OLD | NEW |
| (Empty) |
1 /* | |
2 ** 2008 August 05 | |
3 ** | |
4 ** The author disclaims copyright to this source code. In place of | |
5 ** a legal notice, here is a blessing: | |
6 ** | |
7 ** May you do good and not evil. | |
8 ** May you find forgiveness for yourself and forgive others. | |
9 ** May you share freely, never taking more than you give. | |
10 ** | |
11 ************************************************************************* | |
12 ** This file implements that page cache. | |
13 */ | |
14 #include "sqliteInt.h" | |
15 | |
16 /* | |
17 ** A complete page cache is an instance of this structure. | |
18 */ | |
19 struct PCache { | |
20 PgHdr *pDirty, *pDirtyTail; /* List of dirty pages in LRU order */ | |
21 PgHdr *pSynced; /* Last synced page in dirty page list */ | |
22 int nRef; /* Number of referenced pages */ | |
23 int szCache; /* Configured cache size */ | |
24 int szPage; /* Size of every page in this cache */ | |
25 int szExtra; /* Size of extra space for each page */ | |
26 u8 bPurgeable; /* True if pages are on backing store */ | |
27 u8 eCreate; /* eCreate value for for xFetch() */ | |
28 int (*xStress)(void*,PgHdr*); /* Call to try make a page clean */ | |
29 void *pStress; /* Argument to xStress */ | |
30 sqlite3_pcache *pCache; /* Pluggable cache module */ | |
31 PgHdr *pPage1; /* Reference to page 1 */ | |
32 }; | |
33 | |
34 /* | |
35 ** Some of the assert() macros in this code are too expensive to run | |
36 ** even during normal debugging. Use them only rarely on long-running | |
37 ** tests. Enable the expensive asserts using the | |
38 ** -DSQLITE_ENABLE_EXPENSIVE_ASSERT=1 compile-time option. | |
39 */ | |
40 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT | |
41 # define expensive_assert(X) assert(X) | |
42 #else | |
43 # define expensive_assert(X) | |
44 #endif | |
45 | |
46 /********************************** Linked List Management ********************/ | |
47 | |
48 /* Allowed values for second argument to pcacheManageDirtyList() */ | |
49 #define PCACHE_DIRTYLIST_REMOVE 1 /* Remove pPage from dirty list */ | |
50 #define PCACHE_DIRTYLIST_ADD 2 /* Add pPage to the dirty list */ | |
51 #define PCACHE_DIRTYLIST_FRONT 3 /* Move pPage to the front of the list */ | |
52 | |
53 /* | |
54 ** Manage pPage's participation on the dirty list. Bits of the addRemove | |
55 ** argument determines what operation to do. The 0x01 bit means first | |
56 ** remove pPage from the dirty list. The 0x02 means add pPage back to | |
57 ** the dirty list. Doing both moves pPage to the front of the dirty list. | |
58 */ | |
59 static void pcacheManageDirtyList(PgHdr *pPage, u8 addRemove){ | |
60 PCache *p = pPage->pCache; | |
61 | |
62 if( addRemove & PCACHE_DIRTYLIST_REMOVE ){ | |
63 assert( pPage->pDirtyNext || pPage==p->pDirtyTail ); | |
64 assert( pPage->pDirtyPrev || pPage==p->pDirty ); | |
65 | |
66 /* Update the PCache1.pSynced variable if necessary. */ | |
67 if( p->pSynced==pPage ){ | |
