (bPersist) and if the PRAGMA journal_size_limit is a | |
| 1862 ** non-negative value (pWal->mxWalSize>=0). Note that we truncate | |
| 1863 ** to zero bytes as truncating to the journal_size_limit might | |
| 1864 ** leave a corrupt WAL file on disk. */ | |
| 1865 walLimitSize(pWal, 0); | |
| 1866 } | |
| 1867 } | |
| 1868 } | |
| 1869 | |
| 1870 walIndexClose(pWal, isDelete); | |
| 1871 sqlite3OsClose(pWal->pWalFd); | |
| 1872 if( isDelete ){ | |
| 1873 sqlite3BeginBenignMalloc(); | |
| 1874 sqlite3OsDelete(pWal->pVfs, pWal->zWalName, 0); | |
| 1875 sqlite3EndBenignMalloc(); | |
| 1876 } | |
| 1877 WALTRACE(("WAL%p: closed\n", pWal)); | |
| 1878 sqlite3_free((void *)pWal->apWiData); | |
| 1879 sqlite3_free(pWal); | |
| 1880 } | |
| 1881 return rc; | |
| 1882 } | |
| 1883 | |
| 1884 /* | |
| 1885 ** Try to read the wal-index header. Return 0 on success and 1 if | |
| 1886 ** there is a problem. | |
| 1887 ** | |
| 1888 ** The wal-index is in shared memory. Another thread or process might | |
| 1889 ** be writing the header at the same time this procedure is trying to | |
| 1890 ** read it, which might result in inconsistency. A dirty read is detected | |
| 1891 ** by verifying that both copies of the header are the same and also by | |
| 1892 ** a checksum on the header. | |
| 1893 ** | |
| 1894 ** If and only if the read is consistent and the header is different from | |
| 1895 ** pWal->hdr, then pWal->hdr is updated to the content of the new header | |
| 1896 ** and *pChanged is set to 1. | |
| 1897 ** | |
| 1898 ** If the checksum cannot be verified return non-zero. If the header | |
| 1899 ** is read successfully and the checksum verified, return zero. | |
| 1900 */ | |
| 1901 static int walIndexTryHdr(Wal *pWal, int *pChanged){ | |
| 1902 u32 aCksum[2]; /* Checksum on the header content */ | |
| 1903 WalIndexHdr h1, h2; /* Two copies of the header content */ | |
| 1904 WalIndexHdr volatile *aHdr; /* Header in shared memory */ | |
| 1905 | |
| 1906 /* The first page of the wal-index must be mapped at this point. */ | |
| 1907 assert( pWal->nWiData>0 && pWal->apWiData[0] ); | |
| 1908 | |
| 1909 /* Read the header. This might happen concurrently with a write to the | |
| 1910 ** same area of shared memory on a different CPU in a SMP, | |
| 1911 ** meaning it is possible that an inconsistent snapshot is read | |
| 1912 ** from the file. If this happens, return non-zero. | |
| 1913 ** | |
| 1914 ** There are two copies of the header at the beginning of the wal-index. | |
| 1915 ** When reading, read [0] first then [1]. Writes are in the reverse order. | |
| 1916 ** Memory barriers are used to prevent the compiler or the hardware from | |
| 1917 ** reordering the reads and writes. | |
| 1918 */ | |
| 1919 aHdr = walIndexHdr(pWal); | |
| 1920 memcpy(&h1, (void *)&aHdr[0], sizeof(h1)); | |
| 1921 walShmBarrier(pWal); | |
| 1922 memcpy(&h2, (void *)&aHdr[1], sizeof(h2)); | |
| 1923 | |
| 1924 if( memcmp(&h1, &h2, sizeof(h1))!=0 ){ | |
| 1925 return 1; /* Dirty read */ | |
| 1926 } | |
| 1927 if( h1.isInit==0 ){ | |
| 1928 return 1; /* Malformed header - probably all zeros */ | |
| 1929 } | |
| 1930 walChecksumBytes(1, (u8*)&h1, sizeof(h1)-sizeof(h1.aCksum), 0, aCksum); | |
| 1931 if( aCksum[0]!=h1.aCksum[0] || aCksum[1]!=h1.aCksum[1] ){ | |
| 1932 return 1; /* Checksum does not match */ | |
| 1933 } | |
| 1934 | |
| 1935 if( memcmp(&pWal->hdr, &h1, sizeof(WalIndexHdr)) ){ | |
| 1936 *pChanged = 1; | |
| 1937 memcpy(&pWal->hdr, &h1, sizeof(WalIndexHdr)); | |
| 1938 pWal->szPage = (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16); | |
| 1939 testcase( pWal->szPage<=32768 ); | |
| 1940 testcase( pWal->szPage>=65536 ); | |
| 1941 } | |
| 1942 | |
| 1943 /* The header was successfully read. Return zero. */ | |
| 1944 return 0; | |
| 1945 } | |
| 1946 | |
| 1947 /* | |
| 1948 ** Read the wal-index header from the wal-index and into pWal->hdr. | |
| 1949 ** If the wal-header appears to be corrupt, try to reconstruct the | |
| 1950 ** wal-index from the WAL before returning. | |
| 1951 ** | |
| 1952 ** Set *pChanged to 1 if the wal-index header value in pWal->hdr is | |
| 1953 ** changed by this operation. If pWal->hdr is unchanged, set *pChanged | |
| 1954 ** to 0. | |
| 1955 ** | |
| 1956 ** If the wal-index header is successfully read, return SQLITE_OK. | |
| 1957 ** Otherwise an SQLite error code. | |
| 1958 */ | |
| 1959 static int walIndexReadHdr(Wal *pWal, int *pChanged){ | |
| 1960 int rc; /* Return code */ | |
| 1961 int badHdr; /* True if a header read failed */ | |
| 1962 volatile u32 *page0; /* Chunk of wal-index containing header */ | |
| 1963 | |
| 1964 /* Ensure that page 0 of the wal-index (the page that contains the | |
| 1965 ** wal-index header) is mapped. Return early if an error occurs here. | |
| 1966 */ | |
| 1967 assert( pChanged ); | |
| 1968 rc = walIndexPage(pWal, 0, &page0); | |
| 1969 if( rc!=SQLITE_OK ){ | |
| 1970 return rc; | |
| 1971 }; | |
| 1972 assert( page0 || pWal->writeLock==0 ); | |
| 1973 | |
| 1974 /* If the first page of the wal-index has been mapped, try to read the | |
| 1975 ** wal-index header immediately, without holding any lock. This usually | |
| 1976 ** works, but may fail if the wal-index header is corrupt or currently | |
| 1977 ** being modified by another thread or process. | |
| 1978 */ | |
| 1979 badHdr = (page0 ? walIndexTryHdr(pWal, pChanged) : 1); | |
| 1980 | |
| 1981 /* If the first attempt failed, it might have been due to a race | |
| 1982 ** with a writer. So get a WRITE lock and try again. | |
| 1983 */ | |
| 1984 assert( badHdr==0 || pWal->writeLock==0 ); | |
| 1985 if( badHdr ){ | |
| 1986 if( pWal->readOnly & WAL_SHM_RDONLY ){ | |
| 1987 if( SQLITE_OK==(rc = walLockShared(pWal, WAL_WRITE_LOCK)) ){ | |
| 1988 walUnlockShared(pWal, WAL_WRITE_LOCK); | |
| 1989 rc = SQLITE_READONLY_RECOVERY; | |
| 1990 } | |
| 1991 }else if( SQLITE_OK==(rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1)) ){ | |
| 1992 pWal->writeLock = 1; | |
| 1993 if( SQLITE_OK==(rc = walIndexPage(pWal, 0, &page0)) ){ | |
| 1994 badHdr = walIndexTryHdr(pWal, pChanged); | |
| 1995 if( badHdr ){ | |
| 1996 /* If the wal-index header is still malformed even while holding | |
| 1997 ** a WRITE lock, it can only mean that the header is corrupted and | |
| 1998 ** needs to be reconstructed. So run recovery to do exactly that. | |
| 1999 */ | |
| 2000 rc = walIndexRecover(pWal); | |
| 2001 *pChanged = 1; | |
| 2002 } | |
| 2003 } | |
| 2004 pWal->writeLock = 0; | |
| 2005 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1); | |
| 2006 } | |
| 2007 } | |
| 2008 | |
| 2009 /* If the header is read successfully, check the version number to make | |
| 2010 ** sure the wal-index was not constructed with some future format that | |
| 2011 ** this version of SQLite cannot understand. | |
| 2012 */ | |
| 2013 if( badHdr==0 && pWal->hdr.iVersion!=WALINDEX_MAX_VERSION ){ | |
| 2014 rc = SQLITE_CANTOPEN_BKPT; | |
| 2015 } | |
| 2016 | |
| 2017 return rc; | |
