OLD | NEW |
| (Empty) |
1 /* | |
2 ** 2008 August 18 | |
3 ** | |
4 ** The author disclaims copyright to this source code. In place of | |
5 ** a legal notice, here is a blessing: | |
6 ** | |
7 ** May you do good and not evil. | |
8 ** May you find forgiveness for yourself and forgive others. | |
9 ** May you share freely, never taking more than you give. | |
10 ** | |
11 ************************************************************************* | |
12 ** | |
13 ** This file contains routines used for walking the parser tree and | |
14 ** resolve all identifiers by associating them with a particular | |
15 ** table and column. | |
16 */ | |
17 #include "sqliteInt.h" | |
18 #include <stdlib.h> | |
19 #include <string.h> | |
20 | |
21 /* | |
22 ** Walk the expression tree pExpr and increase the aggregate function | |
23 ** depth (the Expr.op2 field) by N on every TK_AGG_FUNCTION node. | |
24 ** This needs to occur when copying a TK_AGG_FUNCTION node from an | |
25 ** outer query into an inner subquery. | |
26 ** | |
27 ** incrAggFunctionDepth(pExpr,n) is the main routine. incrAggDepth(..) | |
28 ** is a helper function - a callback for the tree walker. | |
29 */ | |
30 static int incrAggDepth(Walker *pWalker, Expr *pExpr){ | |
31 if( pExpr->op==TK_AGG_FUNCTION ) pExpr->op2 += pWalker->u.i; | |
32 return WRC_Continue; | |
33 } | |
34 static void incrAggFunctionDepth(Expr *pExpr, int N){ | |
35 if( N>0 ){ | |
36 Walker w; | |
37 memset(&w, 0, sizeof(w)); | |
38 w.xExprCallback = incrAggDepth; | |
39 w.u.i = N; | |
40 sqlite3WalkExpr(&w, pExpr); | |
41 } | |
42 } | |
43 | |
44 /* | |
45 ** Turn the pExpr expression into an alias for the iCol-th column of the | |
46 ** result set in pEList. | |
47 ** | |
48 ** If the result set column is a simple column reference, then this routine | |
49 ** makes an exact copy. But for any other kind of expression, this | |
50 ** routine make a copy of the result set column as the argument to the | |
51 ** TK_AS operator. The TK_AS operator causes the expression to be | |
52 ** evaluated just once and then reused for each alias. | |
53 ** | |
54 ** The reason for suppressing the TK_AS term when the expression is a simple | |
55 ** column reference is so that the column reference will be recognized as | |
56 ** usable by indices within the WHERE clause processing logic. | |
57 ** | |
58 ** The TK_AS operator is inhibited if zType[0]=='G'. This means | |
59 ** that in a GROUP BY clause, the expression is evaluated twice. Hence: | |
60 ** | |
61 ** SELECT random()%5 AS x, count(*) FROM tab GROUP BY x | |
62 ** | |
63 ** Is equivalent to: | |
64 ** | |
65 ** SELECT random()%5 AS x, count(*) FROM tab GROUP BY random()%5 | |
66 ** | |
67 ** The result of random()%5 in the GROUP BY clause is probably different | |
68 ** from the result in the result-set. On the other hand Standard SQL does | |
69 ** not allow the GROUP BY clause to contain references to result-set columns. | |
70 ** So this should never come up in well-formed queries. | |
71 ** | |
72 ** If the reference is followed by a COLLATE operator, then make sure | |
73 ** the COLLATE operator is preserved. For example: | |
74 ** | |
75 ** SELECT a+b, c+d FROM t1 ORDER BY 1 COLLATE nocase; | |
76 ** | |
77 ** Should be transformed into: | |
78 ** | |
79 ** SELECT a+b, c+d FROM t1 ORDER BY (a+b) COLLATE nocase; | |
80 ** | |
81 ** The nSubquery parameter specifies how many levels of subquery the | |
82 ** alias is removed from the original expression. The usually value is | |
83 ** zero but it might be more if the alias is contained within a subquery | |
84 ** of the original expression. The Expr.op2 field of TK_AGG_FUNCTION | |
85 ** structures must be increased by the nSubquery amount. | |
86 */ | |
87 static void resolveAlias( | |
88 Parse *pParse, /* Parsing context */ | |
89 ExprList *pEList, /* A result set */ | |
90 int iCol, /* A column in the result set. 0..pEList->nExpr-1 */ | |
91 Expr *pExpr, /* Transform this into an alias to the result set */ | |
92 const char *zType, /* "GROUP" or "ORDER" or "" */ | |
93 int nSubquery /* Number of subqueries that the label is moving */ | |
94 ){ | |
95 Expr *pOrig; /* The iCol-th column of the result set */ | |
96 Expr *pDup; /* Copy of pOrig */ | |
97 sqlite3 *db; /* The database connection */ | |
98 | |
99 assert( iCol>=0 && iCol<pEList->nExpr ); | |
100 pOrig = pEList->a[iCol].pExpr; | |
101 assert( pOrig!=0 ); | |
102 assert( pOrig->flags & EP_Resolved ); | |
103 db = pParse->db; | |
104 pDup = sqlite3ExprDup(db, pOrig, 0); | |
105 if( pDup==0 ) return; | |
106 if( pOrig->op!=TK_COLUMN && zType[0]!='G' ){ | |
107 incrAggFunctionDepth(pDup, nSubquery); | |
108 pDup = sqlite3PExpr(pParse, TK_AS, pDup, 0, 0); | |
109 if( pDup==0 ) return; | |
110 ExprSetProperty(pDup, EP_Skip); | |
111 if( pEList->a[iCol].u.x.iAlias==0 ){ | |
112 pEList->a[iCol].u.x.iAlias = (u16)(++pParse->nAlias); | |
113 } | |
114 pDup->iTable = pEList->a[iCol].u.x.iAlias; | |
115 } | |
116 if( pExpr->op==TK_COLLATE ){ | |
117 pDup = sqlite3ExprAddCollateString(pParse, pDup, pExpr->u.zToken); | |
118 } | |
119 | |
120 /* Before calling sqlite3ExprDelete(), set the EP_Static flag. This | |
121 ** prevents ExprDelete() from deleting the Expr structure itself, | |
122 ** allowing it to be repopulated by the memcpy() on the following line. | |
123 ** The pExpr->u.zToken might point into memory that will be freed by the | |
124 ** sqlite3DbFree(db, pDup) on the last line of this block, so be sure to | |
125 ** make a copy of the token before doing the sqlite3DbFree(). | |
126 */ | |
127 ExprSetProperty(pExpr, EP_Static); | |
128 sqlite3ExprDelete(db, pExpr); | |
129 memcpy(pExpr, pDup, sizeof(*pExpr)); | |
130 if( !ExprHasProperty(pExpr, EP_IntValue) && pExpr->u.zToken!=0 ){ | |
131 assert( (pExpr->flags & (EP_Reduced|EP_TokenOnly))==0 ); | |
132 pExpr->u.zToken = sqlite3DbStrDup(db, pExpr->u.zToken); | |
133 pExpr->flags |= EP_MemToken; | |
134 } | |
135 sqlite3DbFree(db, pDup); | |
136 } | |
137 | |
138 | |
139 /* | |
140 ** Return TRUE if the name zCol occurs anywhere in the USING clause. | |
141 ** | |
142 ** Return FALSE if the USING clause is NULL or if it does not contain | |
143 ** zCol. | |
144 */ | |
145 static int nameInUsingClause(IdList *pUsing, const char *zCol){ | |
146 if( pUsing ){ | |
147 int k; | |
148 for(k=0; k<pUsing->nId; k++){ | |
149 if( sqlite3StrICmp(pUsing->a[k].zName, zCol)==0 ) return 1; | |
150 } | |
151 } | |
152 return 0; | |
153 } | |
154 | |
155 /* | |
156 ** Subqueries stores the original database, table and column names for their | |
157 ** result sets in ExprList.a[].zSpan, in the form "DATABASE.TABLE.COLUMN". | |
158 ** Check to see if the zSpan given to this routine matches the zDb, zTab, | |
159 ** and zCol. If any of zDb, zTab, and zCol are NULL then those fields will | |
160 ** match anything. | |
161 */ | |
162 int sqlite3MatchSpanName( | |
163 const char *zSpan, | |
164 const char *zCol, | |
165 const char *zTab, | |
166 const char *zDb | |
167 ){ | |
168 int n; | |
169 for(n=0; ALWAYS(zSpan[n]) && zSpan[n]!='.'; n++){} | |
170 if( zDb && (sqlite3StrNICmp(zSpan, zDb, n)!=0 || zDb[n]!=0) ){ | |
