OLD | NEW |
| (Empty) |
1 /* | |
2 ** 2004 May 22 | |
3 ** | |
4 ** The author disclaims copyright to this source code. In place of | |
5 ** a legal notice, here is a blessing: | |
6 ** | |
7 ** May you do good and not evil. | |
8 ** May you find forgiveness for yourself and forgive others. | |
9 ** May you share freely, never taking more than you give. | |
10 ** | |
11 ****************************************************************************** | |
12 ** | |
13 ** This file contains the VFS implementation for unix-like operating systems | |
14 ** include Linux, MacOSX, *BSD, QNX, VxWorks, AIX, HPUX, and others. | |
15 ** | |
16 ** There are actually several different VFS implementations in this file. | |
17 ** The differences are in the way that file locking is done. The default | |
18 ** implementation uses Posix Advisory Locks. Alternative implementations | |
19 ** use flock(), dot-files, various proprietary locking schemas, or simply | |
20 ** skip locking all together. | |
21 ** | |
22 ** This source file is organized into divisions where the logic for various | |
23 ** subfunctions is contained within the appropriate division. PLEASE | |
24 ** KEEP THE STRUCTURE OF THIS FILE INTACT. New code should be placed | |
25 ** in the correct division and should be clearly labeled. | |
26 ** | |
27 ** The layout of divisions is as follows: | |
28 ** | |
29 ** * General-purpose declarations and utility functions. | |
30 ** * Unique file ID logic used by VxWorks. | |
31 ** * Various locking primitive implementations (all except proxy locking): | |
32 ** + for Posix Advisory Locks | |
33 ** + for no-op locks | |
34 ** + for dot-file locks | |
35 ** + for flock() locking | |
36 ** + for named semaphore locks (VxWorks only) | |
37 ** + for AFP filesystem locks (MacOSX only) | |
38 ** * sqlite3_file methods not associated with locking. | |
39 ** * Definitions of sqlite3_io_methods objects for all locking | |
40 ** methods plus "finder" functions for each locking method. | |
41 ** * sqlite3_vfs method implementations. | |
42 ** * Locking primitives for the proxy uber-locking-method. (MacOSX only) | |
43 ** * Definitions of sqlite3_vfs objects for all locking methods | |
44 ** plus implementations of sqlite3_os_init() and sqlite3_os_end(). | |
45 */ | |
46 #include "sqliteInt.h" | |
47 #if SQLITE_OS_UNIX /* This file is used on unix only */ | |
48 | |
49 /* | |
50 ** There are various methods for file locking used for concurrency | |
51 ** control: | |
52 ** | |
53 ** 1. POSIX locking (the default), | |
54 ** 2. No locking, | |
55 ** 3. Dot-file locking, | |
56 ** 4. flock() locking, | |
57 ** 5. AFP locking (OSX only), | |
58 ** 6. Named POSIX semaphores (VXWorks only), | |
59 ** 7. proxy locking. (OSX only) | |
60 ** | |
61 ** Styles 4, 5, and 7 are only available of SQLITE_ENABLE_LOCKING_STYLE | |
62 ** is defined to 1. The SQLITE_ENABLE_LOCKING_STYLE also enables automatic | |
63 ** selection of the appropriate locking style based on the filesystem | |
64 ** where the database is located. | |
65 */ | |
66 #if !defined(SQLITE_ENABLE_LOCKING_STYLE) | |
67 # if defined(__APPLE__) | |
68 # define SQLITE_ENABLE_LOCKING_STYLE 1 | |
69 # else | |
70 # define SQLITE_ENABLE_LOCKING_STYLE 0 | |
71 # endif | |
72 #endif | |
73 | |
74 /* | |
75 ** Define the OS_VXWORKS pre-processor macro to 1 if building on | |
76 ** vxworks, or 0 otherwise. | |
77 */ | |
78 #ifndef OS_VXWORKS | |
79 # if defined(__RTP__) || defined(_WRS_KERNEL) | |
80 # define OS_VXWORKS 1 | |
81 # else | |
82 # define OS_VXWORKS 0 | |
83 # endif | |
84 #endif | |
85 | |
86 /* | |
87 ** standard include files. | |
88 */ | |
89 #include <sys/types.h> | |
90 #include <sys/stat.h> | |
91 #include <fcntl.h> | |
92 #include <unistd.h> | |
93 #include <time.h> | |
94 #include <sys/time.h> | |
95 #include <errno.h> | |
96 #if !defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0 | |
97 # include <sys/mman.h> | |
98 #endif | |
99 | |
100 #if SQLITE_ENABLE_LOCKING_STYLE || OS_VXWORKS | |
101 # include <sys/ioctl.h> | |
102 # if OS_VXWORKS | |
103 # include <semaphore.h> | |
104 # include <limits.h> | |
105 # else | |
106 # include <sys/file.h> | |
107 # include <sys/param.h> | |
108 # endif | |
109 #endif /* SQLITE_ENABLE_LOCKING_STYLE */ | |
110 | |
111 #if defined(__APPLE__) || (SQLITE_ENABLE_LOCKING_STYLE && !OS_VXWORKS) | |
112 # include <sys/mount.h> | |
113 #endif | |
114 | |
115 #ifdef HAVE_UTIME | |
116 # include <utime.h> | |
117 #endif | |
118 | |
119 /* | |
120 ** Allowed values of unixFile.fsFlags | |
121 */ | |
122 #define SQLITE_FSFLAGS_IS_MSDOS 0x1 | |
123 | |
124 /* | |
125 ** If we are to be thread-safe, include the pthreads header and define | |
126 ** the SQLITE_UNIX_THREADS macro. | |
127 */ | |
128 #if SQLITE_THREADSAFE | |
129 # include <pthread.h> | |
130 # define SQLITE_UNIX_THREADS 1 | |
131 #endif | |
132 | |
133 /* | |
134 ** Default permissions when creating a new file | |
135 */ | |
136 #ifndef SQLITE_DEFAULT_FILE_PERMISSIONS | |
137 # define SQLITE_DEFAULT_FILE_PERMISSIONS 0644 | |
138 #endif | |
139 | |
140 /* | |
141 ** Default permissions when creating auto proxy dir | |
142 */ | |
143 #ifndef SQLITE_DEFAULT_PROXYDIR_PERMISSIONS | |
144 # define SQLITE_DEFAULT_PROXYDIR_PERMISSIONS 0755 | |
145 #endif | |
146 | |
147 /* | |
148 ** Maximum supported path-length. | |
149 */ | |
150 #define MAX_PATHNAME 512 | |
151 | |
152 /* | |
153 ** Only set the lastErrno if the error code is a real error and not | |
154 ** a normal expected return code of SQLITE_BUSY or SQLITE_OK | |
155 */ | |
156 #define IS_LOCK_ERROR(x) ((x != SQLITE_OK) && (x != SQLITE_BUSY)) | |
157 | |
158 /* Forward references */ | |
159 typedef struct unixShm unixShm; /* Connection shared memory */ | |