68 PgHdr *pSynced = pPage->pDirtyPrev; | |
69 while( pSynced && (pSynced->flags&PGHDR_NEED_SYNC) ){ | |
70 pSynced = pSynced->pDirtyPrev; | |
71 } | |
72 p->pSynced = pSynced; | |
73 } | |
74 | |
75 if( pPage->pDirtyNext ){ | |
76 pPage->pDirtyNext->pDirtyPrev = pPage->pDirtyPrev; | |
77 }else{ | |
78 assert( pPage==p->pDirtyTail ); | |
79 p->pDirtyTail = pPage->pDirtyPrev; | |
80 } | |
81 if( pPage->pDirtyPrev ){ | |
82 pPage->pDirtyPrev->pDirtyNext = pPage->pDirtyNext; | |
83 }else{ | |
84 assert( pPage==p->pDirty ); | |
85 p->pDirty = pPage->pDirtyNext; | |
86 if( p->pDirty==0 && p->bPurgeable ){ | |
87 assert( p->eCreate==1 ); | |
88 p->eCreate = 2; | |
89 } | |
90 } | |
91 pPage->pDirtyNext = 0; | |
92 pPage->pDirtyPrev = 0; | |
93 } | |
94 if( addRemove & PCACHE_DIRTYLIST_ADD ){ | |
95 assert( pPage->pDirtyNext==0 && pPage->pDirtyPrev==0 && p->pDirty!=pPage ); | |
96 | |
97 pPage->pDirtyNext = p->pDirty; | |
98 if( pPage->pDirtyNext ){ | |
99 assert( pPage->pDirtyNext->pDirtyPrev==0 ); | |
100 pPage->pDirtyNext->pDirtyPrev = pPage; | |
101 }else{ | |
102 p->pDirtyTail = pPage; | |
103 if( p->bPurgeable ){ | |
104 assert( p->eCreate==2 ); | |
105 p->eCreate = 1; | |
106 } | |
107 } | |
108 p->pDirty = pPage; | |
109 if( !p->pSynced && 0==(pPage->flags&PGHDR_NEED_SYNC) ){ | |
110 p->pSynced = pPage; | |
111 } | |
112 } | |
113 } | |
114 | |
115 /* | |
116 ** Wrapper around the pluggable caches xUnpin method. If the cache is | |
117 ** being used for an in-memory database, this function is a no-op. | |
118 */ | |
119 static void pcacheUnpin(PgHdr *p){ | |
120 if( p->pCache->bPurgeable ){ | |
121 if( p->pgno==1 ){ | |
122 p->pCache->pPage1 = 0; | |
123 } | |
124 sqlite3GlobalConfig.pcache2.xUnpin(p->pCache->pCache, p->pPage, 0); | |
125 } | |
126 } | |
127 | |
128 /* | |
129 ** Compute the number of pages of cache requested. | |
130 */ | |
131 static int numberOfCachePages(PCache *p){ | |
132 if( p->szCache>=0 ){ | |
133 return p->szCache; | |
134 }else{ | |
135 return (int)((-1024*(i64)p->szCache)/(p->szPage+p->szExtra)); | |
136 } | |
137 } | |
138 | |
139 /*************************************************** General Interfaces ****** | |
140 ** | |
141 ** Initialize and shutdown the page cache subsystem. Neither of these | |
142 ** functions are threadsafe. | |
143 */ | |
144 int sqlite3PcacheInitialize(void){ | |
145 if( sqlite3GlobalConfig.pcache2.xInit==0 ){ | |
146 /* IMPLEMENTATION-OF: R-26801-64137 If the xInit() method is NULL, then the | |
147 ** built-in default page cache is used instead of the application defined | |
148 ** page cache. */ | |
149 sqlite3PCacheSetDefault(); | |
150 } | |
151 return sqlite3GlobalConfig.pcache2.xInit(sqlite3GlobalConfig.pcache2.pArg); | |
152 } | |
153 void sqlite3PcacheShutdown(void){ | |
154 if( sqlite3GlobalConfig.pcache2.xShutdown ){ | |
155 /* IMPLEMENTATION-OF: R-26000-56589 The xShutdown() method may be NULL. */ | |
156 sqlite3GlobalConfig.pcache2.xShutdown(sqlite3GlobalConfig.pcache2.pArg); | |