171 return 0; | |
172 } | |
173 zSpan += n+1; | |
174 for(n=0; ALWAYS(zSpan[n]) && zSpan[n]!='.'; n++){} | |
175 if( zTab && (sqlite3StrNICmp(zSpan, zTab, n)!=0 || zTab[n]!=0) ){ | |
176 return 0; | |
177 } | |
178 zSpan += n+1; | |
179 if( zCol && sqlite3StrICmp(zSpan, zCol)!=0 ){ | |
180 return 0; | |
181 } | |
182 return 1; | |
183 } | |
184 | |
185 /* | |
186 ** Given the name of a column of the form X.Y.Z or Y.Z or just Z, look up | |
187 ** that name in the set of source tables in pSrcList and make the pExpr | |
188 ** expression node refer back to that source column. The following changes | |
189 ** are made to pExpr: | |
190 ** | |
191 ** pExpr->iDb Set the index in db->aDb[] of the database X | |
192 ** (even if X is implied). | |
193 ** pExpr->iTable Set to the cursor number for the table obtained | |
194 ** from pSrcList. | |
195 ** pExpr->pTab Points to the Table structure of X.Y (even if | |
196 ** X and/or Y are implied.) | |
197 ** pExpr->iColumn Set to the column number within the table. | |
198 ** pExpr->op Set to TK_COLUMN. | |
199 ** pExpr->pLeft Any expression this points to is deleted | |
200 ** pExpr->pRight Any expression this points to is deleted. | |
201 ** | |
202 ** The zDb variable is the name of the database (the "X"). This value may be | |
203 ** NULL meaning that name is of the form Y.Z or Z. Any available database | |
204 ** can be used. The zTable variable is the name of the table (the "Y"). This | |
205 ** value can be NULL if zDb is also NULL. If zTable is NULL it | |
206 ** means that the form of the name is Z and that columns from any table | |
207 ** can be used. | |
208 ** | |
209 ** If the name cannot be resolved unambiguously, leave an error message | |
210 ** in pParse and return WRC_Abort. Return WRC_Prune on success. | |
211 */ | |
212 static int lookupName( | |
213 Parse *pParse, /* The parsing context */ | |
214 const char *zDb, /* Name of the database containing table, or NULL */ | |
215 const char *zTab, /* Name of table containing column, or NULL */ | |
216 const char *zCol, /* Name of the column. */ | |
217 NameContext *pNC, /* The name context used to resolve the name */ | |
218 Expr *pExpr /* Make this EXPR node point to the selected column */ | |
219 ){ | |
220 int i, j; /* Loop counters */ | |
221 int cnt = 0; /* Number of matching column names */ | |
222 int cntTab = 0; /* Number of matching table names */ | |
223 int nSubquery = 0; /* How many levels of subquery */ | |
224 sqlite3 *db = pParse->db; /* The database connection */ | |
225 struct SrcList_item *pItem; /* Use for looping over pSrcList items */ | |
226 struct SrcList_item *pMatch = 0; /* The matching pSrcList item */ | |
227 NameContext *pTopNC = pNC; /* First namecontext in the list */ | |
228 Schema *pSchema = 0; /* Schema of the expression */ | |
229 int isTrigger = 0; /* True if resolved to a trigger column */ | |
230 Table *pTab = 0; /* Table hold the row */ | |
231 Column *pCol; /* A column of pTab */ | |
232 | |
233 assert( pNC ); /* the name context cannot be NULL. */ | |
234 assert( zCol ); /* The Z in X.Y.Z cannot be NULL */ | |
235 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); | |
236 | |
237 /* Initialize the node to no-match */ | |
238 pExpr->iTable = -1; | |
239 pExpr->pTab = 0; | |
240 ExprSetVVAProperty(pExpr, EP_NoReduce); | |
241 | |
242 /* Translate the schema name in zDb into a pointer to the corresponding | |
243 ** schema. If not found, pSchema will remain NULL and nothing will match | |
244 ** resulting in an appropriate error message toward the end of this routine | |
245 */ | |
246 if( zDb ){ | |
247 testcase( pNC->ncFlags & NC_PartIdx ); | |
248 testcase( pNC->ncFlags & NC_IsCheck ); | |
249 if( (pNC->ncFlags & (NC_PartIdx|NC_IsCheck))!=0 ){ | |
250 /* Silently ignore database qualifiers inside CHECK constraints and partia
l | |
251 ** indices. Do not raise errors because that might break legacy and | |
252 ** because it does not hurt anything to just ignore the database name. */ | |
253 zDb = 0; | |
254 }else{ | |
255 for(i=0; i<db->nDb; i++){ | |
256 assert( db->aDb[i].zName ); | |
257 if( sqlite3StrICmp(db->aDb[i].zName,zDb)==0 ){ | |
258 pSchema = db->aDb[i].pSchema; | |
259 break; | |
260 } | |
261 } | |
262 } | |
263 } | |
264 | |
265 /* Start at the inner-most context and move outward until a match is found */ | |
266 while( pNC && cnt==0 ){ | |
267 ExprList *pEList; | |
268 SrcList *pSrcList = pNC->pSrcList; | |
269 | |
270 if( pSrcList ){ | |
271 for(i=0, pItem=pSrcList->a; i<pSrcList->nSrc; i++, pItem++){ | |
272 pTab = pItem->pTab; | |
273 assert( pTab!=0 && pTab->zName!=0 ); | |
274 assert( pTab->nCol>0 ); | |
275 if( pItem->pSelect && (pItem->pSelect->selFlags & SF_NestedFrom)!=0 ){ | |
276 int hit = 0; | |
277 pEList = pItem->pSelect->pEList; | |
278 for(j=0; j<pEList->nExpr; j++){ | |
279 if( sqlite3MatchSpanName(pEList->a[j].zSpan, zCol, zTab, zDb) ){ | |
280 cnt++; | |
281 cntTab = 2; | |
282 pMatch = pItem; | |
283 pExpr->iColumn = j; | |
284 hit = 1; | |
285 } | |
286 } | |
287 if( hit || zTab==0 ) continue; | |
288 } | |
289 if( zDb && pTab->pSchema!=pSchema ){ | |
290 continue; | |
291 } | |
292 if( zTab ){ | |
293 const char *zTabName = pItem->zAlias ? pItem->zAlias : pTab->zName; | |
294 assert( zTabName!=0 ); | |
295 if( sqlite3StrICmp(zTabName, zTab)!=0 ){ | |
296 continue; | |
297 } | |
298 } | |
299 if( 0==(cntTab++) ){ | |
300 pMatch = pItem; | |
301 } | |
302 for(j=0, pCol=pTab->aCol; j<pTab->nCol; j++, pCol++){ | |
303 if( sqlite3StrICmp(pCol->zName, zCol)==0 ){ | |
304 /* If there has been exactly one prior match and this match | |
305 ** is for the right-hand table of a NATURAL JOIN or is in a | |
306 ** USING clause, then skip this match. | |
307 */ | |
308 if( cnt==1 ){ | |
309 if( pItem->jointype & JT_NATURAL ) continue; | |
310 if( nameInUsingClause(pItem->pUsing, zCol) ) continue; | |
311 } | |
312 cnt++; | |
313 pMatch = pItem; | |
314 /* Substitute the rowid (column -1) for the INTEGER PRIMARY KEY */ | |
315 pExpr->iColumn = j==pTab->iPKey ? -1 : (i16)j; | |
316 break; | |
317 } | |
318 } | |
319 } | |
320 if( pMatch ){ | |
321 pExpr->iTable = pMatch->iCursor; | |
322 pExpr->pTab = pMatch->pTab; | |
323 assert( (pMatch->jointype & JT_RIGHT)==0 ); /* RIGHT JOIN not (yet) supp
orted */ | |
324 if( (pMatch->jointype & JT_LEFT)!=0 ){ | |
325 ExprSetProperty(pExpr, EP_CanBeNull); | |
326 } | |
327 pSchema = pExpr->pTab->pSchema; | |
328 } | |
329 } /* if( pSrcList ) */ | |
330 | |
331 #ifndef SQLITE_OMIT_TRIGGER | |
332 /* If we have not already resolved the name, then maybe | |
333 ** it is a new.* or old.* trigger argument reference | |
334 */ | |
335 if( zDb==0 && zTab!=0 && cntTab==0 && pParse->pTriggerTab!=0 ){ | |
336 int op = pParse->eTriggerOp; | |
337 assert( op==TK_DELETE || op==TK_UPDATE || op==TK_INSERT ); | |
338 if( op!=TK_DELETE && sqlite3StrICmp("new",zTab) == 0 ){ | |
339 pExpr->iTable = 1; | |
340 pTab = pParse->pTriggerTab; | |
341 }else if( op!=TK_INSERT && sqlite3StrICmp("old",zTab)==0 ){ | |
342 pExpr->iTable = 0; | |
343 pTab = pParse->pTriggerTab; | |
344 }else{ | |
345 pTab = 0; | |
