OLD | NEW |
| (Empty) |
1 /* | |
2 ** 2006 June 10 | |
3 ** | |
4 ** The author disclaims copyright to this source code. In place of | |
5 ** a legal notice, here is a blessing: | |
6 ** | |
7 ** May you do good and not evil. | |
8 ** May you find forgiveness for yourself and forgive others. | |
9 ** May you share freely, never taking more than you give. | |
10 ** | |
11 ************************************************************************* | |
12 ** This file contains code used to help implement virtual tables. | |
13 */ | |
14 #ifndef SQLITE_OMIT_VIRTUALTABLE | |
15 #include "sqliteInt.h" | |
16 | |
17 /* | |
18 ** Before a virtual table xCreate() or xConnect() method is invoked, the | |
19 ** sqlite3.pVtabCtx member variable is set to point to an instance of | |
20 ** this struct allocated on the stack. It is used by the implementation of | |
21 ** the sqlite3_declare_vtab() and sqlite3_vtab_config() APIs, both of which | |
22 ** are invoked only from within xCreate and xConnect methods. | |
23 */ | |
24 struct VtabCtx { | |
25 VTable *pVTable; /* The virtual table being constructed */ | |
26 Table *pTab; /* The Table object to which the virtual table belongs */ | |
27 }; | |
28 | |
29 /* | |
30 ** The actual function that does the work of creating a new module. | |
31 ** This function implements the sqlite3_create_module() and | |
32 ** sqlite3_create_module_v2() interfaces. | |
33 */ | |
34 static int createModule( | |
35 sqlite3 *db, /* Database in which module is registered */ | |
36 const char *zName, /* Name assigned to this module */ | |
37 const sqlite3_module *pModule, /* The definition of the module */ | |
38 void *pAux, /* Context pointer for xCreate/xConnect */ | |
39 void (*xDestroy)(void *) /* Module destructor function */ | |
40 ){ | |
41 int rc = SQLITE_OK; | |
42 int nName; | |
43 | |
44 sqlite3_mutex_enter(db->mutex); | |
45 nName = sqlite3Strlen30(zName); | |
46 if( sqlite3HashFind(&db->aModule, zName) ){ | |
47 rc = SQLITE_MISUSE_BKPT; | |
48 }else{ | |
49 Module *pMod; | |
50 pMod = (Module *)sqlite3DbMallocRaw(db, sizeof(Module) + nName + 1); | |
51 if( pMod ){ | |
52 Module *pDel; | |
53 char *zCopy = (char *)(&pMod[1]); | |
54 memcpy(zCopy, zName, nName+1); | |
55 pMod->zName = zCopy; | |
56 pMod->pModule = pModule; | |
57 pMod->pAux = pAux; | |
58 pMod->xDestroy = xDestroy; | |
59 pDel = (Module *)sqlite3HashInsert(&db->aModule,zCopy,(void*)pMod); | |
60 assert( pDel==0 || pDel==pMod ); | |
61 if( pDel ){ | |
62 db->mallocFailed = 1; | |
63 sqlite3DbFree(db, pDel); | |
64 } | |
65 } | |
66 } | |
67 rc = sqlite3ApiExit(db, rc); | |
68 if( rc!=SQLITE_OK && xDestroy ) xDestroy(pAux); | |
69 | |
70 sqlite3_mutex_leave(db->mutex); | |
71 return rc; | |
72 } | |
73 | |
74 | |
75 /* | |
76 ** External API function used to create a new virtual-table module. | |
77 */ | |
78 int sqlite3_create_module( | |
79 sqlite3 *db, /* Database in which module is registered */ | |
80 const char *zName, /* Name assigned to this module */ | |
81 const sqlite3_module *pModule, /* The definition of the module */ | |
82 void *pAux /* Context pointer for xCreate/xConnect */ | |
83 ){ | |
84 return createModule(db, zName, pModule, pAux, 0); | |
85 } | |
86 | |
87 /* | |
88 ** External API function used to create a new virtual-table module. | |
89 */ | |
90 int sqlite3_create_module_v2( | |
91 sqlite3 *db, /* Database in which module is registered */ | |
92 const char *zName, /* Name assigned to this module */ | |
93 const sqlite3_module *pModule, /* The definition of the module */ | |
94 void *pAux, /* Context pointer for xCreate/xConnect */ | |
95 void (*xDestroy)(void *) /* Module destructor function */ | |
96 ){ | |
97 return createModule(db, zName, pModule, pAux, xDestroy); | |
98 } | |
99 | |
100 /* | |
101 ** Lock the virtual table so that it cannot be disconnected. | |
102 ** Locks nest. Every lock should have a corresponding unlock. | |
103 ** If an unlock is omitted, resources leaks will occur. | |
104 ** | |
105 ** If a disconnect is attempted while a virtual table is locked, | |
106 ** the disconnect is deferred until all locks have been removed. | |
107 */ | |
108 void sqlite3VtabLock(VTable *pVTab){ | |
109 pVTab->nRef++; | |
110 } | |
111 | |
112 | |
113 /* | |
114 ** pTab is a pointer to a Table structure representing a virtual-table. | |
115 ** Return a pointer to the VTable object used by connection db to access | |
116 ** this virtual-table, if one has been created, or NULL otherwise. | |
117 */ | |
118 VTable *sqlite3GetVTable(sqlite3 *db, Table *pTab){ | |
119 VTable *pVtab; | |
120 assert( IsVirtual(pTab) ); | |
121 for(pVtab=pTab->pVTable; pVtab && pVtab->db!=db; pVtab=pVtab->pNext); | |
122 return pVtab; | |
123 } | |
124 | |
125 /* | |
126 ** Decrement the ref-count on a virtual table object. When the ref-count | |
127 ** reaches zero, call the xDisconnect() method to delete the object. | |
128 */ | |
129 void sqlite3VtabUnlock(VTable *pVTab){ | |
130 sqlite3 *db = pVTab->db; | |
131 | |
132 assert( db ); | |