157 } | |
158 } | |
159 | |
160 /* | |
161 ** Return the size in bytes of a PCache object. | |
162 */ | |
163 int sqlite3PcacheSize(void){ return sizeof(PCache); } | |
164 | |
165 /* | |
166 ** Create a new PCache object. Storage space to hold the object | |
167 ** has already been allocated and is passed in as the p pointer. | |
168 ** The caller discovers how much space needs to be allocated by | |
169 ** calling sqlite3PcacheSize(). | |
170 */ | |
171 int sqlite3PcacheOpen( | |
172 int szPage, /* Size of every page */ | |
173 int szExtra, /* Extra space associated with each page */ | |
174 int bPurgeable, /* True if pages are on backing store */ | |
175 int (*xStress)(void*,PgHdr*),/* Call to try to make pages clean */ | |
176 void *pStress, /* Argument to xStress */ | |
177 PCache *p /* Preallocated space for the PCache */ | |
178 ){ | |
179 memset(p, 0, sizeof(PCache)); | |
180 p->szPage = 1; | |
181 p->szExtra = szExtra; | |
182 p->bPurgeable = bPurgeable; | |
183 p->eCreate = 2; | |
184 p->xStress = xStress; | |
185 p->pStress = pStress; | |
186 p->szCache = 100; | |
187 return sqlite3PcacheSetPageSize(p, szPage); | |
188 } | |
189 | |
190 /* | |
191 ** Change the page size for PCache object. The caller must ensure that there | |
192 ** are no outstanding page references when this function is called. | |
193 */ | |
194 int sqlite3PcacheSetPageSize(PCache *pCache, int szPage){ | |
195 assert( pCache->nRef==0 && pCache->pDirty==0 ); | |
196 if( pCache->szPage ){ | |
197 sqlite3_pcache *pNew; | |
198 pNew = sqlite3GlobalConfig.pcache2.xCreate( | |
199 szPage, pCache->szExtra + sizeof(PgHdr), pCache->bPurgeable | |
200 ); | |
201 if( pNew==0 ) return SQLITE_NOMEM; | |
202 sqlite3GlobalConfig.pcache2.xCachesize(pNew, numberOfCachePages(pCache)); | |
203 if( pCache->pCache ){ | |
204 sqlite3GlobalConfig.pcache2.xDestroy(pCache->pCache); | |
205 } | |
206 pCache->pCache = pNew; | |
207 pCache->pPage1 = 0; | |
208 pCache->szPage = szPage; | |
209 } | |
210 return SQLITE_OK; | |
211 } | |
212 | |
213 /* | |
214 ** Try to obtain a page from the cache. | |
215 ** | |
216 ** This routine returns a pointer to an sqlite3_pcache_page object if | |
217 ** such an object is already in cache, or if a new one is created. | |
218 ** This routine returns a NULL pointer if the object was not in cache | |
219 ** and could not be created. | |
220 ** | |
221 ** The createFlags should be 0 to check for existing pages and should | |
222 ** be 3 (not 1, but 3) to try to create a new page. | |
223 ** | |
224 ** If the createFlag is 0, then NULL is always returned if the page | |
225 ** is not already in the cache. If createFlag is 1, then a new page | |
226 ** is created only if that can be done without spilling dirty pages | |
227 ** and without exceeding the cache size limit. | |
228 ** | |
229 ** The caller needs to invoke sqlite3PcacheFetchFinish() to properly | |
230 ** initialize the sqlite3_pcache_page object and convert it into a | |
