OLD | NEW |
| (Empty) |
1 /* | |
2 ** 2004 May 26 | |
3 ** | |
4 ** The author disclaims copyright to this source code. In place of | |
5 ** a legal notice, here is a blessing: | |
6 ** | |
7 ** May you do good and not evil. | |
8 ** May you find forgiveness for yourself and forgive others. | |
9 ** May you share freely, never taking more than you give. | |
10 ** | |
11 ************************************************************************* | |
12 ** | |
13 ** This file contains code use to manipulate "Mem" structure. A "Mem" | |
14 ** stores a single value in the VDBE. Mem is an opaque structure visible | |
15 ** only within the VDBE. Interface routines refer to a Mem using the | |
16 ** name sqlite_value | |
17 */ | |
18 #include "sqliteInt.h" | |
19 #include "vdbeInt.h" | |
20 | |
21 #ifdef SQLITE_DEBUG | |
22 /* | |
23 ** Check invariants on a Mem object. | |
24 ** | |
25 ** This routine is intended for use inside of assert() statements, like | |
26 ** this: assert( sqlite3VdbeCheckMemInvariants(pMem) ); | |
27 */ | |
28 int sqlite3VdbeCheckMemInvariants(Mem *p){ | |
29 /* If MEM_Dyn is set then Mem.xDel!=0. | |
30 ** Mem.xDel is might not be initialized if MEM_Dyn is clear. | |
31 */ | |
32 assert( (p->flags & MEM_Dyn)==0 || p->xDel!=0 ); | |
33 | |
34 /* MEM_Dyn may only be set if Mem.szMalloc==0. In this way we | |
35 ** ensure that if Mem.szMalloc>0 then it is safe to do | |
36 ** Mem.z = Mem.zMalloc without having to check Mem.flags&MEM_Dyn. | |
37 ** That saves a few cycles in inner loops. */ | |
38 assert( (p->flags & MEM_Dyn)==0 || p->szMalloc==0 ); | |
39 | |
40 /* Cannot be both MEM_Int and MEM_Real at the same time */ | |
41 assert( (p->flags & (MEM_Int|MEM_Real))!=(MEM_Int|MEM_Real) ); | |
42 | |
43 /* The szMalloc field holds the correct memory allocation size */ | |
44 assert( p->szMalloc==0 | |
45 || p->szMalloc==sqlite3DbMallocSize(p->db,p->zMalloc) ); | |
46 | |
47 /* If p holds a string or blob, the Mem.z must point to exactly | |
48 ** one of the following: | |
49 ** | |
50 ** (1) Memory in Mem.zMalloc and managed by the Mem object | |
51 ** (2) Memory to be freed using Mem.xDel | |
52 ** (3) An ephemeral string or blob | |
53 ** (4) A static string or blob | |
54 */ | |
55 if( (p->flags & (MEM_Str|MEM_Blob)) && p->n>0 ){ | |
56 assert( | |
57 ((p->szMalloc>0 && p->z==p->zMalloc)? 1 : 0) + | |
58 ((p->flags&MEM_Dyn)!=0 ? 1 : 0) + | |
59 ((p->flags&MEM_Ephem)!=0 ? 1 : 0) + | |
60 ((p->flags&MEM_Static)!=0 ? 1 : 0) == 1 | |
61 ); | |
62 } | |
63 return 1; | |
64 } | |
65 #endif | |
66 | |
67 | |
68 /* | |
69 ** If pMem is an object with a valid string representation, this routine | |
70 ** ensures the internal encoding for the string representation is | |
71 ** 'desiredEnc', one of SQLITE_UTF8, SQLITE_UTF16LE or SQLITE_UTF16BE. | |
72 ** | |
73 ** If pMem is not a string object, or the encoding of the string | |
74 ** representation is already stored using the requested encoding, then this | |
75 ** routine is a no-op. | |
76 ** | |
77 ** SQLITE_OK is returned if the conversion is successful (or not required). | |
78 ** SQLITE_NOMEM may be returned if a malloc() fails during conversion | |
79 ** between formats. | |
80 */ | |
81 int sqlite3VdbeChangeEncoding(Mem *pMem, int desiredEnc){ | |
82 #ifndef SQLITE_OMIT_UTF16 | |
83 int rc; | |
84 #endif | |
85 assert( (pMem->flags&MEM_RowSet)==0 ); | |
86 assert( desiredEnc==SQLITE_UTF8 || desiredEnc==SQLITE_UTF16LE | |
87 || desiredEnc==SQLITE_UTF16BE ); | |
88 if( !(pMem->flags&MEM_Str) || pMem->enc==desiredEnc ){ | |
89 return SQLITE_OK; | |
90 } | |
91 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); | |
92 #ifdef SQLITE_OMIT_UTF16 | |
93 return SQLITE_ERROR; | |
94 #else | |
95 | |
96 /* MemTranslate() may return SQLITE_OK or SQLITE_NOMEM. If NOMEM is returned, | |
97 ** then the encoding of the value may not have changed. | |
98 */ | |
99 rc = sqlite3VdbeMemTranslate(pMem, (u8)desiredEnc); | |
100 assert(rc==SQLITE_OK || rc==SQLITE_NOMEM); | |
101 assert(rc==SQLITE_OK || pMem->enc!=desiredEnc); | |
102 assert(rc==SQLITE_NOMEM || pMem->enc==desiredEnc); | |
103 return rc; | |
104 #endif | |
105 } | |
106 | |
107 /* | |
108 ** Make sure pMem->z points to a writable allocation of at least | |
109 ** min(n,32) bytes. | |
110 ** | |
111 ** If the bPreserve argument is true, then copy of the content of | |
112 ** pMem->z into the new allocation. pMem must be either a string or | |
113 ** blob if bPreserve is true. If bPreserve is false, any prior content | |
114 ** in pMem->z is discarded. | |
115 */ | |
116 SQLITE_NOINLINE int sqlite3VdbeMemGrow(Mem *pMem, int n, int bPreserve){ | |
117 assert( sqlite3VdbeCheckMemInvariants(pMem) ); | |
118 assert( (pMem->flags&MEM_RowSet)==0 ); | |
119 | |
120 /* If the bPreserve flag is set to true, then the memory cell must already | |
121 ** contain a valid string or blob value. */ | |
122 assert( bPreserve==0 || pMem->flags&(MEM_Blob|MEM_Str) ); | |
123 testcase( bPreserve && pMem->z==0 ); | |
124 | |
125 assert( pMem->szMalloc==0 | |
126 || pMem->szMalloc==sqlite3DbMallocSize(pMem->db, pMem->zMalloc) ); | |
127 if( pMem->szMalloc<n ){ | |
128 if( n<32 ) n = 32; | |
129 if( bPreserve && pMem->szMalloc>0 && pMem->z==pMem->zMalloc ){ | |
130 pMem->z = pMem->zMalloc = sqlite3DbReallocOrFree(pMem->db, pMem->z, n); | |
131 bPreserve = 0; | |
132 }else{ | |
133 if( pMem->szMalloc>0 ) sqlite3DbFree(pMem->db, pMem->zMalloc); | |
134 pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, n); | |
135 } | |
136 if( pMem->zMalloc==0 ){ | |
137 sqlite3VdbeMemSetNull(pMem); | |
138 pMem->z = 0; | |
139 pMem->szMalloc = 0; | |
140 return SQLITE_NOMEM; | |
141 }else{ | |
142 pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc); | |
143 } | |
144 } | |
145 | |
146 if( bPreserve && pMem->z && pMem->z!=pMem->zMalloc ){ | |
147 memcpy(pMem->zMalloc, pMem->z, pMem->n); | |
148 } | |
149 if( (pMem->flags&MEM_Dyn)!=0 ){ | |
150 assert( pMem->xDel!=0 && pMem->xDel!=SQLITE_DYNAMIC ); | |
151 pMem->xDel((void *)(pMem->z)); | |
152 } | |
153 | |
154 pMem->z = pMem->zMalloc; | |
155 pMem->flags &= ~(MEM_Dyn|MEM_Ephem|MEM_Static); | |
156 return SQLITE_OK; | |
157 } | |
158 | |
159 /* | |
160 ** Change the pMem->zMalloc allocation to be at least szNew bytes. | |
161 ** If pMem->zMalloc already meets or exceeds the requested size, this | |
162 ** routine is a no-op. | |
163 ** | |
164 ** Any prior string or blob content in the pMem object may be discarded. | |
165 ** The pMem->xDel destructor is called, if it exists. Though MEM_Str | |
166 ** and MEM_Blob values may be discarded, MEM_Int, MEM_Real, and MEM_Null | |
167 ** values are preserved. | |
168 ** | |
169 ** Return SQLITE_OK on success or an error code (probably SQLITE_NOMEM) | |
170 ** if unable to complete the resizing. | |
171 */ | |
172 int sqlite3VdbeMemClearAndResize(Mem *pMem, int szNew){ | |
173 assert( szNew>0 ); | |
174 assert( (pMem->flags & MEM_Dyn)==0 || pMem->szMalloc==0 ); | |
175 if( pMem->szMalloc<szNew ){ | |
176 return sqlite3VdbeMemGrow(pMem, szNew, 0); | |
177 } | |
178 assert( (pMem->flags & MEM_Dyn)==0 ); | |
179 pMem->z = pMem->zMalloc; | |
180 pMem->flags &= (MEM_Null|MEM_Int|MEM_Real); | |
181 return SQLITE_OK; | |
182 } | |
183 | |
184 /* | |
185 ** Change pMem so that its MEM_Str or MEM_Blob value is stored in | |
186 ** MEM.zMalloc, where it can be safely written. | |
187 ** | |
188 ** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails. | |