| 2018 } | |
| 2019 | |
| 2020 /* | |
| 2021 ** This is the value that walTryBeginRead returns when it needs to | |
| 2022 ** be retried. | |
| 2023 */ | |
| 2024 #define WAL_RETRY (-1) | |
| 2025 | |
| 2026 /* | |
| 2027 ** Attempt to start a read transaction. This might fail due to a race or | |
| 2028 ** other transient condition. When that happens, it returns WAL_RETRY to | |
| 2029 ** indicate to the caller that it is safe to retry immediately. | |
| 2030 ** | |
| 2031 ** On success return SQLITE_OK. On a permanent failure (such an | |
| 2032 ** I/O error or an SQLITE_BUSY because another process is running | |
| 2033 ** recovery) return a positive error code. | |
| 2034 ** | |
| 2035 ** The useWal parameter is true to force the use of the WAL and disable | |
| 2036 ** the case where the WAL is bypassed because it has been completely | |
| 2037 ** checkpointed. If useWal==0 then this routine calls walIndexReadHdr() | |
| 2038 ** to make a copy of the wal-index header into pWal->hdr. If the | |
| 2039 ** wal-index header has changed, *pChanged is set to 1 (as an indication | |
| 2040 ** to the caller that the local paget cache is obsolete and needs to be | |
| 2041 ** flushed.) When useWal==1, the wal-index header is assumed to already | |
| 2042 ** be loaded and the pChanged parameter is unused. | |
| 2043 ** | |
| 2044 ** The caller must set the cnt parameter to the number of prior calls to | |
| 2045 ** this routine during the current read attempt that returned WAL_RETRY. | |
| 2046 ** This routine will start taking more aggressive measures to clear the | |
| 2047 ** race conditions after multiple WAL_RETRY returns, and after an excessive | |
| 2048 ** number of errors will ultimately return SQLITE_PROTOCOL. The | |
| 2049 ** SQLITE_PROTOCOL return indicates that some other process has gone rogue | |
| 2050 ** and is not honoring the locking protocol. There is a vanishingly small | |
| 2051 ** chance that SQLITE_PROTOCOL could be returned because of a run of really | |
| 2052 ** bad luck when there is lots of contention for the wal-index, but that | |
| 2053 ** possibility is so small that it can be safely neglected, we believe. | |
| 2054 ** | |
| 2055 ** On success, this routine obtains a read lock on | |
| 2056 ** WAL_READ_LOCK(pWal->readLock). The pWal->readLock integer is | |
| 2057 ** in the range 0 <= pWal->readLock < WAL_NREADER. If pWal->readLock==(-1) | |
| 2058 ** that means the Wal does not hold any read lock. The reader must not | |
| 2059 ** access any database page that is modified by a WAL frame up to and | |
| 2060 ** including frame number aReadMark[pWal->readLock]. The reader will | |
| 2061 ** use WAL frames up to and including pWal->hdr.mxFrame if pWal->readLock>0 | |
| 2062 ** Or if pWal->readLock==0, then the reader will ignore the WAL | |
| 2063 ** completely and get all content directly from the database file. | |
| 2064 ** If the useWal parameter is 1 then the WAL will never be ignored and | |
| 2065 ** this routine will always set pWal->readLock>0 on success. | |
| 2066 ** When the read transaction is completed, the caller must release the | |
| 2067 ** lock on WAL_READ_LOCK(pWal->readLock) and set pWal->readLock to -1. | |
| 2068 ** | |
| 2069 ** This routine uses the nBackfill and aReadMark[] fields of the header | |
| 2070 ** to select a particular WAL_READ_LOCK() that strives to let the | |
| 2071 ** checkpoint process do as much work as possible. This routine might | |
| 2072 ** update values of the aReadMark[] array in the header, but if it does | |
| 2073 ** so it takes care to hold an exclusive lock on the corresponding | |
| 2074 ** WAL_READ_LOCK() while changing values. | |
| 2075 */ | |
| 2076 static int walTryBeginRead(Wal *pWal, int *pChanged, int useWal, int cnt){ | |
| 2077 volatile WalCkptInfo *pInfo; /* Checkpoint information in wal-index */ | |
| 2078 u32 mxReadMark; /* Largest aReadMark[] value */ | |
| 2079 int mxI; /* Index of largest aReadMark[] value */ | |
| 2080 int i; /* Loop counter */ | |
| 2081 int rc = SQLITE_OK; /* Return code */ | |
| 2082 | |
| 2083 assert( pWal->readLock<0 ); /* Not currently locked */ | |
| 2084 | |
| 2085 /* Take steps to avoid spinning forever if there is a protocol error. | |
| 2086 ** | |
| 2087 ** Circumstances that cause a RETRY should only last for the briefest | |
| 2088 ** instances of time. No I/O or other system calls are done while the | |
| 2089 ** locks are held, so the locks should not be held for very long. But | |
| 2090 ** if we are unlucky, another process that is holding a lock might get | |
| 2091 ** paged out or take a page-fault that is time-consuming to resolve, | |
| 2092 ** during the few nanoseconds that it is holding the lock. In that case, | |
| 2093 ** it might take longer than normal for the lock to free. | |
| 2094 ** | |
| 2095 ** After 5 RETRYs, we begin calling sqlite3OsSleep(). The first few | |
| 2096 ** calls to sqlite3OsSleep() have a delay of 1 microsecond. Really this | |
| 2097 ** is more of a scheduler yield than an actual delay. But on the 10th | |
| 2098 ** an subsequent retries, the delays start becoming longer and longer, | |
| 2099 ** so that on the 100th (and last) RETRY we delay for 323 milliseconds. | |
| 2100 ** The total delay time before giving up is less than 10 seconds. | |
| 2101 */ | |
| 2102 if( cnt>5 ){ | |
| 2103 int nDelay = 1; /* Pause time in microseconds */ | |
| 2104 if( cnt>100 ){ | |
| 2105 VVA_ONLY( pWal->lockError = 1; ) | |
| 2106 return SQLITE_PROTOCOL; | |
| 2107 } | |
| 2108 if( cnt>=10 ) nDelay = (cnt-9)*(cnt-9)*39; | |
| 2109 sqlite3OsSleep(pWal->pVfs, nDelay); | |
| 2110 } | |
| 2111 | |
| 2112 if( !useWal ){ | |
| 2113 rc = walIndexReadHdr(pWal, pChanged); | |
| 2114 if( rc==SQLITE_BUSY ){ | |
| 2115 /* If there is not a recovery running in another thread or process | |
| 2116 ** then convert BUSY errors to WAL_RETRY. If recovery is known to | |
| 2117 ** be running, convert BUSY to BUSY_RECOVERY. There is a race here | |
| 2118 ** which might cause WAL_RETRY to be returned even if BUSY_RECOVERY | |
| 2119 ** would be technically correct. But the race is benign since with | |
| 2120 ** WAL_RETRY this routine will be called again and will probably be | |
| 2121 ** right on the second iteration. | |
| 2122 */ | |
| 2123 if( pWal->apWiData[0]==0 ){ | |
| 2124 /* This branch is taken when the xShmMap() method returns SQLITE_BUSY. | |
| 2125 ** We assume this is a transient condition, so return WAL_RETRY. The | |
| 2126 ** xShmMap() implementation used by the default unix and win32 VFS | |
| 2127 ** modules may return SQLITE_BUSY due to a race condition in the | |
| 2128 ** code that determines whether or not the shared-memory region | |
| 2129 ** must be zeroed before the requested page is returned. | |
| 2130 */ | |
| 2131 rc = WAL_RETRY; | |
| 2132 }else if( SQLITE_OK==(rc = walLockShared(pWal, WAL_RECOVER_LOCK)) ){ | |
| 2133 walUnlockShared(pWal, WAL_RECOVER_LOCK); | |
| 2134 rc = WAL_RETRY; | |