160 typedef struct unixShmNode unixShmNode; /* Shared memory instance */ | |
161 typedef struct unixInodeInfo unixInodeInfo; /* An i-node */ | |
162 typedef struct UnixUnusedFd UnixUnusedFd; /* An unused file descriptor */ | |
163 | |
164 /* | |
165 ** Sometimes, after a file handle is closed by SQLite, the file descriptor | |
166 ** cannot be closed immediately. In these cases, instances of the following | |
167 ** structure are used to store the file descriptor while waiting for an | |
168 ** opportunity to either close or reuse it. | |
169 */ | |
170 struct UnixUnusedFd { | |
171 int fd; /* File descriptor to close */ | |
172 int flags; /* Flags this file descriptor was opened with */ | |
173 UnixUnusedFd *pNext; /* Next unused file descriptor on same file */ | |
174 }; | |
175 | |
176 /* | |
177 ** The unixFile structure is subclass of sqlite3_file specific to the unix | |
178 ** VFS implementations. | |
179 */ | |
180 typedef struct unixFile unixFile; | |
181 struct unixFile { | |
182 sqlite3_io_methods const *pMethod; /* Always the first entry */ | |
183 sqlite3_vfs *pVfs; /* The VFS that created this unixFile */ | |
184 unixInodeInfo *pInode; /* Info about locks on this inode */ | |
185 int h; /* The file descriptor */ | |
186 unsigned char eFileLock; /* The type of lock held on this fd */ | |
187 unsigned short int ctrlFlags; /* Behavioral bits. UNIXFILE_* flags */ | |
188 int lastErrno; /* The unix errno from last I/O error */ | |
189 void *lockingContext; /* Locking style specific state */ | |
190 UnixUnusedFd *pUnused; /* Pre-allocated UnixUnusedFd */ | |
191 const char *zPath; /* Name of the file */ | |
192 unixShm *pShm; /* Shared memory segment information */ | |
193 int szChunk; /* Configured by FCNTL_CHUNK_SIZE */ | |
194 #if SQLITE_MAX_MMAP_SIZE>0 | |
195 int nFetchOut; /* Number of outstanding xFetch refs */ | |
196 sqlite3_int64 mmapSize; /* Usable size of mapping at pMapRegion */ | |
197 sqlite3_int64 mmapSizeActual; /* Actual size of mapping at pMapRegion */ | |
198 sqlite3_int64 mmapSizeMax; /* Configured FCNTL_MMAP_SIZE value */ | |
199 void *pMapRegion; /* Memory mapped region */ | |
200 #endif | |
201 #ifdef __QNXNTO__ | |
202 int sectorSize; /* Device sector size */ | |
203 int deviceCharacteristics; /* Precomputed device characteristics */ | |
204 #endif | |
205 #if SQLITE_ENABLE_LOCKING_STYLE | |
206 int openFlags; /* The flags specified at open() */ | |
207 #endif | |
208 #if SQLITE_ENABLE_LOCKING_STYLE || defined(__APPLE__) | |
209 unsigned fsFlags; /* cached details from statfs() */ | |
210 #endif | |
211 #if OS_VXWORKS | |
212 struct vxworksFileId *pId; /* Unique file ID */ | |
213 #endif | |
214 #ifdef SQLITE_DEBUG | |
215 /* The next group of variables are used to track whether or not the | |
216 ** transaction counter in bytes 24-27 of database files are updated | |
217 ** whenever any part of the database changes. An assertion fault will | |
218 ** occur if a file is updated without also updating the transaction | |
219 ** counter. This test is made to avoid new problems similar to the | |
220 ** one described by ticket #3584. | |
221 */ | |
222 unsigned char transCntrChng; /* True if the transaction counter changed */ | |
223 unsigned char dbUpdate; /* True if any part of database file changed */ | |
224 unsigned char inNormalWrite; /* True if in a normal write operation */ | |
225 | |
226 #endif | |
227 | |
228 #ifdef SQLITE_TEST | |
229 /* In test mode, increase the size of this structure a bit so that | |
230 ** it is larger than the struct CrashFile defined in test6.c. | |
231 */ | |
232 char aPadding[32]; | |
233 #endif | |
234 }; | |
235 | |
236 /* This variable holds the process id (pid) from when the xRandomness() | |
237 ** method was called. If xOpen() is called from a different process id, | |
238 ** indicating that a fork() has occurred, the PRNG will be reset. | |
239 */ | |
240 static int randomnessPid = 0; | |
241 | |
242 /* | |
243 ** Allowed values for the unixFile.ctrlFlags bitmask: | |
244 */ | |
245 #define UNIXFILE_EXCL 0x01 /* Connections from one process only */ | |
246 #define UNIXFILE_RDONLY 0x02 /* Connection is read only */ | |
247 #define UNIXFILE_PERSIST_WAL 0x04 /* Persistent WAL mode */ | |
248 #ifndef SQLITE_DISABLE_DIRSYNC | |
249 # define UNIXFILE_DIRSYNC 0x08 /* Directory sync needed */ | |
250 #else | |
251 # define UNIXFILE_DIRSYNC 0x00 | |
252 #endif | |
253 #define UNIXFILE_PSOW 0x10 /* SQLITE_IOCAP_POWERSAFE_OVERWRITE */ | |
254 #define UNIXFILE_DELETE 0x20 /* Delete on close */ | |
255 #define UNIXFILE_URI 0x40 /* Filename might have query parameters */ | |
256 #define UNIXFILE_NOLOCK 0x80 /* Do no file locking */ | |
257 #define UNIXFILE_WARNED 0x0100 /* verifyDbFile() warnings have been issue
d */ | |
258 | |
259 /* | |
260 ** Include code that is common to all os_*.c files | |
261 */ | |
262 #include "os_common.h" | |
263 | |
264 /* | |
265 ** Define various macros that are missing from some systems. | |
266 */ | |
267 #ifndef O_LARGEFILE | |
268 # define O_LARGEFILE 0 | |
269 #endif | |
270 #ifdef SQLITE_DISABLE_LFS | |
271 # undef O_LARGEFILE | |
272 # define O_LARGEFILE 0 | |
273 #endif | |
274 #ifndef O_NOFOLLOW | |
275 # define O_NOFOLLOW 0 | |
276 #endif | |
277 #ifndef O_BINARY | |
278 # define O_BINARY 0 | |
279 #endif | |
280 | |
281 /* | |
282 ** The threadid macro resolves to the thread-id or to 0. Used for | |
283 ** testing and debugging only. | |
284 */ | |
285 #if SQLITE_THREADSAFE | |
286 #define threadid pthread_self() | |
287 #else | |
288 #define threadid 0 | |
289 #endif | |
290 | |
291 /* | |
292 ** HAVE_MREMAP defaults to true on Linux and false everywhere else. | |
293 */ | |
294 #if !defined(HAVE_MREMAP) | |
295 # if defined(__linux__) && defined(_GNU_SOURCE) | |
296 # define HAVE_MREMAP 1 | |