346 } | |
347 | |
348 if( pTab ){ | |
349 int iCol; | |
350 pSchema = pTab->pSchema; | |
351 cntTab++; | |
352 for(iCol=0, pCol=pTab->aCol; iCol<pTab->nCol; iCol++, pCol++){ | |
353 if( sqlite3StrICmp(pCol->zName, zCol)==0 ){ | |
354 if( iCol==pTab->iPKey ){ | |
355 iCol = -1; | |
356 } | |
357 break; | |
358 } | |
359 } | |
360 if( iCol>=pTab->nCol && sqlite3IsRowid(zCol) && HasRowid(pTab) ){ | |
361 /* IMP: R-51414-32910 */ | |
362 /* IMP: R-44911-55124 */ | |
363 iCol = -1; | |
364 } | |
365 if( iCol<pTab->nCol ){ | |
366 cnt++; | |
367 if( iCol<0 ){ | |
368 pExpr->affinity = SQLITE_AFF_INTEGER; | |
369 }else if( pExpr->iTable==0 ){ | |
370 testcase( iCol==31 ); | |
371 testcase( iCol==32 ); | |
372 pParse->oldmask |= (iCol>=32 ? 0xffffffff : (((u32)1)<<iCol)); | |
373 }else{ | |
374 testcase( iCol==31 ); | |
375 testcase( iCol==32 ); | |
376 pParse->newmask |= (iCol>=32 ? 0xffffffff : (((u32)1)<<iCol)); | |
377 } | |
378 pExpr->iColumn = (i16)iCol; | |
379 pExpr->pTab = pTab; | |
380 isTrigger = 1; | |
381 } | |
382 } | |
383 } | |
384 #endif /* !defined(SQLITE_OMIT_TRIGGER) */ | |
385 | |
386 /* | |
387 ** Perhaps the name is a reference to the ROWID | |
388 */ | |
389 if( cnt==0 && cntTab==1 && pMatch && sqlite3IsRowid(zCol) | |
390 && HasRowid(pMatch->pTab) ){ | |
391 cnt = 1; | |
392 pExpr->iColumn = -1; /* IMP: R-44911-55124 */ | |
393 pExpr->affinity = SQLITE_AFF_INTEGER; | |
394 } | |
395 | |
396 /* | |
397 ** If the input is of the form Z (not Y.Z or X.Y.Z) then the name Z | |
398 ** might refer to an result-set alias. This happens, for example, when | |
399 ** we are resolving names in the WHERE clause of the following command: | |
400 ** | |
401 ** SELECT a+b AS x FROM table WHERE x<10; | |
402 ** | |
403 ** In cases like this, replace pExpr with a copy of the expression that | |
404 ** forms the result set entry ("a+b" in the example) and return immediately. | |
405 ** Note that the expression in the result set should have already been | |
406 ** resolved by the time the WHERE clause is resolved. | |
407 ** | |
408 ** The ability to use an output result-set column in the WHERE, GROUP BY, | |
409 ** or HAVING clauses, or as part of a larger expression in the ORDRE BY | |
410 ** clause is not standard SQL. This is a (goofy) SQLite extension, that | |
411 ** is supported for backwards compatibility only. TO DO: Issue a warning | |
412 ** on sqlite3_log() whenever the capability is used. | |
413 */ | |
414 if( (pEList = pNC->pEList)!=0 | |
415 && zTab==0 | |
416 && cnt==0 | |
417 ){ | |
418 for(j=0; j<pEList->nExpr; j++){ | |
419 char *zAs = pEList->a[j].zName; | |
420 if( zAs!=0 && sqlite3StrICmp(zAs, zCol)==0 ){ | |
421 Expr *pOrig; | |
422 assert( pExpr->pLeft==0 && pExpr->pRight==0 ); | |
423 assert( pExpr->x.pList==0 ); | |
424 assert( pExpr->x.pSelect==0 ); | |
425 pOrig = pEList->a[j].pExpr; | |
426 if( (pNC->ncFlags&NC_AllowAgg)==0 && ExprHasProperty(pOrig, EP_Agg) ){ | |
427 sqlite3ErrorMsg(pParse, "misuse of aliased aggregate %s", zAs); | |
428 return WRC_Abort; | |
429 } | |
430 resolveAlias(pParse, pEList, j, pExpr, "", nSubquery); | |
431 cnt = 1; | |
432 pMatch = 0; | |
433 assert( zTab==0 && zDb==0 ); | |
434 goto lookupname_end; | |
435 } | |
436 } | |
437 } | |
438 | |
439 /* Advance to the next name context. The loop will exit when either | |
440 ** we have a match (cnt>0) or when we run out of name contexts. | |
441 */ | |
442 if( cnt==0 ){ | |
443 pNC = pNC->pNext; | |
444 nSubquery++; | |
445 } | |
446 } | |
447 | |
448 /* | |
449 ** If X and Y are NULL (in other words if only the column name Z is | |
450 ** supplied) and the value of Z is enclosed in double-quotes, then | |
451 ** Z is a string literal if it doesn't match any column names. In that | |
452 ** case, we need to return right away and not make any changes to | |
453 ** pExpr. | |
454 ** | |
455 ** Because no reference was made to outer contexts, the pNC->nRef | |
456 ** fields are not changed in any context. | |
457 */ | |
458 if( cnt==0 && zTab==0 && ExprHasProperty(pExpr,EP_DblQuoted) ){ | |
459 pExpr->op = TK_STRING; | |
460 pExpr->pTab = 0; | |
461 return WRC_Prune; | |
462 } | |
463 | |
464 /* | |
465 ** cnt==0 means there was not match. cnt>1 means there were two or | |
466 ** more matches. Either way, we have an error. | |
467 */ | |
468 if( cnt!=1 ){ | |
469 const char *zErr; | |
470 zErr = cnt==0 ? "no such column" : "ambiguous column name"; | |
471 if( zDb ){ | |
472 sqlite3ErrorMsg(pParse, "%s: %s.%s.%s", zErr, zDb, zTab, zCol); | |
473 }else if( zTab ){ | |
474 sqlite3ErrorMsg(pParse, "%s: %s.%s", zErr, zTab, zCol); | |
475 }else{ | |
476 sqlite3ErrorMsg(pParse, "%s: %s", zErr, zCol); | |
477 } | |
478 pParse->checkSchema = 1; | |
479 pTopNC->nErr++; | |
480 } | |
481 | |
482 /* If a column from a table in pSrcList is referenced, then record | |
483 ** this fact in the pSrcList.a[].colUsed bitmask. Column 0 causes | |
484 ** bit 0 to be set. Column 1 sets bit 1. And so forth. If the | |
485 ** column number is greater than the number of bits in the bitmask | |
486 ** then set the high-order bit of the bitmask. | |
487 */ | |
488 if( pExpr->iColumn>=0 && pMatch!=0 ){ | |
489 int n = pExpr->iColumn; | |
490 testcase( n==BMS-1 ); | |
491 if( n>=BMS ){ | |
492 n = BMS-1; | |
493 } | |
494 assert( pMatch->iCursor==pExpr->iTable ); | |
495 pMatch->colUsed |= ((Bitmask)1)<<n; | |
496 } | |
497 | |
498 /* Clean up and return | |
499 */ | |
500 sqlite3ExprDelete(db, pExpr->pLeft); | |
501 pExpr->pLeft = 0; | |
502 sqlite3ExprDelete(db, pExpr->pRight); | |
503 pExpr->pRight = 0; | |
504 pExpr->op = (isTrigger ? TK_TRIGGER : TK_COLUMN); | |
505 lookupname_end: | |
506 if( cnt==1 ){ | |
507 assert( pNC!=0 ); | |
508 if( pExpr->op!=TK_AS ){ | |
509 sqlite3AuthRead(pParse, pExpr, pSchema, pNC->pSrcList); | |
510 } | |
511 /* Increment the nRef value on all name contexts from TopNC up to | |
512 ** the point where the name matched. */ | |
513 for(;;){ | |
514 assert( pTopNC!=0 ); | |
515 pTopNC->nRef++; | |
516 if( pTopNC==pNC ) break; | |
517 pTopNC = pTopNC->pNext; | |
518 } | |
519 return WRC_Prune; | |
520 } else { | |
521 return WRC_Abort; | |
522 } | |
523 } | |
524 | |
525 /* | |
526 ** Allocate and return a pointer to an expression to load the column iCol | |
527 ** from datasource iSrc in SrcList pSrc. | |
528 */ | |
529 Expr *sqlite3CreateColumnExpr(sqlite3 *db, SrcList *pSrc, int iSrc, int iCol){ | |
530 Expr *p = sqlite3ExprAlloc(db, TK_COLUMN, 0, 0); | |
531 if( p ){ | |
532 struct SrcList_item *pItem = &pSrc->a[iSrc]; | |
533 p->pTab = pItem->pTab; | |
534 p->iTable = pItem->iCursor; | |
535 if( p->pTab->iPKey==iCol ){ | |
536 p->iColumn = -1; | |
537 }else{ | |
538 p->iColumn = (ynVar)iCol; | |
539 testcase( iCol==BMS ); | |
540 testcase( iCol==BMS-1 ); | |
541 pItem->colUsed |= ((Bitmask)1)<<(iCol>=BMS ? BMS-1 : iCol); | |
542 } | |
543 ExprSetProperty(p, EP_Resolved); | |
544 } | |
545 return p; | |
546 } | |
547 | |
548 /* | |
549 ** Report an error that an expression is not valid for a partial index WHERE | |
550 ** clause. | |
551 */ | |
552 static void notValidPartIdxWhere( | |