231 ** PgHdr object. The sqlite3PcacheFetch() and sqlite3PcacheFetchFinish() | |
232 ** routines are split this way for performance reasons. When separated | |
233 ** they can both (usually) operate without having to push values to | |
234 ** the stack on entry and pop them back off on exit, which saves a | |
235 ** lot of pushing and popping. | |
236 */ | |
237 sqlite3_pcache_page *sqlite3PcacheFetch( | |
238 PCache *pCache, /* Obtain the page from this cache */ | |
239 Pgno pgno, /* Page number to obtain */ | |
240 int createFlag /* If true, create page if it does not exist already */ | |
241 ){ | |
242 int eCreate; | |
243 | |
244 assert( pCache!=0 ); | |
245 assert( pCache->pCache!=0 ); | |
246 assert( createFlag==3 || createFlag==0 ); | |
247 assert( pgno>0 ); | |
248 | |
249 /* eCreate defines what to do if the page does not exist. | |
250 ** 0 Do not allocate a new page. (createFlag==0) | |
251 ** 1 Allocate a new page if doing so is inexpensive. | |
252 ** (createFlag==1 AND bPurgeable AND pDirty) | |
253 ** 2 Allocate a new page even it doing so is difficult. | |
254 ** (createFlag==1 AND !(bPurgeable AND pDirty) | |
255 */ | |
256 eCreate = createFlag & pCache->eCreate; | |
257 assert( eCreate==0 || eCreate==1 || eCreate==2 ); | |
258 assert( createFlag==0 || pCache->eCreate==eCreate ); | |
259 assert( createFlag==0 || eCreate==1+(!pCache->bPurgeable||!pCache->pDirty) ); | |
260 return sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache, pgno, eCreate); | |
261 } | |
262 | |
263 /* | |
264 ** If the sqlite3PcacheFetch() routine is unable to allocate a new | |
265 ** page because new clean pages are available for reuse and the cache | |
266 ** size limit has been reached, then this routine can be invoked to | |
267 ** try harder to allocate a page. This routine might invoke the stress | |
268 ** callback to spill dirty pages to the journal. It will then try to | |
269 ** allocate the new page and will only fail to allocate a new page on | |
270 ** an OOM error. | |
271 ** | |
272 ** This routine should be invoked only after sqlite3PcacheFetch() fails. | |
273 */ | |
274 int sqlite3PcacheFetchStress( | |
275 PCache *pCache, /* Obtain the page from this cache */ | |
276 Pgno pgno, /* Page number to obtain */ | |
277 sqlite3_pcache_page **ppPage /* Write result here */ | |
278 ){ | |
279 PgHdr *pPg; | |
280 if( pCache->eCreate==2 ) return 0; | |
281 | |
282 | |
283 /* Find a dirty page to write-out and recycle. First try to find a | |
284 ** page that does not require a journal-sync (one with PGHDR_NEED_SYNC | |
285 ** cleared), but if that is not possible settle for any other | |
286 ** unreferenced dirty page. | |
287 */ | |
288 for(pPg=pCache->pSynced; | |
289 pPg && (pPg->nRef || (pPg->flags&PGHDR_NEED_SYNC)); | |
290 pPg=pPg->pDirtyPrev | |
291 ); | |
292 pCache->pSynced = pPg; | |
293 if( !pPg ){ | |
294 for(pPg=pCache->pDirtyTail; pPg && pPg->nRef; pPg=pPg->pDirtyPrev); | |
295 } | |
296 if( pPg ){ | |