297 # else | |
298 # define HAVE_MREMAP 0 | |
299 # endif | |
300 #endif | |
301 | |
302 /* | |
303 ** Explicitly call the 64-bit version of lseek() on Android. Otherwise, lseek() | |
304 ** is the 32-bit version, even if _FILE_OFFSET_BITS=64 is defined. | |
305 */ | |
306 #ifdef __ANDROID__ | |
307 # define lseek lseek64 | |
308 #endif | |
309 | |
310 /* | |
311 ** Different Unix systems declare open() in different ways. Same use | |
312 ** open(const char*,int,mode_t). Others use open(const char*,int,...). | |
313 ** The difference is important when using a pointer to the function. | |
314 ** | |
315 ** The safest way to deal with the problem is to always use this wrapper | |
316 ** which always has the same well-defined interface. | |
317 */ | |
318 static int posixOpen(const char *zFile, int flags, int mode){ | |
319 return open(zFile, flags, mode); | |
320 } | |
321 | |
322 /* | |
323 ** On some systems, calls to fchown() will trigger a message in a security | |
324 ** log if they come from non-root processes. So avoid calling fchown() if | |
325 ** we are not running as root. | |
326 */ | |
327 static int posixFchown(int fd, uid_t uid, gid_t gid){ | |
328 #if OS_VXWORKS | |
329 return 0; | |
330 #else | |
331 return geteuid() ? 0 : fchown(fd,uid,gid); | |
332 #endif | |
333 } | |
334 | |
335 /* Forward reference */ | |
336 static int openDirectory(const char*, int*); | |
337 static int unixGetpagesize(void); | |
338 | |
339 /* | |
340 ** Many system calls are accessed through pointer-to-functions so that | |
341 ** they may be overridden at runtime to facilitate fault injection during | |
342 ** testing and sandboxing. The following array holds the names and pointers | |
343 ** to all overrideable system calls. | |
344 */ | |
345 static struct unix_syscall { | |
346 const char *zName; /* Name of the system call */ | |
347 sqlite3_syscall_ptr pCurrent; /* Current value of the system call */ | |
348 sqlite3_syscall_ptr pDefault; /* Default value */ | |
349 } aSyscall[] = { | |
350 { "open", (sqlite3_syscall_ptr)posixOpen, 0 }, | |
351 #define osOpen ((int(*)(const char*,int,int))aSyscall[0].pCurrent) | |
352 | |
353 { "close", (sqlite3_syscall_ptr)close, 0 }, | |
354 #define osClose ((int(*)(int))aSyscall[1].pCurrent) | |
355 | |
356 { "access", (sqlite3_syscall_ptr)access, 0 }, | |
357 #define osAccess ((int(*)(const char*,int))aSyscall[2].pCurrent) | |
358 | |
359 { "getcwd", (sqlite3_syscall_ptr)getcwd, 0 }, | |
360 #define osGetcwd ((char*(*)(char*,size_t))aSyscall[3].pCurrent) | |
361 | |
362 { "stat", (sqlite3_syscall_ptr)stat, 0 }, | |
363 #define osStat ((int(*)(const char*,struct stat*))aSyscall[4].pCurrent) | |
364 | |
365 /* | |
366 ** The DJGPP compiler environment looks mostly like Unix, but it | |
367 ** lacks the fcntl() system call. So redefine fcntl() to be something | |
368 ** that always succeeds. This means that locking does not occur under | |
369 ** DJGPP. But it is DOS - what did you expect? | |
370 */ | |
371 #ifdef __DJGPP__ | |
372 { "fstat", 0, 0 }, | |
373 #define osFstat(a,b,c) 0 | |
374 #else | |
375 { "fstat", (sqlite3_syscall_ptr)fstat, 0 }, | |
376 #define osFstat ((int(*)(int,struct stat*))aSyscall[5].pCurrent) | |
377 #endif | |
378 | |
379 { "ftruncate", (sqlite3_syscall_ptr)ftruncate, 0 }, | |
380 #define osFtruncate ((int(*)(int,off_t))aSyscall[6].pCurrent) | |
381 | |
382 { "fcntl", (sqlite3_syscall_ptr)fcntl, 0 }, | |
383 #define osFcntl ((int(*)(int,int,...))aSyscall[7].pCurrent) | |
384 | |
385 { "read", (sqlite3_syscall_ptr)read, 0 }, | |
386 #define osRead ((ssize_t(*)(int,void*,size_t))aSyscall[8].pCurrent) | |
387 | |
388 #if defined(USE_PREAD) || (SQLITE_ENABLE_LOCKING_STYLE && !OS_VXWORKS) | |
389 { "pread", (sqlite3_syscall_ptr)pread, 0 }, | |
390 #else | |
391 { "pread", (sqlite3_syscall_ptr)0, 0 }, | |
392 #endif | |
393 #define osPread ((ssize_t(*)(int,void*,size_t,off_t))aSyscall[9].pCurrent) | |
394 | |
395 #if defined(USE_PREAD64) | |
396 { "pread64", (sqlite3_syscall_ptr)pread64, 0 }, | |
397 #else | |
398 { "pread64", (sqlite3_syscall_ptr)0, 0 }, | |
399 #endif | |
400 #define osPread64 ((ssize_t(*)(int,void*,size_t,off_t))aSyscall[10].pCurrent) | |
401 | |
402 { "write", (sqlite3_syscall_ptr)write, 0 }, | |
403 #define osWrite ((ssize_t(*)(int,const void*,size_t))aSyscall[11].pCurrent) | |
404 | |
405 #if defined(USE_PREAD) || (SQLITE_ENABLE_LOCKING_STYLE && !OS_VXWORKS) | |
406 { "pwrite", (sqlite3_syscall_ptr)pwrite, 0 }, | |
407 #else | |
408 { "pwrite", (sqlite3_syscall_ptr)0, 0 }, | |
409 #endif | |
410 #define osPwrite ((ssize_t(*)(int,const void*,size_t,off_t))\ | |
411 aSyscall[12].pCurrent) | |
412 | |
413 #if defined(USE_PREAD64) | |
414 { "pwrite64", (sqlite3_syscall_ptr)pwrite64, 0 }, | |
415 #else | |
416 { "pwrite64", (sqlite3_syscall_ptr)0, 0 }, | |
417 #endif | |
418 #define osPwrite64 ((ssize_t(*)(int,const void*,size_t,off_t))\ | |
419 aSyscall[13].pCurrent) | |
420 | |
421 { "fchmod", (sqlite3_syscall_ptr)fchmod, 0 }, | |
422 #define osFchmod ((int(*)(int,mode_t))aSyscall[14].pCurrent) | |
423 | |
424 #if defined(HAVE_POSIX_FALLOCATE) && HAVE_POSIX_FALLOCATE | |
425 { "fallocate", (sqlite3_syscall_ptr)posix_fallocate, 0 }, | |
426 #else | |
427 { "fallocate", (sqlite3_syscall_ptr)0, 0 }, | |
428 #endif | |
429 #define osFallocate ((int(*)(int,off_t,off_t))aSyscall[15].pCurrent) | |
430 | |
431 { "unlink", (sqlite3_syscall_ptr)unlink, 0 }, | |
432 #define osUnlink ((int(*)(const char*))aSyscall[16].pCurrent) | |
433 | |
434 { "openDirectory", (sqlite3_syscall_ptr)openDirectory, 0 }, | |
435 #define osOpenDirectory ((int(*)(const char*,int*))aSyscall[17].pCurrent) | |
436 | |
437 { "mkdir", (sqlite3_syscall_ptr)mkdir, 0 }, | |
438 #define osMkdir ((int(*)(const char*,mode_t))aSyscall[18].pCurrent) | |