553 Parse *pParse, /* Leave error message here */ | |
554 NameContext *pNC, /* The name context */ | |
555 const char *zMsg /* Type of error */ | |
556 ){ | |
557 if( (pNC->ncFlags & NC_PartIdx)!=0 ){ | |
558 sqlite3ErrorMsg(pParse, "%s prohibited in partial index WHERE clauses", | |
559 zMsg); | |
560 } | |
561 } | |
562 | |
563 #ifndef SQLITE_OMIT_CHECK | |
564 /* | |
565 ** Report an error that an expression is not valid for a CHECK constraint. | |
566 */ | |
567 static void notValidCheckConstraint( | |
568 Parse *pParse, /* Leave error message here */ | |
569 NameContext *pNC, /* The name context */ | |
570 const char *zMsg /* Type of error */ | |
571 ){ | |
572 if( (pNC->ncFlags & NC_IsCheck)!=0 ){ | |
573 sqlite3ErrorMsg(pParse,"%s prohibited in CHECK constraints", zMsg); | |
574 } | |
575 } | |
576 #else | |
577 # define notValidCheckConstraint(P,N,M) | |
578 #endif | |
579 | |
580 /* | |
581 ** Expression p should encode a floating point value between 1.0 and 0.0. | |
582 ** Return 1024 times this value. Or return -1 if p is not a floating point | |
583 ** value between 1.0 and 0.0. | |
584 */ | |
585 static int exprProbability(Expr *p){ | |
586 double r = -1.0; | |
587 if( p->op!=TK_FLOAT ) return -1; | |
588 sqlite3AtoF(p->u.zToken, &r, sqlite3Strlen30(p->u.zToken), SQLITE_UTF8); | |
589 assert( r>=0.0 ); | |
590 if( r>1.0 ) return -1; | |
591 return (int)(r*1000.0); | |
592 } | |
593 | |
594 /* | |
595 ** This routine is callback for sqlite3WalkExpr(). | |
596 ** | |
597 ** Resolve symbolic names into TK_COLUMN operators for the current | |
598 ** node in the expression tree. Return 0 to continue the search down | |
599 ** the tree or 2 to abort the tree walk. | |
600 ** | |
601 ** This routine also does error checking and name resolution for | |
602 ** function names. The operator for aggregate functions is changed | |
603 ** to TK_AGG_FUNCTION. | |
604 */ | |
605 static int resolveExprStep(Walker *pWalker, Expr *pExpr){ | |
606 NameContext *pNC; | |
607 Parse *pParse; | |
608 | |
609 pNC = pWalker->u.pNC; | |
610 assert( pNC!=0 ); | |
611 pParse = pNC->pParse; | |
612 assert( pParse==pWalker->pParse ); | |
613 | |
614 if( ExprHasProperty(pExpr, EP_Resolved) ) return WRC_Prune; | |
615 ExprSetProperty(pExpr, EP_Resolved); | |
616 #ifndef NDEBUG | |
617 if( pNC->pSrcList && pNC->pSrcList->nAlloc>0 ){ | |
618 SrcList *pSrcList = pNC->pSrcList; | |
619 int i; | |
620 for(i=0; i<pNC->pSrcList->nSrc; i++){ | |
621 assert( pSrcList->a[i].iCursor>=0 && pSrcList->a[i].iCursor<pParse->nTab); | |
622 } | |
623 } | |
624 #endif | |
625 switch( pExpr->op ){ | |
626 | |
627 #if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY) | |
628 /* The special operator TK_ROW means use the rowid for the first | |
629 ** column in the FROM clause. This is used by the LIMIT and ORDER BY | |
630 ** clause processing on UPDATE and DELETE statements. | |
631 */ | |
632 case TK_ROW: { | |
633 SrcList *pSrcList = pNC->pSrcList; | |
634 struct SrcList_item *pItem; | |
635 assert( pSrcList && pSrcList->nSrc==1 ); | |
636 pItem = pSrcList->a; | |
637 pExpr->op = TK_COLUMN; | |
638 pExpr->pTab = pItem->pTab; | |
639 pExpr->iTable = pItem->iCursor; | |
640 pExpr->iColumn = -1; | |
641 pExpr->affinity = SQLITE_AFF_INTEGER; | |
642 break; | |
643 } | |
644 #endif /* defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUB
QUERY) */ | |
645 | |
646 /* A lone identifier is the name of a column. | |
647 */ | |
648 case TK_ID: { | |
649 return lookupName(pParse, 0, 0, pExpr->u.zToken, pNC, pExpr); | |
650 } | |
651 | |
652 /* A table name and column name: ID.ID | |
653 ** Or a database, table and column: ID.ID.ID | |
654 */ | |
655 case TK_DOT: { | |
656 const char *zColumn; | |
657 const char *zTable; | |
658 const char *zDb; | |
659 Expr *pRight; | |
660 | |
661 /* if( pSrcList==0 ) break; */ | |
662 pRight = pExpr->pRight; | |
663 if( pRight->op==TK_ID ){ | |
664 zDb = 0; | |
665 zTable = pExpr->pLeft->u.zToken; | |
666 zColumn = pRight->u.zToken; | |
667 }else{ | |
668 assert( pRight->op==TK_DOT ); | |
669 zDb = pExpr->pLeft->u.zToken; | |
670 zTable = pRight->pLeft->u.zToken; | |
671 zColumn = pRight->pRight->u.zToken; | |
672 } | |
673 return lookupName(pParse, zDb, zTable, zColumn, pNC, pExpr); | |
674 } | |
675 | |
676 /* Resolve function names | |
677 */ | |
678 case TK_FUNCTION: { | |
679 ExprList *pList = pExpr->x.pList; /* The argument list */ | |
680 int n = pList ? pList->nExpr : 0; /* Number of arguments */ | |
681 int no_such_func = 0; /* True if no such function exists */ | |
682 int wrong_num_args = 0; /* True if wrong number of arguments */ | |
683 int is_agg = 0; /* True if is an aggregate function */ | |
684 int auth; /* Authorization to use the function */ | |
685 int nId; /* Number of characters in function name */ | |
686 const char *zId; /* The function name. */ | |
687 FuncDef *pDef; /* Information about the function */ | |
688 u8 enc = ENC(pParse->db); /* The database encoding */ | |
689 | |
690 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); | |
691 notValidPartIdxWhere(pParse, pNC, "functions"); | |
692 zId = pExpr->u.zToken; | |
693 nId = sqlite3Strlen30(zId); | |
694 pDef = sqlite3FindFunction(pParse->db, zId, nId, n, enc, 0); | |
695 if( pDef==0 ){ | |
696 pDef = sqlite3FindFunction(pParse->db, zId, nId, -2, enc, 0); | |
697 if( pDef==0 ){ | |
698 no_such_func = 1; | |
699 }else{ | |
700 wrong_num_args = 1; | |
701 } | |
702 }else{ | |
703 is_agg = pDef->xFunc==0; | |
704 if( pDef->funcFlags & SQLITE_FUNC_UNLIKELY ){ | |
705 ExprSetProperty(pExpr, EP_Unlikely|EP_Skip); | |
706 if( n==2 ){ | |
707 pExpr->iTable = exprProbability(pList->a[1].pExpr); | |
708 if( pExpr->iTable<0 ){ | |
709 sqlite3ErrorMsg(pParse, "second argument to likelihood() must be a
" | |
710 "constant between 0.0 and 1.0"); | |
711 pNC->nErr++; | |
712 } | |
713 }else{ | |
714 /* EVIDENCE-OF: R-61304-29449 The unlikely(X) function is equivalent
to | |
715 ** likelihood(X, 0.0625). | |
716 ** EVIDENCE-OF: R-01283-11636 The unlikely(X) function is short-hand
for | |
717 ** likelihood(X,0.0625). | |
718 ** EVIDENCE-OF: R-36850-34127 The likely(X) function is short-hand f
or | |
719 ** likelihood(X,0.9375). | |
720 ** EVIDENCE-OF: R-53436-40973 The likely(X) function is equivalent t
o | |
721 ** likelihood(X,0.9375). */ | |
722 /* TUNING: unlikely() probability is 0.0625. likely() is 0.9375 */ | |
723 pExpr->iTable = pDef->zName[0]=='u' ? 62 : 938; | |
724 } | |
725 } | |
726 #ifndef SQLITE_OMIT_AUTHORIZATION | |
727 auth = sqlite3AuthCheck(pParse, SQLITE_FUNCTION, 0, pDef->zName, 0); | |
728 if( auth!=SQLITE_OK ){ | |
729 if( auth==SQLITE_DENY ){ | |
730 sqlite3ErrorMsg(pParse, "not authorized to use function: %s", | |
731 pDef->zName); | |
732 pNC->nErr++; | |
733 } | |
734 pExpr->op = TK_NULL; | |
735 return WRC_Prune; | |
736 } | |
737 #endif | |
738 if( pDef->funcFlags & SQLITE_FUNC_CONSTANT ) ExprSetProperty(pExpr,EP_Co
nstant); | |
739 } | |
740 if( is_agg && (pNC->ncFlags & NC_AllowAgg)==0 ){ | |
741 sqlite3ErrorMsg(pParse, "misuse of aggregate function %.*s()", nId,zId); | |
742 pNC->nErr++; | |
743 is_agg = 0; | |
