OLD | NEW |
| (Empty) |
1 /* | |
2 ** 2001 September 15 | |
3 ** | |
4 ** The author disclaims copyright to this source code. In place of | |
5 ** a legal notice, here is a blessing: | |
6 ** | |
7 ** May you do good and not evil. | |
8 ** May you find forgiveness for yourself and forgive others. | |
9 ** May you share freely, never taking more than you give. | |
10 ** | |
11 ************************************************************************* | |
12 ** This file contains SQLite's grammar for SQL. Process this file | |
13 ** using the lemon parser generator to generate C code that runs | |
14 ** the parser. Lemon will also generate a header file containing | |
15 ** numeric codes for all of the tokens. | |
16 */ | |
17 | |
18 // All token codes are small integers with #defines that begin with "TK_" | |
19 %token_prefix TK_ | |
20 | |
21 // The type of the data attached to each token is Token. This is also the | |
22 // default type for non-terminals. | |
23 // | |
24 %token_type {Token} | |
25 %default_type {Token} | |
26 | |
27 // The generated parser function takes a 4th argument as follows: | |
28 %extra_argument {Parse *pParse} | |
29 | |
30 // This code runs whenever there is a syntax error | |
31 // | |
32 %syntax_error { | |
33 UNUSED_PARAMETER(yymajor); /* Silence some compiler warnings */ | |
34 assert( TOKEN.z[0] ); /* The tokenizer always gives us a token */ | |
35 sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &TOKEN); | |
36 } | |
37 %stack_overflow { | |
38 UNUSED_PARAMETER(yypMinor); /* Silence some compiler warnings */ | |
39 sqlite3ErrorMsg(pParse, "parser stack overflow"); | |
40 } | |
41 | |
42 // The name of the generated procedure that implements the parser | |
43 // is as follows: | |
44 %name sqlite3Parser | |
45 | |
46 // The following text is included near the beginning of the C source | |
47 // code file that implements the parser. | |
48 // | |
49 %include { | |
50 #include "sqliteInt.h" | |
51 | |
52 /* | |
53 ** Disable all error recovery processing in the parser push-down | |
54 ** automaton. | |
55 */ | |
56 #define YYNOERRORRECOVERY 1 | |
57 | |
58 /* | |
59 ** Make yytestcase() the same as testcase() | |
60 */ | |
61 #define yytestcase(X) testcase(X) | |
62 | |
63 /* | |
64 ** An instance of this structure holds information about the | |
65 ** LIMIT clause of a SELECT statement. | |
66 */ | |
67 struct LimitVal { | |
68 Expr *pLimit; /* The LIMIT expression. NULL if there is no limit */ | |
69 Expr *pOffset; /* The OFFSET expression. NULL if there is none */ | |
70 }; | |
71 | |
72 /* | |
73 ** An instance of this structure is used to store the LIKE, | |
74 ** GLOB, NOT LIKE, and NOT GLOB operators. | |
75 */ | |
76 struct LikeOp { | |
77 Token eOperator; /* "like" or "glob" or "regexp" */ | |
78 int bNot; /* True if the NOT keyword is present */ | |
79 }; | |
80 | |
81 /* | |
82 ** An instance of the following structure describes the event of a | |
83 ** TRIGGER. "a" is the event type, one of TK_UPDATE, TK_INSERT, | |
84 ** TK_DELETE, or TK_INSTEAD. If the event is of the form | |
85 ** | |
86 ** UPDATE ON (a,b,c) | |
87 ** | |
88 ** Then the "b" IdList records the list "a,b,c". | |
89 */ | |
90 struct TrigEvent { int a; IdList * b; }; | |
91 | |
92 /* | |
93 ** An instance of this structure holds the ATTACH key and the key type. | |
94 */ | |
95 struct AttachKey { int type; Token key; }; | |
96 | |
97 } // end %include | |
98 | |
99 // Input is a single SQL command | |
100 input ::= cmdlist. | |
101 cmdlist ::= cmdlist ecmd. | |
102 cmdlist ::= ecmd. | |
103 ecmd ::= SEMI. | |
104 ecmd ::= explain cmdx SEMI. | |
105 explain ::= . { sqlite3BeginParse(pParse, 0); } | |
106 %ifndef SQLITE_OMIT_EXPLAIN | |
107 explain ::= EXPLAIN. { sqlite3BeginParse(pParse, 1); } | |
108 explain ::= EXPLAIN QUERY PLAN. { sqlite3BeginParse(pParse, 2); } | |
109 %endif SQLITE_OMIT_EXPLAIN | |
110 cmdx ::= cmd. { sqlite3FinishCoding(pParse); } | |
111 | |
112 ///////////////////// Begin and end transactions. //////////////////////////// | |
113 // | |
114 | |
115 cmd ::= BEGIN transtype(Y) trans_opt. {sqlite3BeginTransaction(pParse, Y);} | |
116 trans_opt ::= . | |
117 trans_opt ::= TRANSACTION. | |
118 trans_opt ::= TRANSACTION nm. | |
119 %type transtype {int} | |
120 transtype(A) ::= . {A = TK_DEFERRED;} | |
121 transtype(A) ::= DEFERRED(X). {A = @X;} | |
122 transtype(A) ::= IMMEDIATE(X). {A = @X;} | |
123 transtype(A) ::= EXCLUSIVE(X). {A = @X;} | |
124 cmd ::= COMMIT trans_opt. {sqlite3CommitTransaction(pParse);} | |
125 cmd ::= END trans_opt. {sqlite3CommitTransaction(pParse);} | |
126 cmd ::= ROLLBACK trans_opt. {sqlite3RollbackTransaction(pParse);} | |
127 | |
128 savepoint_opt ::= SAVEPOINT. | |
129 savepoint_opt ::= . | |
130 cmd ::= SAVEPOINT nm(X). { | |
131 sqlite3Savepoint(pParse, SAVEPOINT_BEGIN, &X); | |
132 } | |
133 cmd ::= RELEASE savepoint_opt nm(X). { | |
134 sqlite3Savepoint(pParse, SAVEPOINT_RELEASE, &X); | |
135 } | |
136 cmd ::= ROLLBACK trans_opt TO savepoint_opt nm(X). { | |
137 sqlite3Savepoint(pParse, SAVEPOINT_ROLLBACK, &X); | |
138 } | |
139 | |
140 ///////////////////// The CREATE TABLE statement //////////////////////////// | |
141 // | |
142 cmd ::= create_table create_table_args. | |
143 create_table ::= createkw temp(T) TABLE ifnotexists(E) nm(Y) dbnm(Z). { | |
144 sqlite3StartTable(pParse,&Y,&Z,T,0,0,E); | |
145 } | |
146 createkw(A) ::= CREATE(X). { | |
147 pParse->db->lookaside.bEnabled = 0; | |
148 A = X; | |
149 } | |
150 %type ifnotexists {int} | |
151 ifnotexists(A) ::= . {A = 0;} | |
152 ifnotexists(A) ::= IF NOT EXISTS. {A = 1;} | |
153 %type temp {int} | |
154 %ifndef SQLITE_OMIT_TEMPDB | |
155 temp(A) ::= TEMP. {A = 1;} | |
156 %endif SQLITE_OMIT_TEMPDB | |
157 temp(A) ::= . {A = 0;} | |
158 create_table_args ::= LP columnlist conslist_opt(X) RP(E) table_options(F). { | |
159 sqlite3EndTable(pParse,&X,&E,F,0); | |
160 } | |
161 create_table_args ::= AS select(S). { | |
162 sqlite3EndTable(pParse,0,0,0,S); | |
163 sqlite3SelectDelete(pParse->db, S); | |
164 } | |
165 %type table_options {u8} | |
166 table_options(A) ::= . {A = 0;} | |
167 table_options(A) ::= WITHOUT nm(X). { | |
168 if( X.n==5 && sqlite3_strnicmp(X.z,"rowid",5)==0 ){ | |
169 A = TF_WithoutRowid; | |
170 }else{ | |
171 A = 0; | |
172 sqlite3ErrorMsg(pParse, "unknown table option: %.*s", X.n, X.z); | |
173 } | |
174 } | |
175 columnlist ::= columnlist COMMA column. | |
176 columnlist ::= column. | |
177 | |
178 // A "column" is a complete description of a single column in a | |
179 // CREATE TABLE statement. This includes the column name, its | |
180 // datatype, and other keywords such as PRIMARY KEY, UNIQUE, REFERENCES, | |
181 // NOT NULL and so forth. | |
182 // | |
183 column(A) ::= columnid(X) type carglist. { | |
184 A.z = X.z; | |
185 A.n = (int)(pParse->sLastToken.z-X.z) + pParse->sLastToken.n; | |
186 } | |
187 columnid(A) ::= nm(X). { | |
188 sqlite3AddColumn(pParse,&X); | |
189 A = X; | |
190 pParse->constraintName.n = 0; | |
191 } | |
192 | |
193 | |
194 // An IDENTIFIER can be a generic identifier, or one of several | |
195 // keywords. Any non-standard keyword can also be an identifier. | |
196 // | |
197 %token_class id ID|INDEXED. | |
198 | |
199 // The following directive causes tokens ABORT, AFTER, ASC, etc. to | |
200 // fallback to ID if they will not parse as their original value. | |
201 // This obviates the need for the "id" nonterminal. | |
202 // | |
203 %fallback ID | |
204 ABORT ACTION AFTER ANALYZE ASC ATTACH BEFORE BEGIN BY CASCADE CAST COLUMNKW | |