| 2135 }else if( rc==SQLITE_BUSY ){ | |
| 2136 rc = SQLITE_BUSY_RECOVERY; | |
| 2137 } | |
| 2138 } | |
| 2139 if( rc!=SQLITE_OK ){ | |
| 2140 return rc; | |
| 2141 } | |
| 2142 } | |
| 2143 | |
| 2144 pInfo = walCkptInfo(pWal); | |
| 2145 if( !useWal && pInfo->nBackfill==pWal->hdr.mxFrame ){ | |
| 2146 /* The WAL has been completely backfilled (or it is empty). | |
| 2147 ** and can be safely ignored. | |
| 2148 */ | |
| 2149 rc = walLockShared(pWal, WAL_READ_LOCK(0)); | |
| 2150 walShmBarrier(pWal); | |
| 2151 if( rc==SQLITE_OK ){ | |
| 2152 if( memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) ){ | |
| 2153 /* It is not safe to allow the reader to continue here if frames | |
| 2154 ** may have been appended to the log before READ_LOCK(0) was obtained. | |
| 2155 ** When holding READ_LOCK(0), the reader ignores the entire log file, | |
| 2156 ** which implies that the database file contains a trustworthy | |
| 2157 ** snapshot. Since holding READ_LOCK(0) prevents a checkpoint from | |
| 2158 ** happening, this is usually correct. | |
| 2159 ** | |
| 2160 ** However, if frames have been appended to the log (or if the log | |
| 2161 ** is wrapped and written for that matter) before the READ_LOCK(0) | |
| 2162 ** is obtained, that is not necessarily true. A checkpointer may | |
| 2163 ** have started to backfill the appended frames but crashed before | |
| 2164 ** it finished. Leaving a corrupt image in the database file. | |
| 2165 */ | |
| 2166 walUnlockShared(pWal, WAL_READ_LOCK(0)); | |
| 2167 return WAL_RETRY; | |
| 2168 } | |
| 2169 pWal->readLock = 0; | |
| 2170 return SQLITE_OK; | |
| 2171 }else if( rc!=SQLITE_BUSY ){ | |
| 2172 return rc; | |
| 2173 } | |
| 2174 } | |
| 2175 | |
| 2176 /* If we get this far, it means that the reader will want to use | |
| 2177 ** the WAL to get at content from recent commits. The job now is | |
| 2178 ** to select one of the aReadMark[] entries that is closest to | |
| 2179 ** but not exceeding pWal->hdr.mxFrame and lock that entry. | |
| 2180 */ | |
| 2181 mxReadMark = 0; | |
| 2182 mxI = 0; | |
| 2183 for(i=1; i<WAL_NREADER; i++){ | |
| 2184 u32 thisMark = pInfo->aReadMark[i]; | |
| 2185 if( mxReadMark<=thisMark && thisMark<=pWal->hdr.mxFrame ){ | |
| 2186 assert( thisMark!=READMARK_NOT_USED ); | |
| 2187 mxReadMark = thisMark; | |
| 2188 mxI = i; | |
| 2189 } | |
| 2190 } | |
| 2191 /* There was once an "if" here. The extra "{" is to preserve indentation. */ | |
| 2192 { | |
| 2193 if( (pWal->readOnly & WAL_SHM_RDONLY)==0 | |
| 2194 && (mxReadMark<pWal->hdr.mxFrame || mxI==0) | |
| 2195 ){ | |
| 2196 for(i=1; i<WAL_NREADER; i++){ | |
| 2197 rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1); | |
| 2198 if( rc==SQLITE_OK ){ | |
| 2199 mxReadMark = pInfo->aReadMark[i] = pWal->hdr.mxFrame; | |
| 2200 mxI = i; | |
| 2201 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1); | |
| 2202 break; | |
| 2203 }else if( rc!=SQLITE_BUSY ){ | |
| 2204 return rc; | |
| 2205 } | |
| 2206 } | |
| 2207 } | |
| 2208 if( mxI==0 ){ | |
| 2209 assert( rc==SQLITE_BUSY || (pWal->readOnly & WAL_SHM_RDONLY)!=0 ); | |
| 2210 return rc==SQLITE_BUSY ? WAL_RETRY : SQLITE_READONLY_CANTLOCK; | |
| 2211 } | |
| 2212 | |
| 2213 rc = walLockShared(pWal, WAL_READ_LOCK(mxI)); | |
| 2214 if( rc ){ | |
| 2215 return rc==SQLITE_BUSY ? WAL_RETRY : rc; | |
| 2216 } | |
| 2217 /* Now that the read-lock has been obtained, check that neither the | |
| 2218 ** value in the aReadMark[] array or the contents of the wal-index | |
| 2219 ** header have changed. | |
| 2220 ** | |
| 2221 ** It is necessary to check that the wal-index header did not change | |
| 2222 ** between the time it was read and when the shared-lock was obtained | |
| 2223 ** on WAL_READ_LOCK(mxI) was obtained to account for the possibility | |
| 2224 ** that the log file may have been wrapped by a writer, or that frames | |
| 2225 ** that occur later in the log than pWal->hdr.mxFrame may have been | |
| 2226 ** copied into the database by a checkpointer. If either of these things | |
| 2227 ** happened, then reading the database with the current value of | |
| 2228 ** pWal->hdr.mxFrame risks reading a corrupted snapshot. So, retry | |
| 2229 ** instead. | |
| 2230 ** | |
| 2231 ** This does not guarantee that the copy of the wal-index header is up to | |
| 2232 ** date before proceeding. That would not be possible without somehow | |
| 2233 ** blocking writers. It only guarantees that a dangerous checkpoint or | |
| 2234 ** log-wrap (either of which would require an exclusive lock on | |
| 2235 ** WAL_READ_LOCK(mxI)) has not occurred since the snapshot was valid. | |
| 2236 */ | |
| 2237 walShmBarrier(pWal); | |
| 2238 if( pInfo->aReadMark[mxI]!=mxReadMark | |
| 2239 || memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) | |
| 2240 ){ | |
| 2241 walUnlockShared(pWal, WAL_READ_LOCK(mxI)); | |
| 2242 return WAL_RETRY; | |
| 2243 }else{ | |
| 2244 assert( mxReadMark<=pWal->hdr.mxFrame ); | |
| 2245 pWal->readLock = (i16)mxI; | |
| 2246 } | |
| 2247 } | |
| 2248 return rc; | |
| 2249 } | |
| 2250 | |
| 2251 /* | |
| 2252 ** Begin a read transaction on the database. | |
| 2253 ** | |
| 2254 ** This routine used to be called sqlite3OpenSnapshot() and with good reason: | |
| 2255 ** it takes a snapshot of the state of the WAL and wal-index for the current | |
| 2256 ** instant in time. The current thread will continue to use this snapshot. | |
| 2257 ** Other threads might append new content to the WAL and wal-index but | |
| 2258 ** that extra content is ignored by the current thread. | |
| 2259 ** | |
| 2260 ** If the database contents have changes since the previous read | |
| 2261 ** transaction, then *pChanged is set to 1 before returning. The | |
| 2262 ** Pager layer will use this to know that is cache is stale and | |
| 2263 ** needs to be flushed. | |
| 2264 */ | |
| 2265 int sqlite3WalBeginReadTransaction(Wal *pWal, int *pChanged){ | |
| 2266 int rc; /* Return code */ | |
| 2267 int cnt = 0; /* Number of TryBeginRead attempts */ | |
| 2268 | |
| 2269 do{ | |
| 2270 rc = walTryBeginRead(pWal, pChanged, 0, ++cnt); | |
| 2271 }while( rc==WAL_RETRY ); | |
| 2272 testcase( (rc&0xff)==SQLITE_BUSY ); | |
| 2273 testcase( (rc&0xff)==SQLITE_IOERR ); | |
| 2274 testcase( rc==SQLITE_PROTOCOL ); | |
| 2275 testcase( rc==SQLITE_OK ); | |
| 2276 return rc; | |
| 2277 } | |
| 2278 | |
| 2279 /* | |
| 2280 ** Finish with a read transaction. All this does is release the | |
| 2281 ** read-lock. | |
| 2282 */ | |
| 2283 void sqlite3WalEndReadTransaction(Wal *pWal){ | |
| 2284 sqlite3WalEndWriteTransaction(pWal); | |
| 2285 if( pWal->readLock>=0 ){ | |
| 2286 walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock)); | |
| 2287 pWal->readLock = -1; | |
| 2288 } | |
| 2289 } | |
| 2290 | |
| 2291 /* | |
| 2292 ** Search the wal file for page pgno. If found, set *piRead to the frame that | |
| 2293 ** contains the page. Otherwise, if pgno is not in the wal file, set *piRead | |
| 2294 ** to zero. | |
| 2295 ** | |