744 }else if( no_such_func && pParse->db->init.busy==0 ){ | |
745 sqlite3ErrorMsg(pParse, "no such function: %.*s", nId, zId); | |
746 pNC->nErr++; | |
747 }else if( wrong_num_args ){ | |
748 sqlite3ErrorMsg(pParse,"wrong number of arguments to function %.*s()", | |
749 nId, zId); | |
750 pNC->nErr++; | |
751 } | |
752 if( is_agg ) pNC->ncFlags &= ~NC_AllowAgg; | |
753 sqlite3WalkExprList(pWalker, pList); | |
754 if( is_agg ){ | |
755 NameContext *pNC2 = pNC; | |
756 pExpr->op = TK_AGG_FUNCTION; | |
757 pExpr->op2 = 0; | |
758 while( pNC2 && !sqlite3FunctionUsesThisSrc(pExpr, pNC2->pSrcList) ){ | |
759 pExpr->op2++; | |
760 pNC2 = pNC2->pNext; | |
761 } | |
762 assert( pDef!=0 ); | |
763 if( pNC2 ){ | |
764 assert( SQLITE_FUNC_MINMAX==NC_MinMaxAgg ); | |
765 testcase( (pDef->funcFlags & SQLITE_FUNC_MINMAX)!=0 ); | |
766 pNC2->ncFlags |= NC_HasAgg | (pDef->funcFlags & SQLITE_FUNC_MINMAX); | |
767 | |
768 } | |
769 pNC->ncFlags |= NC_AllowAgg; | |
770 } | |
771 /* FIX ME: Compute pExpr->affinity based on the expected return | |
772 ** type of the function | |
773 */ | |
774 return WRC_Prune; | |
775 } | |
776 #ifndef SQLITE_OMIT_SUBQUERY | |
777 case TK_SELECT: | |
778 case TK_EXISTS: testcase( pExpr->op==TK_EXISTS ); | |
779 #endif | |
780 case TK_IN: { | |
781 testcase( pExpr->op==TK_IN ); | |
782 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ | |
783 int nRef = pNC->nRef; | |
784 notValidCheckConstraint(pParse, pNC, "subqueries"); | |
785 notValidPartIdxWhere(pParse, pNC, "subqueries"); | |
786 sqlite3WalkSelect(pWalker, pExpr->x.pSelect); | |
787 assert( pNC->nRef>=nRef ); | |
788 if( nRef!=pNC->nRef ){ | |
789 ExprSetProperty(pExpr, EP_VarSelect); | |
790 } | |
791 } | |
792 break; | |
793 } | |
794 case TK_VARIABLE: { | |
795 notValidCheckConstraint(pParse, pNC, "parameters"); | |
796 notValidPartIdxWhere(pParse, pNC, "parameters"); | |
797 break; | |
798 } | |
799 } | |
800 return (pParse->nErr || pParse->db->mallocFailed) ? WRC_Abort : WRC_Continue; | |
801 } | |
802 | |
803 /* | |
804 ** pEList is a list of expressions which are really the result set of the | |
805 ** a SELECT statement. pE is a term in an ORDER BY or GROUP BY clause. | |
806 ** This routine checks to see if pE is a simple identifier which corresponds | |
807 ** to the AS-name of one of the terms of the expression list. If it is, | |
808 ** this routine return an integer between 1 and N where N is the number of | |
809 ** elements in pEList, corresponding to the matching entry. If there is | |
810 ** no match, or if pE is not a simple identifier, then this routine | |
811 ** return 0. | |
812 ** | |
813 ** pEList has been resolved. pE has not. | |
814 */ | |
815 static int resolveAsName( | |
816 Parse *pParse, /* Parsing context for error messages */ | |
817 ExprList *pEList, /* List of expressions to scan */ | |
818 Expr *pE /* Expression we are trying to match */ | |
819 ){ | |
820 int i; /* Loop counter */ | |
821 | |
822 UNUSED_PARAMETER(pParse); | |
823 | |
824 if( pE->op==TK_ID ){ | |
825 char *zCol = pE->u.zToken; | |
826 for(i=0; i<pEList->nExpr; i++){ | |
827 char *zAs = pEList->a[i].zName; | |
828 if( zAs!=0 && sqlite3StrICmp(zAs, zCol)==0 ){ | |
829 return i+1; | |
830 } | |
831 } | |
832 } | |
833 return 0; | |
834 } | |
835 | |
836 /* | |
837 ** pE is a pointer to an expression which is a single term in the | |
838 ** ORDER BY of a compound SELECT. The expression has not been | |
839 ** name resolved. | |
840 ** | |
841 ** At the point this routine is called, we already know that the | |
842 ** ORDER BY term is not an integer index into the result set. That | |
843 ** case is handled by the calling routine. | |
844 ** | |
845 ** Attempt to match pE against result set columns in the left-most | |
846 ** SELECT statement. Return the index i of the matching column, | |
847 ** as an indication to the caller that it should sort by the i-th column. | |
848 ** The left-most column is 1. In other words, the value returned is the | |
849 ** same integer value that would be used in the SQL statement to indicate | |
850 ** the column. | |
851 ** | |
852 ** If there is no match, return 0. Return -1 if an error occurs. | |
853 */ | |
854 static int resolveOrderByTermToExprList( | |
855 Parse *pParse, /* Parsing context for error messages */ | |
856 Select *pSelect, /* The SELECT statement with the ORDER BY clause */ | |
857 Expr *pE /* The specific ORDER BY term */ | |
858 ){ | |
859 int i; /* Loop counter */ | |
860 ExprList *pEList; /* The columns of the result set */ | |
861 NameContext nc; /* Name context for resolving pE */ | |
862 sqlite3 *db; /* Database connection */ | |
863 int rc; /* Return code from subprocedures */ | |
864 u8 savedSuppErr; /* Saved value of db->suppressErr */ | |
865 | |
866 assert( sqlite3ExprIsInteger(pE, &i)==0 ); | |
867 pEList = pSelect->pEList; | |
868 | |
869 /* Resolve all names in the ORDER BY term expression | |
870 */ | |
871 memset(&nc, 0, sizeof(nc)); | |
872 nc.pParse = pParse; | |
873 nc.pSrcList = pSelect->pSrc; | |
874 nc.pEList = pEList; | |
875 nc.ncFlags = NC_AllowAgg; | |
876 nc.nErr = 0; | |
877 db = pParse->db; | |
878 savedSuppErr = db->suppressErr; | |
879 db->suppressErr = 1; | |
880 rc = sqlite3ResolveExprNames(&nc, pE); | |
881 db->suppressErr = savedSuppErr; | |
882 if( rc ) return 0; | |
883 | |
884 /* Try to match the ORDER BY expression against an expression | |
885 ** in the result set. Return an 1-based index of the matching | |
886 ** result-set entry. | |
887 */ | |
888 for(i=0; i<pEList->nExpr; i++){ | |
889 if( sqlite3ExprCompare(pEList->a[i].pExpr, pE, -1)<2 ){ | |
890 return i+1; | |
891 } | |
892 } | |
893 | |
894 /* If no match, return 0. */ | |
895 return 0; | |
896 } | |
897 | |
898 /* | |
899 ** Generate an ORDER BY or GROUP BY term out-of-range error. | |
900 */ | |
901 static void resolveOutOfRangeError( | |
902 Parse *pParse, /* The error context into which to write the error */ | |
903 const char *zType, /* "ORDER" or "GROUP" */ | |
904 int i, /* The index (1-based) of the term out of range */ | |
905 int mx /* Largest permissible value of i */ | |
906 ){ | |
907 sqlite3ErrorMsg(pParse, | |
908 "%r %s BY term out of range - should be " | |
909 "between 1 and %d", i, zType, mx); | |
910 } | |
911 | |
912 /* | |
913 ** Analyze the ORDER BY clause in a compound SELECT statement. Modify | |
914 ** each term of the ORDER BY clause is a constant integer between 1 | |
915 ** and N where N is the number of columns in the compound SELECT. | |
916 ** | |
917 ** ORDER BY terms that are already an integer between 1 and N are | |
918 ** unmodified. ORDER BY terms that are integers outside the range of | |
919 ** 1 through N generate an error. ORDER BY terms that are expressions | |
920 ** are matched against result set expressions of compound SELECT | |
921 ** beginning with the left-most SELECT and working toward the right. | |
922 ** At the first match, the ORDER BY expression is transformed into | |
923 ** the integer column number. | |
924 ** | |
925 ** Return the number of errors seen. | |
926 */ | |
927 static int resolveCompoundOrderBy( | |
928 Parse *pParse, /* Parsing context. Leave error messages here */ | |