205 CONFLICT DATABASE DEFERRED DESC DETACH EACH END EXCLUSIVE EXPLAIN FAIL FOR | |
206 IGNORE IMMEDIATE INITIALLY INSTEAD LIKE_KW MATCH NO PLAN | |
207 QUERY KEY OF OFFSET PRAGMA RAISE RECURSIVE RELEASE REPLACE RESTRICT ROW | |
208 ROLLBACK SAVEPOINT TEMP TRIGGER VACUUM VIEW VIRTUAL WITH WITHOUT | |
209 %ifdef SQLITE_OMIT_COMPOUND_SELECT | |
210 EXCEPT INTERSECT UNION | |
211 %endif SQLITE_OMIT_COMPOUND_SELECT | |
212 REINDEX RENAME CTIME_KW IF | |
213 . | |
214 %wildcard ANY. | |
215 | |
216 // Define operator precedence early so that this is the first occurrence | |
217 // of the operator tokens in the grammer. Keeping the operators together | |
218 // causes them to be assigned integer values that are close together, | |
219 // which keeps parser tables smaller. | |
220 // | |
221 // The token values assigned to these symbols is determined by the order | |
222 // in which lemon first sees them. It must be the case that ISNULL/NOTNULL, | |
223 // NE/EQ, GT/LE, and GE/LT are separated by only a single value. See | |
224 // the sqlite3ExprIfFalse() routine for additional information on this | |
225 // constraint. | |
226 // | |
227 %left OR. | |
228 %left AND. | |
229 %right NOT. | |
230 %left IS MATCH LIKE_KW BETWEEN IN ISNULL NOTNULL NE EQ. | |
231 %left GT LE LT GE. | |
232 %right ESCAPE. | |
233 %left BITAND BITOR LSHIFT RSHIFT. | |
234 %left PLUS MINUS. | |
235 %left STAR SLASH REM. | |
236 %left CONCAT. | |
237 %left COLLATE. | |
238 %right BITNOT. | |
239 | |
240 // And "ids" is an identifer-or-string. | |
241 // | |
242 %token_class ids ID|STRING. | |
243 | |
244 // The name of a column or table can be any of the following: | |
245 // | |
246 %type nm {Token} | |
247 nm(A) ::= id(X). {A = X;} | |
248 nm(A) ::= STRING(X). {A = X;} | |
249 nm(A) ::= JOIN_KW(X). {A = X;} | |
250 | |
251 // A typetoken is really one or more tokens that form a type name such | |
252 // as can be found after the column name in a CREATE TABLE statement. | |
253 // Multiple tokens are concatenated to form the value of the typetoken. | |
254 // | |
255 %type typetoken {Token} | |
256 type ::= . | |
257 type ::= typetoken(X). {sqlite3AddColumnType(pParse,&X);} | |
258 typetoken(A) ::= typename(X). {A = X;} | |
259 typetoken(A) ::= typename(X) LP signed RP(Y). { | |
260 A.z = X.z; | |
261 A.n = (int)(&Y.z[Y.n] - X.z); | |
262 } | |
263 typetoken(A) ::= typename(X) LP signed COMMA signed RP(Y). { | |
264 A.z = X.z; | |
265 A.n = (int)(&Y.z[Y.n] - X.z); | |
266 } | |
267 %type typename {Token} | |
268 typename(A) ::= ids(X). {A = X;} | |
269 typename(A) ::= typename(X) ids(Y). {A.z=X.z; A.n=Y.n+(int)(Y.z-X.z);} | |
270 signed ::= plus_num. | |
271 signed ::= minus_num. | |
272 | |
273 // "carglist" is a list of additional constraints that come after the | |
274 // column name and column type in a CREATE TABLE statement. | |
275 // | |
276 carglist ::= carglist ccons. | |
277 carglist ::= . | |
278 ccons ::= CONSTRAINT nm(X). {pParse->constraintName = X;} | |
279 ccons ::= DEFAULT term(X). {sqlite3AddDefaultValue(pParse,&X);} | |
280 ccons ::= DEFAULT LP expr(X) RP. {sqlite3AddDefaultValue(pParse,&X);} | |
281 ccons ::= DEFAULT PLUS term(X). {sqlite3AddDefaultValue(pParse,&X);} | |
282 ccons ::= DEFAULT MINUS(A) term(X). { | |
283 ExprSpan v; | |
284 v.pExpr = sqlite3PExpr(pParse, TK_UMINUS, X.pExpr, 0, 0); | |
285 v.zStart = A.z; | |
286 v.zEnd = X.zEnd; | |
287 sqlite3AddDefaultValue(pParse,&v); | |
288 } | |
289 ccons ::= DEFAULT id(X). { | |
290 ExprSpan v; | |
291 spanExpr(&v, pParse, TK_STRING, &X); | |
292 sqlite3AddDefaultValue(pParse,&v); | |
293 } | |
294 | |
295 // In addition to the type name, we also care about the primary key and | |
296 // UNIQUE constraints. | |
297 // | |
298 ccons ::= NULL onconf. | |
299 ccons ::= NOT NULL onconf(R). {sqlite3AddNotNull(pParse, R);} | |
300 ccons ::= PRIMARY KEY sortorder(Z) onconf(R) autoinc(I). | |
301 {sqlite3AddPrimaryKey(pParse,0,R,I,Z);} | |
302 ccons ::= UNIQUE onconf(R). {sqlite3CreateIndex(pParse,0,0,0,0,R,0,0,0,0);} | |
303 ccons ::= CHECK LP expr(X) RP. {sqlite3AddCheckConstraint(pParse,X.pExpr);} | |
304 ccons ::= REFERENCES nm(T) idxlist_opt(TA) refargs(R). | |
305 {sqlite3CreateForeignKey(pParse,0,&T,TA,R);} | |
306 ccons ::= defer_subclause(D). {sqlite3DeferForeignKey(pParse,D);} | |
307 ccons ::= COLLATE ids(C). {sqlite3AddCollateType(pParse, &C);} | |
308 | |
309 // The optional AUTOINCREMENT keyword | |
310 %type autoinc {int} | |
311 autoinc(X) ::= . {X = 0;} | |
312 autoinc(X) ::= AUTOINCR. {X = 1;} | |
313 | |
314 // The next group of rules parses the arguments to a REFERENCES clause | |
315 // that determine if the referential integrity checking is deferred or | |
316 // or immediate and which determine what action to take if a ref-integ | |
317 // check fails. | |
318 // | |
319 %type refargs {int} | |
320 refargs(A) ::= . { A = OE_None*0x0101; /* EV: R-19803-45884 */} | |
321 refargs(A) ::= refargs(X) refarg(Y). { A = (X & ~Y.mask) | Y.value; } | |
322 %type refarg {struct {int value; int mask;}} | |
323 refarg(A) ::= MATCH nm. { A.value = 0; A.mask = 0x000000; } | |
324 refarg(A) ::= ON INSERT refact. { A.value = 0; A.mask = 0x000000; } | |
325 refarg(A) ::= ON DELETE refact(X). { A.value = X; A.mask = 0x0000ff; } | |
326 refarg(A) ::= ON UPDATE refact(X). { A.value = X<<8; A.mask = 0x00ff00; } | |
327 %type refact {int} | |
328 refact(A) ::= SET NULL. { A = OE_SetNull; /* EV: R-33326-45252 */} | |
329 refact(A) ::= SET DEFAULT. { A = OE_SetDflt; /* EV: R-33326-45252 */} | |
330 refact(A) ::= CASCADE. { A = OE_Cascade; /* EV: R-33326-45252 */} | |
331 refact(A) ::= RESTRICT. { A = OE_Restrict; /* EV: R-33326-45252 */} | |
332 refact(A) ::= NO ACTION. { A = OE_None; /* EV: R-33326-45252 */} | |
333 %type defer_subclause {int} | |
334 defer_subclause(A) ::= NOT DEFERRABLE init_deferred_pred_opt. {A = 0;} | |
335 defer_subclause(A) ::= DEFERRABLE init_deferred_pred_opt(X). {A = X;} | |
336 %type init_deferred_pred_opt {int} | |
337 init_deferred_pred_opt(A) ::= . {A = 0;} | |
338 init_deferred_pred_opt(A) ::= INITIALLY DEFERRED. {A = 1;} | |
339 init_deferred_pred_opt(A) ::= INITIALLY IMMEDIATE. {A = 0;} | |
340 | |
341 conslist_opt(A) ::= . {A.n = 0; A.z = 0;} | |
342 conslist_opt(A) ::= COMMA(X) conslist. {A = X;} | |
343 conslist ::= conslist tconscomma tcons. | |
344 conslist ::= tcons. | |
345 tconscomma ::= COMMA. {pParse->constraintName.n = 0;} | |
346 tconscomma ::= . | |
347 tcons ::= CONSTRAINT nm(X). {pParse->constraintName = X;} | |
348 tcons ::= PRIMARY KEY LP idxlist(X) autoinc(I) RP onconf(R). | |
349 {sqlite3AddPrimaryKey(pParse,X,R,I,0);} | |
350 tcons ::= UNIQUE LP idxlist(X) RP onconf(R). | |
351 {sqlite3CreateIndex(pParse,0,0,0,X,R,0,0,0,0);} | |
352 tcons ::= CHECK LP expr(E) RP onconf. | |
353 {sqlite3AddCheckConstraint(pParse,E.pExpr);} | |
354 tcons ::= FOREIGN KEY LP idxlist(FA) RP | |
355 REFERENCES nm(T) idxlist_opt(TA) refargs(R) defer_subclause_opt(D). { | |
356 sqlite3CreateForeignKey(pParse, FA, &T, TA, R); | |
357 sqlite3DeferForeignKey(pParse, D); | |
358 } | |
359 %type defer_subclause_opt {int} | |
360 defer_subclause_opt(A) ::= . {A = 0;} | |
361 defer_subclause_opt(A) ::= defer_subclause(X). {A = X;} | |
362 | |
363 // The following is a non-standard extension that allows us to declare the | |
364 // default behavior when there is a constraint conflict. | |
365 // | |
366 %type onconf {int} | |
367 %type orconf {u8} | |
368 %type resolvetype {int} | |
369 onconf(A) ::= . {A = OE_Default;} | |