| 2296 ** Return SQLITE_OK if successful, or an error code if an error occurs. If an | |
| 2297 ** error does occur, the final value of *piRead is undefined. | |
| 2298 */ | |
| 2299 int sqlite3WalFindFrame( | |
| 2300 Wal *pWal, /* WAL handle */ | |
| 2301 Pgno pgno, /* Database page number to read data for */ | |
| 2302 u32 *piRead /* OUT: Frame number (or zero) */ | |
| 2303 ){ | |
| 2304 u32 iRead = 0; /* If !=0, WAL frame to return data from */ | |
| 2305 u32 iLast = pWal->hdr.mxFrame; /* Last page in WAL for this reader */ | |
| 2306 int iHash; /* Used to loop through N hash tables */ | |
| 2307 | |
| 2308 /* This routine is only be called from within a read transaction. */ | |
| 2309 assert( pWal->readLock>=0 || pWal->lockError ); | |
| 2310 | |
| 2311 /* If the "last page" field of the wal-index header snapshot is 0, then | |
| 2312 ** no data will be read from the wal under any circumstances. Return early | |
| 2313 ** in this case as an optimization. Likewise, if pWal->readLock==0, | |
| 2314 ** then the WAL is ignored by the reader so return early, as if the | |
| 2315 ** WAL were empty. | |
| 2316 */ | |
| 2317 if( iLast==0 || pWal->readLock==0 ){ | |
| 2318 *piRead = 0; | |
| 2319 return SQLITE_OK; | |
| 2320 } | |
| 2321 | |
| 2322 /* Search the hash table or tables for an entry matching page number | |
| 2323 ** pgno. Each iteration of the following for() loop searches one | |
| 2324 ** hash table (each hash table indexes up to HASHTABLE_NPAGE frames). | |
| 2325 ** | |
| 2326 ** This code might run concurrently to the code in walIndexAppend() | |
| 2327 ** that adds entries to the wal-index (and possibly to this hash | |
| 2328 ** table). This means the value just read from the hash | |
| 2329 ** slot (aHash[iKey]) may have been added before or after the | |
| 2330 ** current read transaction was opened. Values added after the | |
| 2331 ** read transaction was opened may have been written incorrectly - | |
| 2332 ** i.e. these slots may contain garbage data. However, we assume | |
| 2333 ** that any slots written before the current read transaction was | |
| 2334 ** opened remain unmodified. | |
| 2335 ** | |
| 2336 ** For the reasons above, the if(...) condition featured in the inner | |
| 2337 ** loop of the following block is more stringent that would be required | |
| 2338 ** if we had exclusive access to the hash-table: | |
| 2339 ** | |
| 2340 ** (aPgno[iFrame]==pgno): | |
| 2341 ** This condition filters out normal hash-table collisions. | |
| 2342 ** | |
| 2343 ** (iFrame<=iLast): | |
| 2344 ** This condition filters out entries that were added to the hash | |
| 2345 ** table after the current read-transaction had started. | |
| 2346 */ | |
| 2347 for(iHash=walFramePage(iLast); iHash>=0 && iRead==0; iHash--){ | |
| 2348 volatile ht_slot *aHash; /* Pointer to hash table */ | |
| 2349 volatile u32 *aPgno; /* Pointer to array of page numbers */ | |
| 2350 u32 iZero; /* Frame number corresponding to aPgno[0] */ | |
| 2351 int iKey; /* Hash slot index */ | |
| 2352 int nCollide; /* Number of hash collisions remaining */ | |
| 2353 int rc; /* Error code */ | |
| 2354 | |
| 2355 rc = walHashGet(pWal, iHash, &aHash, &aPgno, &iZero); | |
| 2356 if( rc!=SQLITE_OK ){ | |
| 2357 return rc; | |
| 2358 } | |
| 2359 nCollide = HASHTABLE_NSLOT; | |
| 2360 for(iKey=walHash(pgno); aHash[iKey]; iKey=walNextHash(iKey)){ | |
| 2361 u32 iFrame = aHash[iKey] + iZero; | |
| 2362 if( iFrame<=iLast && aPgno[aHash[iKey]]==pgno ){ | |
| 2363 /* assert( iFrame>iRead ); -- not true if there is corruption */ | |
| 2364 iRead = iFrame; | |
| 2365 } | |
| 2366 if( (nCollide--)==0 ){ | |
| 2367 return SQLITE_CORRUPT_BKPT; | |
| 2368 } | |
| 2369 } | |
| 2370 } | |
| 2371 | |
| 2372 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT | |
| 2373 /* If expensive assert() statements are available, do a linear search | |
| 2374 ** of the wal-index file content. Make sure the results agree with the | |
| 2375 ** result obtained using the hash indexes above. */ | |
| 2376 { | |
| 2377 u32 iRead2 = 0; | |
| 2378 u32 iTest; | |
| 2379 for(iTest=iLast; iTest>0; iTest--){ | |
| 2380 if( walFramePgno(pWal, iTest)==pgno ){ | |
| 2381 iRead2 = iTest; | |
| 2382 break; | |
| 2383 } | |
| 2384 } | |
| 2385 assert( iRead==iRead2 ); | |
| 2386 } | |
| 2387 #endif | |
| 2388 | |
| 2389 *piRead = iRead; | |
| 2390 return SQLITE_OK; | |
| 2391 } | |
| 2392 | |
| 2393 /* | |
| 2394 ** Read the contents of frame iRead from the wal file into buffer pOut | |
| 2395 ** (which is nOut bytes in size). Return SQLITE_OK if successful, or an | |
| 2396 ** error code otherwise. | |
| 2397 */ | |
| 2398 int sqlite3WalReadFrame( | |
| 2399 Wal *pWal, /* WAL handle */ | |
| 2400 u32 iRead, /* Frame to read */ | |
| 2401 int nOut, /* Size of buffer pOut in bytes */ | |
| 2402 u8 *pOut /* Buffer to write page data to */ | |
| 2403 ){ | |
| 2404 int sz; | |
| 2405 i64 iOffset; | |
| 2406 sz = pWal->hdr.szPage; | |
| 2407 sz = (sz&0xfe00) + ((sz&0x0001)<<16); | |
| 2408 testcase( sz<=32768 ); | |
| 2409 testcase( sz>=65536 ); | |
| 2410 iOffset = walFrameOffset(iRead, sz) + WAL_FRAME_HDRSIZE; | |
| 2411 /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL */ | |
| 2412 return sqlite3OsRead(pWal->pWalFd, pOut, (nOut>sz ? sz : nOut), iOffset); | |
| 2413 } | |
| 2414 | |
| 2415 /* | |
| 2416 ** Return the size of the database in pages (or zero, if unknown). | |
| 2417 */ | |
| 2418 Pgno sqlite3WalDbsize(Wal *pWal){ | |
| 2419 if( pWal && ALWAYS(pWal->readLock>=0) ){ | |
| 2420 return pWal->hdr.nPage; | |
| 2421 } | |
| 2422 return 0; | |
| 2423 } | |
| 2424 | |
| 2425 | |
| 2426 /* | |
| 2427 ** This function starts a write transaction on the WAL. | |
| 2428 ** | |
| 2429 ** A read transaction must have already been started by a prior call | |
| 2430 ** to sqlite3WalBeginReadTransaction(). | |
| 2431 ** | |
| 2432 ** If another thread or process has written into the database since | |
| 2433 ** the read transaction was started, then it is not possible for this | |
| 2434 ** thread to write as doing so would cause a fork. So this routine | |
| 2435 ** returns SQLITE_BUSY in that case and no write transaction is started. | |
| 2436 ** | |
| 2437 ** There can only be a single writer active at a time. | |
| 2438 */ | |
| 2439 int sqlite3WalBeginWriteTransaction(Wal *pWal){ | |
| 2440 int rc; | |
| 2441 | |
| 2442 /* Cannot start a write transaction without first holding a read | |
| 2443 ** transaction. */ | |
| 2444 assert( pWal->readLock>=0 ); | |
| 2445 | |
| 2446 if( pWal->readOnly ){ | |
| 2447 return SQLITE_READONLY; | |
| 2448 } | |
| 2449 | |
| 2450 /* Only one writer allowed at a time. Get the write lock. Return | |
| 2451 ** SQLITE_BUSY if unable. | |
| 2452 */ | |
| 2453 rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1); | |
| 2454 if( rc ){ | |
| 2455 return rc; | |
| 2456 } | |
| 2457 pWal->writeLock = 1; | |
| 2458 | |
| 2459 /* If another connection has written to the database file since the | |