133 assert( pVTab->nRef>0 ); | |
134 assert( db->magic==SQLITE_MAGIC_OPEN || db->magic==SQLITE_MAGIC_ZOMBIE ); | |
135 | |
136 pVTab->nRef--; | |
137 if( pVTab->nRef==0 ){ | |
138 sqlite3_vtab *p = pVTab->pVtab; | |
139 if( p ){ | |
140 p->pModule->xDisconnect(p); | |
141 } | |
142 sqlite3DbFree(db, pVTab); | |
143 } | |
144 } | |
145 | |
146 /* | |
147 ** Table p is a virtual table. This function moves all elements in the | |
148 ** p->pVTable list to the sqlite3.pDisconnect lists of their associated | |
149 ** database connections to be disconnected at the next opportunity. | |
150 ** Except, if argument db is not NULL, then the entry associated with | |
151 ** connection db is left in the p->pVTable list. | |
152 */ | |
153 static VTable *vtabDisconnectAll(sqlite3 *db, Table *p){ | |
154 VTable *pRet = 0; | |
155 VTable *pVTable = p->pVTable; | |
156 p->pVTable = 0; | |
157 | |
158 /* Assert that the mutex (if any) associated with the BtShared database | |
159 ** that contains table p is held by the caller. See header comments | |
160 ** above function sqlite3VtabUnlockList() for an explanation of why | |
161 ** this makes it safe to access the sqlite3.pDisconnect list of any | |
162 ** database connection that may have an entry in the p->pVTable list. | |
163 */ | |
164 assert( db==0 || sqlite3SchemaMutexHeld(db, 0, p->pSchema) ); | |
165 | |
166 while( pVTable ){ | |
167 sqlite3 *db2 = pVTable->db; | |
168 VTable *pNext = pVTable->pNext; | |
169 assert( db2 ); | |
170 if( db2==db ){ | |
171 pRet = pVTable; | |
172 p->pVTable = pRet; | |
173 pRet->pNext = 0; | |
174 }else{ | |
175 pVTable->pNext = db2->pDisconnect; | |
176 db2->pDisconnect = pVTable; | |
177 } | |
178 pVTable = pNext; | |
179 } | |
180 | |
181 assert( !db || pRet ); | |
182 return pRet; | |
183 } | |
184 | |
185 /* | |
186 ** Table *p is a virtual table. This function removes the VTable object | |
187 ** for table *p associated with database connection db from the linked | |
188 ** list in p->pVTab. It also decrements the VTable ref count. This is | |
189 ** used when closing database connection db to free all of its VTable | |
190 ** objects without disturbing the rest of the Schema object (which may | |
191 ** be being used by other shared-cache connections). | |
192 */ | |
193 void sqlite3VtabDisconnect(sqlite3 *db, Table *p){ | |
194 VTable **ppVTab; | |
195 | |
196 assert( IsVirtual(p) ); | |
197 assert( sqlite3BtreeHoldsAllMutexes(db) ); | |
198 assert( sqlite3_mutex_held(db->mutex) ); | |
199 | |
200 for(ppVTab=&p->pVTable; *ppVTab; ppVTab=&(*ppVTab)->pNext){ | |
201 if( (*ppVTab)->db==db ){ | |
202 VTable *pVTab = *ppVTab; | |
203 *ppVTab = pVTab->pNext; | |
204 sqlite3VtabUnlock(pVTab); | |
205 break; | |
206 } | |
207 } | |
208 } | |
209 | |
210 | |
211 /* | |
212 ** Disconnect all the virtual table objects in the sqlite3.pDisconnect list. | |
213 ** | |
214 ** This function may only be called when the mutexes associated with all | |
215 ** shared b-tree databases opened using connection db are held by the | |
216 ** caller. This is done to protect the sqlite3.pDisconnect list. The | |
217 ** sqlite3.pDisconnect list is accessed only as follows: | |
218 ** | |
219 ** 1) By this function. In this case, all BtShared mutexes and the mutex | |
220 ** associated with the database handle itself must be held. | |
221 ** | |
222 ** 2) By function vtabDisconnectAll(), when it adds a VTable entry to | |
223 ** the sqlite3.pDisconnect list. In this case either the BtShared mutex | |
224 ** associated with the database the virtual table is stored in is held | |
225 ** or, if the virtual table is stored in a non-sharable database, then | |
226 ** the database handle mutex is held. | |
227 ** | |
228 ** As a result, a sqlite3.pDisconnect cannot be accessed simultaneously | |
229 ** by multiple threads. It is thread-safe. | |
230 */ | |
231 void sqlite3VtabUnlockList(sqlite3 *db){ | |
232 VTable *p = db->pDisconnect; | |
233 db->pDisconnect = 0; | |
234 | |
235 assert( sqlite3BtreeHoldsAllMutexes(db) ); | |
236 assert( sqlite3_mutex_held(db->mutex) ); | |
237 | |
238 if( p ){ | |
239 sqlite3ExpirePreparedStatements(db); | |
240 do { | |
241 VTable *pNext = p->pNext; | |
242 sqlite3VtabUnlock(p); | |
243 p = pNext; | |
244 }while( p ); | |
245 } | |
246 } | |
247 | |
248 /* | |
249 ** Clear any and all virtual-table information from the Table record. | |
250 ** This routine is called, for example, just before deleting the Table | |
251 ** record. | |
252 ** | |
253 ** Since it is a virtual-table, the Table structure contains a pointer | |
254 ** to the head of a linked list of VTable structures. Each VTable | |
255 ** structure is associated with a single sqlite3* user of the schema. | |
256 ** The reference count of the VTable structure associated with database | |
257 ** connection db is decremented immediately (which may lead to the | |
258 ** structure being xDisconnected and free). Any other VTable structures | |
259 ** in the list are moved to the sqlite3.pDisconnect list of the associated | |