370 onconf(A) ::= ON CONFLICT resolvetype(X). {A = X;} | |
371 orconf(A) ::= . {A = OE_Default;} | |
372 orconf(A) ::= OR resolvetype(X). {A = (u8)X;} | |
373 resolvetype(A) ::= raisetype(X). {A = X;} | |
374 resolvetype(A) ::= IGNORE. {A = OE_Ignore;} | |
375 resolvetype(A) ::= REPLACE. {A = OE_Replace;} | |
376 | |
377 ////////////////////////// The DROP TABLE ///////////////////////////////////// | |
378 // | |
379 cmd ::= DROP TABLE ifexists(E) fullname(X). { | |
380 sqlite3DropTable(pParse, X, 0, E); | |
381 } | |
382 %type ifexists {int} | |
383 ifexists(A) ::= IF EXISTS. {A = 1;} | |
384 ifexists(A) ::= . {A = 0;} | |
385 | |
386 ///////////////////// The CREATE VIEW statement ///////////////////////////// | |
387 // | |
388 %ifndef SQLITE_OMIT_VIEW | |
389 cmd ::= createkw(X) temp(T) VIEW ifnotexists(E) nm(Y) dbnm(Z) AS select(S). { | |
390 sqlite3CreateView(pParse, &X, &Y, &Z, S, T, E); | |
391 } | |
392 cmd ::= DROP VIEW ifexists(E) fullname(X). { | |
393 sqlite3DropTable(pParse, X, 1, E); | |
394 } | |
395 %endif SQLITE_OMIT_VIEW | |
396 | |
397 //////////////////////// The SELECT statement ///////////////////////////////// | |
398 // | |
399 cmd ::= select(X). { | |
400 SelectDest dest = {SRT_Output, 0, 0, 0, 0, 0}; | |
401 sqlite3Select(pParse, X, &dest); | |
402 sqlite3SelectDelete(pParse->db, X); | |
403 } | |
404 | |
405 %type select {Select*} | |
406 %destructor select {sqlite3SelectDelete(pParse->db, $$);} | |
407 %type selectnowith {Select*} | |
408 %destructor selectnowith {sqlite3SelectDelete(pParse->db, $$);} | |
409 %type oneselect {Select*} | |
410 %destructor oneselect {sqlite3SelectDelete(pParse->db, $$);} | |
411 | |
412 select(A) ::= with(W) selectnowith(X). { | |
413 Select *p = X, *pNext, *pLoop; | |
414 if( p ){ | |
415 int cnt = 0, mxSelect; | |
416 p->pWith = W; | |
417 if( p->pPrior ){ | |
418 pNext = 0; | |
419 for(pLoop=p; pLoop; pNext=pLoop, pLoop=pLoop->pPrior, cnt++){ | |
420 pLoop->pNext = pNext; | |
421 pLoop->selFlags |= SF_Compound; | |
422 } | |
423 mxSelect = pParse->db->aLimit[SQLITE_LIMIT_COMPOUND_SELECT]; | |
424 if( mxSelect && cnt>mxSelect ){ | |
425 sqlite3ErrorMsg(pParse, "too many terms in compound SELECT"); | |
426 } | |
427 } | |
428 }else{ | |
429 sqlite3WithDelete(pParse->db, W); | |
430 } | |
431 A = p; | |
432 } | |
433 | |
434 selectnowith(A) ::= oneselect(X). {A = X;} | |
435 %ifndef SQLITE_OMIT_COMPOUND_SELECT | |
436 selectnowith(A) ::= selectnowith(X) multiselect_op(Y) oneselect(Z). { | |
437 Select *pRhs = Z; | |
438 if( pRhs && pRhs->pPrior ){ | |
439 SrcList *pFrom; | |
440 Token x; | |
441 x.n = 0; | |
442 pFrom = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&x,pRhs,0,0); | |
443 pRhs = sqlite3SelectNew(pParse,0,pFrom,0,0,0,0,0,0,0); | |
444 } | |
445 if( pRhs ){ | |
446 pRhs->op = (u8)Y; | |
447 pRhs->pPrior = X; | |
448 if( Y!=TK_ALL ) pParse->hasCompound = 1; | |
449 }else{ | |
450 sqlite3SelectDelete(pParse->db, X); | |
451 } | |
452 A = pRhs; | |
453 } | |
454 %type multiselect_op {int} | |
455 multiselect_op(A) ::= UNION(OP). {A = @OP;} | |
456 multiselect_op(A) ::= UNION ALL. {A = TK_ALL;} | |
457 multiselect_op(A) ::= EXCEPT|INTERSECT(OP). {A = @OP;} | |
458 %endif SQLITE_OMIT_COMPOUND_SELECT | |
459 oneselect(A) ::= SELECT(S) distinct(D) selcollist(W) from(X) where_opt(Y) | |
460 groupby_opt(P) having_opt(Q) orderby_opt(Z) limit_opt(L). { | |
461 A = sqlite3SelectNew(pParse,W,X,Y,P,Q,Z,D,L.pLimit,L.pOffset); | |
462 #if SELECTTRACE_ENABLED | |
463 /* Populate the Select.zSelName[] string that is used to help with | |
464 ** query planner debugging, to differentiate between multiple Select | |
465 ** objects in a complex query. | |
466 ** | |
467 ** If the SELECT keyword is immediately followed by a C-style comment | |
468 ** then extract the first few alphanumeric characters from within that | |
469 ** comment to be the zSelName value. Otherwise, the label is #N where | |
470 ** is an integer that is incremented with each SELECT statement seen. | |
471 */ | |
472 if( A!=0 ){ | |
473 const char *z = S.z+6; | |
474 int i; | |
475 sqlite3_snprintf(sizeof(A->zSelName), A->zSelName, "#%d", | |
476 ++pParse->nSelect); | |
477 while( z[0]==' ' ) z++; | |
478 if( z[0]=='/' && z[1]=='*' ){ | |
479 z += 2; | |
480 while( z[0]==' ' ) z++; | |
481 for(i=0; sqlite3Isalnum(z[i]); i++){} | |
482 sqlite3_snprintf(sizeof(A->zSelName), A->zSelName, "%.*s", i, z); | |
483 } | |
484 } | |
485 #endif /* SELECTRACE_ENABLED */ | |
486 } | |
487 oneselect(A) ::= values(X). {A = X;} | |
488 | |
489 %type values {Select*} | |
490 %destructor values {sqlite3SelectDelete(pParse->db, $$);} | |
491 values(A) ::= VALUES LP nexprlist(X) RP. { | |
492 A = sqlite3SelectNew(pParse,X,0,0,0,0,0,SF_Values,0,0); | |
493 } | |
494 values(A) ::= values(X) COMMA LP exprlist(Y) RP. { | |
495 Select *pRight = sqlite3SelectNew(pParse,Y,0,0,0,0,0,SF_Values,0,0); | |
496 if( pRight ){ | |
497 pRight->op = TK_ALL; | |
498 pRight->pPrior = X; | |
499 A = pRight; | |
500 }else{ | |
501 A = X; | |
502 } | |
503 } | |
504 | |
505 // The "distinct" nonterminal is true (1) if the DISTINCT keyword is | |
506 // present and false (0) if it is not. | |
507 // | |
508 %type distinct {u16} | |
509 distinct(A) ::= DISTINCT. {A = SF_Distinct;} | |
510 distinct(A) ::= ALL. {A = 0;} | |
511 distinct(A) ::= . {A = 0;} | |
512 | |
513 // selcollist is a list of expressions that are to become the return | |
514 // values of the SELECT statement. The "*" in statements like | |
515 // "SELECT * FROM ..." is encoded as a special expression with an | |
516 // opcode of TK_ALL. | |
517 // | |
518 %type selcollist {ExprList*} | |
519 %destructor selcollist {sqlite3ExprListDelete(pParse->db, $$);} | |
520 %type sclp {ExprList*} | |
521 %destructor sclp {sqlite3ExprListDelete(pParse->db, $$);} | |
522 sclp(A) ::= selcollist(X) COMMA. {A = X;} | |
523 sclp(A) ::= . {A = 0;} | |
524 selcollist(A) ::= sclp(P) expr(X) as(Y). { | |
525 A = sqlite3ExprListAppend(pParse, P, X.pExpr); | |
526 if( Y.n>0 ) sqlite3ExprListSetName(pParse, A, &Y, 1); | |
527 sqlite3ExprListSetSpan(pParse,A,&X); | |
528 } | |
529 selcollist(A) ::= sclp(P) STAR. { | |
530 Expr *p = sqlite3Expr(pParse->db, TK_ALL, 0); | |
531 A = sqlite3ExprListAppend(pParse, P, p); | |
532 } | |
533 selcollist(A) ::= sclp(P) nm(X) DOT STAR(Y). { | |
534 Expr *pRight = sqlite3PExpr(pParse, TK_ALL, 0, 0, &Y); | |
535 Expr *pLeft = sqlite3PExpr(pParse, TK_ID, 0, 0, &X); | |
536 Expr *pDot = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0); | |
537 A = sqlite3ExprListAppend(pParse,P, pDot); | |
538 } | |
539 | |
540 // An option "AS <id>" phrase that can follow one of the expressions that | |
541 // define the result set, or one of the tables in the FROM clause. | |
542 // | |
543 %type as {Token} | |
544 as(X) ::= AS nm(Y). {X = Y;} | |
545 as(X) ::= ids(Y). {X = Y;} | |
546 as(X) ::= . {X.n = 0;} | |
547 | |
548 | |
549 %type seltablist {SrcList*} | |
550 %destructor seltablist {sqlite3SrcListDelete(pParse->db, $$);} | |
551 %type stl_prefix {SrcList*} | |
552 %destructor stl_prefix {sqlite3SrcListDelete(pParse->db, $$);} | |
553 %type from {SrcList*} | |
554 %destructor from {sqlite3SrcListDelete(pParse->db, $$);} | |
555 | |
556 // A complete FROM clause. | |
557 // | |
558 from(A) ::= . {A = sqlite3DbMallocZero(pParse->db, sizeof(*A));} | |
559 from(A) ::= FROM seltablist(X). { | |
560 A = X; | |
561 sqlite3SrcListShiftJoinType(A); | |
562 } | |
563 | |
564 // "seltablist" is a "Select Table List" - the content of the FROM clause | |
565 // in a SELECT statement. "stl_prefix" is a prefix of this list. | |