439 | |
440 { "rmdir", (sqlite3_syscall_ptr)rmdir, 0 }, | |
441 #define osRmdir ((int(*)(const char*))aSyscall[19].pCurrent) | |
442 | |
443 { "fchown", (sqlite3_syscall_ptr)posixFchown, 0 }, | |
444 #define osFchown ((int(*)(int,uid_t,gid_t))aSyscall[20].pCurrent) | |
445 | |
446 #if !defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0 | |
447 { "mmap", (sqlite3_syscall_ptr)mmap, 0 }, | |
448 #define osMmap ((void*(*)(void*,size_t,int,int,int,off_t))aSyscall[21].pCurrent) | |
449 | |
450 { "munmap", (sqlite3_syscall_ptr)munmap, 0 }, | |
451 #define osMunmap ((void*(*)(void*,size_t))aSyscall[22].pCurrent) | |
452 | |
453 #if HAVE_MREMAP | |
454 { "mremap", (sqlite3_syscall_ptr)mremap, 0 }, | |
455 #else | |
456 { "mremap", (sqlite3_syscall_ptr)0, 0 }, | |
457 #endif | |
458 #define osMremap ((void*(*)(void*,size_t,size_t,int,...))aSyscall[23].pCurrent) | |
459 { "getpagesize", (sqlite3_syscall_ptr)unixGetpagesize, 0 }, | |
460 #define osGetpagesize ((int(*)(void))aSyscall[24].pCurrent) | |
461 | |
462 #endif | |
463 | |
464 }; /* End of the overrideable system calls */ | |
465 | |
466 /* | |
467 ** This is the xSetSystemCall() method of sqlite3_vfs for all of the | |
468 ** "unix" VFSes. Return SQLITE_OK opon successfully updating the | |
469 ** system call pointer, or SQLITE_NOTFOUND if there is no configurable | |
470 ** system call named zName. | |
471 */ | |
472 static int unixSetSystemCall( | |
473 sqlite3_vfs *pNotUsed, /* The VFS pointer. Not used */ | |
474 const char *zName, /* Name of system call to override */ | |
475 sqlite3_syscall_ptr pNewFunc /* Pointer to new system call value */ | |
476 ){ | |
477 unsigned int i; | |
478 int rc = SQLITE_NOTFOUND; | |
479 | |
480 UNUSED_PARAMETER(pNotUsed); | |
481 if( zName==0 ){ | |
482 /* If no zName is given, restore all system calls to their default | |
483 ** settings and return NULL | |
484 */ | |
485 rc = SQLITE_OK; | |
486 for(i=0; i<sizeof(aSyscall)/sizeof(aSyscall[0]); i++){ | |
487 if( aSyscall[i].pDefault ){ | |
488 aSyscall[i].pCurrent = aSyscall[i].pDefault; | |
489 } | |
490 } | |
491 }else{ | |
492 /* If zName is specified, operate on only the one system call | |
493 ** specified. | |
494 */ | |
495 for(i=0; i<sizeof(aSyscall)/sizeof(aSyscall[0]); i++){ | |
496 if( strcmp(zName, aSyscall[i].zName)==0 ){ | |
497 if( aSyscall[i].pDefault==0 ){ | |
498 aSyscall[i].pDefault = aSyscall[i].pCurrent; | |
499 } | |
500 rc = SQLITE_OK; | |
501 if( pNewFunc==0 ) pNewFunc = aSyscall[i].pDefault; | |
502 aSyscall[i].pCurrent = pNewFunc; | |
503 break; | |
504 } | |
505 } | |
506 } | |
507 return rc; | |
508 } | |
509 | |
510 /* | |
511 ** Return the value of a system call. Return NULL if zName is not a | |
512 ** recognized system call name. NULL is also returned if the system call | |
513 ** is currently undefined. | |
514 */ | |
515 static sqlite3_syscall_ptr unixGetSystemCall( | |
516 sqlite3_vfs *pNotUsed, | |
517 const char *zName | |
518 ){ | |
519 unsigned int i; | |
520 | |
521 UNUSED_PARAMETER(pNotUsed); | |
522 for(i=0; i<sizeof(aSyscall)/sizeof(aSyscall[0]); i++){ | |
523 if( strcmp(zName, aSyscall[i].zName)==0 ) return aSyscall[i].pCurrent; | |
524 } | |
525 return 0; | |
526 } | |
527 | |
528 /* | |
529 ** Return the name of the first system call after zName. If zName==NULL | |
530 ** then return the name of the first system call. Return NULL if zName | |
531 ** is the last system call or if zName is not the name of a valid | |
532 ** system call. | |
533 */ | |
534 static const char *unixNextSystemCall(sqlite3_vfs *p, const char *zName){ | |
535 int i = -1; | |
536 | |
537 UNUSED_PARAMETER(p); | |
538 if( zName ){ | |
539 for(i=0; i<ArraySize(aSyscall)-1; i++){ | |
540 if( strcmp(zName, aSyscall[i].zName)==0 ) break; | |
541 } | |
542 } | |
543 for(i++; i<ArraySize(aSyscall); i++){ | |
544 if( aSyscall[i].pCurrent!=0 ) return aSyscall[i].zName; | |
545 } | |
546 return 0; | |
547 } | |
548 | |
549 /* | |
550 ** Do not accept any file descriptor less than this value, in order to avoid | |
551 ** opening database file using file descriptors that are commonly used for | |
552 ** standard input, output, and error. | |
553 */ | |
554 #ifndef SQLITE_MINIMUM_FILE_DESCRIPTOR | |
555 # define SQLITE_MINIMUM_FILE_DESCRIPTOR 3 | |
556 #endif | |
557 | |
558 /* | |
559 ** Invoke open(). Do so multiple times, until it either succeeds or | |
560 ** fails for some reason other than EINTR. | |
561 ** | |
562 ** If the file creation mode "m" is 0 then set it to the default for | |
563 ** SQLite. The default is SQLITE_DEFAULT_FILE_PERMISSIONS (normally | |
564 ** 0644) as modified by the system umask. If m is not 0, then | |
565 ** make the file creation mode be exactly m ignoring the umask. | |
566 ** | |
567 ** The m parameter will be non-zero only when creating -wal, -journal, | |
568 ** and -shm files. We want those files to have *exactly* the same | |
569 ** permissions as their original database, unadulterated by the umask. | |
570 ** In that way, if a database file is -rw-rw-rw or -rw-rw-r-, and a | |
571 ** transaction crashes and leaves behind hot journals, then any | |
572 ** process that is able to write to the database will also be able to | |
573 ** recover the hot journals. | |
574 */ | |
575 static int robust_open(const char *z, int f, mode_t m){ | |
576 int fd; | |
577 mode_t m2 = m ? m : SQLITE_DEFAULT_FILE_PERMISSIONS; | |
578 while(1){ | |
579 #if defined(O_CLOEXEC) | |
580 fd = osOpen(z,f|O_CLOEXEC,m2); | |
581 #else | |
582 fd = osOpen(z,f,m2); | |
583 #endif | |
584 if( fd<0 ){ | |
585 if( errno==EINTR ) continue; | |
586 break; | |
587 } | |
588 if( fd>=SQLITE_MINIMUM_FILE_DESCRIPTOR ) break; | |
589 osClose(fd); | |
590 sqlite3_log(SQLITE_WARNING, | |