189 */ | |
190 int sqlite3VdbeMemMakeWriteable(Mem *pMem){ | |
191 int f; | |
192 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); | |
193 assert( (pMem->flags&MEM_RowSet)==0 ); | |
194 ExpandBlob(pMem); | |
195 f = pMem->flags; | |
196 if( (f&(MEM_Str|MEM_Blob)) && (pMem->szMalloc==0 || pMem->z!=pMem->zMalloc) ){ | |
197 if( sqlite3VdbeMemGrow(pMem, pMem->n + 2, 1) ){ | |
198 return SQLITE_NOMEM; | |
199 } | |
200 pMem->z[pMem->n] = 0; | |
201 pMem->z[pMem->n+1] = 0; | |
202 pMem->flags |= MEM_Term; | |
203 #ifdef SQLITE_DEBUG | |
204 pMem->pScopyFrom = 0; | |
205 #endif | |
206 } | |
207 | |
208 return SQLITE_OK; | |
209 } | |
210 | |
211 /* | |
212 ** If the given Mem* has a zero-filled tail, turn it into an ordinary | |
213 ** blob stored in dynamically allocated space. | |
214 */ | |
215 #ifndef SQLITE_OMIT_INCRBLOB | |
216 int sqlite3VdbeMemExpandBlob(Mem *pMem){ | |
217 if( pMem->flags & MEM_Zero ){ | |
218 int nByte; | |
219 assert( pMem->flags&MEM_Blob ); | |
220 assert( (pMem->flags&MEM_RowSet)==0 ); | |
221 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); | |
222 | |
223 /* Set nByte to the number of bytes required to store the expanded blob. */ | |
224 nByte = pMem->n + pMem->u.nZero; | |
225 if( nByte<=0 ){ | |
226 nByte = 1; | |
227 } | |
228 if( sqlite3VdbeMemGrow(pMem, nByte, 1) ){ | |
229 return SQLITE_NOMEM; | |
230 } | |
231 | |
232 memset(&pMem->z[pMem->n], 0, pMem->u.nZero); | |
233 pMem->n += pMem->u.nZero; | |
234 pMem->flags &= ~(MEM_Zero|MEM_Term); | |
235 } | |
236 return SQLITE_OK; | |
237 } | |
238 #endif | |
239 | |
240 /* | |
241 ** It is already known that pMem contains an unterminated string. | |
242 ** Add the zero terminator. | |
243 */ | |
244 static SQLITE_NOINLINE int vdbeMemAddTerminator(Mem *pMem){ | |
245 if( sqlite3VdbeMemGrow(pMem, pMem->n+2, 1) ){ | |
246 return SQLITE_NOMEM; | |
247 } | |
248 pMem->z[pMem->n] = 0; | |
249 pMem->z[pMem->n+1] = 0; | |
250 pMem->flags |= MEM_Term; | |
251 return SQLITE_OK; | |
252 } | |
253 | |
254 /* | |
255 ** Make sure the given Mem is \u0000 terminated. | |
256 */ | |
257 int sqlite3VdbeMemNulTerminate(Mem *pMem){ | |
258 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); | |
259 testcase( (pMem->flags & (MEM_Term|MEM_Str))==(MEM_Term|MEM_Str) ); | |
260 testcase( (pMem->flags & (MEM_Term|MEM_Str))==0 ); | |
261 if( (pMem->flags & (MEM_Term|MEM_Str))!=MEM_Str ){ | |
262 return SQLITE_OK; /* Nothing to do */ | |
263 }else{ | |
264 return vdbeMemAddTerminator(pMem); | |
265 } | |
266 } | |
267 | |
268 /* | |
269 ** Add MEM_Str to the set of representations for the given Mem. Numbers | |
270 ** are converted using sqlite3_snprintf(). Converting a BLOB to a string | |
271 ** is a no-op. | |
272 ** | |
273 ** Existing representations MEM_Int and MEM_Real are invalidated if | |
274 ** bForce is true but are retained if bForce is false. | |
275 ** | |
276 ** A MEM_Null value will never be passed to this function. This function is | |
277 ** used for converting values to text for returning to the user (i.e. via | |
278 ** sqlite3_value_text()), or for ensuring that values to be used as btree | |
279 ** keys are strings. In the former case a NULL pointer is returned the | |
280 ** user and the latter is an internal programming error. | |
281 */ | |
282 int sqlite3VdbeMemStringify(Mem *pMem, u8 enc, u8 bForce){ | |
283 int fg = pMem->flags; | |
284 const int nByte = 32; | |
285 | |
286 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); | |
287 assert( !(fg&MEM_Zero) ); | |
288 assert( !(fg&(MEM_Str|MEM_Blob)) ); | |
289 assert( fg&(MEM_Int|MEM_Real) ); | |
290 assert( (pMem->flags&MEM_RowSet)==0 ); | |
291 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); | |
292 | |
293 | |
294 if( sqlite3VdbeMemClearAndResize(pMem, nByte) ){ | |
295 return SQLITE_NOMEM; | |
296 } | |
297 | |
298 /* For a Real or Integer, use sqlite3_snprintf() to produce the UTF-8 | |
299 ** string representation of the value. Then, if the required encoding | |
300 ** is UTF-16le or UTF-16be do a translation. | |
301 ** | |
302 ** FIX ME: It would be better if sqlite3_snprintf() could do UTF-16. | |
303 */ | |
304 if( fg & MEM_Int ){ | |
305 sqlite3_snprintf(nByte, pMem->z, "%lld", pMem->u.i); | |
306 }else{ | |
307 assert( fg & MEM_Real ); | |
308 sqlite3_snprintf(nByte, pMem->z, "%!.15g", pMem->u.r); | |
309 } | |
310 pMem->n = sqlite3Strlen30(pMem->z); | |
311 pMem->enc = SQLITE_UTF8; | |
312 pMem->flags |= MEM_Str|MEM_Term; | |
313 if( bForce ) pMem->flags &= ~(MEM_Int|MEM_Real); | |
314 sqlite3VdbeChangeEncoding(pMem, enc); | |
315 return SQLITE_OK; | |
316 } | |
317 | |
318 /* | |
319 ** Memory cell pMem contains the context of an aggregate function. | |
320 ** This routine calls the finalize method for that function. The | |
321 ** result of the aggregate is stored back into pMem. | |
322 ** | |
323 ** Return SQLITE_ERROR if the finalizer reports an error. SQLITE_OK | |
324 ** otherwise. | |
325 */ | |
326 int sqlite3VdbeMemFinalize(Mem *pMem, FuncDef *pFunc){ | |
327 int rc = SQLITE_OK; | |
328 if( ALWAYS(pFunc && pFunc->xFinalize) ){ | |
329 sqlite3_context ctx; | |
330 Mem t; | |
331 assert( (pMem->flags & MEM_Null)!=0 || pFunc==pMem->u.pDef ); | |
332 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); | |
333 memset(&ctx, 0, sizeof(ctx)); | |
334 memset(&t, 0, sizeof(t)); | |
335 t.flags = MEM_Null; | |
336 t.db = pMem->db; | |
337 ctx.pOut = &t; | |
338 ctx.pMem = pMem; | |
339 ctx.pFunc = pFunc; | |
340 pFunc->xFinalize(&ctx); /* IMP: R-24505-23230 */ | |
341 assert( (pMem->flags & MEM_Dyn)==0 ); | |
342 if( pMem->szMalloc>0 ) sqlite3DbFree(pMem->db, pMem->zMalloc); | |
343 memcpy(pMem, &t, sizeof(t)); | |
344 rc = ctx.isError; | |
345 } | |
346 return rc; | |
347 } | |
348 | |
349 /* | |
350 ** If the memory cell contains a value that must be freed by | |
351 ** invoking the external callback in Mem.xDel, then this routine | |
352 ** will free that value. It also sets Mem.flags to MEM_Null. | |
353 ** | |
354 ** This is a helper routine for sqlite3VdbeMemSetNull() and | |
355 ** for sqlite3VdbeMemRelease(). Use those other routines as the | |
356 ** entry point for releasing Mem resources. | |
357 */ | |
358 static SQLITE_NOINLINE void vdbeMemClearExternAndSetNull(Mem *p){ | |
359 assert( p->db==0 || sqlite3_mutex_held(p->db->mutex) ); | |
360 assert( VdbeMemDynamic(p) ); | |
361 if( p->flags&MEM_Agg ){ | |
362 sqlite3VdbeMemFinalize(p, p->u.pDef); | |
363 assert( (p->flags & MEM_Agg)==0 ); | |
364 testcase( p->flags & MEM_Dyn ); | |
365 } | |
366 if( p->flags&MEM_Dyn ){ | |
367 assert( (p->flags&MEM_RowSet)==0 ); | |
368 assert( p->xDel!=SQLITE_DYNAMIC && p->xDel!=0 ); | |
369 p->xDel((void *)p->z); | |
370 }else if( p->flags&MEM_RowSet ){ | |
371 sqlite3RowSetClear(p->u.pRowSet); | |
372 }else if( p->flags&MEM_Frame ){ | |
373 VdbeFrame *pFrame = p->u.pFrame; | |
374 pFrame->pParent = pFrame->v->pDelFrame; | |
375 pFrame->v->pDelFrame = pFrame; | |
376 } | |
377 p->flags = MEM_Null; | |
378 } | |
379 | |
380 /* | |
381 ** Release memory held by the Mem p, both external memory cleared | |
382 ** by p->xDel and memory in p->zMalloc. | |
383 ** | |
384 ** This is a helper routine invoked by sqlite3VdbeMemRelease() in | |
385 ** the unusual case where there really is memory in p that needs | |
386 ** to be freed. | |
387 */ | |
388 static SQLITE_NOINLINE void vdbeMemClear(Mem *p){ | |
389 if( VdbeMemDynamic(p) ){ | |