| 2460 ** time the read transaction on this connection was started, then | |
| 2461 ** the write is disallowed. | |
| 2462 */ | |
| 2463 if( memcmp(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr))!=0 ){ | |
| 2464 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1); | |
| 2465 pWal->writeLock = 0; | |
| 2466 rc = SQLITE_BUSY_SNAPSHOT; | |
| 2467 } | |
| 2468 | |
| 2469 return rc; | |
| 2470 } | |
| 2471 | |
| 2472 /* | |
| 2473 ** End a write transaction. The commit has already been done. This | |
| 2474 ** routine merely releases the lock. | |
| 2475 */ | |
| 2476 int sqlite3WalEndWriteTransaction(Wal *pWal){ | |
| 2477 if( pWal->writeLock ){ | |
| 2478 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1); | |
| 2479 pWal->writeLock = 0; | |
| 2480 pWal->truncateOnCommit = 0; | |
| 2481 } | |
| 2482 return SQLITE_OK; | |
| 2483 } | |
| 2484 | |
| 2485 /* | |
| 2486 ** If any data has been written (but not committed) to the log file, this | |
| 2487 ** function moves the write-pointer back to the start of the transaction. | |
| 2488 ** | |
| 2489 ** Additionally, the callback function is invoked for each frame written | |
| 2490 ** to the WAL since the start of the transaction. If the callback returns | |
| 2491 ** other than SQLITE_OK, it is not invoked again and the error code is | |
| 2492 ** returned to the caller. | |
| 2493 ** | |
| 2494 ** Otherwise, if the callback function does not return an error, this | |
| 2495 ** function returns SQLITE_OK. | |
| 2496 */ | |
| 2497 int sqlite3WalUndo(Wal *pWal, int (*xUndo)(void *, Pgno), void *pUndoCtx){ | |
| 2498 int rc = SQLITE_OK; | |
| 2499 if( ALWAYS(pWal->writeLock) ){ | |
| 2500 Pgno iMax = pWal->hdr.mxFrame; | |
| 2501 Pgno iFrame; | |
| 2502 | |
| 2503 /* Restore the clients cache of the wal-index header to the state it | |
| 2504 ** was in before the client began writing to the database. | |
| 2505 */ | |
| 2506 memcpy(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr)); | |
| 2507 | |
| 2508 for(iFrame=pWal->hdr.mxFrame+1; | |
| 2509 ALWAYS(rc==SQLITE_OK) && iFrame<=iMax; | |
| 2510 iFrame++ | |
| 2511 ){ | |
| 2512 /* This call cannot fail. Unless the page for which the page number | |
| 2513 ** is passed as the second argument is (a) in the cache and | |
| 2514 ** (b) has an outstanding reference, then xUndo is either a no-op | |
| 2515 ** (if (a) is false) or simply expels the page from the cache (if (b) | |
| 2516 ** is false). | |
| 2517 ** | |
| 2518 ** If the upper layer is doing a rollback, it is guaranteed that there | |
| 2519 ** are no outstanding references to any page other than page 1. And | |
| 2520 ** page 1 is never written to the log until the transaction is | |
| 2521 ** committed. As a result, the call to xUndo may not fail. | |
| 2522 */ | |
| 2523 assert( walFramePgno(pWal, iFrame)!=1 ); | |
| 2524 rc = xUndo(pUndoCtx, walFramePgno(pWal, iFrame)); | |
| 2525 } | |
| 2526 if( iMax!=pWal->hdr.mxFrame ) walCleanupHash(pWal); | |
| 2527 } | |
| 2528 return rc; | |
| 2529 } | |
| 2530 | |
| 2531 /* | |
| 2532 ** Argument aWalData must point to an array of WAL_SAVEPOINT_NDATA u32 | |
| 2533 ** values. This function populates the array with values required to | |
| 2534 ** "rollback" the write position of the WAL handle back to the current | |
| 2535 ** point in the event of a savepoint rollback (via WalSavepointUndo()). | |
| 2536 */ | |
| 2537 void sqlite3WalSavepoint(Wal *pWal, u32 *aWalData){ | |
| 2538 assert( pWal->writeLock ); | |
| 2539 aWalData[0] = pWal->hdr.mxFrame; | |
| 2540 aWalData[1] = pWal->hdr.aFrameCksum[0]; | |
| 2541 aWalData[2] = pWal->hdr.aFrameCksum[1]; | |
| 2542 aWalData[3] = pWal->nCkpt; | |
| 2543 } | |
| 2544 | |
| 2545 /* | |
| 2546 ** Move the write position of the WAL back to the point identified by | |
| 2547 ** the values in the aWalData[] array. aWalData must point to an array | |
| 2548 ** of WAL_SAVEPOINT_NDATA u32 values that has been previously populated | |
| 2549 ** by a call to WalSavepoint(). | |
| 2550 */ | |
| 2551 int sqlite3WalSavepointUndo(Wal *pWal, u32 *aWalData){ | |
| 2552 int rc = SQLITE_OK; | |
| 2553 | |
| 2554 assert( pWal->writeLock ); | |
| 2555 assert( aWalData[3]!=pWal->nCkpt || aWalData[0]<=pWal->hdr.mxFrame ); | |
| 2556 | |
| 2557 if( aWalData[3]!=pWal->nCkpt ){ | |
| 2558 /* This savepoint was opened immediately after the write-transaction | |
| 2559 ** was started. Right after that, the writer decided to wrap around | |
| 2560 ** to the start of the log. Update the savepoint values to match. | |
| 2561 */ | |
| 2562 aWalData[0] = 0; | |
| 2563 aWalData[3] = pWal->nCkpt; | |
| 2564 } | |
| 2565 | |
| 2566 if( aWalData[0]<pWal->hdr.mxFrame ){ | |
| 2567 pWal->hdr.mxFrame = aWalData[0]; | |
| 2568 pWal->hdr.aFrameCksum[0] = aWalData[1]; | |
| 2569 pWal->hdr.aFrameCksum[1] = aWalData[2]; | |
| 2570 walCleanupHash(pWal); | |
| 2571 } | |
| 2572 | |
| 2573 return rc; | |
| 2574 } | |
| 2575 | |
| 2576 | |
| 2577 /* | |
| 2578 ** This function is called just before writing a set of frames to the log | |
| 2579 ** file (see sqlite3WalFrames()). It checks to see if, instead of appending | |
| 2580 ** to the current log file, it is possible to overwrite the start of the | |
| 2581 ** existing log file with the new frames (i.e. "reset" the log). If so, | |
| 2582 ** it sets pWal->hdr.mxFrame to 0. Otherwise, pWal->hdr.mxFrame is left | |
| 2583 ** unchanged. | |
| 2584 ** | |
| 2585 ** SQLITE_OK is returned if no error is encountered (regardless of whether | |
| 2586 ** or not pWal->hdr.mxFrame is modified). An SQLite error code is returned | |
| 2587 ** if an error occurs. | |
| 2588 */ | |
| 2589 static int walRestartLog(Wal *pWal){ | |
| 2590 int rc = SQLITE_OK; | |
| 2591 int cnt; | |
| 2592 | |
| 2593 if( pWal->readLock==0 ){ | |
| 2594 volatile WalCkptInfo *pInfo = walCkptInfo(pWal); | |
| 2595 assert( pInfo->nBackfill==pWal->hdr.mxFrame ); | |
| 2596 if( pInfo->nBackfill>0 ){ | |
| 2597 u32 salt1; | |
| 2598 sqlite3_randomness(4, &salt1); | |
| 2599 rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1); | |
| 2600 if( rc==SQLITE_OK ){ | |
| 2601 /* If all readers are using WAL_READ_LOCK(0) (in other words if no | |
| 2602 ** readers are currently using the WAL), then the transactions | |
| 2603 ** frames will overwrite the start of the existing log. Update the | |
| 2604 ** wal-index header to reflect this. | |
| 2605 ** | |
| 2606 ** In theory it would be Ok to update the cache of the header only | |
| 2607 ** at this point. But updating the actual wal-index header is also | |
| 2608 ** safe and means there is no special case for sqlite3WalUndo() | |
| 2609 ** to handle if this transaction is rolled back. | |
| 2610 */ | |
| 2611 int i; /* Loop counter */ | |
| 2612 u32 *aSalt = pWal->hdr.aSalt; /* Big-endian salt values */ | |
| 2613 | |
| 2614 pWal->nCkpt++; | |
| 2615 pWal->hdr.mxFrame = 0; | |
| 2616 sqlite3Put4byte((u8*)&aSalt[0], 1 + sqlite3Get4byte((u8*)&aSalt[0])); | |
| 2617 aSalt[1] = salt1; | |