591 "attempt to open \"%s\" as file descriptor %d", z, fd); | |
592 fd = -1; | |
593 if( osOpen("/dev/null", f, m)<0 ) break; | |
594 } | |
595 if( fd>=0 ){ | |
596 if( m!=0 ){ | |
597 struct stat statbuf; | |
598 if( osFstat(fd, &statbuf)==0 | |
599 && statbuf.st_size==0 | |
600 && (statbuf.st_mode&0777)!=m | |
601 ){ | |
602 osFchmod(fd, m); | |
603 } | |
604 } | |
605 #if defined(FD_CLOEXEC) && (!defined(O_CLOEXEC) || O_CLOEXEC==0) | |
606 osFcntl(fd, F_SETFD, osFcntl(fd, F_GETFD, 0) | FD_CLOEXEC); | |
607 #endif | |
608 } | |
609 return fd; | |
610 } | |
611 | |
612 /* | |
613 ** Helper functions to obtain and relinquish the global mutex. The | |
614 ** global mutex is used to protect the unixInodeInfo and | |
615 ** vxworksFileId objects used by this file, all of which may be | |
616 ** shared by multiple threads. | |
617 ** | |
618 ** Function unixMutexHeld() is used to assert() that the global mutex | |
619 ** is held when required. This function is only used as part of assert() | |
620 ** statements. e.g. | |
621 ** | |
622 ** unixEnterMutex() | |
623 ** assert( unixMutexHeld() ); | |
624 ** unixEnterLeave() | |
625 */ | |
626 static void unixEnterMutex(void){ | |
627 sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER)); | |
628 } | |
629 static void unixLeaveMutex(void){ | |
630 sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER)); | |
631 } | |
632 #ifdef SQLITE_DEBUG | |
633 static int unixMutexHeld(void) { | |
634 return sqlite3_mutex_held(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER)); | |
635 } | |
636 #endif | |
637 | |
638 | |
639 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) | |
640 /* | |
641 ** Helper function for printing out trace information from debugging | |
642 ** binaries. This returns the string representation of the supplied | |
643 ** integer lock-type. | |
644 */ | |
645 static const char *azFileLock(int eFileLock){ | |
646 switch( eFileLock ){ | |
647 case NO_LOCK: return "NONE"; | |
648 case SHARED_LOCK: return "SHARED"; | |
649 case RESERVED_LOCK: return "RESERVED"; | |
650 case PENDING_LOCK: return "PENDING"; | |
651 case EXCLUSIVE_LOCK: return "EXCLUSIVE"; | |
652 } | |
653 return "ERROR"; | |
654 } | |
655 #endif | |
656 | |
657 #ifdef SQLITE_LOCK_TRACE | |
658 /* | |
659 ** Print out information about all locking operations. | |
660 ** | |
661 ** This routine is used for troubleshooting locks on multithreaded | |
662 ** platforms. Enable by compiling with the -DSQLITE_LOCK_TRACE | |
663 ** command-line option on the compiler. This code is normally | |
664 ** turned off. | |
665 */ | |
666 static int lockTrace(int fd, int op, struct flock *p){ | |
667 char *zOpName, *zType; | |
668 int s; | |
669 int savedErrno; | |
670 if( op==F_GETLK ){ | |
671 zOpName = "GETLK"; | |
672 }else if( op==F_SETLK ){ | |
673 zOpName = "SETLK"; | |
674 }else{ | |
675 s = osFcntl(fd, op, p); | |
676 sqlite3DebugPrintf("fcntl unknown %d %d %d\n", fd, op, s); | |
677 return s; | |
678 } | |
679 if( p->l_type==F_RDLCK ){ | |
680 zType = "RDLCK"; | |
681 }else if( p->l_type==F_WRLCK ){ | |
682 zType = "WRLCK"; | |
683 }else if( p->l_type==F_UNLCK ){ | |
684 zType = "UNLCK"; | |
685 }else{ | |
686 assert( 0 ); | |
687 } | |
688 assert( p->l_whence==SEEK_SET ); | |
689 s = osFcntl(fd, op, p); | |
690 savedErrno = errno; | |
691 sqlite3DebugPrintf("fcntl %d %d %s %s %d %d %d %d\n", | |
692 threadid, fd, zOpName, zType, (int)p->l_start, (int)p->l_len, | |
693 (int)p->l_pid, s); | |
694 if( s==(-1) && op==F_SETLK && (p->l_type==F_RDLCK || p->l_type==F_WRLCK) ){ | |
695 struct flock l2; | |
696 l2 = *p; | |
697 osFcntl(fd, F_GETLK, &l2); | |
698 if( l2.l_type==F_RDLCK ){ | |
699 zType = "RDLCK"; | |
700 }else if( l2.l_type==F_WRLCK ){ | |
701 zType = "WRLCK"; | |
702 }else if( l2.l_type==F_UNLCK ){ | |
703 zType = "UNLCK"; | |
704 }else{ | |
705 assert( 0 ); | |
706 } | |
707 sqlite3DebugPrintf("fcntl-failure-reason: %s %d %d %d\n", | |
708 zType, (int)l2.l_start, (int)l2.l_len, (int)l2.l_pid); | |
709 } | |
710 errno = savedErrno; | |
711 return s; | |
712 } | |
713 #undef osFcntl | |
714 #define osFcntl lockTrace | |
715 #endif /* SQLITE_LOCK_TRACE */ | |
716 | |
717 /* | |
718 ** Retry ftruncate() calls that fail due to EINTR | |
719 ** | |
720 ** All calls to ftruncate() within this file should be made through this wrapper
. | |
721 ** On the Android platform, bypassing the logic below could lead to a corrupt | |
722 ** database. | |
723 */ | |
724 static int robust_ftruncate(int h, sqlite3_int64 sz){ | |
725 int rc; | |
726 #ifdef __ANDROID__ | |
727 /* On Android, ftruncate() always uses 32-bit offsets, even if | |
728 ** _FILE_OFFSET_BITS=64 is defined. This means it is unsafe to attempt to | |
729 ** truncate a file to any size larger than 2GiB. Silently ignore any | |
730 ** such attempts. */ | |
731 if( sz>(sqlite3_int64)0x7FFFFFFF ){ | |
732 rc = SQLITE_OK; | |
733 }else | |
734 #endif | |
735 do{ rc = osFtruncate(h,sz); }while( rc<0 && errno==EINTR ); | |
736 return rc; | |
737 } | |
738 | |
739 /* | |
740 ** This routine translates a standard POSIX errno code into something | |
741 ** useful to the clients of the sqlite3 functions. Specifically, it is | |
742 ** intended to translate a variety of "try again" errors into SQLITE_BUSY | |
743 ** and a variety of "please close the file descriptor NOW" errors into | |
744 ** SQLITE_IOERR | |
745 ** | |
746 ** Errors during initialization of locks, or file system support for locks, | |
747 ** should handle ENOLCK, ENOTSUP, EOPNOTSUPP separately. | |
748 */ | |
749 static int sqliteErrorFromPosixError(int posixError, int sqliteIOErr) { | |
750 switch (posixError) { | |
751 #if 0 | |
752 /* At one point this code was not commented out. In theory, this branch | |