390 vdbeMemClearExternAndSetNull(p); | |
391 } | |
392 if( p->szMalloc ){ | |
393 sqlite3DbFree(p->db, p->zMalloc); | |
394 p->szMalloc = 0; | |
395 } | |
396 p->z = 0; | |
397 } | |
398 | |
399 /* | |
400 ** Release any memory resources held by the Mem. Both the memory that is | |
401 ** free by Mem.xDel and the Mem.zMalloc allocation are freed. | |
402 ** | |
403 ** Use this routine prior to clean up prior to abandoning a Mem, or to | |
404 ** reset a Mem back to its minimum memory utilization. | |
405 ** | |
406 ** Use sqlite3VdbeMemSetNull() to release just the Mem.xDel space | |
407 ** prior to inserting new content into the Mem. | |
408 */ | |
409 void sqlite3VdbeMemRelease(Mem *p){ | |
410 assert( sqlite3VdbeCheckMemInvariants(p) ); | |
411 if( VdbeMemDynamic(p) || p->szMalloc ){ | |
412 vdbeMemClear(p); | |
413 } | |
414 } | |
415 | |
416 /* | |
417 ** Convert a 64-bit IEEE double into a 64-bit signed integer. | |
418 ** If the double is out of range of a 64-bit signed integer then | |
419 ** return the closest available 64-bit signed integer. | |
420 */ | |
421 static i64 doubleToInt64(double r){ | |
422 #ifdef SQLITE_OMIT_FLOATING_POINT | |
423 /* When floating-point is omitted, double and int64 are the same thing */ | |
424 return r; | |
425 #else | |
426 /* | |
427 ** Many compilers we encounter do not define constants for the | |
428 ** minimum and maximum 64-bit integers, or they define them | |
429 ** inconsistently. And many do not understand the "LL" notation. | |
430 ** So we define our own static constants here using nothing | |
431 ** larger than a 32-bit integer constant. | |
432 */ | |
433 static const i64 maxInt = LARGEST_INT64; | |
434 static const i64 minInt = SMALLEST_INT64; | |
435 | |
436 if( r<=(double)minInt ){ | |
437 return minInt; | |
438 }else if( r>=(double)maxInt ){ | |
439 return maxInt; | |
440 }else{ | |
441 return (i64)r; | |
442 } | |
443 #endif | |
444 } | |
445 | |
446 /* | |
447 ** Return some kind of integer value which is the best we can do | |
448 ** at representing the value that *pMem describes as an integer. | |
449 ** If pMem is an integer, then the value is exact. If pMem is | |
450 ** a floating-point then the value returned is the integer part. | |
451 ** If pMem is a string or blob, then we make an attempt to convert | |
452 ** it into an integer and return that. If pMem represents an | |
453 ** an SQL-NULL value, return 0. | |
454 ** | |
455 ** If pMem represents a string value, its encoding might be changed. | |
456 */ | |
457 i64 sqlite3VdbeIntValue(Mem *pMem){ | |
458 int flags; | |
459 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); | |
460 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); | |
461 flags = pMem->flags; | |
462 if( flags & MEM_Int ){ | |
463 return pMem->u.i; | |
464 }else if( flags & MEM_Real ){ | |
465 return doubleToInt64(pMem->u.r); | |
466 }else if( flags & (MEM_Str|MEM_Blob) ){ | |
467 i64 value = 0; | |
468 assert( pMem->z || pMem->n==0 ); | |
469 sqlite3Atoi64(pMem->z, &value, pMem->n, pMem->enc); | |
470 return value; | |
471 }else{ | |
472 return 0; | |
473 } | |
474 } | |
475 | |
476 /* | |
477 ** Return the best representation of pMem that we can get into a | |
478 ** double. If pMem is already a double or an integer, return its | |
479 ** value. If it is a string or blob, try to convert it to a double. | |
480 ** If it is a NULL, return 0.0. | |
481 */ | |
482 double sqlite3VdbeRealValue(Mem *pMem){ | |
483 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); | |
484 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); | |
485 if( pMem->flags & MEM_Real ){ | |
486 return pMem->u.r; | |
487 }else if( pMem->flags & MEM_Int ){ | |
488 return (double)pMem->u.i; | |
489 }else if( pMem->flags & (MEM_Str|MEM_Blob) ){ | |
490 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ | |
491 double val = (double)0; | |
492 sqlite3AtoF(pMem->z, &val, pMem->n, pMem->enc); | |
493 return val; | |
494 }else{ | |
495 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ | |
496 return (double)0; | |
497 } | |
498 } | |
499 | |
500 /* | |
501 ** The MEM structure is already a MEM_Real. Try to also make it a | |
502 ** MEM_Int if we can. | |
503 */ | |
504 void sqlite3VdbeIntegerAffinity(Mem *pMem){ | |
505 i64 ix; | |
506 assert( pMem->flags & MEM_Real ); | |
507 assert( (pMem->flags & MEM_RowSet)==0 ); | |
508 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); | |
509 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); | |
510 | |
511 ix = doubleToInt64(pMem->u.r); | |
512 | |
513 /* Only mark the value as an integer if | |
514 ** | |
515 ** (1) the round-trip conversion real->int->real is a no-op, and | |
516 ** (2) The integer is neither the largest nor the smallest | |
517 ** possible integer (ticket #3922) | |
518 ** | |
519 ** The second and third terms in the following conditional enforces | |
520 ** the second condition under the assumption that addition overflow causes | |
521 ** values to wrap around. | |
522 */ | |
523 if( pMem->u.r==ix && ix>SMALLEST_INT64 && ix<LARGEST_INT64 ){ | |
524 pMem->u.i = ix; | |
525 MemSetTypeFlag(pMem, MEM_Int); | |
526 } | |
527 } | |
528 | |
529 /* | |
530 ** Convert pMem to type integer. Invalidate any prior representations. | |
531 */ | |
532 int sqlite3VdbeMemIntegerify(Mem *pMem){ | |
533 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); | |
534 assert( (pMem->flags & MEM_RowSet)==0 ); | |
535 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); | |
536 | |
537 pMem->u.i = sqlite3VdbeIntValue(pMem); | |
538 MemSetTypeFlag(pMem, MEM_Int); | |
539 return SQLITE_OK; | |
540 } | |
541 | |
542 /* | |
543 ** Convert pMem so that it is of type MEM_Real. | |
544 ** Invalidate any prior representations. | |
545 */ | |
546 int sqlite3VdbeMemRealify(Mem *pMem){ | |
547 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); | |
548 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); | |
549 | |
550 pMem->u.r = sqlite3VdbeRealValue(pMem); | |
551 MemSetTypeFlag(pMem, MEM_Real); | |
552 return SQLITE_OK; | |
553 } | |
554 | |
555 /* | |
556 ** Convert pMem so that it has types MEM_Real or MEM_Int or both. | |
557 ** Invalidate any prior representations. | |
558 ** | |
559 ** Every effort is made to force the conversion, even if the input | |
560 ** is a string that does not look completely like a number. Convert | |
561 ** as much of the string as we can and ignore the rest. | |
562 */ | |
563 int sqlite3VdbeMemNumerify(Mem *pMem){ | |
564 if( (pMem->flags & (MEM_Int|MEM_Real|MEM_Null))==0 ){ | |
565 assert( (pMem->flags & (MEM_Blob|MEM_Str))!=0 ); | |
566 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); | |
567 if( 0==sqlite3Atoi64(pMem->z, &pMem->u.i, pMem->n, pMem->enc) ){ | |
568 MemSetTypeFlag(pMem, MEM_Int); | |
569 }else{ | |
570 pMem->u.r = sqlite3VdbeRealValue(pMem); | |
571 MemSetTypeFlag(pMem, MEM_Real); | |
572 sqlite3VdbeIntegerAffinity(pMem); | |
573 } | |
574 } | |
575 assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_Null))!=0 ); | |
576 pMem->flags &= ~(MEM_Str|MEM_Blob); | |
577 return SQLITE_OK; | |
578 } | |
579 | |
580 /* | |
581 ** Cast the datatype of the value in pMem according to the affinity | |
582 ** "aff". Casting is different from applying affinity in that a cast | |
583 ** is forced. In other words, the value is converted into the desired | |
584 ** affinity even if that results in loss of data. This routine is | |