566 // | |
567 stl_prefix(A) ::= seltablist(X) joinop(Y). { | |
568 A = X; | |
569 if( ALWAYS(A && A->nSrc>0) ) A->a[A->nSrc-1].jointype = (u8)Y; | |
570 } | |
571 stl_prefix(A) ::= . {A = 0;} | |
572 seltablist(A) ::= stl_prefix(X) nm(Y) dbnm(D) as(Z) indexed_opt(I) | |
573 on_opt(N) using_opt(U). { | |
574 A = sqlite3SrcListAppendFromTerm(pParse,X,&Y,&D,&Z,0,N,U); | |
575 sqlite3SrcListIndexedBy(pParse, A, &I); | |
576 } | |
577 %ifndef SQLITE_OMIT_SUBQUERY | |
578 seltablist(A) ::= stl_prefix(X) LP select(S) RP | |
579 as(Z) on_opt(N) using_opt(U). { | |
580 A = sqlite3SrcListAppendFromTerm(pParse,X,0,0,&Z,S,N,U); | |
581 } | |
582 seltablist(A) ::= stl_prefix(X) LP seltablist(F) RP | |
583 as(Z) on_opt(N) using_opt(U). { | |
584 if( X==0 && Z.n==0 && N==0 && U==0 ){ | |
585 A = F; | |
586 }else if( F->nSrc==1 ){ | |
587 A = sqlite3SrcListAppendFromTerm(pParse,X,0,0,&Z,0,N,U); | |
588 if( A ){ | |
589 struct SrcList_item *pNew = &A->a[A->nSrc-1]; | |
590 struct SrcList_item *pOld = F->a; | |
591 pNew->zName = pOld->zName; | |
592 pNew->zDatabase = pOld->zDatabase; | |
593 pNew->pSelect = pOld->pSelect; | |
594 pOld->zName = pOld->zDatabase = 0; | |
595 pOld->pSelect = 0; | |
596 } | |
597 sqlite3SrcListDelete(pParse->db, F); | |
598 }else{ | |
599 Select *pSubquery; | |
600 sqlite3SrcListShiftJoinType(F); | |
601 pSubquery = sqlite3SelectNew(pParse,0,F,0,0,0,0,SF_NestedFrom,0,0); | |
602 A = sqlite3SrcListAppendFromTerm(pParse,X,0,0,&Z,pSubquery,N,U); | |
603 } | |
604 } | |
605 %endif SQLITE_OMIT_SUBQUERY | |
606 | |
607 %type dbnm {Token} | |
608 dbnm(A) ::= . {A.z=0; A.n=0;} | |
609 dbnm(A) ::= DOT nm(X). {A = X;} | |
610 | |
611 %type fullname {SrcList*} | |
612 %destructor fullname {sqlite3SrcListDelete(pParse->db, $$);} | |
613 fullname(A) ::= nm(X) dbnm(Y). {A = sqlite3SrcListAppend(pParse->db,0,&X,&Y);} | |
614 | |
615 %type joinop {int} | |
616 %type joinop2 {int} | |
617 joinop(X) ::= COMMA|JOIN. { X = JT_INNER; } | |
618 joinop(X) ::= JOIN_KW(A) JOIN. { X = sqlite3JoinType(pParse,&A,0,0); } | |
619 joinop(X) ::= JOIN_KW(A) nm(B) JOIN. { X = sqlite3JoinType(pParse,&A,&B,0); } | |
620 joinop(X) ::= JOIN_KW(A) nm(B) nm(C) JOIN. | |
621 { X = sqlite3JoinType(pParse,&A,&B,&C); } | |
622 | |
623 %type on_opt {Expr*} | |
624 %destructor on_opt {sqlite3ExprDelete(pParse->db, $$);} | |
625 on_opt(N) ::= ON expr(E). {N = E.pExpr;} | |
626 on_opt(N) ::= . {N = 0;} | |
627 | |
628 // Note that this block abuses the Token type just a little. If there is | |
629 // no "INDEXED BY" clause, the returned token is empty (z==0 && n==0). If | |
630 // there is an INDEXED BY clause, then the token is populated as per normal, | |
631 // with z pointing to the token data and n containing the number of bytes | |
632 // in the token. | |
633 // | |
634 // If there is a "NOT INDEXED" clause, then (z==0 && n==1), which is | |
635 // normally illegal. The sqlite3SrcListIndexedBy() function | |
636 // recognizes and interprets this as a special case. | |
637 // | |
638 %type indexed_opt {Token} | |
639 indexed_opt(A) ::= . {A.z=0; A.n=0;} | |
640 indexed_opt(A) ::= INDEXED BY nm(X). {A = X;} | |
641 indexed_opt(A) ::= NOT INDEXED. {A.z=0; A.n=1;} | |
642 | |
643 %type using_opt {IdList*} | |
644 %destructor using_opt {sqlite3IdListDelete(pParse->db, $$);} | |
645 using_opt(U) ::= USING LP idlist(L) RP. {U = L;} | |
646 using_opt(U) ::= . {U = 0;} | |
647 | |
648 | |
649 %type orderby_opt {ExprList*} | |
650 %destructor orderby_opt {sqlite3ExprListDelete(pParse->db, $$);} | |
651 %type sortlist {ExprList*} | |
652 %destructor sortlist {sqlite3ExprListDelete(pParse->db, $$);} | |
653 | |
654 orderby_opt(A) ::= . {A = 0;} | |
655 orderby_opt(A) ::= ORDER BY sortlist(X). {A = X;} | |
656 sortlist(A) ::= sortlist(X) COMMA expr(Y) sortorder(Z). { | |
657 A = sqlite3ExprListAppend(pParse,X,Y.pExpr); | |
658 if( A ) A->a[A->nExpr-1].sortOrder = (u8)Z; | |
659 } | |
660 sortlist(A) ::= expr(Y) sortorder(Z). { | |
661 A = sqlite3ExprListAppend(pParse,0,Y.pExpr); | |
662 if( A && ALWAYS(A->a) ) A->a[0].sortOrder = (u8)Z; | |
663 } | |
664 | |
665 %type sortorder {int} | |
666 | |
667 sortorder(A) ::= ASC. {A = SQLITE_SO_ASC;} | |
668 sortorder(A) ::= DESC. {A = SQLITE_SO_DESC;} | |
669 sortorder(A) ::= . {A = SQLITE_SO_ASC;} | |
670 | |
671 %type groupby_opt {ExprList*} | |
672 %destructor groupby_opt {sqlite3ExprListDelete(pParse->db, $$);} | |
673 groupby_opt(A) ::= . {A = 0;} | |
674 groupby_opt(A) ::= GROUP BY nexprlist(X). {A = X;} | |
675 | |
676 %type having_opt {Expr*} | |
677 %destructor having_opt {sqlite3ExprDelete(pParse->db, $$);} | |
678 having_opt(A) ::= . {A = 0;} | |
679 having_opt(A) ::= HAVING expr(X). {A = X.pExpr;} | |
680 | |
681 %type limit_opt {struct LimitVal} | |
682 | |
683 // The destructor for limit_opt will never fire in the current grammar. | |
684 // The limit_opt non-terminal only occurs at the end of a single production | |
685 // rule for SELECT statements. As soon as the rule that create the | |
686 // limit_opt non-terminal reduces, the SELECT statement rule will also | |
687 // reduce. So there is never a limit_opt non-terminal on the stack | |
688 // except as a transient. So there is never anything to destroy. | |
689 // | |
690 //%destructor limit_opt { | |
691 // sqlite3ExprDelete(pParse->db, $$.pLimit); | |
692 // sqlite3ExprDelete(pParse->db, $$.pOffset); | |
693 //} | |
694 limit_opt(A) ::= . {A.pLimit = 0; A.pOffset = 0;} | |
695 limit_opt(A) ::= LIMIT expr(X). {A.pLimit = X.pExpr; A.pOffset = 0;} | |
696 limit_opt(A) ::= LIMIT expr(X) OFFSET expr(Y). | |
697 {A.pLimit = X.pExpr; A.pOffset = Y.pExpr;} | |
698 limit_opt(A) ::= LIMIT expr(X) COMMA expr(Y). | |
699 {A.pOffset = X.pExpr; A.pLimit = Y.pExpr;} | |
700 | |
701 /////////////////////////// The DELETE statement ///////////////////////////// | |
702 // | |
703 %ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT | |
704 cmd ::= with(C) DELETE FROM fullname(X) indexed_opt(I) where_opt(W) | |
705 orderby_opt(O) limit_opt(L). { | |
706 sqlite3WithPush(pParse, C, 1); | |
707 sqlite3SrcListIndexedBy(pParse, X, &I); | |
708 W = sqlite3LimitWhere(pParse, X, W, O, L.pLimit, L.pOffset, "DELETE"); | |
709 sqlite3DeleteFrom(pParse,X,W); | |
710 } | |
711 %endif | |
712 %ifndef SQLITE_ENABLE_UPDATE_DELETE_LIMIT | |
713 cmd ::= with(C) DELETE FROM fullname(X) indexed_opt(I) where_opt(W). { | |
714 sqlite3WithPush(pParse, C, 1); | |
715 sqlite3SrcListIndexedBy(pParse, X, &I); | |
716 sqlite3DeleteFrom(pParse,X,W); | |
717 } | |
718 %endif | |
719 | |
720 %type where_opt {Expr*} | |
721 %destructor where_opt {sqlite3ExprDelete(pParse->db, $$);} | |
722 | |
723 where_opt(A) ::= . {A = 0;} | |
724 where_opt(A) ::= WHERE expr(X). {A = X.pExpr;} | |
725 | |
726 ////////////////////////// The UPDATE command //////////////////////////////// | |
727 // | |
728 %ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT | |
729 cmd ::= with(C) UPDATE orconf(R) fullname(X) indexed_opt(I) SET setlist(Y) | |
730 where_opt(W) orderby_opt(O) limit_opt(L). { | |
731 sqlite3WithPush(pParse, C, 1); | |
732 sqlite3SrcListIndexedBy(pParse, X, &I); | |
733 sqlite3ExprListCheckLength(pParse,Y,"set list"); | |
734 W = sqlite3LimitWhere(pParse, X, W, O, L.pLimit, L.pOffset, "UPDATE"); | |
735 sqlite3Update(pParse,X,Y,W,R); | |
736 } | |
737 %endif | |
738 %ifndef SQLITE_ENABLE_UPDATE_DELETE_LIMIT | |
739 cmd ::= with(C) UPDATE orconf(R) fullname(X) indexed_opt(I) SET setlist(Y) | |
740 where_opt(W). { | |
741 sqlite3WithPush(pParse, C, 1); | |