260 ** database connection. | |
261 */ | |
262 void sqlite3VtabClear(sqlite3 *db, Table *p){ | |
263 if( !db || db->pnBytesFreed==0 ) vtabDisconnectAll(0, p); | |
264 if( p->azModuleArg ){ | |
265 int i; | |
266 for(i=0; i<p->nModuleArg; i++){ | |
267 if( i!=1 ) sqlite3DbFree(db, p->azModuleArg[i]); | |
268 } | |
269 sqlite3DbFree(db, p->azModuleArg); | |
270 } | |
271 } | |
272 | |
273 /* | |
274 ** Add a new module argument to pTable->azModuleArg[]. | |
275 ** The string is not copied - the pointer is stored. The | |
276 ** string will be freed automatically when the table is | |
277 ** deleted. | |
278 */ | |
279 static void addModuleArgument(sqlite3 *db, Table *pTable, char *zArg){ | |
280 int i = pTable->nModuleArg++; | |
281 int nBytes = sizeof(char *)*(1+pTable->nModuleArg); | |
282 char **azModuleArg; | |
283 azModuleArg = sqlite3DbRealloc(db, pTable->azModuleArg, nBytes); | |
284 if( azModuleArg==0 ){ | |
285 int j; | |
286 for(j=0; j<i; j++){ | |
287 sqlite3DbFree(db, pTable->azModuleArg[j]); | |
288 } | |
289 sqlite3DbFree(db, zArg); | |
290 sqlite3DbFree(db, pTable->azModuleArg); | |
291 pTable->nModuleArg = 0; | |
292 }else{ | |
293 azModuleArg[i] = zArg; | |
294 azModuleArg[i+1] = 0; | |
295 } | |
296 pTable->azModuleArg = azModuleArg; | |
297 } | |
298 | |
299 /* | |
300 ** The parser calls this routine when it first sees a CREATE VIRTUAL TABLE | |
301 ** statement. The module name has been parsed, but the optional list | |
302 ** of parameters that follow the module name are still pending. | |
303 */ | |
304 void sqlite3VtabBeginParse( | |
305 Parse *pParse, /* Parsing context */ | |
306 Token *pName1, /* Name of new table, or database name */ | |
307 Token *pName2, /* Name of new table or NULL */ | |
308 Token *pModuleName, /* Name of the module for the virtual table */ | |
309 int ifNotExists /* No error if the table already exists */ | |
310 ){ | |
311 int iDb; /* The database the table is being created in */ | |
312 Table *pTable; /* The new virtual table */ | |
313 sqlite3 *db; /* Database connection */ | |
314 | |
315 sqlite3StartTable(pParse, pName1, pName2, 0, 0, 1, ifNotExists); | |
316 pTable = pParse->pNewTable; | |
317 if( pTable==0 ) return; | |
318 assert( 0==pTable->pIndex ); | |
319 | |
320 db = pParse->db; | |
321 iDb = sqlite3SchemaToIndex(db, pTable->pSchema); | |
322 assert( iDb>=0 ); | |
323 | |
324 pTable->tabFlags |= TF_Virtual; | |
325 pTable->nModuleArg = 0; | |
326 addModuleArgument(db, pTable, sqlite3NameFromToken(db, pModuleName)); | |
327 addModuleArgument(db, pTable, 0); | |
328 addModuleArgument(db, pTable, sqlite3DbStrDup(db, pTable->zName)); | |
329 pParse->sNameToken.n = (int)(&pModuleName->z[pModuleName->n] - pName1->z); | |
330 | |
331 #ifndef SQLITE_OMIT_AUTHORIZATION | |
332 /* Creating a virtual table invokes the authorization callback twice. | |
333 ** The first invocation, to obtain permission to INSERT a row into the | |
334 ** sqlite_master table, has already been made by sqlite3StartTable(). | |
335 ** The second call, to obtain permission to create the table, is made now. | |
336 */ | |
337 if( pTable->azModuleArg ){ | |
338 sqlite3AuthCheck(pParse, SQLITE_CREATE_VTABLE, pTable->zName, | |
339 pTable->azModuleArg[0], pParse->db->aDb[iDb].zName); | |
340 } | |
341 #endif | |
342 } | |
343 | |
344 /* | |
345 ** This routine takes the module argument that has been accumulating | |
346 ** in pParse->zArg[] and appends it to the list of arguments on the | |
347 ** virtual table currently under construction in pParse->pTable. | |
348 */ | |
349 static void addArgumentToVtab(Parse *pParse){ | |
350 if( pParse->sArg.z && pParse->pNewTable ){ | |
351 const char *z = (const char*)pParse->sArg.z; | |
352 int n = pParse->sArg.n; | |
353 sqlite3 *db = pParse->db; | |
354 addModuleArgument(db, pParse->pNewTable, sqlite3DbStrNDup(db, z, n)); | |
355 } | |
356 } | |
357 | |
358 /* | |
359 ** The parser calls this routine after the CREATE VIRTUAL TABLE statement | |
360 ** has been completely parsed. | |
361 */ | |
362 void sqlite3VtabFinishParse(Parse *pParse, Token *pEnd){ | |
363 Table *pTab = pParse->pNewTable; /* The table being constructed */ | |
364 sqlite3 *db = pParse->db; /* The database connection */ | |
365 | |
366 if( pTab==0 ) return; | |
367 addArgumentToVtab(pParse); | |
368 pParse->sArg.z = 0; | |
369 if( pTab->nModuleArg<1 ) return; | |
370 | |
371 /* If the CREATE VIRTUAL TABLE statement is being entered for the | |
372 ** first time (in other words if the virtual table is actually being | |
373 ** created now instead of just being read out of sqlite_master) then | |
374 ** do additional initialization work and store the statement text | |
375 ** in the sqlite_master table. | |
376 */ | |
377 if( !db->init.busy ){ | |
378 char *zStmt; | |
379 char *zWhere; | |
380 int iDb; | |
381 Vdbe *v; | |
382 | |
383 /* Compute the complete text of the CREATE VIRTUAL TABLE statement */ | |
384 if( pEnd ){ | |
385 pParse->sNameToken.n = (int)(pEnd->z - pParse->sNameToken.z) + pEnd->n; | |