585 ** used (for example) to implement the SQL "cast()" operator. | |
586 */ | |
587 void sqlite3VdbeMemCast(Mem *pMem, u8 aff, u8 encoding){ | |
588 if( pMem->flags & MEM_Null ) return; | |
589 switch( aff ){ | |
590 case SQLITE_AFF_NONE: { /* Really a cast to BLOB */ | |
591 if( (pMem->flags & MEM_Blob)==0 ){ | |
592 sqlite3ValueApplyAffinity(pMem, SQLITE_AFF_TEXT, encoding); | |
593 assert( pMem->flags & MEM_Str || pMem->db->mallocFailed ); | |
594 MemSetTypeFlag(pMem, MEM_Blob); | |
595 }else{ | |
596 pMem->flags &= ~(MEM_TypeMask&~MEM_Blob); | |
597 } | |
598 break; | |
599 } | |
600 case SQLITE_AFF_NUMERIC: { | |
601 sqlite3VdbeMemNumerify(pMem); | |
602 break; | |
603 } | |
604 case SQLITE_AFF_INTEGER: { | |
605 sqlite3VdbeMemIntegerify(pMem); | |
606 break; | |
607 } | |
608 case SQLITE_AFF_REAL: { | |
609 sqlite3VdbeMemRealify(pMem); | |
610 break; | |
611 } | |
612 default: { | |
613 assert( aff==SQLITE_AFF_TEXT ); | |
614 assert( MEM_Str==(MEM_Blob>>3) ); | |
615 pMem->flags |= (pMem->flags&MEM_Blob)>>3; | |
616 sqlite3ValueApplyAffinity(pMem, SQLITE_AFF_TEXT, encoding); | |
617 assert( pMem->flags & MEM_Str || pMem->db->mallocFailed ); | |
618 pMem->flags &= ~(MEM_Int|MEM_Real|MEM_Blob|MEM_Zero); | |
619 break; | |
620 } | |
621 } | |
622 } | |
623 | |
624 /* | |
625 ** Initialize bulk memory to be a consistent Mem object. | |
626 ** | |
627 ** The minimum amount of initialization feasible is performed. | |
628 */ | |
629 void sqlite3VdbeMemInit(Mem *pMem, sqlite3 *db, u16 flags){ | |
630 assert( (flags & ~MEM_TypeMask)==0 ); | |
631 pMem->flags = flags; | |
632 pMem->db = db; | |
633 pMem->szMalloc = 0; | |
634 } | |
635 | |
636 | |
637 /* | |
638 ** Delete any previous value and set the value stored in *pMem to NULL. | |
639 ** | |
640 ** This routine calls the Mem.xDel destructor to dispose of values that | |
641 ** require the destructor. But it preserves the Mem.zMalloc memory allocation. | |
642 ** To free all resources, use sqlite3VdbeMemRelease(), which both calls this | |
643 ** routine to invoke the destructor and deallocates Mem.zMalloc. | |
644 ** | |
645 ** Use this routine to reset the Mem prior to insert a new value. | |
646 ** | |
647 ** Use sqlite3VdbeMemRelease() to complete erase the Mem prior to abandoning it. | |
648 */ | |
649 void sqlite3VdbeMemSetNull(Mem *pMem){ | |
650 if( VdbeMemDynamic(pMem) ){ | |
651 vdbeMemClearExternAndSetNull(pMem); | |
652 }else{ | |
653 pMem->flags = MEM_Null; | |
654 } | |
655 } | |
656 void sqlite3ValueSetNull(sqlite3_value *p){ | |
657 sqlite3VdbeMemSetNull((Mem*)p); | |
658 } | |
659 | |
660 /* | |
661 ** Delete any previous value and set the value to be a BLOB of length | |
662 ** n containing all zeros. | |
663 */ | |
664 void sqlite3VdbeMemSetZeroBlob(Mem *pMem, int n){ | |
665 sqlite3VdbeMemRelease(pMem); | |
666 pMem->flags = MEM_Blob|MEM_Zero; | |
667 pMem->n = 0; | |
668 if( n<0 ) n = 0; | |
669 pMem->u.nZero = n; | |
670 pMem->enc = SQLITE_UTF8; | |
671 pMem->z = 0; | |
672 } | |
673 | |
674 /* | |
675 ** The pMem is known to contain content that needs to be destroyed prior | |
676 ** to a value change. So invoke the destructor, then set the value to | |
677 ** a 64-bit integer. | |
678 */ | |
679 static SQLITE_NOINLINE void vdbeReleaseAndSetInt64(Mem *pMem, i64 val){ | |
680 sqlite3VdbeMemSetNull(pMem); | |
681 pMem->u.i = val; | |
682 pMem->flags = MEM_Int; | |
683 } | |
684 | |
685 /* | |
686 ** Delete any previous value and set the value stored in *pMem to val, | |
687 ** manifest type INTEGER. | |
688 */ | |
689 void sqlite3VdbeMemSetInt64(Mem *pMem, i64 val){ | |
690 if( VdbeMemDynamic(pMem) ){ | |
691 vdbeReleaseAndSetInt64(pMem, val); | |
692 }else{ | |
693 pMem->u.i = val; | |
694 pMem->flags = MEM_Int; | |
695 } | |
696 } | |
697 | |
698 #ifndef SQLITE_OMIT_FLOATING_POINT | |
699 /* | |
700 ** Delete any previous value and set the value stored in *pMem to val, | |
701 ** manifest type REAL. | |
702 */ | |
703 void sqlite3VdbeMemSetDouble(Mem *pMem, double val){ | |
704 sqlite3VdbeMemSetNull(pMem); | |
705 if( !sqlite3IsNaN(val) ){ | |
706 pMem->u.r = val; | |
707 pMem->flags = MEM_Real; | |
708 } | |
709 } | |
710 #endif | |
711 | |
712 /* | |
713 ** Delete any previous value and set the value of pMem to be an | |
714 ** empty boolean index. | |
715 */ | |
716 void sqlite3VdbeMemSetRowSet(Mem *pMem){ | |
717 sqlite3 *db = pMem->db; | |
718 assert( db!=0 ); | |
719 assert( (pMem->flags & MEM_RowSet)==0 ); | |
720 sqlite3VdbeMemRelease(pMem); | |
721 pMem->zMalloc = sqlite3DbMallocRaw(db, 64); | |
722 if( db->mallocFailed ){ | |
723 pMem->flags = MEM_Null; | |
724 pMem->szMalloc = 0; | |
725 }else{ | |
726 assert( pMem->zMalloc ); | |
727 pMem->szMalloc = sqlite3DbMallocSize(db, pMem->zMalloc); | |
728 pMem->u.pRowSet = sqlite3RowSetInit(db, pMem->zMalloc, pMem->szMalloc); | |
729 assert( pMem->u.pRowSet!=0 ); | |
730 pMem->flags = MEM_RowSet; | |
731 } | |
732 } | |
733 | |
734 /* | |
735 ** Return true if the Mem object contains a TEXT or BLOB that is | |
736 ** too large - whose size exceeds SQLITE_MAX_LENGTH. | |
737 */ | |
738 int sqlite3VdbeMemTooBig(Mem *p){ | |
739 assert( p->db!=0 ); | |
740 if( p->flags & (MEM_Str|MEM_Blob) ){ | |
741 int n = p->n; | |
742 if( p->flags & MEM_Zero ){ | |
743 n += p->u.nZero; | |
744 } | |
745 return n>p->db->aLimit[SQLITE_LIMIT_LENGTH]; | |
746 } | |
747 return 0; | |
748 } | |
749 | |
750 #ifdef SQLITE_DEBUG | |
751 /* | |
752 ** This routine prepares a memory cell for modification by breaking | |
753 ** its link to a shallow copy and by marking any current shallow | |
754 ** copies of this cell as invalid. | |
755 ** | |
756 ** This is used for testing and debugging only - to make sure shallow | |
757 ** copies are not misused. | |
758 */ | |
759 void sqlite3VdbeMemAboutToChange(Vdbe *pVdbe, Mem *pMem){ | |
760 int i; | |
761 Mem *pX; | |
762 for(i=1, pX=&pVdbe->aMem[1]; i<=pVdbe->nMem; i++, pX++){ | |
763 if( pX->pScopyFrom==pMem ){ | |
764 pX->flags |= MEM_Undefined; | |
765 pX->pScopyFrom = 0; | |
766 } | |
767 } | |
768 pMem->pScopyFrom = 0; | |
769 } | |
770 #endif /* SQLITE_DEBUG */ | |
771 | |
772 /* | |
773 ** Size of struct Mem not including the Mem.zMalloc member. | |
774 */ | |
775 #define MEMCELLSIZE offsetof(Mem,zMalloc) | |
776 | |
777 /* | |
778 ** Make an shallow copy of pFrom into pTo. Prior contents of | |
779 ** pTo are freed. The pFrom->z field is not duplicated. If | |
780 ** pFrom->z is used, then pTo->z points to the same thing as pFrom->z | |
781 ** and flags gets srcType (either MEM_Ephem or MEM_Static). | |
782 */ | |
783 void sqlite3VdbeMemShallowCopy(Mem *pTo, const Mem *pFrom, int srcType){ | |
784 assert( (pFrom->flags & MEM_RowSet)==0 ); | |
785 assert( pTo->db==pFrom->db ); | |
786 if( VdbeMemDynamic(pTo) ) vdbeMemClearExternAndSetNull(pTo); | |
787 memcpy(pTo, pFrom, MEMCELLSIZE); | |
788 if( (pFrom->flags&MEM_Static)==0 ){ | |
789 pTo->flags &= ~(MEM_Dyn|MEM_Static|MEM_Ephem); | |
790 assert( srcType==MEM_Ephem || srcType==MEM_Static ); | |
791 pTo->flags |= srcType; | |
792 } | |
793 } | |
794 | |
795 /* | |
796 ** Make a full copy of pFrom into pTo. Prior contents of pTo are | |
797 ** freed before the copy is made. | |
798 */ | |
799 int sqlite3VdbeMemCopy(Mem *pTo, const Mem *pFrom){ | |
800 int rc = SQLITE_OK; | |
801 | |
802 assert( pTo->db==pFrom->db ); | |
803 assert( (pFrom->flags & MEM_RowSet)==0 ); | |
804 if( VdbeMemDynamic(pTo) ) vdbeMemClearExternAndSetNull(pTo); | |