753 ** should never be hit, as this function should only be called after | |
754 ** a locking-related function (i.e. fcntl()) has returned non-zero with | |
755 ** the value of errno as the first argument. Since a system call has failed, | |
756 ** errno should be non-zero. | |
757 ** | |
758 ** Despite this, if errno really is zero, we still don't want to return | |
759 ** SQLITE_OK. The system call failed, and *some* SQLite error should be | |
760 ** propagated back to the caller. Commenting this branch out means errno==0 | |
761 ** will be handled by the "default:" case below. | |
762 */ | |
763 case 0: | |
764 return SQLITE_OK; | |
765 #endif | |
766 | |
767 case EAGAIN: | |
768 case ETIMEDOUT: | |
769 case EBUSY: | |
770 case EINTR: | |
771 case ENOLCK: | |
772 /* random NFS retry error, unless during file system support | |
773 * introspection, in which it actually means what it says */ | |
774 return SQLITE_BUSY; | |
775 | |
776 case EACCES: | |
777 /* EACCES is like EAGAIN during locking operations, but not any other time*/ | |
778 if( (sqliteIOErr == SQLITE_IOERR_LOCK) || | |
779 (sqliteIOErr == SQLITE_IOERR_UNLOCK) || | |
780 (sqliteIOErr == SQLITE_IOERR_RDLOCK) || | |
781 (sqliteIOErr == SQLITE_IOERR_CHECKRESERVEDLOCK) ){ | |
782 return SQLITE_BUSY; | |
783 } | |
784 /* else fall through */ | |
785 case EPERM: | |
786 return SQLITE_PERM; | |
787 | |
788 #if EOPNOTSUPP!=ENOTSUP | |
789 case EOPNOTSUPP: | |
790 /* something went terribly awry, unless during file system support | |
791 * introspection, in which it actually means what it says */ | |
792 #endif | |
793 #ifdef ENOTSUP | |
794 case ENOTSUP: | |
795 /* invalid fd, unless during file system support introspection, in which | |
796 * it actually means what it says */ | |
797 #endif | |
798 case EIO: | |
799 case EBADF: | |
800 case EINVAL: | |
801 case ENOTCONN: | |
802 case ENODEV: | |
803 case ENXIO: | |
804 case ENOENT: | |
805 #ifdef ESTALE /* ESTALE is not defined on Interix systems */ | |
806 case ESTALE: | |
807 #endif | |
808 case ENOSYS: | |
809 /* these should force the client to close the file and reconnect */ | |
810 | |
811 default: | |
812 return sqliteIOErr; | |
813 } | |
814 } | |
815 | |
816 | |
817 /****************************************************************************** | |
818 ****************** Begin Unique File ID Utility Used By VxWorks *************** | |
819 ** | |
820 ** On most versions of unix, we can get a unique ID for a file by concatenating | |
821 ** the device number and the inode number. But this does not work on VxWorks. | |
822 ** On VxWorks, a unique file id must be based on the canonical filename. | |
823 ** | |
824 ** A pointer to an instance of the following structure can be used as a | |
825 ** unique file ID in VxWorks. Each instance of this structure contains | |
826 ** a copy of the canonical filename. There is also a reference count. | |
827 ** The structure is reclaimed when the number of pointers to it drops to | |
828 ** zero. | |
829 ** | |
830 ** There are never very many files open at one time and lookups are not | |
831 ** a performance-critical path, so it is sufficient to put these | |
832 ** structures on a linked list. | |
833 */ | |
834 struct vxworksFileId { | |
835 struct vxworksFileId *pNext; /* Next in a list of them all */ | |
836 int nRef; /* Number of references to this one */ | |
837 int nName; /* Length of the zCanonicalName[] string */ | |
838 char *zCanonicalName; /* Canonical filename */ | |
839 }; | |
840 | |
841 #if OS_VXWORKS | |
842 /* | |
843 ** All unique filenames are held on a linked list headed by this | |
844 ** variable: | |
845 */ | |
846 static struct vxworksFileId *vxworksFileList = 0; | |
847 | |
848 /* | |
849 ** Simplify a filename into its canonical form | |
850 ** by making the following changes: | |
851 ** | |
852 ** * removing any trailing and duplicate / | |
853 ** * convert /./ into just / | |
854 ** * convert /A/../ where A is any simple name into just / | |
855 ** | |
856 ** Changes are made in-place. Return the new name length. | |
857 ** | |
858 ** The original filename is in z[0..n-1]. Return the number of | |
859 ** characters in the simplified name. | |
860 */ | |
861 static int vxworksSimplifyName(char *z, int n){ | |
862 int i, j; | |
863 while( n>1 && z[n-1]=='/' ){ n--; } | |
864 for(i=j=0; i<n; i++){ | |
865 if( z[i]=='/' ){ | |
866 if( z[i+1]=='/' ) continue; | |
867 if( z[i+1]=='.' && i+2<n && z[i+2]=='/' ){ | |
868 i += 1; | |
869 continue; | |
870 } | |
871 if( z[i+1]=='.' && i+3<n && z[i+2]=='.' && z[i+3]=='/' ){ | |
872 while( j>0 && z[j-1]!='/' ){ j--; } | |
873 if( j>0 ){ j--; } | |
874 i += 2; | |
875 continue; | |
876 } | |
877 } | |
878 z[j++] = z[i]; | |
879 } | |
880 z[j] = 0; | |
881 return j; | |
882 } | |
883 | |
884 /* | |
885 ** Find a unique file ID for the given absolute pathname. Return | |
886 ** a pointer to the vxworksFileId object. This pointer is the unique | |
887 ** file ID. | |
888 ** | |
889 ** The nRef field of the vxworksFileId object is incremented before | |
890 ** the object is returned. A new vxworksFileId object is created | |
891 ** and added to the global list if necessary. | |
892 ** | |
893 ** If a memory allocation error occurs, return NULL. | |
894 */ | |
895 static struct vxworksFileId *vxworksFindFileId(const char *zAbsoluteName){ | |
896 struct vxworksFileId *pNew; /* search key and new file ID */ | |
897 struct vxworksFileId *pCandidate; /* For looping over existing file IDs */ | |
898 int n; /* Length of zAbsoluteName string */ | |
899 | |
900 assert( zAbsoluteName[0]=='/' ); | |
901 n = (int)strlen(zAbsoluteName); | |
902 pNew = sqlite3_malloc( sizeof(*pNew) + (n+1) ); | |
903 if( pNew==0 ) return 0; | |
904 pNew->zCanonicalName = (char*)&pNew[1]; | |