386 } | |
387 zStmt = sqlite3MPrintf(db, "CREATE VIRTUAL TABLE %T", &pParse->sNameToken); | |
388 | |
389 /* A slot for the record has already been allocated in the | |
390 ** SQLITE_MASTER table. We just need to update that slot with all | |
391 ** the information we've collected. | |
392 ** | |
393 ** The VM register number pParse->regRowid holds the rowid of an | |
394 ** entry in the sqlite_master table tht was created for this vtab | |
395 ** by sqlite3StartTable(). | |
396 */ | |
397 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); | |
398 sqlite3NestedParse(pParse, | |
399 "UPDATE %Q.%s " | |
400 "SET type='table', name=%Q, tbl_name=%Q, rootpage=0, sql=%Q " | |
401 "WHERE rowid=#%d", | |
402 db->aDb[iDb].zName, SCHEMA_TABLE(iDb), | |
403 pTab->zName, | |
404 pTab->zName, | |
405 zStmt, | |
406 pParse->regRowid | |
407 ); | |
408 sqlite3DbFree(db, zStmt); | |
409 v = sqlite3GetVdbe(pParse); | |
410 sqlite3ChangeCookie(pParse, iDb); | |
411 | |
412 sqlite3VdbeAddOp2(v, OP_Expire, 0, 0); | |
413 zWhere = sqlite3MPrintf(db, "name='%q' AND type='table'", pTab->zName); | |
414 sqlite3VdbeAddParseSchemaOp(v, iDb, zWhere); | |
415 sqlite3VdbeAddOp4(v, OP_VCreate, iDb, 0, 0, | |
416 pTab->zName, sqlite3Strlen30(pTab->zName) + 1); | |
417 } | |
418 | |
419 /* If we are rereading the sqlite_master table create the in-memory | |
420 ** record of the table. The xConnect() method is not called until | |
421 ** the first time the virtual table is used in an SQL statement. This | |
422 ** allows a schema that contains virtual tables to be loaded before | |
423 ** the required virtual table implementations are registered. */ | |
424 else { | |
425 Table *pOld; | |
426 Schema *pSchema = pTab->pSchema; | |
427 const char *zName = pTab->zName; | |
428 assert( sqlite3SchemaMutexHeld(db, 0, pSchema) ); | |
429 pOld = sqlite3HashInsert(&pSchema->tblHash, zName, pTab); | |
430 if( pOld ){ | |
431 db->mallocFailed = 1; | |
432 assert( pTab==pOld ); /* Malloc must have failed inside HashInsert() */ | |
433 return; | |
434 } | |
435 pParse->pNewTable = 0; | |
436 } | |
437 } | |
438 | |
439 /* | |
440 ** The parser calls this routine when it sees the first token | |
441 ** of an argument to the module name in a CREATE VIRTUAL TABLE statement. | |
442 */ | |
443 void sqlite3VtabArgInit(Parse *pParse){ | |
444 addArgumentToVtab(pParse); | |
445 pParse->sArg.z = 0; | |
446 pParse->sArg.n = 0; | |
447 } | |
448 | |
449 /* | |
450 ** The parser calls this routine for each token after the first token | |
451 ** in an argument to the module name in a CREATE VIRTUAL TABLE statement. | |
452 */ | |
453 void sqlite3VtabArgExtend(Parse *pParse, Token *p){ | |
454 Token *pArg = &pParse->sArg; | |
455 if( pArg->z==0 ){ | |
456 pArg->z = p->z; | |
457 pArg->n = p->n; | |
458 }else{ | |
459 assert(pArg->z < p->z); | |
460 pArg->n = (int)(&p->z[p->n] - pArg->z); | |
461 } | |
462 } | |
463 | |
464 /* | |
465 ** Invoke a virtual table constructor (either xCreate or xConnect). The | |
466 ** pointer to the function to invoke is passed as the fourth parameter | |
467 ** to this procedure. | |
468 */ | |
469 static int vtabCallConstructor( | |
470 sqlite3 *db, | |
471 Table *pTab, | |
472 Module *pMod, | |
473 int (*xConstruct)(sqlite3*,void*,int,const char*const*,sqlite3_vtab**,char**), | |
474 char **pzErr | |
475 ){ | |
476 VtabCtx sCtx, *pPriorCtx; | |
477 VTable *pVTable; | |
478 int rc; | |
479 const char *const*azArg = (const char *const*)pTab->azModuleArg; | |
480 int nArg = pTab->nModuleArg; | |
481 char *zErr = 0; | |
482 char *zModuleName = sqlite3MPrintf(db, "%s", pTab->zName); | |
483 int iDb; | |
484 | |
485 if( !zModuleName ){ | |
486 return SQLITE_NOMEM; | |
487 } | |
488 | |
489 pVTable = sqlite3DbMallocZero(db, sizeof(VTable)); | |
490 if( !pVTable ){ | |
491 sqlite3DbFree(db, zModuleName); | |
492 return SQLITE_NOMEM; | |
493 } | |
494 pVTable->db = db; | |
495 pVTable->pMod = pMod; | |
496 | |
497 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); | |
498 pTab->azModuleArg[1] = db->aDb[iDb].zName; | |
499 | |
500 /* Invoke the virtual table constructor */ | |
501 assert( &db->pVtabCtx ); | |
502 assert( xConstruct ); | |
503 sCtx.pTab = pTab; | |
504 sCtx.pVTable = pVTable; | |
505 pPriorCtx = db->pVtabCtx; | |
506 db->pVtabCtx = &sCtx; | |
507 rc = xConstruct(db, pMod->pAux, nArg, azArg, &pVTable->pVtab, &zErr); | |
508 db->pVtabCtx = pPriorCtx; | |
509 if( rc==SQLITE_NOMEM ) db->mallocFailed = 1; | |
510 | |
511 if( SQLITE_OK!=rc ){ | |
512 if( zErr==0 ){ | |
513 *pzErr = sqlite3MPrintf(db, "vtable constructor failed: %s", zModuleName); | |
514 }else { | |
515 *pzErr = sqlite3MPrintf(db, "%s", zErr); | |
516 sqlite3_free(zErr); | |
517 } | |
518 sqlite3DbFree(db, pVTable); | |
519 }else if( ALWAYS(pVTable->pVtab) ){ | |
520 /* Justification of ALWAYS(): A correct vtab constructor must allocate | |
521 ** the sqlite3_vtab object if successful. */ | |
522 memset(pVTable->pVtab, 0, sizeof(pVTable->pVtab[0])); | |
523 pVTable->pVtab->pModule = pMod->pModule; | |