929 Select *pSelect /* The SELECT statement containing the ORDER BY */ | |
930 ){ | |
931 int i; | |
932 ExprList *pOrderBy; | |
933 ExprList *pEList; | |
934 sqlite3 *db; | |
935 int moreToDo = 1; | |
936 | |
937 pOrderBy = pSelect->pOrderBy; | |
938 if( pOrderBy==0 ) return 0; | |
939 db = pParse->db; | |
940 #if SQLITE_MAX_COLUMN | |
941 if( pOrderBy->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ | |
942 sqlite3ErrorMsg(pParse, "too many terms in ORDER BY clause"); | |
943 return 1; | |
944 } | |
945 #endif | |
946 for(i=0; i<pOrderBy->nExpr; i++){ | |
947 pOrderBy->a[i].done = 0; | |
948 } | |
949 pSelect->pNext = 0; | |
950 while( pSelect->pPrior ){ | |
951 pSelect->pPrior->pNext = pSelect; | |
952 pSelect = pSelect->pPrior; | |
953 } | |
954 while( pSelect && moreToDo ){ | |
955 struct ExprList_item *pItem; | |
956 moreToDo = 0; | |
957 pEList = pSelect->pEList; | |
958 assert( pEList!=0 ); | |
959 for(i=0, pItem=pOrderBy->a; i<pOrderBy->nExpr; i++, pItem++){ | |
960 int iCol = -1; | |
961 Expr *pE, *pDup; | |
962 if( pItem->done ) continue; | |
963 pE = sqlite3ExprSkipCollate(pItem->pExpr); | |
964 if( sqlite3ExprIsInteger(pE, &iCol) ){ | |
965 if( iCol<=0 || iCol>pEList->nExpr ){ | |
966 resolveOutOfRangeError(pParse, "ORDER", i+1, pEList->nExpr); | |
967 return 1; | |
968 } | |
969 }else{ | |
970 iCol = resolveAsName(pParse, pEList, pE); | |
971 if( iCol==0 ){ | |
972 pDup = sqlite3ExprDup(db, pE, 0); | |
973 if( !db->mallocFailed ){ | |
974 assert(pDup); | |
975 iCol = resolveOrderByTermToExprList(pParse, pSelect, pDup); | |
976 } | |
977 sqlite3ExprDelete(db, pDup); | |
978 } | |
979 } | |
980 if( iCol>0 ){ | |
981 /* Convert the ORDER BY term into an integer column number iCol, | |
982 ** taking care to preserve the COLLATE clause if it exists */ | |
983 Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0); | |
984 if( pNew==0 ) return 1; | |
985 pNew->flags |= EP_IntValue; | |
986 pNew->u.iValue = iCol; | |
987 if( pItem->pExpr==pE ){ | |
988 pItem->pExpr = pNew; | |
989 }else{ | |
990 assert( pItem->pExpr->op==TK_COLLATE ); | |
991 assert( pItem->pExpr->pLeft==pE ); | |
992 pItem->pExpr->pLeft = pNew; | |
993 } | |
994 sqlite3ExprDelete(db, pE); | |
995 pItem->u.x.iOrderByCol = (u16)iCol; | |
996 pItem->done = 1; | |
997 }else{ | |
998 moreToDo = 1; | |
999 } | |
1000 } | |
1001 pSelect = pSelect->pNext; | |
1002 } | |
1003 for(i=0; i<pOrderBy->nExpr; i++){ | |
1004 if( pOrderBy->a[i].done==0 ){ | |
1005 sqlite3ErrorMsg(pParse, "%r ORDER BY term does not match any " | |
1006 "column in the result set", i+1); | |
1007 return 1; | |
1008 } | |
1009 } | |
1010 return 0; | |
1011 } | |
1012 | |
1013 /* | |
1014 ** Check every term in the ORDER BY or GROUP BY clause pOrderBy of | |
1015 ** the SELECT statement pSelect. If any term is reference to a | |
1016 ** result set expression (as determined by the ExprList.a.u.x.iOrderByCol | |
1017 ** field) then convert that term into a copy of the corresponding result set | |
1018 ** column. | |
1019 ** | |
1020 ** If any errors are detected, add an error message to pParse and | |
1021 ** return non-zero. Return zero if no errors are seen. | |
1022 */ | |
1023 int sqlite3ResolveOrderGroupBy( | |
1024 Parse *pParse, /* Parsing context. Leave error messages here */ | |
1025 Select *pSelect, /* The SELECT statement containing the clause */ | |
1026 ExprList *pOrderBy, /* The ORDER BY or GROUP BY clause to be processed */ | |
1027 const char *zType /* "ORDER" or "GROUP" */ | |
1028 ){ | |
1029 int i; | |
1030 sqlite3 *db = pParse->db; | |
1031 ExprList *pEList; | |
1032 struct ExprList_item *pItem; | |
1033 | |
1034 if( pOrderBy==0 || pParse->db->mallocFailed ) return 0; | |
1035 #if SQLITE_MAX_COLUMN | |
1036 if( pOrderBy->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ | |
1037 sqlite3ErrorMsg(pParse, "too many terms in %s BY clause", zType); | |
1038 return 1; | |
1039 } | |
1040 #endif | |
1041 pEList = pSelect->pEList; | |
1042 assert( pEList!=0 ); /* sqlite3SelectNew() guarantees this */ | |
1043 for(i=0, pItem=pOrderBy->a; i<pOrderBy->nExpr; i++, pItem++){ | |
1044 if( pItem->u.x.iOrderByCol ){ | |
1045 if( pItem->u.x.iOrderByCol>pEList->nExpr ){ | |
1046 resolveOutOfRangeError(pParse, zType, i+1, pEList->nExpr); | |
1047 return 1; | |
1048 } | |
1049 resolveAlias(pParse, pEList, pItem->u.x.iOrderByCol-1, pItem->pExpr, zType
,0); | |
1050 } | |
1051 } | |
1052 return 0; | |
1053 } | |
1054 | |
1055 /* | |
1056 ** pOrderBy is an ORDER BY or GROUP BY clause in SELECT statement pSelect. | |
1057 ** The Name context of the SELECT statement is pNC. zType is either | |
1058 ** "ORDER" or "GROUP" depending on which type of clause pOrderBy is. | |
1059 ** | |
1060 ** This routine resolves each term of the clause into an expression. | |
1061 ** If the order-by term is an integer I between 1 and N (where N is the | |
1062 ** number of columns in the result set of the SELECT) then the expression | |
1063 ** in the resolution is a copy of the I-th result-set expression. If | |
1064 ** the order-by term is an identifier that corresponds to the AS-name of | |
1065 ** a result-set expression, then the term resolves to a copy of the | |
1066 ** result-set expression. Otherwise, the expression is resolved in | |
1067 ** the usual way - using sqlite3ResolveExprNames(). | |
1068 ** | |
1069 ** This routine returns the number of errors. If errors occur, then | |
1070 ** an appropriate error message might be left in pParse. (OOM errors | |
1071 ** excepted.) | |
1072 */ | |
1073 static int resolveOrderGroupBy( | |
1074 NameContext *pNC, /* The name context of the SELECT statement */ | |
1075 Select *pSelect, /* The SELECT statement holding pOrderBy */ | |
1076 ExprList *pOrderBy, /* An ORDER BY or GROUP BY clause to resolve */ | |
1077 const char *zType /* Either "ORDER" or "GROUP", as appropriate */ | |
1078 ){ | |
1079 int i, j; /* Loop counters */ | |
1080 int iCol; /* Column number */ | |
1081 struct ExprList_item *pItem; /* A term of the ORDER BY clause */ | |
1082 Parse *pParse; /* Parsing context */ | |
1083 int nResult; /* Number of terms in the result set */ | |
1084 | |
1085 if( pOrderBy==0 ) return 0; | |
1086 nResult = pSelect->pEList->nExpr; | |
1087 pParse = pNC->pParse; | |
1088 for(i=0, pItem=pOrderBy->a; i<pOrderBy->nExpr; i++, pItem++){ | |
1089 Expr *pE = pItem->pExpr; | |
1090 Expr *pE2 = sqlite3ExprSkipCollate(pE); | |
1091 if( zType[0]!='G' ){ | |
1092 iCol = resolveAsName(pParse, pSelect->pEList, pE2); | |
1093 if( iCol>0 ){ | |
1094 /* If an AS-name match is found, mark this ORDER BY column as being | |
1095 ** a copy of the iCol-th result-set column. The subsequent call to | |
1096 ** sqlite3ResolveOrderGroupBy() will convert the expression to a | |
1097 ** copy of the iCol-th result-set expression. */ | |
1098 pItem->u.x.iOrderByCol = (u16)iCol; | |
1099 continue; | |
1100 } | |
1101 } | |
1102 if( sqlite3ExprIsInteger(pE2, &iCol) ){ | |
1103 /* The ORDER BY term is an integer constant. Again, set the column | |
1104 ** number so that sqlite3ResolveOrderGroupBy() will convert the | |