905 memcpy(pNew->zCanonicalName, zAbsoluteName, n+1); | |
906 n = vxworksSimplifyName(pNew->zCanonicalName, n); | |
907 | |
908 /* Search for an existing entry that matching the canonical name. | |
909 ** If found, increment the reference count and return a pointer to | |
910 ** the existing file ID. | |
911 */ | |
912 unixEnterMutex(); | |
913 for(pCandidate=vxworksFileList; pCandidate; pCandidate=pCandidate->pNext){ | |
914 if( pCandidate->nName==n | |
915 && memcmp(pCandidate->zCanonicalName, pNew->zCanonicalName, n)==0 | |
916 ){ | |
917 sqlite3_free(pNew); | |
918 pCandidate->nRef++; | |
919 unixLeaveMutex(); | |
920 return pCandidate; | |
921 } | |
922 } | |
923 | |
924 /* No match was found. We will make a new file ID */ | |
925 pNew->nRef = 1; | |
926 pNew->nName = n; | |
927 pNew->pNext = vxworksFileList; | |
928 vxworksFileList = pNew; | |
929 unixLeaveMutex(); | |
930 return pNew; | |
931 } | |
932 | |
933 /* | |
934 ** Decrement the reference count on a vxworksFileId object. Free | |
935 ** the object when the reference count reaches zero. | |
936 */ | |
937 static void vxworksReleaseFileId(struct vxworksFileId *pId){ | |
938 unixEnterMutex(); | |
939 assert( pId->nRef>0 ); | |
940 pId->nRef--; | |
941 if( pId->nRef==0 ){ | |
942 struct vxworksFileId **pp; | |
943 for(pp=&vxworksFileList; *pp && *pp!=pId; pp = &((*pp)->pNext)){} | |
944 assert( *pp==pId ); | |
945 *pp = pId->pNext; | |
946 sqlite3_free(pId); | |
947 } | |
948 unixLeaveMutex(); | |
949 } | |
950 #endif /* OS_VXWORKS */ | |
951 /*************** End of Unique File ID Utility Used By VxWorks **************** | |
952 ******************************************************************************/ | |
953 | |
954 | |
955 /****************************************************************************** | |
956 *************************** Posix Advisory Locking **************************** | |
957 ** | |
958 ** POSIX advisory locks are broken by design. ANSI STD 1003.1 (1996) | |
959 ** section 6.5.2.2 lines 483 through 490 specify that when a process | |
960 ** sets or clears a lock, that operation overrides any prior locks set | |
961 ** by the same process. It does not explicitly say so, but this implies | |
962 ** that it overrides locks set by the same process using a different | |
963 ** file descriptor. Consider this test case: | |
964 ** | |
965 ** int fd1 = open("./file1", O_RDWR|O_CREAT, 0644); | |
966 ** int fd2 = open("./file2", O_RDWR|O_CREAT, 0644); | |
967 ** | |
968 ** Suppose ./file1 and ./file2 are really the same file (because | |
969 ** one is a hard or symbolic link to the other) then if you set | |
970 ** an exclusive lock on fd1, then try to get an exclusive lock | |
971 ** on fd2, it works. I would have expected the second lock to | |
972 ** fail since there was already a lock on the file due to fd1. | |
973 ** But not so. Since both locks came from the same process, the | |
974 ** second overrides the first, even though they were on different | |
975 ** file descriptors opened on different file names. | |
976 ** | |
977 ** This means that we cannot use POSIX locks to synchronize file access | |
978 ** among competing threads of the same process. POSIX locks will work fine | |
979 ** to synchronize access for threads in separate processes, but not | |
980 ** threads within the same process. | |
981 ** | |
982 ** To work around the problem, SQLite has to manage file locks internally | |
983 ** on its own. Whenever a new database is opened, we have to find the | |
984 ** specific inode of the database file (the inode is determined by the | |
985 ** st_dev and st_ino fields of the stat structure that fstat() fills in) | |
986 ** and check for locks already existing on that inode. When locks are | |
987 ** created or removed, we have to look at our own internal record of the | |
988 ** locks to see if another thread has previously set a lock on that same | |
989 ** inode. | |
990 ** | |
991 ** (Aside: The use of inode numbers as unique IDs does not work on VxWorks. | |
992 ** For VxWorks, we have to use the alternative unique ID system based on | |
993 ** canonical filename and implemented in the previous division.) | |
994 ** | |
995 ** The sqlite3_file structure for POSIX is no longer just an integer file | |
996 ** descriptor. It is now a structure that holds the integer file | |
997 ** descriptor and a pointer to a structure that describes the internal | |
998 ** locks on the corresponding inode. There is one locking structure | |
999 ** per inode, so if the same inode is opened twice, both unixFile structures | |
1000 ** point to the same locking structure. The locking structure keeps | |
1001 ** a reference count (so we will know when to delete it) and a "cnt" | |
1002 ** field that tells us its internal lock status. cnt==0 means the | |
1003 ** file is unlocked. cnt==-1 means the file has an exclusive lock. | |
1004 ** cnt>0 means there are cnt shared locks on the file. | |
1005 ** | |
1006 ** Any attempt to lock or unlock a file first checks the locking | |
1007 ** structure. The fcntl() system call is only invoked to set a | |
1008 ** POSIX lock if the internal lock structure transitions between | |
1009 ** a locked and an unlocked state. | |
1010 ** | |
1011 ** But wait: there are yet more problems with POSIX advisory locks. | |
1012 ** | |
1013 ** If you close a file descriptor that points to a file that has locks, | |
1014 ** all locks on that file that are owned by the current process are | |
1015 ** released. To work around this problem, each unixInodeInfo object | |
1016 ** maintains a count of the number of pending locks on tha inode. | |
1017 ** When an attempt is made to close an unixFile, if there are | |
1018 ** other unixFile open on the same inode that are holding locks, the call | |