524 pVTable->nRef = 1; | |
525 if( sCtx.pTab ){ | |
526 const char *zFormat = "vtable constructor did not declare schema: %s"; | |
527 *pzErr = sqlite3MPrintf(db, zFormat, pTab->zName); | |
528 sqlite3VtabUnlock(pVTable); | |
529 rc = SQLITE_ERROR; | |
530 }else{ | |
531 int iCol; | |
532 /* If everything went according to plan, link the new VTable structure | |
533 ** into the linked list headed by pTab->pVTable. Then loop through the | |
534 ** columns of the table to see if any of them contain the token "hidden". | |
535 ** If so, set the Column COLFLAG_HIDDEN flag and remove the token from | |
536 ** the type string. */ | |
537 pVTable->pNext = pTab->pVTable; | |
538 pTab->pVTable = pVTable; | |
539 | |
540 for(iCol=0; iCol<pTab->nCol; iCol++){ | |
541 char *zType = pTab->aCol[iCol].zType; | |
542 int nType; | |
543 int i = 0; | |
544 if( !zType ) continue; | |
545 nType = sqlite3Strlen30(zType); | |
546 if( sqlite3StrNICmp("hidden", zType, 6)||(zType[6] && zType[6]!=' ') ){ | |
547 for(i=0; i<nType; i++){ | |
548 if( (0==sqlite3StrNICmp(" hidden", &zType[i], 7)) | |
549 && (zType[i+7]=='\0' || zType[i+7]==' ') | |
550 ){ | |
551 i++; | |
552 break; | |
553 } | |
554 } | |
555 } | |
556 if( i<nType ){ | |
557 int j; | |
558 int nDel = 6 + (zType[i+6] ? 1 : 0); | |
559 for(j=i; (j+nDel)<=nType; j++){ | |
560 zType[j] = zType[j+nDel]; | |
561 } | |
562 if( zType[i]=='\0' && i>0 ){ | |
563 assert(zType[i-1]==' '); | |
564 zType[i-1] = '\0'; | |
565 } | |
566 pTab->aCol[iCol].colFlags |= COLFLAG_HIDDEN; | |
567 } | |
568 } | |
569 } | |
570 } | |
571 | |
572 sqlite3DbFree(db, zModuleName); | |
573 return rc; | |
574 } | |
575 | |
576 /* | |
577 ** This function is invoked by the parser to call the xConnect() method | |
578 ** of the virtual table pTab. If an error occurs, an error code is returned | |
579 ** and an error left in pParse. | |
580 ** | |
581 ** This call is a no-op if table pTab is not a virtual table. | |
582 */ | |
583 int sqlite3VtabCallConnect(Parse *pParse, Table *pTab){ | |
584 sqlite3 *db = pParse->db; | |
585 const char *zMod; | |
586 Module *pMod; | |
587 int rc; | |
588 | |
589 assert( pTab ); | |
590 if( (pTab->tabFlags & TF_Virtual)==0 || sqlite3GetVTable(db, pTab) ){ | |
591 return SQLITE_OK; | |
592 } | |
593 | |
594 /* Locate the required virtual table module */ | |
595 zMod = pTab->azModuleArg[0]; | |
596 pMod = (Module*)sqlite3HashFind(&db->aModule, zMod); | |
597 | |
598 if( !pMod ){ | |
599 const char *zModule = pTab->azModuleArg[0]; | |
600 sqlite3ErrorMsg(pParse, "no such module: %s", zModule); | |
601 rc = SQLITE_ERROR; | |
602 }else{ | |
603 char *zErr = 0; | |
604 rc = vtabCallConstructor(db, pTab, pMod, pMod->pModule->xConnect, &zErr); | |
605 if( rc!=SQLITE_OK ){ | |
606 sqlite3ErrorMsg(pParse, "%s", zErr); | |
607 } | |
608 sqlite3DbFree(db, zErr); | |
609 } | |
610 | |
611 return rc; | |
612 } | |
613 /* | |
614 ** Grow the db->aVTrans[] array so that there is room for at least one | |
615 ** more v-table. Return SQLITE_NOMEM if a malloc fails, or SQLITE_OK otherwise. | |
616 */ | |
617 static int growVTrans(sqlite3 *db){ | |
618 const int ARRAY_INCR = 5; | |
619 | |
620 /* Grow the sqlite3.aVTrans array if required */ | |
621 if( (db->nVTrans%ARRAY_INCR)==0 ){ | |
622 VTable **aVTrans; | |
623 int nBytes = sizeof(sqlite3_vtab *) * (db->nVTrans + ARRAY_INCR); | |
624 aVTrans = sqlite3DbRealloc(db, (void *)db->aVTrans, nBytes); | |
625 if( !aVTrans ){ | |
626 return SQLITE_NOMEM; | |
627 } | |
628 memset(&aVTrans[db->nVTrans], 0, sizeof(sqlite3_vtab *)*ARRAY_INCR); | |
629 db->aVTrans = aVTrans; | |
630 } | |
631 | |
632 return SQLITE_OK; | |
633 } | |
634 | |
635 /* | |
636 ** Add the virtual table pVTab to the array sqlite3.aVTrans[]. Space should | |
637 ** have already been reserved using growVTrans(). | |
638 */ | |
639 static void addToVTrans(sqlite3 *db, VTable *pVTab){ | |
640 /* Add pVtab to the end of sqlite3.aVTrans */ | |
641 db->aVTrans[db->nVTrans++] = pVTab; | |
642 sqlite3VtabLock(pVTab); | |
643 } | |
644 | |
645 /* | |
646 ** This function is invoked by the vdbe to call the xCreate method | |
647 ** of the virtual table named zTab in database iDb. | |
648 ** | |
649 ** If an error occurs, *pzErr is set to point an an English language | |
650 ** description of the error and an SQLITE_XXX error code is returned. | |
651 ** In this case the caller must call sqlite3DbFree(db, ) on *pzErr. | |
652 */ | |
653 int sqlite3VtabCallCreate(sqlite3 *db, int iDb, const char *zTab, char **pzErr){ | |
654 int rc = SQLITE_OK; | |
655 Table *pTab; | |
656 Module *pMod; | |
657 const char *zMod; | |
658 | |
659 pTab = sqlite3FindTable(db, zTab, db->aDb[iDb].zName); | |
660 assert( pTab && (pTab->tabFlags & TF_Virtual)!=0 && !pTab->pVTable ); | |
661 | |
662 /* Locate the required virtual table module */ | |
663 zMod = pTab->azModuleArg[0]; | |
664 pMod = (Module*)sqlite3HashFind(&db->aModule, zMod); | |
665 | |
666 /* If the module has been registered and includes a Create method, | |