| 2618 walIndexWriteHdr(pWal); | |
| 2619 pInfo->nBackfill = 0; | |
| 2620 pInfo->aReadMark[1] = 0; | |
| 2621 for(i=2; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED; | |
| 2622 assert( pInfo->aReadMark[0]==0 ); | |
| 2623 walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1); | |
| 2624 }else if( rc!=SQLITE_BUSY ){ | |
| 2625 return rc; | |
| 2626 } | |
| 2627 } | |
| 2628 walUnlockShared(pWal, WAL_READ_LOCK(0)); | |
| 2629 pWal->readLock = -1; | |
| 2630 cnt = 0; | |
| 2631 do{ | |
| 2632 int notUsed; | |
| 2633 rc = walTryBeginRead(pWal, ¬Used, 1, ++cnt); | |
| 2634 }while( rc==WAL_RETRY ); | |
| 2635 assert( (rc&0xff)!=SQLITE_BUSY ); /* BUSY not possible when useWal==1 */ | |
| 2636 testcase( (rc&0xff)==SQLITE_IOERR ); | |
| 2637 testcase( rc==SQLITE_PROTOCOL ); | |
| 2638 testcase( rc==SQLITE_OK ); | |
| 2639 } | |
| 2640 return rc; | |
| 2641 } | |
| 2642 | |
| 2643 /* | |
| 2644 ** Information about the current state of the WAL file and where | |
| 2645 ** the next fsync should occur - passed from sqlite3WalFrames() into | |
| 2646 ** walWriteToLog(). | |
| 2647 */ | |
| 2648 typedef struct WalWriter { | |
| 2649 Wal *pWal; /* The complete WAL information */ | |
| 2650 sqlite3_file *pFd; /* The WAL file to which we write */ | |
| 2651 sqlite3_int64 iSyncPoint; /* Fsync at this offset */ | |
| 2652 int syncFlags; /* Flags for the fsync */ | |
| 2653 int szPage; /* Size of one page */ | |
| 2654 } WalWriter; | |
| 2655 | |
| 2656 /* | |
| 2657 ** Write iAmt bytes of content into the WAL file beginning at iOffset. | |
| 2658 ** Do a sync when crossing the p->iSyncPoint boundary. | |
| 2659 ** | |
| 2660 ** In other words, if iSyncPoint is in between iOffset and iOffset+iAmt, | |
| 2661 ** first write the part before iSyncPoint, then sync, then write the | |
| 2662 ** rest. | |
| 2663 */ | |
| 2664 static int walWriteToLog( | |
| 2665 WalWriter *p, /* WAL to write to */ | |
| 2666 void *pContent, /* Content to be written */ | |
| 2667 int iAmt, /* Number of bytes to write */ | |
| 2668 sqlite3_int64 iOffset /* Start writing at this offset */ | |
| 2669 ){ | |
| 2670 int rc; | |
| 2671 if( iOffset<p->iSyncPoint && iOffset+iAmt>=p->iSyncPoint ){ | |
| 2672 int iFirstAmt = (int)(p->iSyncPoint - iOffset); | |
| 2673 rc = sqlite3OsWrite(p->pFd, pContent, iFirstAmt, iOffset); | |
| 2674 if( rc ) return rc; | |
| 2675 iOffset += iFirstAmt; | |
| 2676 iAmt -= iFirstAmt; | |
| 2677 pContent = (void*)(iFirstAmt + (char*)pContent); | |
| 2678 assert( p->syncFlags & (SQLITE_SYNC_NORMAL|SQLITE_SYNC_FULL) ); | |
| 2679 rc = sqlite3OsSync(p->pFd, p->syncFlags & SQLITE_SYNC_MASK); | |
| 2680 if( iAmt==0 || rc ) return rc; | |
| 2681 } | |
| 2682 rc = sqlite3OsWrite(p->pFd, pContent, iAmt, iOffset); | |
| 2683 return rc; | |
| 2684 } | |
| 2685 | |
| 2686 /* | |
| 2687 ** Write out a single frame of the WAL | |
| 2688 */ | |
| 2689 static int walWriteOneFrame( | |
| 2690 WalWriter *p, /* Where to write the frame */ | |
| 2691 PgHdr *pPage, /* The page of the frame to be written */ | |
| 2692 int nTruncate, /* The commit flag. Usually 0. >0 for commit */ | |
| 2693 sqlite3_int64 iOffset /* Byte offset at which to write */ | |
| 2694 ){ | |
| 2695 int rc; /* Result code from subfunctions */ | |
| 2696 void *pData; /* Data actually written */ | |
| 2697 u8 aFrame[WAL_FRAME_HDRSIZE]; /* Buffer to assemble frame-header in */ | |
| 2698 #if defined(SQLITE_HAS_CODEC) | |
| 2699 if( (pData = sqlite3PagerCodec(pPage))==0 ) return SQLITE_NOMEM; | |
| 2700 #else | |
| 2701 pData = pPage->pData; | |
| 2702 #endif | |
| 2703 walEncodeFrame(p->pWal, pPage->pgno, nTruncate, pData, aFrame); | |
| 2704 rc = walWriteToLog(p, aFrame, sizeof(aFrame), iOffset); | |
| 2705 if( rc ) return rc; | |
| 2706 /* Write the page data */ | |
| 2707 rc = walWriteToLog(p, pData, p->szPage, iOffset+sizeof(aFrame)); | |
| 2708 return rc; | |
| 2709 } | |
| 2710 | |
| 2711 /* | |
| 2712 ** Write a set of frames to the log. The caller must hold the write-lock | |
| 2713 ** on the log file (obtained using sqlite3WalBeginWriteTransaction()). | |
| 2714 */ | |
| 2715 int sqlite3WalFrames( | |
| 2716 Wal *pWal, /* Wal handle to write to */ | |
| 2717 int szPage, /* Database page-size in bytes */ | |
| 2718 PgHdr *pList, /* List of dirty pages to write */ | |
| 2719 Pgno nTruncate, /* Database size after this commit */ | |
| 2720 int isCommit, /* True if this is a commit */ | |
| 2721 int sync_flags /* Flags to pass to OsSync() (or 0) */ | |
| 2722 ){ | |
| 2723 int rc; /* Used to catch return codes */ | |
| 2724 u32 iFrame; /* Next frame address */ | |
| 2725 PgHdr *p; /* Iterator to run through pList with. */ | |
| 2726 PgHdr *pLast = 0; /* Last frame in list */ | |
| 2727 int nExtra = 0; /* Number of extra copies of last page */ | |
| 2728 int szFrame; /* The size of a single frame */ | |
| 2729 i64 iOffset; /* Next byte to write in WAL file */ | |
| 2730 WalWriter w; /* The writer */ | |
| 2731 | |
| 2732 assert( pList ); | |
| 2733 assert( pWal->writeLock ); | |
| 2734 | |
| 2735 /* If this frame set completes a transaction, then nTruncate>0. If | |
| 2736 ** nTruncate==0 then this frame set does not complete the transaction. */ | |
| 2737 assert( (isCommit!=0)==(nTruncate!=0) ); | |
| 2738 | |
| 2739 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) | |
| 2740 { int cnt; for(cnt=0, p=pList; p; p=p->pDirty, cnt++){} | |
| 2741 WALTRACE(("WAL%p: frame write begin. %d frames. mxFrame=%d. %s\n", | |
| 2742 pWal, cnt, pWal->hdr.mxFrame, isCommit ? "Commit" : "Spill")); | |
| 2743 } | |
| 2744 #endif | |
| 2745 | |
| 2746 /* See if it is possible to write these frames into the start of the | |
| 2747 ** log file, instead of appending to it at pWal->hdr.mxFrame. | |
| 2748 */ | |
| 2749 if( SQLITE_OK!=(rc = walRestartLog(pWal)) ){ | |
| 2750 return rc; | |
| 2751 } | |
| 2752 | |
| 2753 /* If this is the first frame written into the log, write the WAL | |
| 2754 ** header to the start of the WAL file. See comments at the top of | |
| 2755 ** this source file for a description of the WAL header format. | |
| 2756 */ | |
| 2757 iFrame = pWal->hdr.mxFrame; | |
| 2758 if( iFrame==0 ){ | |
| 2759 u8 aWalHdr[WAL_HDRSIZE]; /* Buffer to assemble wal-header in */ | |
| 2760 u32 aCksum[2]; /* Checksum for wal-header */ | |
| 2761 | |
| 2762 sqlite3Put4byte(&aWalHdr[0], (WAL_MAGIC | SQLITE_BIGENDIAN)); | |
| 2763 sqlite3Put4byte(&aWalHdr[4], WAL_MAX_VERSION); | |
| 2764 sqlite3Put4byte(&aWalHdr[8], szPage); | |
| 2765 sqlite3Put4byte(&aWalHdr[12], pWal->nCkpt); | |
| 2766 if( pWal->nCkpt==0 ) sqlite3_randomness(8, pWal->hdr.aSalt); | |
| 2767 memcpy(&aWalHdr[16], pWal->hdr.aSalt, 8); | |
| 2768 walChecksumBytes(1, aWalHdr, WAL_HDRSIZE-2*4, 0, aCksum); | |
| 2769 sqlite3Put4byte(&aWalHdr[24], aCksum[0]); | |
| 2770 sqlite3Put4byte(&aWalHdr[28], aCksum[1]); | |
| 2771 | |
| 2772 pWal->szPage = szPage; | |
| 2773 pWal->hdr.bigEndCksum = SQLITE_BIGENDIAN; | |
| 2774 pWal->hdr.aFrameCksum[0] = aCksum[0]; | |
| 2775 pWal->hdr.aFrameCksum[1] = aCksum[1]; | |