805 memcpy(pTo, pFrom, MEMCELLSIZE); | |
806 pTo->flags &= ~MEM_Dyn; | |
807 if( pTo->flags&(MEM_Str|MEM_Blob) ){ | |
808 if( 0==(pFrom->flags&MEM_Static) ){ | |
809 pTo->flags |= MEM_Ephem; | |
810 rc = sqlite3VdbeMemMakeWriteable(pTo); | |
811 } | |
812 } | |
813 | |
814 return rc; | |
815 } | |
816 | |
817 /* | |
818 ** Transfer the contents of pFrom to pTo. Any existing value in pTo is | |
819 ** freed. If pFrom contains ephemeral data, a copy is made. | |
820 ** | |
821 ** pFrom contains an SQL NULL when this routine returns. | |
822 */ | |
823 void sqlite3VdbeMemMove(Mem *pTo, Mem *pFrom){ | |
824 assert( pFrom->db==0 || sqlite3_mutex_held(pFrom->db->mutex) ); | |
825 assert( pTo->db==0 || sqlite3_mutex_held(pTo->db->mutex) ); | |
826 assert( pFrom->db==0 || pTo->db==0 || pFrom->db==pTo->db ); | |
827 | |
828 sqlite3VdbeMemRelease(pTo); | |
829 memcpy(pTo, pFrom, sizeof(Mem)); | |
830 pFrom->flags = MEM_Null; | |
831 pFrom->szMalloc = 0; | |
832 } | |
833 | |
834 /* | |
835 ** Change the value of a Mem to be a string or a BLOB. | |
836 ** | |
837 ** The memory management strategy depends on the value of the xDel | |
838 ** parameter. If the value passed is SQLITE_TRANSIENT, then the | |
839 ** string is copied into a (possibly existing) buffer managed by the | |
840 ** Mem structure. Otherwise, any existing buffer is freed and the | |
841 ** pointer copied. | |
842 ** | |
843 ** If the string is too large (if it exceeds the SQLITE_LIMIT_LENGTH | |
844 ** size limit) then no memory allocation occurs. If the string can be | |
845 ** stored without allocating memory, then it is. If a memory allocation | |
846 ** is required to store the string, then value of pMem is unchanged. In | |
847 ** either case, SQLITE_TOOBIG is returned. | |
848 */ | |
849 int sqlite3VdbeMemSetStr( | |
850 Mem *pMem, /* Memory cell to set to string value */ | |
851 const char *z, /* String pointer */ | |
852 int n, /* Bytes in string, or negative */ | |
853 u8 enc, /* Encoding of z. 0 for BLOBs */ | |
854 void (*xDel)(void*) /* Destructor function */ | |
855 ){ | |
856 int nByte = n; /* New value for pMem->n */ | |
857 int iLimit; /* Maximum allowed string or blob size */ | |
858 u16 flags = 0; /* New value for pMem->flags */ | |
859 | |
860 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); | |
861 assert( (pMem->flags & MEM_RowSet)==0 ); | |
862 | |
863 /* If z is a NULL pointer, set pMem to contain an SQL NULL. */ | |
864 if( !z ){ | |
865 sqlite3VdbeMemSetNull(pMem); | |
866 return SQLITE_OK; | |
867 } | |
868 | |
869 if( pMem->db ){ | |
870 iLimit = pMem->db->aLimit[SQLITE_LIMIT_LENGTH]; | |
871 }else{ | |
872 iLimit = SQLITE_MAX_LENGTH; | |
873 } | |
874 flags = (enc==0?MEM_Blob:MEM_Str); | |
875 if( nByte<0 ){ | |
876 assert( enc!=0 ); | |
877 if( enc==SQLITE_UTF8 ){ | |
878 nByte = sqlite3Strlen30(z); | |
879 if( nByte>iLimit ) nByte = iLimit+1; | |
880 }else{ | |
881 for(nByte=0; nByte<=iLimit && (z[nByte] | z[nByte+1]); nByte+=2){} | |
882 } | |
883 flags |= MEM_Term; | |
884 } | |
885 | |
886 /* The following block sets the new values of Mem.z and Mem.xDel. It | |
887 ** also sets a flag in local variable "flags" to indicate the memory | |
888 ** management (one of MEM_Dyn or MEM_Static). | |
889 */ | |
890 if( xDel==SQLITE_TRANSIENT ){ | |
891 int nAlloc = nByte; | |
892 if( flags&MEM_Term ){ | |
893 nAlloc += (enc==SQLITE_UTF8?1:2); | |
894 } | |
895 if( nByte>iLimit ){ | |
896 return SQLITE_TOOBIG; | |
897 } | |
898 testcase( nAlloc==0 ); | |
899 testcase( nAlloc==31 ); | |
900 testcase( nAlloc==32 ); | |
901 if( sqlite3VdbeMemClearAndResize(pMem, MAX(nAlloc,32)) ){ | |
902 return SQLITE_NOMEM; | |
903 } | |
904 memcpy(pMem->z, z, nAlloc); | |
905 }else if( xDel==SQLITE_DYNAMIC ){ | |
906 sqlite3VdbeMemRelease(pMem); | |
907 pMem->zMalloc = pMem->z = (char *)z; | |
908 pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc); | |
909 }else{ | |
910 sqlite3VdbeMemRelease(pMem); | |
911 pMem->z = (char *)z; | |
912 pMem->xDel = xDel; | |
913 flags |= ((xDel==SQLITE_STATIC)?MEM_Static:MEM_Dyn); | |
914 } | |
915 | |
916 pMem->n = nByte; | |
917 pMem->flags = flags; | |
918 pMem->enc = (enc==0 ? SQLITE_UTF8 : enc); | |
919 | |
920 #ifndef SQLITE_OMIT_UTF16 | |
921 if( pMem->enc!=SQLITE_UTF8 && sqlite3VdbeMemHandleBom(pMem) ){ | |
922 return SQLITE_NOMEM; | |
923 } | |
924 #endif | |
925 | |
926 if( nByte>iLimit ){ | |
927 return SQLITE_TOOBIG; | |
928 } | |
929 | |
930 return SQLITE_OK; | |
931 } | |
932 | |
933 /* | |
934 ** Move data out of a btree key or data field and into a Mem structure. | |
935 ** The data or key is taken from the entry that pCur is currently pointing | |
936 ** to. offset and amt determine what portion of the data or key to retrieve. | |
937 ** key is true to get the key or false to get data. The result is written | |
938 ** into the pMem element. | |
939 ** | |
940 ** The pMem object must have been initialized. This routine will use | |
941 ** pMem->zMalloc to hold the content from the btree, if possible. New | |
942 ** pMem->zMalloc space will be allocated if necessary. The calling routine | |
943 ** is responsible for making sure that the pMem object is eventually | |
944 ** destroyed. | |
945 ** | |
946 ** If this routine fails for any reason (malloc returns NULL or unable | |
947 ** to read from the disk) then the pMem is left in an inconsistent state. | |
948 */ | |
949 int sqlite3VdbeMemFromBtree( | |
950 BtCursor *pCur, /* Cursor pointing at record to retrieve. */ | |
951 u32 offset, /* Offset from the start of data to return bytes from. */ | |
952 u32 amt, /* Number of bytes to return. */ | |
953 int key, /* If true, retrieve from the btree key, not data. */ | |
954 Mem *pMem /* OUT: Return data in this Mem structure. */ | |
955 ){ | |
956 char *zData; /* Data from the btree layer */ | |
957 u32 available = 0; /* Number of bytes available on the local btree page */ | |
958 int rc = SQLITE_OK; /* Return code */ | |
959 | |
960 assert( sqlite3BtreeCursorIsValid(pCur) ); | |
961 assert( !VdbeMemDynamic(pMem) ); | |
962 | |
963 /* Note: the calls to BtreeKeyFetch() and DataFetch() below assert() | |
964 ** that both the BtShared and database handle mutexes are held. */ | |
965 assert( (pMem->flags & MEM_RowSet)==0 ); | |
966 if( key ){ | |
967 zData = (char *)sqlite3BtreeKeyFetch(pCur, &available); | |
968 }else{ | |
969 zData = (char *)sqlite3BtreeDataFetch(pCur, &available); | |
970 } | |
971 assert( zData!=0 ); | |
972 | |
973 if( offset+amt<=available ){ | |
974 pMem->z = &zData[offset]; | |
975 pMem->flags = MEM_Blob|MEM_Ephem; | |
976 pMem->n = (int)amt; | |
977 }else{ | |
978 pMem->flags = MEM_Null; | |
979 if( SQLITE_OK==(rc = sqlite3VdbeMemClearAndResize(pMem, amt+2)) ){ | |
980 if( key ){ | |
981 rc = sqlite3BtreeKey(pCur, offset, amt, pMem->z); | |
982 }else{ | |
983 rc = sqlite3BtreeData(pCur, offset, amt, pMem->z); | |
984 } | |
985 if( rc==SQLITE_OK ){ | |
986 pMem->z[amt] = 0; | |
987 pMem->z[amt+1] = 0; | |
988 pMem->flags = MEM_Blob|MEM_Term; | |
989 pMem->n = (int)amt; | |
990 }else{ | |
991 sqlite3VdbeMemRelease(pMem); | |
992 } | |
993 } | |
994 } | |
995 | |
996 return rc; | |
997 } | |
998 | |
999 /* | |
1000 ** The pVal argument is known to be a value other than NULL. | |
1001 ** Convert it into a string with encoding enc and return a pointer | |
1002 ** to a zero-terminated version of that string. | |
1003 */ | |