667 ** invoke it now. If the module has not been registered, return an | |
668 ** error. Otherwise, do nothing. | |
669 */ | |
670 if( !pMod ){ | |
671 *pzErr = sqlite3MPrintf(db, "no such module: %s", zMod); | |
672 rc = SQLITE_ERROR; | |
673 }else{ | |
674 rc = vtabCallConstructor(db, pTab, pMod, pMod->pModule->xCreate, pzErr); | |
675 } | |
676 | |
677 /* Justification of ALWAYS(): The xConstructor method is required to | |
678 ** create a valid sqlite3_vtab if it returns SQLITE_OK. */ | |
679 if( rc==SQLITE_OK && ALWAYS(sqlite3GetVTable(db, pTab)) ){ | |
680 rc = growVTrans(db); | |
681 if( rc==SQLITE_OK ){ | |
682 addToVTrans(db, sqlite3GetVTable(db, pTab)); | |
683 } | |
684 } | |
685 | |
686 return rc; | |
687 } | |
688 | |
689 /* | |
690 ** This function is used to set the schema of a virtual table. It is only | |
691 ** valid to call this function from within the xCreate() or xConnect() of a | |
692 ** virtual table module. | |
693 */ | |
694 int sqlite3_declare_vtab(sqlite3 *db, const char *zCreateTable){ | |
695 Parse *pParse; | |
696 | |
697 int rc = SQLITE_OK; | |
698 Table *pTab; | |
699 char *zErr = 0; | |
700 | |
701 sqlite3_mutex_enter(db->mutex); | |
702 if( !db->pVtabCtx || !(pTab = db->pVtabCtx->pTab) ){ | |
703 sqlite3Error(db, SQLITE_MISUSE); | |
704 sqlite3_mutex_leave(db->mutex); | |
705 return SQLITE_MISUSE_BKPT; | |
706 } | |
707 assert( (pTab->tabFlags & TF_Virtual)!=0 ); | |
708 | |
709 pParse = sqlite3StackAllocZero(db, sizeof(*pParse)); | |
710 if( pParse==0 ){ | |
711 rc = SQLITE_NOMEM; | |
712 }else{ | |
713 pParse->declareVtab = 1; | |
714 pParse->db = db; | |
715 pParse->nQueryLoop = 1; | |
716 | |
717 if( SQLITE_OK==sqlite3RunParser(pParse, zCreateTable, &zErr) | |
718 && pParse->pNewTable | |
719 && !db->mallocFailed | |
720 && !pParse->pNewTable->pSelect | |
721 && (pParse->pNewTable->tabFlags & TF_Virtual)==0 | |
722 ){ | |
723 if( !pTab->aCol ){ | |
724 pTab->aCol = pParse->pNewTable->aCol; | |
725 pTab->nCol = pParse->pNewTable->nCol; | |
726 pParse->pNewTable->nCol = 0; | |
727 pParse->pNewTable->aCol = 0; | |
728 } | |
729 db->pVtabCtx->pTab = 0; | |
730 }else{ | |
731 sqlite3ErrorWithMsg(db, SQLITE_ERROR, (zErr ? "%s" : 0), zErr); | |
732 sqlite3DbFree(db, zErr); | |
733 rc = SQLITE_ERROR; | |
734 } | |
735 pParse->declareVtab = 0; | |
736 | |
737 if( pParse->pVdbe ){ | |
738 sqlite3VdbeFinalize(pParse->pVdbe); | |
739 } | |
740 sqlite3DeleteTable(db, pParse->pNewTable); | |
741 sqlite3ParserReset(pParse); | |
742 sqlite3StackFree(db, pParse); | |
743 } | |
744 | |
745 assert( (rc&0xff)==rc ); | |
746 rc = sqlite3ApiExit(db, rc); | |
747 sqlite3_mutex_leave(db->mutex); | |
748 return rc; | |
749 } | |
750 | |
751 /* | |
752 ** This function is invoked by the vdbe to call the xDestroy method | |
753 ** of the virtual table named zTab in database iDb. This occurs | |
754 ** when a DROP TABLE is mentioned. | |
755 ** | |
756 ** This call is a no-op if zTab is not a virtual table. | |
757 */ | |
758 int sqlite3VtabCallDestroy(sqlite3 *db, int iDb, const char *zTab){ | |
759 int rc = SQLITE_OK; | |
760 Table *pTab; | |
761 | |
762 pTab = sqlite3FindTable(db, zTab, db->aDb[iDb].zName); | |
763 if( ALWAYS(pTab!=0 && pTab->pVTable!=0) ){ | |
764 VTable *p = vtabDisconnectAll(db, pTab); | |
765 | |
766 assert( rc==SQLITE_OK ); | |
767 rc = p->pMod->pModule->xDestroy(p->pVtab); | |
768 | |
769 /* Remove the sqlite3_vtab* from the aVTrans[] array, if applicable */ | |
770 if( rc==SQLITE_OK ){ | |
771 assert( pTab->pVTable==p && p->pNext==0 ); | |
772 p->pVtab = 0; | |
773 pTab->pVTable = 0; | |
774 sqlite3VtabUnlock(p); | |
775 } | |
776 } | |
777 | |
778 return rc; | |
779 } | |
780 | |
781 /* | |
782 ** This function invokes either the xRollback or xCommit method | |
783 ** of each of the virtual tables in the sqlite3.aVTrans array. The method | |
784 ** called is identified by the second argument, "offset", which is | |
785 ** the offset of the method to call in the sqlite3_module structure. | |
786 ** | |
787 ** The array is cleared after invoking the callbacks. | |
788 */ | |
789 static void callFinaliser(sqlite3 *db, int offset){ | |
790 int i; | |
791 if( db->aVTrans ){ | |
792 for(i=0; i<db->nVTrans; i++){ | |
793 VTable *pVTab = db->aVTrans[i]; | |
794 sqlite3_vtab *p = pVTab->pVtab; | |
795 if( p ){ | |
796 int (*x)(sqlite3_vtab *); | |
797 x = *(int (**)(sqlite3_vtab *))((char *)p->pModule + offset); | |
798 if( x ) x(p); | |
799 } | |
800 pVTab->iSavepoint = 0; | |
801 sqlite3VtabUnlock(pVTab); | |
802 } | |
803 sqlite3DbFree(db, db->aVTrans); | |
804 db->nVTrans = 0; | |
805 db->aVTrans = 0; | |
806 } | |
807 } | |
808 | |
809 /* | |
810 ** Invoke the xSync method of all virtual tables in the sqlite3.aVTrans | |
811 ** array. Return the error code for the first error that occurs, or | |
812 ** SQLITE_OK if all xSync operations are successful. | |
813 ** | |
814 ** If an error message is available, leave it in p->zErrMsg. | |
815 */ | |
816 int sqlite3VtabSync(sqlite3 *db, Vdbe *p){ | |
817 int i; | |
818 int rc = SQLITE_OK; | |