297 int rc; | |
298 #ifdef SQLITE_LOG_CACHE_SPILL | |
299 sqlite3_log(SQLITE_FULL, | |
300 "spill page %d making room for %d - cache used: %d/%d", | |
301 pPg->pgno, pgno, | |
302 sqlite3GlobalConfig.pcache.xPagecount(pCache->pCache), | |
303 numberOfCachePages(pCache)); | |
304 #endif | |
305 rc = pCache->xStress(pCache->pStress, pPg); | |
306 if( rc!=SQLITE_OK && rc!=SQLITE_BUSY ){ | |
307 return rc; | |
308 } | |
309 } | |
310 *ppPage = sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache, pgno, 2); | |
311 return *ppPage==0 ? SQLITE_NOMEM : SQLITE_OK; | |
312 } | |
313 | |
314 /* | |
315 ** This is a helper routine for sqlite3PcacheFetchFinish() | |
316 ** | |
317 ** In the uncommon case where the page being fetched has not been | |
318 ** initialized, this routine is invoked to do the initialization. | |
319 ** This routine is broken out into a separate function since it | |
320 ** requires extra stack manipulation that can be avoided in the common | |
321 ** case. | |
322 */ | |
323 static SQLITE_NOINLINE PgHdr *pcacheFetchFinishWithInit( | |
324 PCache *pCache, /* Obtain the page from this cache */ | |
325 Pgno pgno, /* Page number obtained */ | |
326 sqlite3_pcache_page *pPage /* Page obtained by prior PcacheFetch() call */ | |
327 ){ | |
328 PgHdr *pPgHdr; | |
329 assert( pPage!=0 ); | |
330 pPgHdr = (PgHdr*)pPage->pExtra; | |
331 assert( pPgHdr->pPage==0 ); | |
332 memset(pPgHdr, 0, sizeof(PgHdr)); | |
333 pPgHdr->pPage = pPage; | |
334 pPgHdr->pData = pPage->pBuf; | |
335 pPgHdr->pExtra = (void *)&pPgHdr[1]; | |
336 memset(pPgHdr->pExtra, 0, pCache->szExtra); | |
337 pPgHdr->pCache = pCache; | |
338 pPgHdr->pgno = pgno; | |
339 return sqlite3PcacheFetchFinish(pCache,pgno,pPage); | |
340 } | |
341 | |
342 /* | |
343 ** This routine converts the sqlite3_pcache_page object returned by | |
344 ** sqlite3PcacheFetch() into an initialized PgHdr object. This routine | |
345 ** must be called after sqlite3PcacheFetch() in order to get a usable | |
346 ** result. | |
347 */ | |
348 PgHdr *sqlite3PcacheFetchFinish( | |
349 PCache *pCache, /* Obtain the page from this cache */ | |
350 Pgno pgno, /* Page number obtained */ | |
351 sqlite3_pcache_page *pPage /* Page obtained by prior PcacheFetch() call */ | |
352 ){ | |
353 PgHdr *pPgHdr; | |
354 | |
355 if( pPage==0 ) return 0; | |
356 pPgHdr = (PgHdr *)pPage->pExtra; | |
357 | |
358 if( !pPgHdr->pPage ){ | |
359 return pcacheFetchFinishWithInit(pCache, pgno, pPage); | |
360 } | |
361 if( 0==pPgHdr->nRef ){ | |
362 pCache->nRef++; | |
363 } | |
364 pPgHdr->nRef++; | |
365 if( pgno==1 ){ | |
366 pCache->pPage1 = pPgHdr; | |
367 } | |
368 return pPgHdr; | |
369 } | |
370 | |
371 /* | |
372 ** Decrement the reference count on a page. If the page is clean and the | |
373 ** reference count drops to 0, then it is made eligible for recycling. | |
374 */ | |
375 void SQLITE_NOINLINE sqlite3PcacheRelease(PgHdr *p){ | |
376 assert( p->nRef>0 ); | |
377 p->nRef--; | |
378 if( p->nRef==0 ){ | |