1004 static SQLITE_NOINLINE const void *valueToText(sqlite3_value* pVal, u8 enc){ | |
1005 assert( pVal!=0 ); | |
1006 assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) ); | |
1007 assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) ); | |
1008 assert( (pVal->flags & MEM_RowSet)==0 ); | |
1009 assert( (pVal->flags & (MEM_Null))==0 ); | |
1010 if( pVal->flags & (MEM_Blob|MEM_Str) ){ | |
1011 pVal->flags |= MEM_Str; | |
1012 if( pVal->flags & MEM_Zero ){ | |
1013 sqlite3VdbeMemExpandBlob(pVal); | |
1014 } | |
1015 if( pVal->enc != (enc & ~SQLITE_UTF16_ALIGNED) ){ | |
1016 sqlite3VdbeChangeEncoding(pVal, enc & ~SQLITE_UTF16_ALIGNED); | |
1017 } | |
1018 if( (enc & SQLITE_UTF16_ALIGNED)!=0 && 1==(1&SQLITE_PTR_TO_INT(pVal->z)) ){ | |
1019 assert( (pVal->flags & (MEM_Ephem|MEM_Static))!=0 ); | |
1020 if( sqlite3VdbeMemMakeWriteable(pVal)!=SQLITE_OK ){ | |
1021 return 0; | |
1022 } | |
1023 } | |
1024 sqlite3VdbeMemNulTerminate(pVal); /* IMP: R-31275-44060 */ | |
1025 }else{ | |
1026 sqlite3VdbeMemStringify(pVal, enc, 0); | |
1027 assert( 0==(1&SQLITE_PTR_TO_INT(pVal->z)) ); | |
1028 } | |
1029 assert(pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) || pVal->db==0 | |
1030 || pVal->db->mallocFailed ); | |
1031 if( pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) ){ | |
1032 return pVal->z; | |
1033 }else{ | |
1034 return 0; | |
1035 } | |
1036 } | |
1037 | |
1038 /* This function is only available internally, it is not part of the | |
1039 ** external API. It works in a similar way to sqlite3_value_text(), | |
1040 ** except the data returned is in the encoding specified by the second | |
1041 ** parameter, which must be one of SQLITE_UTF16BE, SQLITE_UTF16LE or | |
1042 ** SQLITE_UTF8. | |
1043 ** | |
1044 ** (2006-02-16:) The enc value can be or-ed with SQLITE_UTF16_ALIGNED. | |
1045 ** If that is the case, then the result must be aligned on an even byte | |
1046 ** boundary. | |
1047 */ | |
1048 const void *sqlite3ValueText(sqlite3_value* pVal, u8 enc){ | |
1049 if( !pVal ) return 0; | |
1050 assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) ); | |
1051 assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) ); | |
1052 assert( (pVal->flags & MEM_RowSet)==0 ); | |
1053 if( (pVal->flags&(MEM_Str|MEM_Term))==(MEM_Str|MEM_Term) && pVal->enc==enc ){ | |
1054 return pVal->z; | |
1055 } | |
1056 if( pVal->flags&MEM_Null ){ | |
1057 return 0; | |
1058 } | |
1059 return valueToText(pVal, enc); | |
1060 } | |
1061 | |
1062 /* | |
1063 ** Create a new sqlite3_value object. | |
1064 */ | |
1065 sqlite3_value *sqlite3ValueNew(sqlite3 *db){ | |
1066 Mem *p = sqlite3DbMallocZero(db, sizeof(*p)); | |
1067 if( p ){ | |
1068 p->flags = MEM_Null; | |
1069 p->db = db; | |
1070 } | |
1071 return p; | |
1072 } | |
1073 | |
1074 /* | |
1075 ** Context object passed by sqlite3Stat4ProbeSetValue() through to | |
1076 ** valueNew(). See comments above valueNew() for details. | |
1077 */ | |
1078 struct ValueNewStat4Ctx { | |
1079 Parse *pParse; | |
1080 Index *pIdx; | |
1081 UnpackedRecord **ppRec; | |
1082 int iVal; | |
1083 }; | |
1084 | |
1085 /* | |
1086 ** Allocate and return a pointer to a new sqlite3_value object. If | |
1087 ** the second argument to this function is NULL, the object is allocated | |
1088 ** by calling sqlite3ValueNew(). | |
1089 ** | |
1090 ** Otherwise, if the second argument is non-zero, then this function is | |
1091 ** being called indirectly by sqlite3Stat4ProbeSetValue(). If it has not | |
1092 ** already been allocated, allocate the UnpackedRecord structure that | |
1093 ** that function will return to its caller here. Then return a pointer | |
1094 ** an sqlite3_value within the UnpackedRecord.a[] array. | |
1095 */ | |
1096 static sqlite3_value *valueNew(sqlite3 *db, struct ValueNewStat4Ctx *p){ | |
1097 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 | |
1098 if( p ){ | |
1099 UnpackedRecord *pRec = p->ppRec[0]; | |
1100 | |
1101 if( pRec==0 ){ | |
1102 Index *pIdx = p->pIdx; /* Index being probed */ | |
1103 int nByte; /* Bytes of space to allocate */ | |
1104 int i; /* Counter variable */ | |
1105 int nCol = pIdx->nColumn; /* Number of index columns including rowid */ | |
1106 | |
1107 nByte = sizeof(Mem) * nCol + ROUND8(sizeof(UnpackedRecord)); | |
1108 pRec = (UnpackedRecord*)sqlite3DbMallocZero(db, nByte); | |
1109 if( pRec ){ | |
1110 pRec->pKeyInfo = sqlite3KeyInfoOfIndex(p->pParse, pIdx); | |
1111 if( pRec->pKeyInfo ){ | |
1112 assert( pRec->pKeyInfo->nField+pRec->pKeyInfo->nXField==nCol ); | |
1113 assert( pRec->pKeyInfo->enc==ENC(db) ); | |
1114 pRec->aMem = (Mem *)((u8*)pRec + ROUND8(sizeof(UnpackedRecord))); | |
1115 for(i=0; i<nCol; i++){ | |
1116 pRec->aMem[i].flags = MEM_Null; | |
1117 pRec->aMem[i].db = db; | |
1118 } | |
1119 }else{ | |
1120 sqlite3DbFree(db, pRec); | |
1121 pRec = 0; | |
1122 } | |
1123 } | |
1124 if( pRec==0 ) return 0; | |
1125 p->ppRec[0] = pRec; | |
1126 } | |
1127 | |
1128 pRec->nField = p->iVal+1; | |
1129 return &pRec->aMem[p->iVal]; | |
1130 } | |
1131 #else | |
1132 UNUSED_PARAMETER(p); | |
1133 #endif /* defined(SQLITE_ENABLE_STAT3_OR_STAT4) */ | |
1134 return sqlite3ValueNew(db); | |
1135 } | |
1136 | |
1137 /* | |
1138 ** Extract a value from the supplied expression in the manner described | |
1139 ** above sqlite3ValueFromExpr(). Allocate the sqlite3_value object | |
1140 ** using valueNew(). | |
1141 ** | |
1142 ** If pCtx is NULL and an error occurs after the sqlite3_value object | |
1143 ** has been allocated, it is freed before returning. Or, if pCtx is not | |
1144 ** NULL, it is assumed that the caller will free any allocated object | |
1145 ** in all cases. | |
1146 */ | |
1147 static int valueFromExpr( | |
1148 sqlite3 *db, /* The database connection */ | |
1149 Expr *pExpr, /* The expression to evaluate */ | |
1150 u8 enc, /* Encoding to use */ | |
1151 u8 affinity, /* Affinity to use */ | |
1152 sqlite3_value **ppVal, /* Write the new value here */ | |
1153 struct ValueNewStat4Ctx *pCtx /* Second argument for valueNew() */ | |
1154 ){ | |
1155 int op; | |
1156 char *zVal = 0; | |
1157 sqlite3_value *pVal = 0; | |
1158 int negInt = 1; | |
1159 const char *zNeg = ""; | |
1160 int rc = SQLITE_OK; | |
1161 | |
1162 if( !pExpr ){ | |
1163 *ppVal = 0; | |
1164 return SQLITE_OK; | |
1165 } | |
1166 while( (op = pExpr->op)==TK_UPLUS ) pExpr = pExpr->pLeft; | |
1167 if( NEVER(op==TK_REGISTER) ) op = pExpr->op2; | |
1168 | |
1169 if( op==TK_CAST ){ | |
1170 u8 aff = sqlite3AffinityType(pExpr->u.zToken,0); | |
1171 rc = valueFromExpr(db, pExpr->pLeft, enc, aff, ppVal, pCtx); | |
1172 testcase( rc!=SQLITE_OK ); | |
1173 if( *ppVal ){ | |
1174 sqlite3VdbeMemCast(*ppVal, aff, SQLITE_UTF8); | |
1175 sqlite3ValueApplyAffinity(*ppVal, affinity, SQLITE_UTF8); | |
1176 } | |
1177 return rc; | |
1178 } | |
1179 | |
1180 /* Handle negative integers in a single step. This is needed in the | |
1181 ** case when the value is -9223372036854775808. | |
1182 */ | |
1183 if( op==TK_UMINUS | |
1184 && (pExpr->pLeft->op==TK_INTEGER || pExpr->pLeft->op==TK_FLOAT) ){ | |
1185 pExpr = pExpr->pLeft; | |
1186 op = pExpr->op; | |
1187 negInt = -1; | |
1188 zNeg = "-"; | |
1189 } | |
1190 | |
1191 if( op==TK_STRING || op==TK_FLOAT || op==TK_INTEGER ){ | |
1192 pVal = valueNew(db, pCtx); | |
1193 if( pVal==0 ) goto no_mem; | |
1194 if( ExprHasProperty(pExpr, EP_IntValue) ){ | |
1195 sqlite3VdbeMemSetInt64(pVal, (i64)pExpr->u.iValue*negInt); | |
1196 }else{ | |