742 sqlite3SrcListIndexedBy(pParse, X, &I); | |
743 sqlite3ExprListCheckLength(pParse,Y,"set list"); | |
744 sqlite3Update(pParse,X,Y,W,R); | |
745 } | |
746 %endif | |
747 | |
748 %type setlist {ExprList*} | |
749 %destructor setlist {sqlite3ExprListDelete(pParse->db, $$);} | |
750 | |
751 setlist(A) ::= setlist(Z) COMMA nm(X) EQ expr(Y). { | |
752 A = sqlite3ExprListAppend(pParse, Z, Y.pExpr); | |
753 sqlite3ExprListSetName(pParse, A, &X, 1); | |
754 } | |
755 setlist(A) ::= nm(X) EQ expr(Y). { | |
756 A = sqlite3ExprListAppend(pParse, 0, Y.pExpr); | |
757 sqlite3ExprListSetName(pParse, A, &X, 1); | |
758 } | |
759 | |
760 ////////////////////////// The INSERT command ///////////////////////////////// | |
761 // | |
762 cmd ::= with(W) insert_cmd(R) INTO fullname(X) inscollist_opt(F) select(S). { | |
763 sqlite3WithPush(pParse, W, 1); | |
764 sqlite3Insert(pParse, X, S, F, R); | |
765 } | |
766 cmd ::= with(W) insert_cmd(R) INTO fullname(X) inscollist_opt(F) DEFAULT VALUES. | |
767 { | |
768 sqlite3WithPush(pParse, W, 1); | |
769 sqlite3Insert(pParse, X, 0, F, R); | |
770 } | |
771 | |
772 %type insert_cmd {u8} | |
773 insert_cmd(A) ::= INSERT orconf(R). {A = R;} | |
774 insert_cmd(A) ::= REPLACE. {A = OE_Replace;} | |
775 | |
776 %type inscollist_opt {IdList*} | |
777 %destructor inscollist_opt {sqlite3IdListDelete(pParse->db, $$);} | |
778 %type idlist {IdList*} | |
779 %destructor idlist {sqlite3IdListDelete(pParse->db, $$);} | |
780 | |
781 inscollist_opt(A) ::= . {A = 0;} | |
782 inscollist_opt(A) ::= LP idlist(X) RP. {A = X;} | |
783 idlist(A) ::= idlist(X) COMMA nm(Y). | |
784 {A = sqlite3IdListAppend(pParse->db,X,&Y);} | |
785 idlist(A) ::= nm(Y). | |
786 {A = sqlite3IdListAppend(pParse->db,0,&Y);} | |
787 | |
788 /////////////////////////// Expression Processing ///////////////////////////// | |
789 // | |
790 | |
791 %type expr {ExprSpan} | |
792 %destructor expr {sqlite3ExprDelete(pParse->db, $$.pExpr);} | |
793 %type term {ExprSpan} | |
794 %destructor term {sqlite3ExprDelete(pParse->db, $$.pExpr);} | |
795 | |
796 %include { | |
797 /* This is a utility routine used to set the ExprSpan.zStart and | |
798 ** ExprSpan.zEnd values of pOut so that the span covers the complete | |
799 ** range of text beginning with pStart and going to the end of pEnd. | |
800 */ | |
801 static void spanSet(ExprSpan *pOut, Token *pStart, Token *pEnd){ | |
802 pOut->zStart = pStart->z; | |
803 pOut->zEnd = &pEnd->z[pEnd->n]; | |
804 } | |
805 | |
806 /* Construct a new Expr object from a single identifier. Use the | |
807 ** new Expr to populate pOut. Set the span of pOut to be the identifier | |
808 ** that created the expression. | |
809 */ | |
810 static void spanExpr(ExprSpan *pOut, Parse *pParse, int op, Token *pValue){ | |
811 pOut->pExpr = sqlite3PExpr(pParse, op, 0, 0, pValue); | |
812 pOut->zStart = pValue->z; | |
813 pOut->zEnd = &pValue->z[pValue->n]; | |
814 } | |
815 } | |
816 | |
817 expr(A) ::= term(X). {A = X;} | |
818 expr(A) ::= LP(B) expr(X) RP(E). {A.pExpr = X.pExpr; spanSet(&A,&B,&E);} | |
819 term(A) ::= NULL(X). {spanExpr(&A, pParse, @X, &X);} | |
820 expr(A) ::= id(X). {spanExpr(&A, pParse, TK_ID, &X);} | |
821 expr(A) ::= JOIN_KW(X). {spanExpr(&A, pParse, TK_ID, &X);} | |
822 expr(A) ::= nm(X) DOT nm(Y). { | |
823 Expr *temp1 = sqlite3PExpr(pParse, TK_ID, 0, 0, &X); | |
824 Expr *temp2 = sqlite3PExpr(pParse, TK_ID, 0, 0, &Y); | |
825 A.pExpr = sqlite3PExpr(pParse, TK_DOT, temp1, temp2, 0); | |
826 spanSet(&A,&X,&Y); | |
827 } | |
828 expr(A) ::= nm(X) DOT nm(Y) DOT nm(Z). { | |
829 Expr *temp1 = sqlite3PExpr(pParse, TK_ID, 0, 0, &X); | |
830 Expr *temp2 = sqlite3PExpr(pParse, TK_ID, 0, 0, &Y); | |
831 Expr *temp3 = sqlite3PExpr(pParse, TK_ID, 0, 0, &Z); | |
832 Expr *temp4 = sqlite3PExpr(pParse, TK_DOT, temp2, temp3, 0); | |
833 A.pExpr = sqlite3PExpr(pParse, TK_DOT, temp1, temp4, 0); | |
834 spanSet(&A,&X,&Z); | |
835 } | |
836 term(A) ::= INTEGER|FLOAT|BLOB(X). {spanExpr(&A, pParse, @X, &X);} | |
837 term(A) ::= STRING(X). {spanExpr(&A, pParse, @X, &X);} | |
838 expr(A) ::= VARIABLE(X). { | |
839 if( X.n>=2 && X.z[0]=='#' && sqlite3Isdigit(X.z[1]) ){ | |
840 /* When doing a nested parse, one can include terms in an expression | |
841 ** that look like this: #1 #2 ... These terms refer to registers | |
842 ** in the virtual machine. #N is the N-th register. */ | |
843 if( pParse->nested==0 ){ | |
844 sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &X); | |
845 A.pExpr = 0; | |
846 }else{ | |
847 A.pExpr = sqlite3PExpr(pParse, TK_REGISTER, 0, 0, &X); | |
848 if( A.pExpr ) sqlite3GetInt32(&X.z[1], &A.pExpr->iTable); | |
849 } | |
850 }else{ | |
851 spanExpr(&A, pParse, TK_VARIABLE, &X); | |
852 sqlite3ExprAssignVarNumber(pParse, A.pExpr); | |
853 } | |
854 spanSet(&A, &X, &X); | |
855 } | |
856 expr(A) ::= expr(E) COLLATE ids(C). { | |
857 A.pExpr = sqlite3ExprAddCollateToken(pParse, E.pExpr, &C); | |
858 A.zStart = E.zStart; | |
859 A.zEnd = &C.z[C.n]; | |
860 } | |
861 %ifndef SQLITE_OMIT_CAST | |
862 expr(A) ::= CAST(X) LP expr(E) AS typetoken(T) RP(Y). { | |
863 A.pExpr = sqlite3PExpr(pParse, TK_CAST, E.pExpr, 0, &T); | |
864 spanSet(&A,&X,&Y); | |
865 } | |
866 %endif SQLITE_OMIT_CAST | |
867 expr(A) ::= id(X) LP distinct(D) exprlist(Y) RP(E). { | |
868 if( Y && Y->nExpr>pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG] ){ | |
869 sqlite3ErrorMsg(pParse, "too many arguments on function %T", &X); | |
870 } | |
871 A.pExpr = sqlite3ExprFunction(pParse, Y, &X); | |
872 spanSet(&A,&X,&E); | |
873 if( D && A.pExpr ){ | |
874 A.pExpr->flags |= EP_Distinct; | |
875 } | |
876 } | |
877 expr(A) ::= id(X) LP STAR RP(E). { | |
878 A.pExpr = sqlite3ExprFunction(pParse, 0, &X); | |
879 spanSet(&A,&X,&E); | |
880 } | |
881 term(A) ::= CTIME_KW(OP). { | |
882 A.pExpr = sqlite3ExprFunction(pParse, 0, &OP); | |
883 spanSet(&A, &OP, &OP); | |
884 } | |
885 | |
886 %include { | |
887 /* This routine constructs a binary expression node out of two ExprSpan | |
888 ** objects and uses the result to populate a new ExprSpan object. | |
889 */ | |
890 static void spanBinaryExpr( | |
891 ExprSpan *pOut, /* Write the result here */ | |
892 Parse *pParse, /* The parsing context. Errors accumulate here */ | |
893 int op, /* The binary operation */ | |
894 ExprSpan *pLeft, /* The left operand */ | |
895 ExprSpan *pRight /* The right operand */ | |
896 ){ | |
897 pOut->pExpr = sqlite3PExpr(pParse, op, pLeft->pExpr, pRight->pExpr, 0); | |
898 pOut->zStart = pLeft->zStart; | |
899 pOut->zEnd = pRight->zEnd; | |
900 } | |
901 } | |
902 | |
903 expr(A) ::= expr(X) AND(OP) expr(Y). {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} | |
904 expr(A) ::= expr(X) OR(OP) expr(Y). {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} | |
905 expr(A) ::= expr(X) LT|GT|GE|LE(OP) expr(Y). | |
906 {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} | |
907 expr(A) ::= expr(X) EQ|NE(OP) expr(Y). {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} | |
908 expr(A) ::= expr(X) BITAND|BITOR|LSHIFT|RSHIFT(OP) expr(Y). | |
909 {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} | |
910 expr(A) ::= expr(X) PLUS|MINUS(OP) expr(Y). | |
911 {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} | |
912 expr(A) ::= expr(X) STAR|SLASH|REM(OP) expr(Y). | |
913 {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} | |
914 expr(A) ::= expr(X) CONCAT(OP) expr(Y). {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} | |
915 %type likeop {struct LikeOp} | |
916 likeop(A) ::= LIKE_KW|MATCH(X). {A.eOperator = X; A.bNot = 0;} | |