379 p->pCache->nRef--; | |
380 if( (p->flags&PGHDR_DIRTY)==0 ){ | |
381 pcacheUnpin(p); | |
382 }else if( p->pDirtyPrev!=0 ){ | |
383 /* Move the page to the head of the dirty list. */ | |
384 pcacheManageDirtyList(p, PCACHE_DIRTYLIST_FRONT); | |
385 } | |
386 } | |
387 } | |
388 | |
389 /* | |
390 ** Increase the reference count of a supplied page by 1. | |
391 */ | |
392 void sqlite3PcacheRef(PgHdr *p){ | |
393 assert(p->nRef>0); | |
394 p->nRef++; | |
395 } | |
396 | |
397 /* | |
398 ** Drop a page from the cache. There must be exactly one reference to the | |
399 ** page. This function deletes that reference, so after it returns the | |
400 ** page pointed to by p is invalid. | |
401 */ | |
402 void sqlite3PcacheDrop(PgHdr *p){ | |
403 assert( p->nRef==1 ); | |
404 if( p->flags&PGHDR_DIRTY ){ | |
405 pcacheManageDirtyList(p, PCACHE_DIRTYLIST_REMOVE); | |
406 } | |
407 p->pCache->nRef--; | |
408 if( p->pgno==1 ){ | |
409 p->pCache->pPage1 = 0; | |
410 } | |
411 sqlite3GlobalConfig.pcache2.xUnpin(p->pCache->pCache, p->pPage, 1); | |
412 } | |
413 | |
414 /* | |
415 ** Make sure the page is marked as dirty. If it isn't dirty already, | |
416 ** make it so. | |
417 */ | |
418 void sqlite3PcacheMakeDirty(PgHdr *p){ | |
419 p->flags &= ~PGHDR_DONT_WRITE; | |
420 assert( p->nRef>0 ); | |
421 if( 0==(p->flags & PGHDR_DIRTY) ){ | |
422 p->flags |= PGHDR_DIRTY; | |
423 pcacheManageDirtyList(p, PCACHE_DIRTYLIST_ADD); | |
424 } | |
425 } | |
426 | |
427 /* | |
428 ** Make sure the page is marked as clean. If it isn't clean already, | |
429 ** make it so. | |
430 */ | |
431 void sqlite3PcacheMakeClean(PgHdr *p){ | |
432 if( (p->flags & PGHDR_DIRTY) ){ | |
433 pcacheManageDirtyList(p, PCACHE_DIRTYLIST_REMOVE); | |
434 p->flags &= ~(PGHDR_DIRTY|PGHDR_NEED_SYNC); | |
435 if( p->nRef==0 ){ | |
436 pcacheUnpin(p); | |
437 } | |
438 } | |
439 } | |
440 | |
441 /* | |
442 ** Make every page in the cache clean. | |
443 */ | |
444 void sqlite3PcacheCleanAll(PCache *pCache){ | |
445 PgHdr *p; | |
446 while( (p = pCache->pDirty)!=0 ){ | |
447 sqlite3PcacheMakeClean(p); | |
448 } | |
449 } | |
450 | |
451 /* | |
452 ** Clear the PGHDR_NEED_SYNC flag from all dirty pages. | |
453 */ | |
454 void sqlite3PcacheClearSyncFlags(PCache *pCache){ | |
455 PgHdr *p; | |
456 for(p=pCache->pDirty; p; p=p->pDirtyNext){ | |
457 p->flags &= ~PGHDR_NEED_SYNC; | |
458 } | |
459 pCache->pSynced = pCache->pDirtyTail; | |
460 } | |
461 | |
462 /* | |
463 ** Change the page number of page p to newPgno. | |
464 */ | |
465 void sqlite3PcacheMove(PgHdr *p, Pgno newPgno){ | |
466 PCache *pCache = p->pCache; | |
467 assert( p->nRef>0 ); | |
468 assert( newPgno>0 ); | |
469 sqlite3GlobalConfig.pcache2.xRekey(pCache->pCache, p->pPage, p->pgno,newPgno); | |
470 p->pgno = newPgno; | |
471 if( (p->flags&PGHDR_DIRTY) && (p->flags&PGHDR_NEED_SYNC) ){ | |
472 pcacheManageDirtyList(p, PCACHE_DIRTYLIST_FRONT); | |
473 } | |
474 } | |
475 | |
476 /* | |