| 2776 pWal->truncateOnCommit = 1; | |
| 2777 | |
| 2778 rc = sqlite3OsWrite(pWal->pWalFd, aWalHdr, sizeof(aWalHdr), 0); | |
| 2779 WALTRACE(("WAL%p: wal-header write %s\n", pWal, rc ? "failed" : "ok")); | |
| 2780 if( rc!=SQLITE_OK ){ | |
| 2781 return rc; | |
| 2782 } | |
| 2783 | |
| 2784 /* Sync the header (unless SQLITE_IOCAP_SEQUENTIAL is true or unless | |
| 2785 ** all syncing is turned off by PRAGMA synchronous=OFF). Otherwise | |
| 2786 ** an out-of-order write following a WAL restart could result in | |
| 2787 ** database corruption. See the ticket: | |
| 2788 ** | |
| 2789 ** http://localhost:591/sqlite/info/ff5be73dee | |
| 2790 */ | |
| 2791 if( pWal->syncHeader && sync_flags ){ | |
| 2792 rc = sqlite3OsSync(pWal->pWalFd, sync_flags & SQLITE_SYNC_MASK); | |
| 2793 if( rc ) return rc; | |
| 2794 } | |
| 2795 } | |
| 2796 assert( (int)pWal->szPage==szPage ); | |
| 2797 | |
| 2798 /* Setup information needed to write frames into the WAL */ | |
| 2799 w.pWal = pWal; | |
| 2800 w.pFd = pWal->pWalFd; | |
| 2801 w.iSyncPoint = 0; | |
| 2802 w.syncFlags = sync_flags; | |
| 2803 w.szPage = szPage; | |
| 2804 iOffset = walFrameOffset(iFrame+1, szPage); | |
| 2805 szFrame = szPage + WAL_FRAME_HDRSIZE; | |
| 2806 | |
| 2807 /* Write all frames into the log file exactly once */ | |
| 2808 for(p=pList; p; p=p->pDirty){ | |
| 2809 int nDbSize; /* 0 normally. Positive == commit flag */ | |
| 2810 iFrame++; | |
| 2811 assert( iOffset==walFrameOffset(iFrame, szPage) ); | |
| 2812 nDbSize = (isCommit && p->pDirty==0) ? nTruncate : 0; | |
| 2813 rc = walWriteOneFrame(&w, p, nDbSize, iOffset); | |
| 2814 if( rc ) return rc; | |
| 2815 pLast = p; | |
| 2816 iOffset += szFrame; | |
| 2817 } | |
| 2818 | |
| 2819 /* If this is the end of a transaction, then we might need to pad | |
| 2820 ** the transaction and/or sync the WAL file. | |
| 2821 ** | |
| 2822 ** Padding and syncing only occur if this set of frames complete a | |
| 2823 ** transaction and if PRAGMA synchronous=FULL. If synchronous==NORMAL | |
| 2824 ** or synchronous==OFF, then no padding or syncing are needed. | |
| 2825 ** | |
| 2826 ** If SQLITE_IOCAP_POWERSAFE_OVERWRITE is defined, then padding is not | |
| 2827 ** needed and only the sync is done. If padding is needed, then the | |
| 2828 ** final frame is repeated (with its commit mark) until the next sector | |
| 2829 ** boundary is crossed. Only the part of the WAL prior to the last | |
| 2830 ** sector boundary is synced; the part of the last frame that extends | |
| 2831 ** past the sector boundary is written after the sync. | |
| 2832 */ | |
| 2833 if( isCommit && (sync_flags & WAL_SYNC_TRANSACTIONS)!=0 ){ | |
| 2834 if( pWal->padToSectorBoundary ){ | |
| 2835 int sectorSize = sqlite3SectorSize(pWal->pWalFd); | |
| 2836 w.iSyncPoint = ((iOffset+sectorSize-1)/sectorSize)*sectorSize; | |
| 2837 while( iOffset<w.iSyncPoint ){ | |
| 2838 rc = walWriteOneFrame(&w, pLast, nTruncate, iOffset); | |
| 2839 if( rc ) return rc; | |
| 2840 iOffset += szFrame; | |
| 2841 nExtra++; | |
| 2842 } | |
| 2843 }else{ | |
| 2844 rc = sqlite3OsSync(w.pFd, sync_flags & SQLITE_SYNC_MASK); | |
| 2845 } | |
| 2846 } | |
| 2847 | |
| 2848 /* If this frame set completes the first transaction in the WAL and | |
| 2849 ** if PRAGMA journal_size_limit is set, then truncate the WAL to the | |
| 2850 ** journal size limit, if possible. | |
| 2851 */ | |
| 2852 if( isCommit && pWal->truncateOnCommit && pWal->mxWalSize>=0 ){ | |
| 2853 i64 sz = pWal->mxWalSize; | |
| 2854 if( walFrameOffset(iFrame+nExtra+1, szPage)>pWal->mxWalSize ){ | |
| 2855 sz = walFrameOffset(iFrame+nExtra+1, szPage); | |
| 2856 } | |
| 2857 walLimitSize(pWal, sz); | |
| 2858 pWal->truncateOnCommit = 0; | |
| 2859 } | |
| 2860 | |
| 2861 /* Append data to the wal-index. It is not necessary to lock the | |
| 2862 ** wal-index to do this as the SQLITE_SHM_WRITE lock held on the wal-index | |
| 2863 ** guarantees that there are no other writers, and no data that may | |
| 2864 ** be in use by existing readers is being overwritten. | |
| 2865 */ | |
| 2866 iFrame = pWal->hdr.mxFrame; | |
| 2867 for(p=pList; p && rc==SQLITE_OK; p=p->pDirty){ | |
| 2868 iFrame++; | |
| 2869 rc = walIndexAppend(pWal, iFrame, p->pgno); | |
| 2870 } | |
| 2871 while( rc==SQLITE_OK && nExtra>0 ){ | |
| 2872 iFrame++; | |
| 2873 nExtra--; | |
| 2874 rc = walIndexAppend(pWal, iFrame, pLast->pgno); | |
| 2875 } | |
| 2876 | |
| 2877 if( rc==SQLITE_OK ){ | |
| 2878 /* Update the private copy of the header. */ | |
| 2879 pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16)); | |
| 2880 testcase( szPage<=32768 ); | |
| 2881 testcase( szPage>=65536 ); | |
| 2882 pWal->hdr.mxFrame = iFrame; | |
| 2883 if( isCommit ){ | |
| 2884 pWal->hdr.iChange++; | |
| 2885 pWal->hdr.nPage = nTruncate; | |
| 2886 } | |
| 2887 /* If this is a commit, update the wal-index header too. */ | |
| 2888 if( isCommit ){ | |
| 2889 walIndexWriteHdr(pWal); | |
| 2890 pWal->iCallback = iFrame; | |
| 2891 } | |
| 2892 } | |
| 2893 | |
| 2894 WALTRACE(("WAL%p: frame write %s\n", pWal, rc ? "failed" : "ok")); | |
| 2895 return rc; | |
| 2896 } | |
| 2897 | |
| 2898 /* | |
| 2899 ** This routine is called to implement sqlite3_wal_checkpoint() and | |
| 2900 ** related interfaces. | |
| 2901 ** | |
| 2902 ** Obtain a CHECKPOINT lock and then backfill as much information as | |
| 2903 ** we can from WAL into the database. | |
| 2904 ** | |
| 2905 ** If parameter xBusy is not NULL, it is a pointer to a busy-handler | |
| 2906 ** callback. In this case this function runs a blocking checkpoint. | |
| 2907 */ | |
| 2908 int sqlite3WalCheckpoint( | |
| 2909 Wal *pWal, /* Wal connection */ | |
| 2910 int eMode, /* PASSIVE, FULL or RESTART */ | |
| 2911 int (*xBusy)(void*), /* Function to call when busy */ | |
| 2912 void *pBusyArg, /* Context argument for xBusyHandler */ | |
| 2913 int sync_flags, /* Flags to sync db file with (or 0) */ | |
| 2914 int nBuf, /* Size of temporary buffer */ | |
| 2915 u8 *zBuf, /* Temporary buffer to use */ | |
| 2916 int *pnLog, /* OUT: Number of frames in WAL */ | |
| 2917 int *pnCkpt /* OUT: Number of backfilled frames in WAL */ | |
| 2918 ){ | |
| 2919 int rc; /* Return code */ | |
| 2920 int isChanged = 0; /* True if a new wal-index header is loaded */ | |
| 2921 int eMode2 = eMode; /* Mode to pass to walCheckpoint() */ | |
| 2922 | |
| 2923 assert( pWal->ckptLock==0 ); | |
| 2924 assert( pWal->writeLock==0 ); | |
| 2925 | |
| 2926 if( pWal->readOnly ) return SQLITE_READONLY; | |
| 2927 WALTRACE(("WAL%p: checkpoint begins\n", pWal)); | |
| 2928 rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1); | |
| 2929 if( rc ){ | |
| 2930 /* Usually this is SQLITE_BUSY meaning that another thread or process | |
| 2931 ** is already running a checkpoint, or maybe a recovery. But it might | |
| 2932 ** also be SQLITE_IOERR. */ | |
| 2933 return rc; | |
| 2934 } | |
| 2935 pWal->ckptLock = 1; | |
| 2936 | |