917 likeop(A) ::= NOT LIKE_KW|MATCH(X). {A.eOperator = X; A.bNot = 1;} | |
918 expr(A) ::= expr(X) likeop(OP) expr(Y). [LIKE_KW] { | |
919 ExprList *pList; | |
920 pList = sqlite3ExprListAppend(pParse,0, Y.pExpr); | |
921 pList = sqlite3ExprListAppend(pParse,pList, X.pExpr); | |
922 A.pExpr = sqlite3ExprFunction(pParse, pList, &OP.eOperator); | |
923 if( OP.bNot ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0); | |
924 A.zStart = X.zStart; | |
925 A.zEnd = Y.zEnd; | |
926 if( A.pExpr ) A.pExpr->flags |= EP_InfixFunc; | |
927 } | |
928 expr(A) ::= expr(X) likeop(OP) expr(Y) ESCAPE expr(E). [LIKE_KW] { | |
929 ExprList *pList; | |
930 pList = sqlite3ExprListAppend(pParse,0, Y.pExpr); | |
931 pList = sqlite3ExprListAppend(pParse,pList, X.pExpr); | |
932 pList = sqlite3ExprListAppend(pParse,pList, E.pExpr); | |
933 A.pExpr = sqlite3ExprFunction(pParse, pList, &OP.eOperator); | |
934 if( OP.bNot ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0); | |
935 A.zStart = X.zStart; | |
936 A.zEnd = E.zEnd; | |
937 if( A.pExpr ) A.pExpr->flags |= EP_InfixFunc; | |
938 } | |
939 | |
940 %include { | |
941 /* Construct an expression node for a unary postfix operator | |
942 */ | |
943 static void spanUnaryPostfix( | |
944 ExprSpan *pOut, /* Write the new expression node here */ | |
945 Parse *pParse, /* Parsing context to record errors */ | |
946 int op, /* The operator */ | |
947 ExprSpan *pOperand, /* The operand */ | |
948 Token *pPostOp /* The operand token for setting the span */ | |
949 ){ | |
950 pOut->pExpr = sqlite3PExpr(pParse, op, pOperand->pExpr, 0, 0); | |
951 pOut->zStart = pOperand->zStart; | |
952 pOut->zEnd = &pPostOp->z[pPostOp->n]; | |
953 } | |
954 } | |
955 | |
956 expr(A) ::= expr(X) ISNULL|NOTNULL(E). {spanUnaryPostfix(&A,pParse,@E,&X,&E);} | |
957 expr(A) ::= expr(X) NOT NULL(E). {spanUnaryPostfix(&A,pParse,TK_NOTNULL,&X,&E);} | |
958 | |
959 %include { | |
960 /* A routine to convert a binary TK_IS or TK_ISNOT expression into a | |
961 ** unary TK_ISNULL or TK_NOTNULL expression. */ | |
962 static void binaryToUnaryIfNull(Parse *pParse, Expr *pY, Expr *pA, int op){ | |
963 sqlite3 *db = pParse->db; | |
964 if( pY && pA && pY->op==TK_NULL ){ | |
965 pA->op = (u8)op; | |
966 sqlite3ExprDelete(db, pA->pRight); | |
967 pA->pRight = 0; | |
968 } | |
969 } | |
970 } | |
971 | |
972 // expr1 IS expr2 | |
973 // expr1 IS NOT expr2 | |
974 // | |
975 // If expr2 is NULL then code as TK_ISNULL or TK_NOTNULL. If expr2 | |
976 // is any other expression, code as TK_IS or TK_ISNOT. | |
977 // | |
978 expr(A) ::= expr(X) IS expr(Y). { | |
979 spanBinaryExpr(&A,pParse,TK_IS,&X,&Y); | |
980 binaryToUnaryIfNull(pParse, Y.pExpr, A.pExpr, TK_ISNULL); | |
981 } | |
982 expr(A) ::= expr(X) IS NOT expr(Y). { | |
983 spanBinaryExpr(&A,pParse,TK_ISNOT,&X,&Y); | |
984 binaryToUnaryIfNull(pParse, Y.pExpr, A.pExpr, TK_NOTNULL); | |
985 } | |
986 | |
987 %include { | |
988 /* Construct an expression node for a unary prefix operator | |
989 */ | |
990 static void spanUnaryPrefix( | |
991 ExprSpan *pOut, /* Write the new expression node here */ | |
992 Parse *pParse, /* Parsing context to record errors */ | |
993 int op, /* The operator */ | |
994 ExprSpan *pOperand, /* The operand */ | |
995 Token *pPreOp /* The operand token for setting the span */ | |
996 ){ | |
997 pOut->pExpr = sqlite3PExpr(pParse, op, pOperand->pExpr, 0, 0); | |
998 pOut->zStart = pPreOp->z; | |
999 pOut->zEnd = pOperand->zEnd; | |
1000 } | |
1001 } | |
1002 | |
1003 | |
1004 | |
1005 expr(A) ::= NOT(B) expr(X). {spanUnaryPrefix(&A,pParse,@B,&X,&B);} | |
1006 expr(A) ::= BITNOT(B) expr(X). {spanUnaryPrefix(&A,pParse,@B,&X,&B);} | |
1007 expr(A) ::= MINUS(B) expr(X). [BITNOT] | |
1008 {spanUnaryPrefix(&A,pParse,TK_UMINUS,&X,&B);} | |
1009 expr(A) ::= PLUS(B) expr(X). [BITNOT] | |
1010 {spanUnaryPrefix(&A,pParse,TK_UPLUS,&X,&B);} | |
1011 | |
1012 %type between_op {int} | |
1013 between_op(A) ::= BETWEEN. {A = 0;} | |
1014 between_op(A) ::= NOT BETWEEN. {A = 1;} | |
1015 expr(A) ::= expr(W) between_op(N) expr(X) AND expr(Y). [BETWEEN] { | |
1016 ExprList *pList = sqlite3ExprListAppend(pParse,0, X.pExpr); | |
1017 pList = sqlite3ExprListAppend(pParse,pList, Y.pExpr); | |
1018 A.pExpr = sqlite3PExpr(pParse, TK_BETWEEN, W.pExpr, 0, 0); | |
1019 if( A.pExpr ){ | |
1020 A.pExpr->x.pList = pList; | |
1021 }else{ | |
1022 sqlite3ExprListDelete(pParse->db, pList); | |
1023 } | |
1024 if( N ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0); | |
1025 A.zStart = W.zStart; | |
1026 A.zEnd = Y.zEnd; | |
1027 } | |
1028 %ifndef SQLITE_OMIT_SUBQUERY | |
1029 %type in_op {int} | |
1030 in_op(A) ::= IN. {A = 0;} | |
1031 in_op(A) ::= NOT IN. {A = 1;} | |
1032 expr(A) ::= expr(X) in_op(N) LP exprlist(Y) RP(E). [IN] { | |
1033 if( Y==0 ){ | |
1034 /* Expressions of the form | |
1035 ** | |
1036 ** expr1 IN () | |
1037 ** expr1 NOT IN () | |
1038 ** | |
1039 ** simplify to constants 0 (false) and 1 (true), respectively, | |
1040 ** regardless of the value of expr1. | |
1041 */ | |
1042 A.pExpr = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, &sqlite3IntTokens[N]); | |
1043 sqlite3ExprDelete(pParse->db, X.pExpr); | |
1044 }else if( Y->nExpr==1 ){ | |
1045 /* Expressions of the form: | |
1046 ** | |
1047 ** expr1 IN (?1) | |
1048 ** expr1 NOT IN (?2) | |
1049 ** | |
1050 ** with exactly one value on the RHS can be simplified to something | |
1051 ** like this: | |
1052 ** | |
1053 ** expr1 == ?1 | |
1054 ** expr1 <> ?2 | |
1055 ** | |
1056 ** But, the RHS of the == or <> is marked with the EP_Generic flag | |
1057 ** so that it may not contribute to the computation of comparison | |
1058 ** affinity or the collating sequence to use for comparison. Otherwise, | |
1059 ** the semantics would be subtly different from IN or NOT IN. | |
1060 */ | |
1061 Expr *pRHS = Y->a[0].pExpr; | |
1062 Y->a[0].pExpr = 0; | |
1063 sqlite3ExprListDelete(pParse->db, Y); | |
1064 /* pRHS cannot be NULL because a malloc error would have been detected | |
1065 ** before now and control would have never reached this point */ | |
1066 if( ALWAYS(pRHS) ){ | |
1067 pRHS->flags &= ~EP_Collate; | |
1068 pRHS->flags |= EP_Generic; | |
1069 } | |
1070 A.pExpr = sqlite3PExpr(pParse, N ? TK_NE : TK_EQ, X.pExpr, pRHS, 0); | |
1071 }else{ | |
1072 A.pExpr = sqlite3PExpr(pParse, TK_IN, X.pExpr, 0, 0); | |
1073 if( A.pExpr ){ | |
1074 A.pExpr->x.pList = Y; | |
1075 sqlite3ExprSetHeight(pParse, A.pExpr); | |
1076 }else{ | |
1077 sqlite3ExprListDelete(pParse->db, Y); | |
1078 } | |
1079 if( N ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0); | |
1080 } | |
1081 A.zStart = X.zStart; | |
1082 A.zEnd = &E.z[E.n]; | |
1083 } | |
1084 expr(A) ::= LP(B) select(X) RP(E). { | |
1085 A.pExpr = sqlite3PExpr(pParse, TK_SELECT, 0, 0, 0); | |
1086 if( A.pExpr ){ | |
1087 A.pExpr->x.pSelect = X; | |
1088 ExprSetProperty(A.pExpr, EP_xIsSelect); | |
1089 sqlite3ExprSetHeight(pParse, A.pExpr); | |
1090 }else{ | |
1091 sqlite3SelectDelete(pParse->db, X); | |
1092 } | |
1093 A.zStart = B.z; | |
1094 A.zEnd = &E.z[E.n]; | |
1095 } | |
1096 expr(A) ::= expr(X) in_op(N) LP select(Y) RP(E). [IN] { | |
1097 A.pExpr = sqlite3PExpr(pParse, TK_IN, X.pExpr, 0, 0); | |
1098 if( A.pExpr ){ | |
1099 A.pExpr->x.pSelect = Y; | |
1100 ExprSetProperty(A.pExpr, EP_xIsSelect); | |
1101 sqlite3ExprSetHeight(pParse, A.pExpr); | |
1102 }else{ | |
1103 sqlite3SelectDelete(pParse->db, Y); | |
1104 } | |
1105 if( N ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0); | |
1106 A.zStart = X.zStart; | |