477 ** Drop every cache entry whose page number is greater than "pgno". The | |
478 ** caller must ensure that there are no outstanding references to any pages | |
479 ** other than page 1 with a page number greater than pgno. | |
480 ** | |
481 ** If there is a reference to page 1 and the pgno parameter passed to this | |
482 ** function is 0, then the data area associated with page 1 is zeroed, but | |
483 ** the page object is not dropped. | |
484 */ | |
485 void sqlite3PcacheTruncate(PCache *pCache, Pgno pgno){ | |
486 if( pCache->pCache ){ | |
487 PgHdr *p; | |
488 PgHdr *pNext; | |
489 for(p=pCache->pDirty; p; p=pNext){ | |
490 pNext = p->pDirtyNext; | |
491 /* This routine never gets call with a positive pgno except right | |
492 ** after sqlite3PcacheCleanAll(). So if there are dirty pages, | |
493 ** it must be that pgno==0. | |
494 */ | |
495 assert( p->pgno>0 ); | |
496 if( ALWAYS(p->pgno>pgno) ){ | |
497 assert( p->flags&PGHDR_DIRTY ); | |
498 sqlite3PcacheMakeClean(p); | |
499 } | |
500 } | |
501 if( pgno==0 && pCache->pPage1 ){ | |
502 memset(pCache->pPage1->pData, 0, pCache->szPage); | |
503 pgno = 1; | |
504 } | |
505 sqlite3GlobalConfig.pcache2.xTruncate(pCache->pCache, pgno+1); | |
506 } | |
507 } | |
508 | |
509 /* | |
510 ** Close a cache. | |
511 */ | |
512 void sqlite3PcacheClose(PCache *pCache){ | |
513 assert( pCache->pCache!=0 ); | |
514 sqlite3GlobalConfig.pcache2.xDestroy(pCache->pCache); | |
515 } | |
516 | |
517 /* | |
518 ** Discard the contents of the cache. | |
519 */ | |
520 void sqlite3PcacheClear(PCache *pCache){ | |
521 sqlite3PcacheTruncate(pCache, 0); | |
522 } | |
523 | |
524 /* | |
525 ** Merge two lists of pages connected by pDirty and in pgno order. | |
526 ** Do not both fixing the pDirtyPrev pointers. | |
527 */ | |
528 static PgHdr *pcacheMergeDirtyList(PgHdr *pA, PgHdr *pB){ | |
529 PgHdr result, *pTail; | |
530 pTail = &result; | |
531 while( pA && pB ){ | |
532 if( pA->pgno<pB->pgno ){ | |
533 pTail->pDirty = pA; | |
534 pTail = pA; | |
535 pA = pA->pDirty; | |
536 }else{ | |
537 pTail->pDirty = pB; | |
538 pTail = pB; | |
539 pB = pB->pDirty; | |
540 } | |
541 } | |
542 if( pA ){ | |
543 pTail->pDirty = pA; | |
544 }else if( pB ){ | |
545 pTail->pDirty = pB; | |
546 }else{ | |
547 pTail->pDirty = 0; | |
548 } | |
549 return result.pDirty; | |
550 } | |
551 | |
552 /* | |
553 ** Sort the list of pages in accending order by pgno. Pages are | |
554 ** connected by pDirty pointers. The pDirtyPrev pointers are | |
555 ** corrupted by this sort. | |
556 ** | |
557 ** Since there cannot be more than 2^31 distinct pages in a database, | |
558 ** there cannot be more than 31 buckets required by the merge sorter. | |
559 ** One extra bucket is added to catch overflow in case something | |
560 ** ever changes to make the previous sentence incorrect. | |
561 */ | |
562 #define N_SORT_BUCKET 32 | |
563 static PgHdr *pcacheSortDirtyList(PgHdr *pIn){ | |
564 PgHdr *a[N_SORT_BUCKET], *p; | |
565 int i; | |
566 memset(a, 0, sizeof(a)); | |