819 VTable **aVTrans = db->aVTrans; | |
820 | |
821 db->aVTrans = 0; | |
822 for(i=0; rc==SQLITE_OK && i<db->nVTrans; i++){ | |
823 int (*x)(sqlite3_vtab *); | |
824 sqlite3_vtab *pVtab = aVTrans[i]->pVtab; | |
825 if( pVtab && (x = pVtab->pModule->xSync)!=0 ){ | |
826 rc = x(pVtab); | |
827 sqlite3VtabImportErrmsg(p, pVtab); | |
828 } | |
829 } | |
830 db->aVTrans = aVTrans; | |
831 return rc; | |
832 } | |
833 | |
834 /* | |
835 ** Invoke the xRollback method of all virtual tables in the | |
836 ** sqlite3.aVTrans array. Then clear the array itself. | |
837 */ | |
838 int sqlite3VtabRollback(sqlite3 *db){ | |
839 callFinaliser(db, offsetof(sqlite3_module,xRollback)); | |
840 return SQLITE_OK; | |
841 } | |
842 | |
843 /* | |
844 ** Invoke the xCommit method of all virtual tables in the | |
845 ** sqlite3.aVTrans array. Then clear the array itself. | |
846 */ | |
847 int sqlite3VtabCommit(sqlite3 *db){ | |
848 callFinaliser(db, offsetof(sqlite3_module,xCommit)); | |
849 return SQLITE_OK; | |
850 } | |
851 | |
852 /* | |
853 ** If the virtual table pVtab supports the transaction interface | |
854 ** (xBegin/xRollback/xCommit and optionally xSync) and a transaction is | |
855 ** not currently open, invoke the xBegin method now. | |
856 ** | |
857 ** If the xBegin call is successful, place the sqlite3_vtab pointer | |
858 ** in the sqlite3.aVTrans array. | |
859 */ | |
860 int sqlite3VtabBegin(sqlite3 *db, VTable *pVTab){ | |
861 int rc = SQLITE_OK; | |
862 const sqlite3_module *pModule; | |
863 | |
864 /* Special case: If db->aVTrans is NULL and db->nVTrans is greater | |
865 ** than zero, then this function is being called from within a | |
866 ** virtual module xSync() callback. It is illegal to write to | |
867 ** virtual module tables in this case, so return SQLITE_LOCKED. | |
868 */ | |
869 if( sqlite3VtabInSync(db) ){ | |
870 return SQLITE_LOCKED; | |
871 } | |
872 if( !pVTab ){ | |
873 return SQLITE_OK; | |
874 } | |
875 pModule = pVTab->pVtab->pModule; | |
876 | |
877 if( pModule->xBegin ){ | |
878 int i; | |
879 | |
880 /* If pVtab is already in the aVTrans array, return early */ | |
881 for(i=0; i<db->nVTrans; i++){ | |
882 if( db->aVTrans[i]==pVTab ){ | |
883 return SQLITE_OK; | |
884 } | |
885 } | |
886 | |
887 /* Invoke the xBegin method. If successful, add the vtab to the | |
888 ** sqlite3.aVTrans[] array. */ | |
889 rc = growVTrans(db); | |
890 if( rc==SQLITE_OK ){ | |
891 rc = pModule->xBegin(pVTab->pVtab); | |
892 if( rc==SQLITE_OK ){ | |
893 addToVTrans(db, pVTab); | |
894 } | |
895 } | |
896 } | |
897 return rc; | |
898 } | |
899 | |
900 /* | |
901 ** Invoke either the xSavepoint, xRollbackTo or xRelease method of all | |
902 ** virtual tables that currently have an open transaction. Pass iSavepoint | |
903 ** as the second argument to the virtual table method invoked. | |
904 ** | |
905 ** If op is SAVEPOINT_BEGIN, the xSavepoint method is invoked. If it is | |
906 ** SAVEPOINT_ROLLBACK, the xRollbackTo method. Otherwise, if op is | |
907 ** SAVEPOINT_RELEASE, then the xRelease method of each virtual table with | |
908 ** an open transaction is invoked. | |
909 ** | |
910 ** If any virtual table method returns an error code other than SQLITE_OK, | |
911 ** processing is abandoned and the error returned to the caller of this | |
912 ** function immediately. If all calls to virtual table methods are successful, | |
913 ** SQLITE_OK is returned. | |
914 */ | |
915 int sqlite3VtabSavepoint(sqlite3 *db, int op, int iSavepoint){ | |
916 int rc = SQLITE_OK; | |
917 | |
918 assert( op==SAVEPOINT_RELEASE||op==SAVEPOINT_ROLLBACK||op==SAVEPOINT_BEGIN ); | |
919 assert( iSavepoint>=0 ); | |
920 if( db->aVTrans ){ | |
921 int i; | |
922 for(i=0; rc==SQLITE_OK && i<db->nVTrans; i++){ | |
923 VTable *pVTab = db->aVTrans[i]; | |
924 const sqlite3_module *pMod = pVTab->pMod->pModule; | |
925 if( pVTab->pVtab && pMod->iVersion>=2 ){ | |
926 int (*xMethod)(sqlite3_vtab *, int); | |
927 switch( op ){ | |
928 case SAVEPOINT_BEGIN: | |
929 xMethod = pMod->xSavepoint; | |
930 pVTab->iSavepoint = iSavepoint+1; | |
931 break; | |
932 case SAVEPOINT_ROLLBACK: | |
933 xMethod = pMod->xRollbackTo; | |
934 break; | |
935 default: | |
936 xMethod = pMod->xRelease; | |
937 break; | |
938 } | |
939 if( xMethod && pVTab->iSavepoint>iSavepoint ){ | |
940 rc = xMethod(pVTab->pVtab, iSavepoint); | |
941 } | |
942 } | |
943 } | |
944 } | |
945 return rc; | |
946 } | |
947 | |
948 /* | |
949 ** The first parameter (pDef) is a function implementation. The | |
950 ** second parameter (pExpr) is the first argument to this function. | |
951 ** If pExpr is a column in a virtual table, then let the virtual | |
952 ** table implementation have an opportunity to overload the function. | |
953 ** | |
954 ** This routine is used to allow virtual table implementations to | |
955 ** overload MATCH, LIKE, GLOB, and REGEXP operators. | |
956 ** | |
957 ** Return either the pDef argument (indicating no change) or a | |
958 ** new FuncDef structure that is marked as ephemeral using the | |