| 2937 /* If this is a blocking-checkpoint, then obtain the write-lock as well | |
| 2938 ** to prevent any writers from running while the checkpoint is underway. | |
| 2939 ** This has to be done before the call to walIndexReadHdr() below. | |
| 2940 ** | |
| 2941 ** If the writer lock cannot be obtained, then a passive checkpoint is | |
| 2942 ** run instead. Since the checkpointer is not holding the writer lock, | |
| 2943 ** there is no point in blocking waiting for any readers. Assuming no | |
| 2944 ** other error occurs, this function will return SQLITE_BUSY to the caller. | |
| 2945 */ | |
| 2946 if( eMode!=SQLITE_CHECKPOINT_PASSIVE ){ | |
| 2947 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_WRITE_LOCK, 1); | |
| 2948 if( rc==SQLITE_OK ){ | |
| 2949 pWal->writeLock = 1; | |
| 2950 }else if( rc==SQLITE_BUSY ){ | |
| 2951 eMode2 = SQLITE_CHECKPOINT_PASSIVE; | |
| 2952 rc = SQLITE_OK; | |
| 2953 } | |
| 2954 } | |
| 2955 | |
| 2956 /* Read the wal-index header. */ | |
| 2957 if( rc==SQLITE_OK ){ | |
| 2958 rc = walIndexReadHdr(pWal, &isChanged); | |
| 2959 if( isChanged && pWal->pDbFd->pMethods->iVersion>=3 ){ | |
| 2960 sqlite3OsUnfetch(pWal->pDbFd, 0, 0); | |
| 2961 } | |
| 2962 } | |
| 2963 | |
| 2964 /* Copy data from the log to the database file. */ | |
| 2965 if( rc==SQLITE_OK ){ | |
| 2966 if( pWal->hdr.mxFrame && walPagesize(pWal)!=nBuf ){ | |
| 2967 rc = SQLITE_CORRUPT_BKPT; | |
| 2968 }else{ | |
| 2969 rc = walCheckpoint(pWal, eMode2, xBusy, pBusyArg, sync_flags, zBuf); | |
| 2970 } | |
| 2971 | |
| 2972 /* If no error occurred, set the output variables. */ | |
| 2973 if( rc==SQLITE_OK || rc==SQLITE_BUSY ){ | |
| 2974 if( pnLog ) *pnLog = (int)pWal->hdr.mxFrame; | |
| 2975 if( pnCkpt ) *pnCkpt = (int)(walCkptInfo(pWal)->nBackfill); | |
| 2976 } | |
| 2977 } | |
| 2978 | |
| 2979 if( isChanged ){ | |
| 2980 /* If a new wal-index header was loaded before the checkpoint was | |
| 2981 ** performed, then the pager-cache associated with pWal is now | |
| 2982 ** out of date. So zero the cached wal-index header to ensure that | |
| 2983 ** next time the pager opens a snapshot on this database it knows that | |
| 2984 ** the cache needs to be reset. | |
| 2985 */ | |
| 2986 memset(&pWal->hdr, 0, sizeof(WalIndexHdr)); | |
| 2987 } | |
| 2988 | |
| 2989 /* Release the locks. */ | |
| 2990 sqlite3WalEndWriteTransaction(pWal); | |
| 2991 walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1); | |
| 2992 pWal->ckptLock = 0; | |
| 2993 WALTRACE(("WAL%p: checkpoint %s\n", pWal, rc ? "failed" : "ok")); | |
| 2994 return (rc==SQLITE_OK && eMode!=eMode2 ? SQLITE_BUSY : rc); | |
| 2995 } | |
| 2996 | |
| 2997 /* Return the value to pass to a sqlite3_wal_hook callback, the | |
| 2998 ** number of frames in the WAL at the point of the last commit since | |
| 2999 ** sqlite3WalCallback() was called. If no commits have occurred since | |
| 3000 ** the last call, then return 0. | |
| 3001 */ | |
| 3002 int sqlite3WalCallback(Wal *pWal){ | |
| 3003 u32 ret = 0; | |
| 3004 if( pWal ){ | |
| 3005 ret = pWal->iCallback; | |
| 3006 pWal->iCallback = 0; | |
| 3007 } | |
| 3008 return (int)ret; | |
| 3009 } | |
| 3010 | |
| 3011 /* | |
| 3012 ** This function is called to change the WAL subsystem into or out | |
| 3013 ** of locking_mode=EXCLUSIVE. | |
| 3014 ** | |
| 3015 ** If op is zero, then attempt to change from locking_mode=EXCLUSIVE | |
| 3016 ** into locking_mode=NORMAL. This means that we must acquire a lock | |
| 3017 ** on the pWal->readLock byte. If the WAL is already in locking_mode=NORMAL | |
| 3018 ** or if the acquisition of the lock fails, then return 0. If the | |
| 3019 ** transition out of exclusive-mode is successful, return 1. This | |
| 3020 ** operation must occur while the pager is still holding the exclusive | |
| 3021 ** lock on the main database file. | |
| 3022 ** | |
| 3023 ** If op is one, then change from locking_mode=NORMAL into | |
| 3024 ** locking_mode=EXCLUSIVE. This means that the pWal->readLock must | |
| 3025 ** be released. Return 1 if the transition is made and 0 if the | |
| 3026 ** WAL is already in exclusive-locking mode - meaning that this | |
| 3027 ** routine is a no-op. The pager must already hold the exclusive lock | |
| 3028 ** on the main database file before invoking this operation. | |
| 3029 ** | |
| 3030 ** If op is negative, then do a dry-run of the op==1 case but do | |
| 3031 ** not actually change anything. The pager uses this to see if it | |
| 3032 ** should acquire the database exclusive lock prior to invoking | |
| 3033 ** the op==1 case. | |
| 3034 */ | |
| 3035 int sqlite3WalExclusiveMode(Wal *pWal, int op){ | |
| 3036 int rc; | |
| 3037 assert( pWal->writeLock==0 ); | |
| 3038 assert( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE || op==-1 ); | |
| 3039 | |
| 3040 /* pWal->readLock is usually set, but might be -1 if there was a | |
| 3041 ** prior error while attempting to acquire are read-lock. This cannot | |
| 3042 ** happen if the connection is actually in exclusive mode (as no xShmLock | |
| 3043 ** locks are taken in this case). Nor should the pager attempt to | |
| 3044 ** upgrade to exclusive-mode following such an error. | |
| 3045 */ | |
| 3046 assert( pWal->readLock>=0 || pWal->lockError ); | |
| 3047 assert( pWal->readLock>=0 || (op<=0 && pWal->exclusiveMode==0) ); | |
| 3048 | |
| 3049 if( op==0 ){ | |
| 3050 if( pWal->exclusiveMode ){ | |
| 3051 pWal->exclusiveMode = 0; | |
| 3052 if( walLockShared(pWal, WAL_READ_LOCK(pWal->readLock))!=SQLITE_OK ){ | |
| 3053 pWal->exclusiveMode = 1; | |
| 3054 } | |
| 3055 rc = pWal->exclusiveMode==0; | |
| 3056 }else{ | |
| 3057 /* Already in locking_mode=NORMAL */ | |
| 3058 rc = 0; | |
| 3059 } | |
| 3060 }else if( op>0 ){ | |
| 3061 assert( pWal->exclusiveMode==0 ); | |
| 3062 assert( pWal->readLock>=0 ); | |
| 3063 walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock)); | |
| 3064 pWal->exclusiveMode = 1; | |
| 3065 rc = 1; | |
| 3066 }else{ | |
| 3067 rc = pWal->exclusiveMode==0; | |
| 3068 } | |
| 3069 return rc; | |
| 3070 } | |
| 3071 | |
| 3072 /* | |
| 3073 ** Return true if the argument is non-NULL and the WAL module is using | |
| 3074 ** heap-memory for the wal-index. Otherwise, if the argument is NULL or the | |
| 3075 ** WAL module is using shared-memory, return false. | |
| 3076 */ | |
| 3077 int sqlite3WalHeapMemory(Wal *pWal){ | |
| 3078 return (pWal && pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ); | |
| 3079 } | |
| 3080 | |
| 3081 #ifdef SQLITE_ENABLE_ZIPVFS | |
| 3082 /* | |
| 3083 ** If the argument is not NULL, it points to a Wal object that holds a | |
| 3084 ** read-lock. This function returns the database page-size if it is known, | |
| 3085 ** or zero if it is not (or if pWal is NULL). | |
| 3086 */ | |
| 3087 int sqlite3WalFramesize(Wal *pWal){ | |
| 3088 assert( pWal==0 || pWal->readLock>=0 ); | |
| 3089 return (pWal ? pWal->szPage : 0); | |
| 3090 } | |
| 3091 #endif | |
| 3092 | |
| 3093 #endif /* #ifndef SQLITE_OMIT_WAL */ | |
| OLD | NEW |