567 while( pIn ){ | |
568 p = pIn; | |
569 pIn = p->pDirty; | |
570 p->pDirty = 0; | |
571 for(i=0; ALWAYS(i<N_SORT_BUCKET-1); i++){ | |
572 if( a[i]==0 ){ | |
573 a[i] = p; | |
574 break; | |
575 }else{ | |
576 p = pcacheMergeDirtyList(a[i], p); | |
577 a[i] = 0; | |
578 } | |
579 } | |
580 if( NEVER(i==N_SORT_BUCKET-1) ){ | |
581 /* To get here, there need to be 2^(N_SORT_BUCKET) elements in | |
582 ** the input list. But that is impossible. | |
583 */ | |
584 a[i] = pcacheMergeDirtyList(a[i], p); | |
585 } | |
586 } | |
587 p = a[0]; | |
588 for(i=1; i<N_SORT_BUCKET; i++){ | |
589 p = pcacheMergeDirtyList(p, a[i]); | |
590 } | |
591 return p; | |
592 } | |
593 | |
594 /* | |
595 ** Return a list of all dirty pages in the cache, sorted by page number. | |
596 */ | |
597 PgHdr *sqlite3PcacheDirtyList(PCache *pCache){ | |
598 PgHdr *p; | |
599 for(p=pCache->pDirty; p; p=p->pDirtyNext){ | |
600 p->pDirty = p->pDirtyNext; | |
601 } | |
602 return pcacheSortDirtyList(pCache->pDirty); | |
603 } | |
604 | |
605 /* | |
606 ** Return the total number of referenced pages held by the cache. | |
607 */ | |
608 int sqlite3PcacheRefCount(PCache *pCache){ | |
609 return pCache->nRef; | |
610 } | |
611 | |
612 /* | |
613 ** Return the number of references to the page supplied as an argument. | |
614 */ | |
615 int sqlite3PcachePageRefcount(PgHdr *p){ | |
616 return p->nRef; | |
617 } | |
618 | |
619 /* | |
620 ** Return the total number of pages in the cache. | |
621 */ | |
622 int sqlite3PcachePagecount(PCache *pCache){ | |
623 assert( pCache->pCache!=0 ); | |
624 return sqlite3GlobalConfig.pcache2.xPagecount(pCache->pCache); | |
625 } | |
626 | |
627 #ifdef SQLITE_TEST | |
628 /* | |
629 ** Get the suggested cache-size value. | |
630 */ | |
631 int sqlite3PcacheGetCachesize(PCache *pCache){ | |
632 return numberOfCachePages(pCache); | |
633 } | |
634 #endif | |
635 | |
636 /* | |
637 ** Set the suggested cache-size value. | |
638 */ | |
639 void sqlite3PcacheSetCachesize(PCache *pCache, int mxPage){ | |
640 assert( pCache->pCache!=0 ); | |
641 pCache->szCache = mxPage; | |
642 sqlite3GlobalConfig.pcache2.xCachesize(pCache->pCache, | |
643 numberOfCachePages(pCache)); | |
644 } | |
645 | |
646 /* | |
647 ** Free up as much memory as possible from the page cache. | |
648 */ | |
649 void sqlite3PcacheShrink(PCache *pCache){ | |
650 assert( pCache->pCache!=0 ); | |
651 sqlite3GlobalConfig.pcache2.xShrink(pCache->pCache); | |
652 } | |
653 | |
654 #if defined(SQLITE_CHECK_PAGES) || defined(SQLITE_DEBUG) | |
655 /* | |
656 ** For all dirty pages currently in the cache, invoke the specified | |
657 ** callback. This is only used if the SQLITE_CHECK_PAGES macro is | |
658 ** defined. | |
659 */ | |
660 void sqlite3PcacheIterateDirty(PCache *pCache, void (*xIter)(PgHdr *)){ | |
661 PgHdr *pDirty; | |
662 for(pDirty=pCache->pDirty; pDirty; pDirty=pDirty->pDirtyNext){ | |
663 xIter(pDirty); | |
664 } | |
665 } | |
666 #endif | |
OLD | NEW |