1107 A.zEnd = &E.z[E.n]; | |
1108 } | |
1109 expr(A) ::= expr(X) in_op(N) nm(Y) dbnm(Z). [IN] { | |
1110 SrcList *pSrc = sqlite3SrcListAppend(pParse->db, 0,&Y,&Z); | |
1111 A.pExpr = sqlite3PExpr(pParse, TK_IN, X.pExpr, 0, 0); | |
1112 if( A.pExpr ){ | |
1113 A.pExpr->x.pSelect = sqlite3SelectNew(pParse, 0,pSrc,0,0,0,0,0,0,0); | |
1114 ExprSetProperty(A.pExpr, EP_xIsSelect); | |
1115 sqlite3ExprSetHeight(pParse, A.pExpr); | |
1116 }else{ | |
1117 sqlite3SrcListDelete(pParse->db, pSrc); | |
1118 } | |
1119 if( N ) A.pExpr = sqlite3PExpr(pParse, TK_NOT, A.pExpr, 0, 0); | |
1120 A.zStart = X.zStart; | |
1121 A.zEnd = Z.z ? &Z.z[Z.n] : &Y.z[Y.n]; | |
1122 } | |
1123 expr(A) ::= EXISTS(B) LP select(Y) RP(E). { | |
1124 Expr *p = A.pExpr = sqlite3PExpr(pParse, TK_EXISTS, 0, 0, 0); | |
1125 if( p ){ | |
1126 p->x.pSelect = Y; | |
1127 ExprSetProperty(p, EP_xIsSelect); | |
1128 sqlite3ExprSetHeight(pParse, p); | |
1129 }else{ | |
1130 sqlite3SelectDelete(pParse->db, Y); | |
1131 } | |
1132 A.zStart = B.z; | |
1133 A.zEnd = &E.z[E.n]; | |
1134 } | |
1135 %endif SQLITE_OMIT_SUBQUERY | |
1136 | |
1137 /* CASE expressions */ | |
1138 expr(A) ::= CASE(C) case_operand(X) case_exprlist(Y) case_else(Z) END(E). { | |
1139 A.pExpr = sqlite3PExpr(pParse, TK_CASE, X, 0, 0); | |
1140 if( A.pExpr ){ | |
1141 A.pExpr->x.pList = Z ? sqlite3ExprListAppend(pParse,Y,Z) : Y; | |
1142 sqlite3ExprSetHeight(pParse, A.pExpr); | |
1143 }else{ | |
1144 sqlite3ExprListDelete(pParse->db, Y); | |
1145 sqlite3ExprDelete(pParse->db, Z); | |
1146 } | |
1147 A.zStart = C.z; | |
1148 A.zEnd = &E.z[E.n]; | |
1149 } | |
1150 %type case_exprlist {ExprList*} | |
1151 %destructor case_exprlist {sqlite3ExprListDelete(pParse->db, $$);} | |
1152 case_exprlist(A) ::= case_exprlist(X) WHEN expr(Y) THEN expr(Z). { | |
1153 A = sqlite3ExprListAppend(pParse,X, Y.pExpr); | |
1154 A = sqlite3ExprListAppend(pParse,A, Z.pExpr); | |
1155 } | |
1156 case_exprlist(A) ::= WHEN expr(Y) THEN expr(Z). { | |
1157 A = sqlite3ExprListAppend(pParse,0, Y.pExpr); | |
1158 A = sqlite3ExprListAppend(pParse,A, Z.pExpr); | |
1159 } | |
1160 %type case_else {Expr*} | |
1161 %destructor case_else {sqlite3ExprDelete(pParse->db, $$);} | |
1162 case_else(A) ::= ELSE expr(X). {A = X.pExpr;} | |
1163 case_else(A) ::= . {A = 0;} | |
1164 %type case_operand {Expr*} | |
1165 %destructor case_operand {sqlite3ExprDelete(pParse->db, $$);} | |
1166 case_operand(A) ::= expr(X). {A = X.pExpr;} | |
1167 case_operand(A) ::= . {A = 0;} | |
1168 | |
1169 %type exprlist {ExprList*} | |
1170 %destructor exprlist {sqlite3ExprListDelete(pParse->db, $$);} | |
1171 %type nexprlist {ExprList*} | |
1172 %destructor nexprlist {sqlite3ExprListDelete(pParse->db, $$);} | |
1173 | |
1174 exprlist(A) ::= nexprlist(X). {A = X;} | |
1175 exprlist(A) ::= . {A = 0;} | |
1176 nexprlist(A) ::= nexprlist(X) COMMA expr(Y). | |
1177 {A = sqlite3ExprListAppend(pParse,X,Y.pExpr);} | |
1178 nexprlist(A) ::= expr(Y). | |
1179 {A = sqlite3ExprListAppend(pParse,0,Y.pExpr);} | |
1180 | |
1181 | |
1182 ///////////////////////////// The CREATE INDEX command /////////////////////// | |
1183 // | |
1184 cmd ::= createkw(S) uniqueflag(U) INDEX ifnotexists(NE) nm(X) dbnm(D) | |
1185 ON nm(Y) LP idxlist(Z) RP where_opt(W). { | |
1186 sqlite3CreateIndex(pParse, &X, &D, | |
1187 sqlite3SrcListAppend(pParse->db,0,&Y,0), Z, U, | |
1188 &S, W, SQLITE_SO_ASC, NE); | |
1189 } | |
1190 | |
1191 %type uniqueflag {int} | |
1192 uniqueflag(A) ::= UNIQUE. {A = OE_Abort;} | |
1193 uniqueflag(A) ::= . {A = OE_None;} | |
1194 | |
1195 %type idxlist {ExprList*} | |
1196 %destructor idxlist {sqlite3ExprListDelete(pParse->db, $$);} | |
1197 %type idxlist_opt {ExprList*} | |
1198 %destructor idxlist_opt {sqlite3ExprListDelete(pParse->db, $$);} | |
1199 | |
1200 idxlist_opt(A) ::= . {A = 0;} | |
1201 idxlist_opt(A) ::= LP idxlist(X) RP. {A = X;} | |
1202 idxlist(A) ::= idxlist(X) COMMA nm(Y) collate(C) sortorder(Z). { | |
1203 Expr *p = sqlite3ExprAddCollateToken(pParse, 0, &C); | |
1204 A = sqlite3ExprListAppend(pParse,X, p); | |
1205 sqlite3ExprListSetName(pParse,A,&Y,1); | |
1206 sqlite3ExprListCheckLength(pParse, A, "index"); | |
1207 if( A ) A->a[A->nExpr-1].sortOrder = (u8)Z; | |
1208 } | |
1209 idxlist(A) ::= nm(Y) collate(C) sortorder(Z). { | |
1210 Expr *p = sqlite3ExprAddCollateToken(pParse, 0, &C); | |
1211 A = sqlite3ExprListAppend(pParse,0, p); | |
1212 sqlite3ExprListSetName(pParse, A, &Y, 1); | |
1213 sqlite3ExprListCheckLength(pParse, A, "index"); | |
1214 if( A ) A->a[A->nExpr-1].sortOrder = (u8)Z; | |
1215 } | |
1216 | |
1217 %type collate {Token} | |
1218 collate(C) ::= . {C.z = 0; C.n = 0;} | |
1219 collate(C) ::= COLLATE ids(X). {C = X;} | |
1220 | |
1221 | |
1222 ///////////////////////////// The DROP INDEX command ///////////////////////// | |
1223 // | |
1224 cmd ::= DROP INDEX ifexists(E) fullname(X). {sqlite3DropIndex(pParse, X, E);} | |
1225 | |
1226 ///////////////////////////// The VACUUM command ///////////////////////////// | |
1227 // | |
1228 %ifndef SQLITE_OMIT_VACUUM | |
1229 %ifndef SQLITE_OMIT_ATTACH | |
1230 cmd ::= VACUUM. {sqlite3Vacuum(pParse);} | |
1231 cmd ::= VACUUM nm. {sqlite3Vacuum(pParse);} | |
1232 %endif SQLITE_OMIT_ATTACH | |
1233 %endif SQLITE_OMIT_VACUUM | |
1234 | |
1235 ///////////////////////////// The PRAGMA command ///////////////////////////// | |
1236 // | |
1237 %ifndef SQLITE_OMIT_PRAGMA | |
1238 cmd ::= PRAGMA nm(X) dbnm(Z). {sqlite3Pragma(pParse,&X,&Z,0,0);} | |
1239 cmd ::= PRAGMA nm(X) dbnm(Z) EQ nmnum(Y). {sqlite3Pragma(pParse,&X,&Z,&Y,0);} | |
1240 cmd ::= PRAGMA nm(X) dbnm(Z) LP nmnum(Y) RP. {sqlite3Pragma(pParse,&X,&Z,&Y,0);} | |
1241 cmd ::= PRAGMA nm(X) dbnm(Z) EQ minus_num(Y). | |
1242 {sqlite3Pragma(pParse,&X,&Z,&Y,1);} | |
1243 cmd ::= PRAGMA nm(X) dbnm(Z) LP minus_num(Y) RP. | |
1244 {sqlite3Pragma(pParse,&X,&Z,&Y,1);} | |
1245 | |
1246 nmnum(A) ::= plus_num(X). {A = X;} | |
1247 nmnum(A) ::= nm(X). {A = X;} | |
1248 nmnum(A) ::= ON(X). {A = X;} | |
1249 nmnum(A) ::= DELETE(X). {A = X;} | |
1250 nmnum(A) ::= DEFAULT(X). {A = X;} | |
1251 %endif SQLITE_OMIT_PRAGMA | |
1252 %token_class number INTEGER|FLOAT. | |
1253 plus_num(A) ::= PLUS number(X). {A = X;} | |
1254 plus_num(A) ::= number(X). {A = X;} | |
1255 minus_num(A) ::= MINUS number(X). {A = X;} | |
1256 //////////////////////////// The CREATE TRIGGER command ///////////////////// | |
1257 | |
1258 %ifndef SQLITE_OMIT_TRIGGER | |
1259 | |
1260 cmd ::= createkw trigger_decl(A) BEGIN trigger_cmd_list(S) END(Z). { | |
1261 Token all; | |
1262 all.z = A.z; | |
1263 all.n = (int)(Z.z - A.z) + Z.n; | |
1264 sqlite3FinishTrigger(pParse, S, &all); | |
1265 } | |
1266 | |
1267 trigger_decl(A) ::= temp(T) TRIGGER ifnotexists(NOERR) nm(B) dbnm(Z) | |
1268 trigger_time(C) trigger_event(D) | |
1269 ON fullname(E) foreach_clause when_clause(G). { | |
1270 sqlite3BeginTrigger(pParse, &B, &Z, C, D.a, D.b, E, G, T, NOERR); | |
1271 A = (Z.n==0?B:Z); | |
1272 } | |
1273 | |
1274 %type trigger_time {int} | |
1275 trigger_time(A) ::= BEFORE. { A = TK_BEFORE; } | |
1276 trigger_time(A) ::= AFTER. { A = TK_AFTER; } | |
1277 trigger_time(A) ::= INSTEAD OF. { A = TK_INSTEAD;} | |
1278 trigger_time(A) ::= . { A = TK_BEFORE; } | |
1279 | |
1280 %type trigger_event {struct TrigEvent} | |
1281 %destructor trigger_event {sqlite3IdListDelete(pParse->db, $$.b);} | |
1282 trigger_event(A) ::= DELETE|INSERT(OP). {A.a = @OP; A.b = 0;} | |
1283 trigger_event(A) ::= UPDATE(OP). {A.a = @OP; A.b = 0;} | |
1284 trigger_event(A) ::= UPDATE OF idlist(X). {A.a = TK_UPDATE; A.b = X;} | |