1105 ** order-by term to a copy of the result-set expression */ | |
1106 if( iCol<1 || iCol>0xffff ){ | |
1107 resolveOutOfRangeError(pParse, zType, i+1, nResult); | |
1108 return 1; | |
1109 } | |
1110 pItem->u.x.iOrderByCol = (u16)iCol; | |
1111 continue; | |
1112 } | |
1113 | |
1114 /* Otherwise, treat the ORDER BY term as an ordinary expression */ | |
1115 pItem->u.x.iOrderByCol = 0; | |
1116 if( sqlite3ResolveExprNames(pNC, pE) ){ | |
1117 return 1; | |
1118 } | |
1119 for(j=0; j<pSelect->pEList->nExpr; j++){ | |
1120 if( sqlite3ExprCompare(pE, pSelect->pEList->a[j].pExpr, -1)==0 ){ | |
1121 pItem->u.x.iOrderByCol = j+1; | |
1122 } | |
1123 } | |
1124 } | |
1125 return sqlite3ResolveOrderGroupBy(pParse, pSelect, pOrderBy, zType); | |
1126 } | |
1127 | |
1128 /* | |
1129 ** Resolve names in the SELECT statement p and all of its descendants. | |
1130 */ | |
1131 static int resolveSelectStep(Walker *pWalker, Select *p){ | |
1132 NameContext *pOuterNC; /* Context that contains this SELECT */ | |
1133 NameContext sNC; /* Name context of this SELECT */ | |
1134 int isCompound; /* True if p is a compound select */ | |
1135 int nCompound; /* Number of compound terms processed so far */ | |
1136 Parse *pParse; /* Parsing context */ | |
1137 ExprList *pEList; /* Result set expression list */ | |
1138 int i; /* Loop counter */ | |
1139 ExprList *pGroupBy; /* The GROUP BY clause */ | |
1140 Select *pLeftmost; /* Left-most of SELECT of a compound */ | |
1141 sqlite3 *db; /* Database connection */ | |
1142 | |
1143 | |
1144 assert( p!=0 ); | |
1145 if( p->selFlags & SF_Resolved ){ | |
1146 return WRC_Prune; | |
1147 } | |
1148 pOuterNC = pWalker->u.pNC; | |
1149 pParse = pWalker->pParse; | |
1150 db = pParse->db; | |
1151 | |
1152 /* Normally sqlite3SelectExpand() will be called first and will have | |
1153 ** already expanded this SELECT. However, if this is a subquery within | |
1154 ** an expression, sqlite3ResolveExprNames() will be called without a | |
1155 ** prior call to sqlite3SelectExpand(). When that happens, let | |
1156 ** sqlite3SelectPrep() do all of the processing for this SELECT. | |
1157 ** sqlite3SelectPrep() will invoke both sqlite3SelectExpand() and | |
1158 ** this routine in the correct order. | |
1159 */ | |
1160 if( (p->selFlags & SF_Expanded)==0 ){ | |
1161 sqlite3SelectPrep(pParse, p, pOuterNC); | |
1162 return (pParse->nErr || db->mallocFailed) ? WRC_Abort : WRC_Prune; | |
1163 } | |
1164 | |
1165 isCompound = p->pPrior!=0; | |
1166 nCompound = 0; | |
1167 pLeftmost = p; | |
1168 while( p ){ | |
1169 assert( (p->selFlags & SF_Expanded)!=0 ); | |
1170 assert( (p->selFlags & SF_Resolved)==0 ); | |
1171 p->selFlags |= SF_Resolved; | |
1172 | |
1173 /* Resolve the expressions in the LIMIT and OFFSET clauses. These | |
1174 ** are not allowed to refer to any names, so pass an empty NameContext. | |
1175 */ | |
1176 memset(&sNC, 0, sizeof(sNC)); | |
1177 sNC.pParse = pParse; | |
1178 if( sqlite3ResolveExprNames(&sNC, p->pLimit) || | |
1179 sqlite3ResolveExprNames(&sNC, p->pOffset) ){ | |
1180 return WRC_Abort; | |
1181 } | |
1182 | |
1183 /* Recursively resolve names in all subqueries | |
1184 */ | |
1185 for(i=0; i<p->pSrc->nSrc; i++){ | |
1186 struct SrcList_item *pItem = &p->pSrc->a[i]; | |
1187 if( pItem->pSelect ){ | |
1188 NameContext *pNC; /* Used to iterate name contexts */ | |
1189 int nRef = 0; /* Refcount for pOuterNC and outer contexts */ | |
1190 const char *zSavedContext = pParse->zAuthContext; | |
1191 | |
1192 /* Count the total number of references to pOuterNC and all of its | |
1193 ** parent contexts. After resolving references to expressions in | |
1194 ** pItem->pSelect, check if this value has changed. If so, then | |
1195 ** SELECT statement pItem->pSelect must be correlated. Set the | |
1196 ** pItem->isCorrelated flag if this is the case. */ | |
1197 for(pNC=pOuterNC; pNC; pNC=pNC->pNext) nRef += pNC->nRef; | |
1198 | |
1199 if( pItem->zName ) pParse->zAuthContext = pItem->zName; | |
1200 sqlite3ResolveSelectNames(pParse, pItem->pSelect, pOuterNC); | |
1201 pParse->zAuthContext = zSavedContext; | |
1202 if( pParse->nErr || db->mallocFailed ) return WRC_Abort; | |
1203 | |
1204 for(pNC=pOuterNC; pNC; pNC=pNC->pNext) nRef -= pNC->nRef; | |
1205 assert( pItem->isCorrelated==0 && nRef<=0 ); | |
1206 pItem->isCorrelated = (nRef!=0); | |
1207 } | |
1208 } | |
1209 | |
1210 /* Set up the local name-context to pass to sqlite3ResolveExprNames() to | |
1211 ** resolve the result-set expression list. | |
1212 */ | |
1213 sNC.ncFlags = NC_AllowAgg; | |
1214 sNC.pSrcList = p->pSrc; | |
1215 sNC.pNext = pOuterNC; | |
1216 | |
1217 /* Resolve names in the result set. */ | |
1218 pEList = p->pEList; | |
1219 assert( pEList!=0 ); | |
1220 for(i=0; i<pEList->nExpr; i++){ | |
1221 Expr *pX = pEList->a[i].pExpr; | |
1222 if( sqlite3ResolveExprNames(&sNC, pX) ){ | |
1223 return WRC_Abort; | |
1224 } | |
1225 } | |
1226 | |
1227 /* If there are no aggregate functions in the result-set, and no GROUP BY | |
1228 ** expression, do not allow aggregates in any of the other expressions. | |
1229 */ | |
1230 assert( (p->selFlags & SF_Aggregate)==0 ); | |
1231 pGroupBy = p->pGroupBy; | |
1232 if( pGroupBy || (sNC.ncFlags & NC_HasAgg)!=0 ){ | |
1233 assert( NC_MinMaxAgg==SF_MinMaxAgg ); | |
1234 p->selFlags |= SF_Aggregate | (sNC.ncFlags&NC_MinMaxAgg); | |
1235 }else{ | |
1236 sNC.ncFlags &= ~NC_AllowAgg; | |
1237 } | |
1238 | |
1239 /* If a HAVING clause is present, then there must be a GROUP BY clause. | |
1240 */ | |
1241 if( p->pHaving && !pGroupBy ){ | |
1242 sqlite3ErrorMsg(pParse, "a GROUP BY clause is required before HAVING"); | |
1243 return WRC_Abort; | |
1244 } | |
1245 | |
1246 /* Add the output column list to the name-context before parsing the | |
1247 ** other expressions in the SELECT statement. This is so that | |
1248 ** expressions in the WHERE clause (etc.) can refer to expressions by | |
1249 ** aliases in the result set. | |
1250 ** | |
1251 ** Minor point: If this is the case, then the expression will be | |
1252 ** re-evaluated for each reference to it. | |
1253 */ | |
1254 sNC.pEList = p->pEList; | |
1255 if( sqlite3ResolveExprNames(&sNC, p->pHaving) ) return WRC_Abort; | |
1256 if( sqlite3ResolveExprNames(&sNC, p->pWhere) ) return WRC_Abort; | |
1257 | |
1258 /* The ORDER BY and GROUP BY clauses may not refer to terms in | |
1259 ** outer queries | |
1260 */ | |
1261 sNC.pNext = 0; | |
1262 sNC.ncFlags |= NC_AllowAgg; | |
1263 | |
1264 /* Process the ORDER BY clause for singleton SELECT statements. | |
1265 ** The ORDER BY clause for compounds SELECT statements is handled | |
1266 ** below, after all of the result-sets for all of the elements of | |
1267 ** the compound have been resolved. | |
1268 */ | |
1269 if( !isCompound && resolveOrderGroupBy(&sNC, p, p->pOrderBy, "ORDER") ){ | |
1270 return WRC_Abort; | |
1271 } | |
1272 if( db->mallocFailed ){ | |
1273 return WRC_Abort; | |
1274 } | |
1275 | |
1276 /* Resolve the GROUP BY clause. At the same time, make sure | |
1277 ** the GROUP BY clause does not contain aggregate functions. | |
1278 */ | |
1279 if( pGroupBy ){ | |
1280 struct ExprList_item *pItem; | |