1197 zVal = sqlite3MPrintf(db, "%s%s", zNeg, pExpr->u.zToken); | |
1198 if( zVal==0 ) goto no_mem; | |
1199 sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, SQLITE_DYNAMIC); | |
1200 } | |
1201 if( (op==TK_INTEGER || op==TK_FLOAT ) && affinity==SQLITE_AFF_NONE ){ | |
1202 sqlite3ValueApplyAffinity(pVal, SQLITE_AFF_NUMERIC, SQLITE_UTF8); | |
1203 }else{ | |
1204 sqlite3ValueApplyAffinity(pVal, affinity, SQLITE_UTF8); | |
1205 } | |
1206 if( pVal->flags & (MEM_Int|MEM_Real) ) pVal->flags &= ~MEM_Str; | |
1207 if( enc!=SQLITE_UTF8 ){ | |
1208 rc = sqlite3VdbeChangeEncoding(pVal, enc); | |
1209 } | |
1210 }else if( op==TK_UMINUS ) { | |
1211 /* This branch happens for multiple negative signs. Ex: -(-5) */ | |
1212 if( SQLITE_OK==sqlite3ValueFromExpr(db,pExpr->pLeft,enc,affinity,&pVal) | |
1213 && pVal!=0 | |
1214 ){ | |
1215 sqlite3VdbeMemNumerify(pVal); | |
1216 if( pVal->flags & MEM_Real ){ | |
1217 pVal->u.r = -pVal->u.r; | |
1218 }else if( pVal->u.i==SMALLEST_INT64 ){ | |
1219 pVal->u.r = -(double)SMALLEST_INT64; | |
1220 MemSetTypeFlag(pVal, MEM_Real); | |
1221 }else{ | |
1222 pVal->u.i = -pVal->u.i; | |
1223 } | |
1224 sqlite3ValueApplyAffinity(pVal, affinity, enc); | |
1225 } | |
1226 }else if( op==TK_NULL ){ | |
1227 pVal = valueNew(db, pCtx); | |
1228 if( pVal==0 ) goto no_mem; | |
1229 } | |
1230 #ifndef SQLITE_OMIT_BLOB_LITERAL | |
1231 else if( op==TK_BLOB ){ | |
1232 int nVal; | |
1233 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); | |
1234 assert( pExpr->u.zToken[1]=='\'' ); | |
1235 pVal = valueNew(db, pCtx); | |
1236 if( !pVal ) goto no_mem; | |
1237 zVal = &pExpr->u.zToken[2]; | |
1238 nVal = sqlite3Strlen30(zVal)-1; | |
1239 assert( zVal[nVal]=='\'' ); | |
1240 sqlite3VdbeMemSetStr(pVal, sqlite3HexToBlob(db, zVal, nVal), nVal/2, | |
1241 0, SQLITE_DYNAMIC); | |
1242 } | |
1243 #endif | |
1244 | |
1245 *ppVal = pVal; | |
1246 return rc; | |
1247 | |
1248 no_mem: | |
1249 db->mallocFailed = 1; | |
1250 sqlite3DbFree(db, zVal); | |
1251 assert( *ppVal==0 ); | |
1252 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 | |
1253 if( pCtx==0 ) sqlite3ValueFree(pVal); | |
1254 #else | |
1255 assert( pCtx==0 ); sqlite3ValueFree(pVal); | |
1256 #endif | |
1257 return SQLITE_NOMEM; | |
1258 } | |
1259 | |
1260 /* | |
1261 ** Create a new sqlite3_value object, containing the value of pExpr. | |
1262 ** | |
1263 ** This only works for very simple expressions that consist of one constant | |
1264 ** token (i.e. "5", "5.1", "'a string'"). If the expression can | |
1265 ** be converted directly into a value, then the value is allocated and | |
1266 ** a pointer written to *ppVal. The caller is responsible for deallocating | |
1267 ** the value by passing it to sqlite3ValueFree() later on. If the expression | |
1268 ** cannot be converted to a value, then *ppVal is set to NULL. | |
1269 */ | |
1270 int sqlite3ValueFromExpr( | |
1271 sqlite3 *db, /* The database connection */ | |
1272 Expr *pExpr, /* The expression to evaluate */ | |
1273 u8 enc, /* Encoding to use */ | |
1274 u8 affinity, /* Affinity to use */ | |
1275 sqlite3_value **ppVal /* Write the new value here */ | |
1276 ){ | |
1277 return valueFromExpr(db, pExpr, enc, affinity, ppVal, 0); | |
1278 } | |
1279 | |
1280 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 | |
1281 /* | |
1282 ** The implementation of the sqlite_record() function. This function accepts | |
1283 ** a single argument of any type. The return value is a formatted database | |
1284 ** record (a blob) containing the argument value. | |
1285 ** | |
1286 ** This is used to convert the value stored in the 'sample' column of the | |
1287 ** sqlite_stat3 table to the record format SQLite uses internally. | |
1288 */ | |
1289 static void recordFunc( | |
1290 sqlite3_context *context, | |
1291 int argc, | |
1292 sqlite3_value **argv | |
1293 ){ | |
1294 const int file_format = 1; | |
1295 int iSerial; /* Serial type */ | |
1296 int nSerial; /* Bytes of space for iSerial as varint */ | |
1297 int nVal; /* Bytes of space required for argv[0] */ | |
1298 int nRet; | |
1299 sqlite3 *db; | |
1300 u8 *aRet; | |
1301 | |
1302 UNUSED_PARAMETER( argc ); | |
1303 iSerial = sqlite3VdbeSerialType(argv[0], file_format); | |
1304 nSerial = sqlite3VarintLen(iSerial); | |
1305 nVal = sqlite3VdbeSerialTypeLen(iSerial); | |
1306 db = sqlite3_context_db_handle(context); | |
1307 | |
1308 nRet = 1 + nSerial + nVal; | |
1309 aRet = sqlite3DbMallocRaw(db, nRet); | |
1310 if( aRet==0 ){ | |
1311 sqlite3_result_error_nomem(context); | |
1312 }else{ | |
1313 aRet[0] = nSerial+1; | |
1314 putVarint32(&aRet[1], iSerial); | |
1315 sqlite3VdbeSerialPut(&aRet[1+nSerial], argv[0], iSerial); | |
1316 sqlite3_result_blob(context, aRet, nRet, SQLITE_TRANSIENT); | |
1317 sqlite3DbFree(db, aRet); | |
1318 } | |
1319 } | |
1320 | |
1321 /* | |
1322 ** Register built-in functions used to help read ANALYZE data. | |
1323 */ | |
1324 void sqlite3AnalyzeFunctions(void){ | |
1325 static SQLITE_WSD FuncDef aAnalyzeTableFuncs[] = { | |
1326 FUNCTION(sqlite_record, 1, 0, 0, recordFunc), | |
1327 }; | |
1328 int i; | |
1329 FuncDefHash *pHash = &GLOBAL(FuncDefHash, sqlite3GlobalFunctions); | |
1330 FuncDef *aFunc = (FuncDef*)&GLOBAL(FuncDef, aAnalyzeTableFuncs); | |
1331 for(i=0; i<ArraySize(aAnalyzeTableFuncs); i++){ | |
1332 sqlite3FuncDefInsert(pHash, &aFunc[i]); | |
1333 } | |
1334 } | |
1335 | |
1336 /* | |
1337 ** Attempt to extract a value from pExpr and use it to construct *ppVal. | |
1338 ** | |
1339 ** If pAlloc is not NULL, then an UnpackedRecord object is created for | |
1340 ** pAlloc if one does not exist and the new value is added to the | |
1341 ** UnpackedRecord object. | |
1342 ** | |
1343 ** A value is extracted in the following cases: | |
1344 ** | |
1345 ** * (pExpr==0). In this case the value is assumed to be an SQL NULL, | |
1346 ** | |
1347 ** * The expression is a bound variable, and this is a reprepare, or | |
1348 ** | |
1349 ** * The expression is a literal value. | |
1350 ** | |
1351 ** On success, *ppVal is made to point to the extracted value. The caller | |
1352 ** is responsible for ensuring that the value is eventually freed. | |
1353 */ | |
1354 static int stat4ValueFromExpr( | |
1355 Parse *pParse, /* Parse context */ | |
1356 Expr *pExpr, /* The expression to extract a value from */ | |
1357 u8 affinity, /* Affinity to use */ | |
1358 struct ValueNewStat4Ctx *pAlloc,/* How to allocate space. Or NULL */ | |
1359 sqlite3_value **ppVal /* OUT: New value object (or NULL) */ | |
1360 ){ | |
1361 int rc = SQLITE_OK; | |
1362 sqlite3_value *pVal = 0; | |
1363 sqlite3 *db = pParse->db; | |
1364 | |
1365 /* Skip over any TK_COLLATE nodes */ | |
1366 pExpr = sqlite3ExprSkipCollate(pExpr); | |
1367 | |
1368 if( !pExpr ){ | |
1369 pVal = valueNew(db, pAlloc); | |
1370 if( pVal ){ | |
1371 sqlite3VdbeMemSetNull((Mem*)pVal); | |
1372 } | |
1373 }else if( pExpr->op==TK_VARIABLE | |
1374 || NEVER(pExpr->op==TK_REGISTER && pExpr->op2==TK_VARIABLE) | |
1375 ){ | |
1376 Vdbe *v; | |
1377 int iBindVar = pExpr->iColumn; | |
1378 sqlite3VdbeSetVarmask(pParse->pVdbe, iBindVar); | |
1379 if( (v = pParse->pReprepare)!=0 ){ | |
1380 pVal = valueNew(db, pAlloc); | |
1381 if( pVal ){ | |
1382 rc = sqlite3VdbeMemCopy((Mem*)pVal, &v->aVar[iBindVar-1]); | |
1383 if( rc==SQLITE_OK ){ | |
1384 sqlite3ValueApplyAffinity(pVal, affinity, ENC(db)); | |
1385 } | |
1386 pVal->db = pParse->db; | |
1387 } | |
1388 } | |
1389 }else{ | |