1285 | |
1286 foreach_clause ::= . | |
1287 foreach_clause ::= FOR EACH ROW. | |
1288 | |
1289 %type when_clause {Expr*} | |
1290 %destructor when_clause {sqlite3ExprDelete(pParse->db, $$);} | |
1291 when_clause(A) ::= . { A = 0; } | |
1292 when_clause(A) ::= WHEN expr(X). { A = X.pExpr; } | |
1293 | |
1294 %type trigger_cmd_list {TriggerStep*} | |
1295 %destructor trigger_cmd_list {sqlite3DeleteTriggerStep(pParse->db, $$);} | |
1296 trigger_cmd_list(A) ::= trigger_cmd_list(Y) trigger_cmd(X) SEMI. { | |
1297 assert( Y!=0 ); | |
1298 Y->pLast->pNext = X; | |
1299 Y->pLast = X; | |
1300 A = Y; | |
1301 } | |
1302 trigger_cmd_list(A) ::= trigger_cmd(X) SEMI. { | |
1303 assert( X!=0 ); | |
1304 X->pLast = X; | |
1305 A = X; | |
1306 } | |
1307 | |
1308 // Disallow qualified table names on INSERT, UPDATE, and DELETE statements | |
1309 // within a trigger. The table to INSERT, UPDATE, or DELETE is always in | |
1310 // the same database as the table that the trigger fires on. | |
1311 // | |
1312 %type trnm {Token} | |
1313 trnm(A) ::= nm(X). {A = X;} | |
1314 trnm(A) ::= nm DOT nm(X). { | |
1315 A = X; | |
1316 sqlite3ErrorMsg(pParse, | |
1317 "qualified table names are not allowed on INSERT, UPDATE, and DELETE " | |
1318 "statements within triggers"); | |
1319 } | |
1320 | |
1321 // Disallow the INDEX BY and NOT INDEXED clauses on UPDATE and DELETE | |
1322 // statements within triggers. We make a specific error message for this | |
1323 // since it is an exception to the default grammar rules. | |
1324 // | |
1325 tridxby ::= . | |
1326 tridxby ::= INDEXED BY nm. { | |
1327 sqlite3ErrorMsg(pParse, | |
1328 "the INDEXED BY clause is not allowed on UPDATE or DELETE statements " | |
1329 "within triggers"); | |
1330 } | |
1331 tridxby ::= NOT INDEXED. { | |
1332 sqlite3ErrorMsg(pParse, | |
1333 "the NOT INDEXED clause is not allowed on UPDATE or DELETE statements " | |
1334 "within triggers"); | |
1335 } | |
1336 | |
1337 | |
1338 | |
1339 %type trigger_cmd {TriggerStep*} | |
1340 %destructor trigger_cmd {sqlite3DeleteTriggerStep(pParse->db, $$);} | |
1341 // UPDATE | |
1342 trigger_cmd(A) ::= | |
1343 UPDATE orconf(R) trnm(X) tridxby SET setlist(Y) where_opt(Z). | |
1344 { A = sqlite3TriggerUpdateStep(pParse->db, &X, Y, Z, R); } | |
1345 | |
1346 // INSERT | |
1347 trigger_cmd(A) ::= insert_cmd(R) INTO trnm(X) inscollist_opt(F) select(S). | |
1348 {A = sqlite3TriggerInsertStep(pParse->db, &X, F, S, R);} | |
1349 | |
1350 // DELETE | |
1351 trigger_cmd(A) ::= DELETE FROM trnm(X) tridxby where_opt(Y). | |
1352 {A = sqlite3TriggerDeleteStep(pParse->db, &X, Y);} | |
1353 | |
1354 // SELECT | |
1355 trigger_cmd(A) ::= select(X). {A = sqlite3TriggerSelectStep(pParse->db, X); } | |
1356 | |
1357 // The special RAISE expression that may occur in trigger programs | |
1358 expr(A) ::= RAISE(X) LP IGNORE RP(Y). { | |
1359 A.pExpr = sqlite3PExpr(pParse, TK_RAISE, 0, 0, 0); | |
1360 if( A.pExpr ){ | |
1361 A.pExpr->affinity = OE_Ignore; | |
1362 } | |
1363 A.zStart = X.z; | |
1364 A.zEnd = &Y.z[Y.n]; | |
1365 } | |
1366 expr(A) ::= RAISE(X) LP raisetype(T) COMMA nm(Z) RP(Y). { | |
1367 A.pExpr = sqlite3PExpr(pParse, TK_RAISE, 0, 0, &Z); | |
1368 if( A.pExpr ) { | |
1369 A.pExpr->affinity = (char)T; | |
1370 } | |
1371 A.zStart = X.z; | |
1372 A.zEnd = &Y.z[Y.n]; | |
1373 } | |
1374 %endif !SQLITE_OMIT_TRIGGER | |
1375 | |
1376 %type raisetype {int} | |
1377 raisetype(A) ::= ROLLBACK. {A = OE_Rollback;} | |
1378 raisetype(A) ::= ABORT. {A = OE_Abort;} | |
1379 raisetype(A) ::= FAIL. {A = OE_Fail;} | |
1380 | |
1381 | |
1382 //////////////////////// DROP TRIGGER statement ////////////////////////////// | |
1383 %ifndef SQLITE_OMIT_TRIGGER | |
1384 cmd ::= DROP TRIGGER ifexists(NOERR) fullname(X). { | |
1385 sqlite3DropTrigger(pParse,X,NOERR); | |
1386 } | |
1387 %endif !SQLITE_OMIT_TRIGGER | |
1388 | |
1389 //////////////////////// ATTACH DATABASE file AS name ///////////////////////// | |
1390 %ifndef SQLITE_OMIT_ATTACH | |
1391 cmd ::= ATTACH database_kw_opt expr(F) AS expr(D) key_opt(K). { | |
1392 sqlite3Attach(pParse, F.pExpr, D.pExpr, K); | |
1393 } | |
1394 cmd ::= DETACH database_kw_opt expr(D). { | |
1395 sqlite3Detach(pParse, D.pExpr); | |
1396 } | |
1397 | |
1398 %type key_opt {Expr*} | |
1399 %destructor key_opt {sqlite3ExprDelete(pParse->db, $$);} | |
1400 key_opt(A) ::= . { A = 0; } | |
1401 key_opt(A) ::= KEY expr(X). { A = X.pExpr; } | |
1402 | |
1403 database_kw_opt ::= DATABASE. | |
1404 database_kw_opt ::= . | |
1405 %endif SQLITE_OMIT_ATTACH | |
1406 | |
1407 ////////////////////////// REINDEX collation ////////////////////////////////// | |
1408 %ifndef SQLITE_OMIT_REINDEX | |
1409 cmd ::= REINDEX. {sqlite3Reindex(pParse, 0, 0);} | |
1410 cmd ::= REINDEX nm(X) dbnm(Y). {sqlite3Reindex(pParse, &X, &Y);} | |
1411 %endif SQLITE_OMIT_REINDEX | |
1412 | |
1413 /////////////////////////////////// ANALYZE /////////////////////////////////// | |
1414 %ifndef SQLITE_OMIT_ANALYZE | |
1415 cmd ::= ANALYZE. {sqlite3Analyze(pParse, 0, 0);} | |
1416 cmd ::= ANALYZE nm(X) dbnm(Y). {sqlite3Analyze(pParse, &X, &Y);} | |
1417 %endif | |
1418 | |
1419 //////////////////////// ALTER TABLE table ... //////////////////////////////// | |
1420 %ifndef SQLITE_OMIT_ALTERTABLE | |
1421 cmd ::= ALTER TABLE fullname(X) RENAME TO nm(Z). { | |
1422 sqlite3AlterRenameTable(pParse,X,&Z); | |
1423 } | |
1424 cmd ::= ALTER TABLE add_column_fullname ADD kwcolumn_opt column(Y). { | |
1425 sqlite3AlterFinishAddColumn(pParse, &Y); | |
1426 } | |
1427 add_column_fullname ::= fullname(X). { | |
1428 pParse->db->lookaside.bEnabled = 0; | |
1429 sqlite3AlterBeginAddColumn(pParse, X); | |
1430 } | |
1431 kwcolumn_opt ::= . | |
1432 kwcolumn_opt ::= COLUMNKW. | |
1433 %endif SQLITE_OMIT_ALTERTABLE | |
1434 | |
1435 //////////////////////// CREATE VIRTUAL TABLE ... ///////////////////////////// | |
1436 %ifndef SQLITE_OMIT_VIRTUALTABLE | |
1437 cmd ::= create_vtab. {sqlite3VtabFinishParse(pParse,0);} | |
1438 cmd ::= create_vtab LP vtabarglist RP(X). {sqlite3VtabFinishParse(pParse,&X);} | |
1439 create_vtab ::= createkw VIRTUAL TABLE ifnotexists(E) | |
1440 nm(X) dbnm(Y) USING nm(Z). { | |
1441 sqlite3VtabBeginParse(pParse, &X, &Y, &Z, E); | |
1442 } | |
1443 vtabarglist ::= vtabarg. | |
1444 vtabarglist ::= vtabarglist COMMA vtabarg. | |
1445 vtabarg ::= . {sqlite3VtabArgInit(pParse);} | |
1446 vtabarg ::= vtabarg vtabargtoken. | |
1447 vtabargtoken ::= ANY(X). {sqlite3VtabArgExtend(pParse,&X);} | |
1448 vtabargtoken ::= lp anylist RP(X). {sqlite3VtabArgExtend(pParse,&X);} | |
1449 lp ::= LP(X). {sqlite3VtabArgExtend(pParse,&X);} | |
1450 anylist ::= . | |
1451 anylist ::= anylist LP anylist RP. | |
1452 anylist ::= anylist ANY. | |
1453 %endif SQLITE_OMIT_VIRTUALTABLE | |
1454 | |
1455 | |
1456 //////////////////////// COMMON TABLE EXPRESSIONS //////////////////////////// | |
1457 %type with {With*} | |
1458 %type wqlist {With*} | |
1459 %destructor with {sqlite3WithDelete(pParse->db, $$);} | |
1460 %destructor wqlist {sqlite3WithDelete(pParse->db, $$);} | |
1461 | |
1462 with(A) ::= . {A = 0;} | |
1463 %ifndef SQLITE_OMIT_CTE | |
1464 with(A) ::= WITH wqlist(W). { A = W; } | |
1465 with(A) ::= WITH RECURSIVE wqlist(W). { A = W; } | |
1466 | |
1467 wqlist(A) ::= nm(X) idxlist_opt(Y) AS LP select(Z) RP. { | |
1468 A = sqlite3WithAdd(pParse, 0, &X, Y, Z); | |
1469 } | |
1470 wqlist(A) ::= wqlist(W) COMMA nm(X) idxlist_opt(Y) AS LP select(Z) RP. { | |
1471 A = sqlite3WithAdd(pParse, W, &X, Y, Z); | |
1472 } | |
1473 %endif SQLITE_OMIT_CTE | |
OLD | NEW |