1281 | |
1282 if( resolveOrderGroupBy(&sNC, p, pGroupBy, "GROUP") || db->mallocFailed ){ | |
1283 return WRC_Abort; | |
1284 } | |
1285 for(i=0, pItem=pGroupBy->a; i<pGroupBy->nExpr; i++, pItem++){ | |
1286 if( ExprHasProperty(pItem->pExpr, EP_Agg) ){ | |
1287 sqlite3ErrorMsg(pParse, "aggregate functions are not allowed in " | |
1288 "the GROUP BY clause"); | |
1289 return WRC_Abort; | |
1290 } | |
1291 } | |
1292 } | |
1293 | |
1294 /* Advance to the next term of the compound | |
1295 */ | |
1296 p = p->pPrior; | |
1297 nCompound++; | |
1298 } | |
1299 | |
1300 /* Resolve the ORDER BY on a compound SELECT after all terms of | |
1301 ** the compound have been resolved. | |
1302 */ | |
1303 if( isCompound && resolveCompoundOrderBy(pParse, pLeftmost) ){ | |
1304 return WRC_Abort; | |
1305 } | |
1306 | |
1307 return WRC_Prune; | |
1308 } | |
1309 | |
1310 /* | |
1311 ** This routine walks an expression tree and resolves references to | |
1312 ** table columns and result-set columns. At the same time, do error | |
1313 ** checking on function usage and set a flag if any aggregate functions | |
1314 ** are seen. | |
1315 ** | |
1316 ** To resolve table columns references we look for nodes (or subtrees) of the | |
1317 ** form X.Y.Z or Y.Z or just Z where | |
1318 ** | |
1319 ** X: The name of a database. Ex: "main" or "temp" or | |
1320 ** the symbolic name assigned to an ATTACH-ed database. | |
1321 ** | |
1322 ** Y: The name of a table in a FROM clause. Or in a trigger | |
1323 ** one of the special names "old" or "new". | |
1324 ** | |
1325 ** Z: The name of a column in table Y. | |
1326 ** | |
1327 ** The node at the root of the subtree is modified as follows: | |
1328 ** | |
1329 ** Expr.op Changed to TK_COLUMN | |
1330 ** Expr.pTab Points to the Table object for X.Y | |
1331 ** Expr.iColumn The column index in X.Y. -1 for the rowid. | |
1332 ** Expr.iTable The VDBE cursor number for X.Y | |
1333 ** | |
1334 ** | |
1335 ** To resolve result-set references, look for expression nodes of the | |
1336 ** form Z (with no X and Y prefix) where the Z matches the right-hand | |
1337 ** size of an AS clause in the result-set of a SELECT. The Z expression | |
1338 ** is replaced by a copy of the left-hand side of the result-set expression. | |
1339 ** Table-name and function resolution occurs on the substituted expression | |
1340 ** tree. For example, in: | |
1341 ** | |
1342 ** SELECT a+b AS x, c+d AS y FROM t1 ORDER BY x; | |
1343 ** | |
1344 ** The "x" term of the order by is replaced by "a+b" to render: | |
1345 ** | |
1346 ** SELECT a+b AS x, c+d AS y FROM t1 ORDER BY a+b; | |
1347 ** | |
1348 ** Function calls are checked to make sure that the function is | |
1349 ** defined and that the correct number of arguments are specified. | |
1350 ** If the function is an aggregate function, then the NC_HasAgg flag is | |
1351 ** set and the opcode is changed from TK_FUNCTION to TK_AGG_FUNCTION. | |
1352 ** If an expression contains aggregate functions then the EP_Agg | |
1353 ** property on the expression is set. | |
1354 ** | |
1355 ** An error message is left in pParse if anything is amiss. The number | |
1356 ** if errors is returned. | |
1357 */ | |
1358 int sqlite3ResolveExprNames( | |
1359 NameContext *pNC, /* Namespace to resolve expressions in. */ | |
1360 Expr *pExpr /* The expression to be analyzed. */ | |
1361 ){ | |
1362 u16 savedHasAgg; | |
1363 Walker w; | |
1364 | |
1365 if( pExpr==0 ) return 0; | |
1366 #if SQLITE_MAX_EXPR_DEPTH>0 | |
1367 { | |
1368 Parse *pParse = pNC->pParse; | |
1369 if( sqlite3ExprCheckHeight(pParse, pExpr->nHeight+pNC->pParse->nHeight) ){ | |
1370 return 1; | |
1371 } | |
1372 pParse->nHeight += pExpr->nHeight; | |
1373 } | |
1374 #endif | |
1375 savedHasAgg = pNC->ncFlags & (NC_HasAgg|NC_MinMaxAgg); | |
1376 pNC->ncFlags &= ~(NC_HasAgg|NC_MinMaxAgg); | |
1377 memset(&w, 0, sizeof(w)); | |
1378 w.xExprCallback = resolveExprStep; | |
1379 w.xSelectCallback = resolveSelectStep; | |
1380 w.pParse = pNC->pParse; | |
1381 w.u.pNC = pNC; | |
1382 sqlite3WalkExpr(&w, pExpr); | |
1383 #if SQLITE_MAX_EXPR_DEPTH>0 | |
1384 pNC->pParse->nHeight -= pExpr->nHeight; | |
1385 #endif | |
1386 if( pNC->nErr>0 || w.pParse->nErr>0 ){ | |
1387 ExprSetProperty(pExpr, EP_Error); | |
1388 } | |
1389 if( pNC->ncFlags & NC_HasAgg ){ | |
1390 ExprSetProperty(pExpr, EP_Agg); | |
1391 } | |
1392 pNC->ncFlags |= savedHasAgg; | |
1393 return ExprHasProperty(pExpr, EP_Error); | |
1394 } | |
1395 | |
1396 | |
1397 /* | |
1398 ** Resolve all names in all expressions of a SELECT and in all | |
1399 ** decendents of the SELECT, including compounds off of p->pPrior, | |
1400 ** subqueries in expressions, and subqueries used as FROM clause | |
1401 ** terms. | |
1402 ** | |
1403 ** See sqlite3ResolveExprNames() for a description of the kinds of | |
1404 ** transformations that occur. | |
1405 ** | |
1406 ** All SELECT statements should have been expanded using | |
1407 ** sqlite3SelectExpand() prior to invoking this routine. | |
1408 */ | |
1409 void sqlite3ResolveSelectNames( | |
1410 Parse *pParse, /* The parser context */ | |
1411 Select *p, /* The SELECT statement being coded. */ | |
1412 NameContext *pOuterNC /* Name context for parent SELECT statement */ | |
1413 ){ | |
1414 Walker w; | |
1415 | |
1416 assert( p!=0 ); | |
1417 memset(&w, 0, sizeof(w)); | |
1418 w.xExprCallback = resolveExprStep; | |
1419 w.xSelectCallback = resolveSelectStep; | |
1420 w.pParse = pParse; | |
1421 w.u.pNC = pOuterNC; | |
1422 sqlite3WalkSelect(&w, p); | |
1423 } | |
1424 | |
1425 /* | |
1426 ** Resolve names in expressions that can only reference a single table: | |
1427 ** | |
1428 ** * CHECK constraints | |
1429 ** * WHERE clauses on partial indices | |
1430 ** | |
1431 ** The Expr.iTable value for Expr.op==TK_COLUMN nodes of the expression | |
1432 ** is set to -1 and the Expr.iColumn value is set to the column number. | |
1433 ** | |
1434 ** Any errors cause an error message to be set in pParse. | |
1435 */ | |
1436 void sqlite3ResolveSelfReference( | |
1437 Parse *pParse, /* Parsing context */ | |
1438 Table *pTab, /* The table being referenced */ | |
1439 int type, /* NC_IsCheck or NC_PartIdx */ | |
1440 Expr *pExpr, /* Expression to resolve. May be NULL. */ | |
1441 ExprList *pList /* Expression list to resolve. May be NUL. */ | |
1442 ){ | |
1443 SrcList sSrc; /* Fake SrcList for pParse->pNewTable */ | |
1444 NameContext sNC; /* Name context for pParse->pNewTable */ | |
1445 int i; /* Loop counter */ | |
1446 | |
1447 assert( type==NC_IsCheck || type==NC_PartIdx ); | |
1448 memset(&sNC, 0, sizeof(sNC)); | |
1449 memset(&sSrc, 0, sizeof(sSrc)); | |
1450 sSrc.nSrc = 1; | |
1451 sSrc.a[0].zName = pTab->zName; | |
1452 sSrc.a[0].pTab = pTab; | |
1453 sSrc.a[0].iCursor = -1; | |
1454 sNC.pParse = pParse; | |
1455 sNC.pSrcList = &sSrc; | |
1456 sNC.ncFlags = type; | |
1457 if( sqlite3ResolveExprNames(&sNC, pExpr) ) return; | |
1458 if( pList ){ | |
1459 for(i=0; i<pList->nExpr; i++){ | |
1460 if( sqlite3ResolveExprNames(&sNC, pList->a[i].pExpr) ){ | |
1461 return; | |
1462 } | |
1463 } | |
1464 } | |
1465 } | |
OLD | NEW |