1390 rc = valueFromExpr(db, pExpr, ENC(db), affinity, &pVal, pAlloc); | |
1391 } | |
1392 | |
1393 assert( pVal==0 || pVal->db==db ); | |
1394 *ppVal = pVal; | |
1395 return rc; | |
1396 } | |
1397 | |
1398 /* | |
1399 ** This function is used to allocate and populate UnpackedRecord | |
1400 ** structures intended to be compared against sample index keys stored | |
1401 ** in the sqlite_stat4 table. | |
1402 ** | |
1403 ** A single call to this function attempts to populates field iVal (leftmost | |
1404 ** is 0 etc.) of the unpacked record with a value extracted from expression | |
1405 ** pExpr. Extraction of values is possible if: | |
1406 ** | |
1407 ** * (pExpr==0). In this case the value is assumed to be an SQL NULL, | |
1408 ** | |
1409 ** * The expression is a bound variable, and this is a reprepare, or | |
1410 ** | |
1411 ** * The sqlite3ValueFromExpr() function is able to extract a value | |
1412 ** from the expression (i.e. the expression is a literal value). | |
1413 ** | |
1414 ** If a value can be extracted, the affinity passed as the 5th argument | |
1415 ** is applied to it before it is copied into the UnpackedRecord. Output | |
1416 ** parameter *pbOk is set to true if a value is extracted, or false | |
1417 ** otherwise. | |
1418 ** | |
1419 ** When this function is called, *ppRec must either point to an object | |
1420 ** allocated by an earlier call to this function, or must be NULL. If it | |
1421 ** is NULL and a value can be successfully extracted, a new UnpackedRecord | |
1422 ** is allocated (and *ppRec set to point to it) before returning. | |
1423 ** | |
1424 ** Unless an error is encountered, SQLITE_OK is returned. It is not an | |
1425 ** error if a value cannot be extracted from pExpr. If an error does | |
1426 ** occur, an SQLite error code is returned. | |
1427 */ | |
1428 int sqlite3Stat4ProbeSetValue( | |
1429 Parse *pParse, /* Parse context */ | |
1430 Index *pIdx, /* Index being probed */ | |
1431 UnpackedRecord **ppRec, /* IN/OUT: Probe record */ | |
1432 Expr *pExpr, /* The expression to extract a value from */ | |
1433 u8 affinity, /* Affinity to use */ | |
1434 int iVal, /* Array element to populate */ | |
1435 int *pbOk /* OUT: True if value was extracted */ | |
1436 ){ | |
1437 int rc; | |
1438 sqlite3_value *pVal = 0; | |
1439 struct ValueNewStat4Ctx alloc; | |
1440 | |
1441 alloc.pParse = pParse; | |
1442 alloc.pIdx = pIdx; | |
1443 alloc.ppRec = ppRec; | |
1444 alloc.iVal = iVal; | |
1445 | |
1446 rc = stat4ValueFromExpr(pParse, pExpr, affinity, &alloc, &pVal); | |
1447 assert( pVal==0 || pVal->db==pParse->db ); | |
1448 *pbOk = (pVal!=0); | |
1449 return rc; | |
1450 } | |
1451 | |
1452 /* | |
1453 ** Attempt to extract a value from expression pExpr using the methods | |
1454 ** as described for sqlite3Stat4ProbeSetValue() above. | |
1455 ** | |
1456 ** If successful, set *ppVal to point to a new value object and return | |
1457 ** SQLITE_OK. If no value can be extracted, but no other error occurs | |
1458 ** (e.g. OOM), return SQLITE_OK and set *ppVal to NULL. Or, if an error | |
1459 ** does occur, return an SQLite error code. The final value of *ppVal | |
1460 ** is undefined in this case. | |
1461 */ | |
1462 int sqlite3Stat4ValueFromExpr( | |
1463 Parse *pParse, /* Parse context */ | |
1464 Expr *pExpr, /* The expression to extract a value from */ | |
1465 u8 affinity, /* Affinity to use */ | |
1466 sqlite3_value **ppVal /* OUT: New value object (or NULL) */ | |
1467 ){ | |
1468 return stat4ValueFromExpr(pParse, pExpr, affinity, 0, ppVal); | |
1469 } | |
1470 | |
1471 /* | |
1472 ** Extract the iCol-th column from the nRec-byte record in pRec. Write | |
1473 ** the column value into *ppVal. If *ppVal is initially NULL then a new | |
1474 ** sqlite3_value object is allocated. | |
1475 ** | |
1476 ** If *ppVal is initially NULL then the caller is responsible for | |
1477 ** ensuring that the value written into *ppVal is eventually freed. | |
1478 */ | |
1479 int sqlite3Stat4Column( | |
1480 sqlite3 *db, /* Database handle */ | |
1481 const void *pRec, /* Pointer to buffer containing record */ | |
1482 int nRec, /* Size of buffer pRec in bytes */ | |
1483 int iCol, /* Column to extract */ | |
1484 sqlite3_value **ppVal /* OUT: Extracted value */ | |
1485 ){ | |
1486 u32 t; /* a column type code */ | |
1487 int nHdr; /* Size of the header in the record */ | |
1488 int iHdr; /* Next unread header byte */ | |
1489 int iField; /* Next unread data byte */ | |
1490 int szField; /* Size of the current data field */ | |
1491 int i; /* Column index */ | |
1492 u8 *a = (u8*)pRec; /* Typecast byte array */ | |
1493 Mem *pMem = *ppVal; /* Write result into this Mem object */ | |
1494 | |
1495 assert( iCol>0 ); | |
1496 iHdr = getVarint32(a, nHdr); | |
1497 if( nHdr>nRec || iHdr>=nHdr ) return SQLITE_CORRUPT_BKPT; | |
1498 iField = nHdr; | |
1499 for(i=0; i<=iCol; i++){ | |
1500 iHdr += getVarint32(&a[iHdr], t); | |
1501 testcase( iHdr==nHdr ); | |
1502 testcase( iHdr==nHdr+1 ); | |
1503 if( iHdr>nHdr ) return SQLITE_CORRUPT_BKPT; | |
1504 szField = sqlite3VdbeSerialTypeLen(t); | |
1505 iField += szField; | |
1506 } | |
1507 testcase( iField==nRec ); | |
1508 testcase( iField==nRec+1 ); | |
1509 if( iField>nRec ) return SQLITE_CORRUPT_BKPT; | |
1510 if( pMem==0 ){ | |
1511 pMem = *ppVal = sqlite3ValueNew(db); | |
1512 if( pMem==0 ) return SQLITE_NOMEM; | |
1513 } | |
1514 sqlite3VdbeSerialGet(&a[iField-szField], t, pMem); | |
1515 pMem->enc = ENC(db); | |
1516 return SQLITE_OK; | |
1517 } | |
1518 | |
1519 /* | |
1520 ** Unless it is NULL, the argument must be an UnpackedRecord object returned | |
1521 ** by an earlier call to sqlite3Stat4ProbeSetValue(). This call deletes | |
1522 ** the object. | |
1523 */ | |
1524 void sqlite3Stat4ProbeFree(UnpackedRecord *pRec){ | |
1525 if( pRec ){ | |
1526 int i; | |
1527 int nCol = pRec->pKeyInfo->nField+pRec->pKeyInfo->nXField; | |
1528 Mem *aMem = pRec->aMem; | |
1529 sqlite3 *db = aMem[0].db; | |
1530 for(i=0; i<nCol; i++){ | |
1531 if( aMem[i].szMalloc ) sqlite3DbFree(db, aMem[i].zMalloc); | |
1532 } | |
1533 sqlite3KeyInfoUnref(pRec->pKeyInfo); | |
1534 sqlite3DbFree(db, pRec); | |
1535 } | |
1536 } | |
1537 #endif /* ifdef SQLITE_ENABLE_STAT4 */ | |
1538 | |
1539 /* | |
1540 ** Change the string value of an sqlite3_value object | |
1541 */ | |
1542 void sqlite3ValueSetStr( | |
1543 sqlite3_value *v, /* Value to be set */ | |
1544 int n, /* Length of string z */ | |
1545 const void *z, /* Text of the new string */ | |
1546 u8 enc, /* Encoding to use */ | |
1547 void (*xDel)(void*) /* Destructor for the string */ | |
1548 ){ | |
1549 if( v ) sqlite3VdbeMemSetStr((Mem *)v, z, n, enc, xDel); | |
1550 } | |
1551 | |
1552 /* | |
1553 ** Free an sqlite3_value object | |
1554 */ | |
1555 void sqlite3ValueFree(sqlite3_value *v){ | |
1556 if( !v ) return; | |
1557 sqlite3VdbeMemRelease((Mem *)v); | |
1558 sqlite3DbFree(((Mem*)v)->db, v); | |
1559 } | |
1560 | |
1561 /* | |
1562 ** Return the number of bytes in the sqlite3_value object assuming | |
1563 ** that it uses the encoding "enc" | |
1564 */ | |
1565 int sqlite3ValueBytes(sqlite3_value *pVal, u8 enc){ | |
1566 Mem *p = (Mem*)pVal; | |
1567 if( (p->flags & MEM_Blob)!=0 || sqlite3ValueText(pVal, enc) ){ | |
1568 if( p->flags & MEM_Zero ){ | |
1569 return p->n + p->u.nZero; | |
1570 }else{ | |
1571 return p->n; | |
1572 } | |
1573 } | |
1574 return 0; | |
1575 } | |
OLD | NEW |