959 ** SQLITE_FUNC_EPHEM flag. | |
960 */ | |
961 FuncDef *sqlite3VtabOverloadFunction( | |
962 sqlite3 *db, /* Database connection for reporting malloc problems */ | |
963 FuncDef *pDef, /* Function to possibly overload */ | |
964 int nArg, /* Number of arguments to the function */ | |
965 Expr *pExpr /* First argument to the function */ | |
966 ){ | |
967 Table *pTab; | |
968 sqlite3_vtab *pVtab; | |
969 sqlite3_module *pMod; | |
970 void (*xFunc)(sqlite3_context*,int,sqlite3_value**) = 0; | |
971 void *pArg = 0; | |
972 FuncDef *pNew; | |
973 int rc = 0; | |
974 char *zLowerName; | |
975 unsigned char *z; | |
976 | |
977 | |
978 /* Check to see the left operand is a column in a virtual table */ | |
979 if( NEVER(pExpr==0) ) return pDef; | |
980 if( pExpr->op!=TK_COLUMN ) return pDef; | |
981 pTab = pExpr->pTab; | |
982 if( NEVER(pTab==0) ) return pDef; | |
983 if( (pTab->tabFlags & TF_Virtual)==0 ) return pDef; | |
984 pVtab = sqlite3GetVTable(db, pTab)->pVtab; | |
985 assert( pVtab!=0 ); | |
986 assert( pVtab->pModule!=0 ); | |
987 pMod = (sqlite3_module *)pVtab->pModule; | |
988 if( pMod->xFindFunction==0 ) return pDef; | |
989 | |
990 /* Call the xFindFunction method on the virtual table implementation | |
991 ** to see if the implementation wants to overload this function | |
992 */ | |
993 zLowerName = sqlite3DbStrDup(db, pDef->zName); | |
994 if( zLowerName ){ | |
995 for(z=(unsigned char*)zLowerName; *z; z++){ | |
996 *z = sqlite3UpperToLower[*z]; | |
997 } | |
998 rc = pMod->xFindFunction(pVtab, nArg, zLowerName, &xFunc, &pArg); | |
999 sqlite3DbFree(db, zLowerName); | |
1000 } | |
1001 if( rc==0 ){ | |
1002 return pDef; | |
1003 } | |
1004 | |
1005 /* Create a new ephemeral function definition for the overloaded | |
1006 ** function */ | |
1007 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) | |
1008 + sqlite3Strlen30(pDef->zName) + 1); | |
1009 if( pNew==0 ){ | |
1010 return pDef; | |
1011 } | |
1012 *pNew = *pDef; | |
1013 pNew->zName = (char *)&pNew[1]; | |
1014 memcpy(pNew->zName, pDef->zName, sqlite3Strlen30(pDef->zName)+1); | |
1015 pNew->xFunc = xFunc; | |
1016 pNew->pUserData = pArg; | |
1017 pNew->funcFlags |= SQLITE_FUNC_EPHEM; | |
1018 return pNew; | |
1019 } | |
1020 | |
1021 /* | |
1022 ** Make sure virtual table pTab is contained in the pParse->apVirtualLock[] | |
1023 ** array so that an OP_VBegin will get generated for it. Add pTab to the | |
1024 ** array if it is missing. If pTab is already in the array, this routine | |
1025 ** is a no-op. | |
1026 */ | |
1027 void sqlite3VtabMakeWritable(Parse *pParse, Table *pTab){ | |
1028 Parse *pToplevel = sqlite3ParseToplevel(pParse); | |
1029 int i, n; | |
1030 Table **apVtabLock; | |
1031 | |
1032 assert( IsVirtual(pTab) ); | |
1033 for(i=0; i<pToplevel->nVtabLock; i++){ | |
1034 if( pTab==pToplevel->apVtabLock[i] ) return; | |
1035 } | |
1036 n = (pToplevel->nVtabLock+1)*sizeof(pToplevel->apVtabLock[0]); | |
1037 apVtabLock = sqlite3_realloc(pToplevel->apVtabLock, n); | |
1038 if( apVtabLock ){ | |
1039 pToplevel->apVtabLock = apVtabLock; | |
1040 pToplevel->apVtabLock[pToplevel->nVtabLock++] = pTab; | |
1041 }else{ | |
1042 pToplevel->db->mallocFailed = 1; | |
1043 } | |
1044 } | |
1045 | |
1046 /* | |
1047 ** Return the ON CONFLICT resolution mode in effect for the virtual | |
1048 ** table update operation currently in progress. | |
1049 ** | |
1050 ** The results of this routine are undefined unless it is called from | |
1051 ** within an xUpdate method. | |
1052 */ | |
1053 int sqlite3_vtab_on_conflict(sqlite3 *db){ | |
1054 static const unsigned char aMap[] = { | |
1055 SQLITE_ROLLBACK, SQLITE_ABORT, SQLITE_FAIL, SQLITE_IGNORE, SQLITE_REPLACE | |
1056 }; | |
1057 assert( OE_Rollback==1 && OE_Abort==2 && OE_Fail==3 ); | |
1058 assert( OE_Ignore==4 && OE_Replace==5 ); | |
1059 assert( db->vtabOnConflict>=1 && db->vtabOnConflict<=5 ); | |
1060 return (int)aMap[db->vtabOnConflict-1]; | |
1061 } | |
1062 | |
1063 /* | |
1064 ** Call from within the xCreate() or xConnect() methods to provide | |
1065 ** the SQLite core with additional information about the behavior | |
1066 ** of the virtual table being implemented. | |
1067 */ | |
1068 int sqlite3_vtab_config(sqlite3 *db, int op, ...){ | |
1069 va_list ap; | |
1070 int rc = SQLITE_OK; | |
1071 | |
1072 sqlite3_mutex_enter(db->mutex); | |
1073 | |
1074 va_start(ap, op); | |
1075 switch( op ){ | |
1076 case SQLITE_VTAB_CONSTRAINT_SUPPORT: { | |
1077 VtabCtx *p = db->pVtabCtx; | |
1078 if( !p ){ | |
1079 rc = SQLITE_MISUSE_BKPT; | |
1080 }else{ | |
1081 assert( p->pTab==0 || (p->pTab->tabFlags & TF_Virtual)!=0 ); | |
1082 p->pVTable->bConstraint = (u8)va_arg(ap, int); | |
1083 } | |
1084 break; | |
1085 } | |
1086 default: | |
1087 rc = SQLITE_MISUSE_BKPT; | |
1088 break; | |
1089 } | |
1090 va_end(ap); | |
1091 | |
1092 if( rc!=SQLITE_OK ) sqlite3Error(db, rc); | |
1093 sqlite3_mutex_leave(db->mutex); | |
1094 return rc; | |
1095 } | |
1096 | |
1097 #endif /* SQLITE_OMIT_VIRTUALTABLE */ | |
OLD | NEW |