1019 ** to close() the file descriptor is deferred until all of the locks clear. | |
1020 ** The unixInodeInfo structure keeps a list of file descriptors that need to | |
1021 ** be closed and that list is walked (and cleared) when the last lock | |
1022 ** clears. | |
1023 ** | |
1024 ** Yet another problem: LinuxThreads do not play well with posix locks. | |
1025 ** | |
1026 ** Many older versions of linux use the LinuxThreads library which is | |
1027 ** not posix compliant. Under LinuxThreads, a lock created by thread | |
1028 ** A cannot be modified or overridden by a different thread B. | |
1029 ** Only thread A can modify the lock. Locking behavior is correct | |
1030 ** if the appliation uses the newer Native Posix Thread Library (NPTL) | |
1031 ** on linux - with NPTL a lock created by thread A can override locks | |
1032 ** in thread B. But there is no way to know at compile-time which | |
1033 ** threading library is being used. So there is no way to know at | |
1034 ** compile-time whether or not thread A can override locks on thread B. | |
1035 ** One has to do a run-time check to discover the behavior of the | |
1036 ** current process. | |
1037 ** | |
1038 ** SQLite used to support LinuxThreads. But support for LinuxThreads | |
1039 ** was dropped beginning with version 3.7.0. SQLite will still work with | |
1040 ** LinuxThreads provided that (1) there is no more than one connection | |
1041 ** per database file in the same process and (2) database connections | |
1042 ** do not move across threads. | |
1043 */ | |
1044 | |
1045 /* | |
1046 ** An instance of the following structure serves as the key used | |
1047 ** to locate a particular unixInodeInfo object. | |
1048 */ | |
1049 struct unixFileId { | |
1050 dev_t dev; /* Device number */ | |
1051 #if OS_VXWORKS | |
1052 struct vxworksFileId *pId; /* Unique file ID for vxworks. */ | |
1053 #else | |
1054 ino_t ino; /* Inode number */ | |
1055 #endif | |
1056 }; | |
1057 | |
1058 /* | |
1059 ** An instance of the following structure is allocated for each open | |
1060 ** inode. Or, on LinuxThreads, there is one of these structures for | |
1061 ** each inode opened by each thread. | |
1062 ** | |
1063 ** A single inode can have multiple file descriptors, so each unixFile | |
1064 ** structure contains a pointer to an instance of this object and this | |
1065 ** object keeps a count of the number of unixFile pointing to it. | |
1066 */ | |
1067 struct unixInodeInfo { | |
1068 struct unixFileId fileId; /* The lookup key */ | |
1069 int nShared; /* Number of SHARED locks held */ | |
1070 unsigned char eFileLock; /* One of SHARED_LOCK, RESERVED_LOCK etc. */ | |
1071 unsigned char bProcessLock; /* An exclusive process lock is held */ | |
1072 int nRef; /* Number of pointers to this structure */ | |
1073 unixShmNode *pShmNode; /* Shared memory associated with this inode */ | |
1074 int nLock; /* Number of outstanding file locks */ | |
1075 UnixUnusedFd *pUnused; /* Unused file descriptors to close */ | |
1076 unixInodeInfo *pNext; /* List of all unixInodeInfo objects */ | |
1077 unixInodeInfo *pPrev; /* .... doubly linked */ | |
1078 #if SQLITE_ENABLE_LOCKING_STYLE | |
1079 unsigned long long sharedByte; /* for AFP simulated shared lock */ | |
1080 #endif | |
1081 #if OS_VXWORKS | |
1082 sem_t *pSem; /* Named POSIX semaphore */ | |
1083 char aSemName[MAX_PATHNAME+2]; /* Name of that semaphore */ | |
1084 #endif | |
1085 }; | |
1086 | |
1087 /* | |
1088 ** A lists of all unixInodeInfo objects. | |
1089 */ | |
1090 static unixInodeInfo *inodeList = 0; | |
1091 | |
1092 /* | |
1093 ** | |
1094 ** This function - unixLogError_x(), is only ever called via the macro | |
1095 ** unixLogError(). | |
1096 ** | |
1097 ** It is invoked after an error occurs in an OS function and errno has been | |
1098 ** set. It logs a message using sqlite3_log() containing the current value of | |
1099 ** errno and, if possible, the human-readable equivalent from strerror() or | |
1100 ** strerror_r(). | |
1101 ** | |
1102 ** The first argument passed to the macro should be the error code that | |
1103 ** will be returned to SQLite (e.g. SQLITE_IOERR_DELETE, SQLITE_CANTOPEN). | |
1104 ** The two subsequent arguments should be the name of the OS function that | |
1105 ** failed (e.g. "unlink", "open") and the associated file-system path, | |
1106 ** if any. | |
1107 */ | |
1108 #define unixLogError(a,b,c) unixLogErrorAtLine(a,b,c,__LINE__) | |
1109 static int unixLogErrorAtLine( | |
1110 int errcode, /* SQLite error code */ | |
1111 const char *zFunc, /* Name of OS function that failed */ | |
1112 const char *zPath, /* File path associated with error */ | |
1113 int iLine /* Source line number where error occurred */ | |
1114 ){ | |
1115 char *zErr; /* Message from strerror() or equivalent */ | |
1116 int iErrno = errno; /* Saved syscall error number */ | |
1117 | |
1118 /* If this is not a threadsafe build (SQLITE_THREADSAFE==0), then use | |
1119 ** the strerror() function to obtain the human-readable error message | |
1120 ** equivalent to errno. Otherwise, use strerror_r(). | |
1121 */ | |
1122 #if SQLITE_THREADSAFE && defined(HAVE_STRERROR_R) | |
1123 char aErr[80]; | |
1124 memset(aErr, 0, sizeof(aErr)); | |
1125 zErr = aErr; | |
1126 | |
1127 /* If STRERROR_R_CHAR_P (set by autoconf scripts) or __USE_GNU is defined, | |
1128 ** assume that the system provides the GNU version of strerror_r() that | |
1129 ** returns a pointer to a buffer containing the error message. That pointer | |
1130 ** may point to aErr[], or it may point to some static storage somewhere. | |
1131 ** Otherwise, assume that the system provides the POSIX version of | |
1132 ** strerror_r(), which always writes an error message into aErr[]. | |
1133 ** | |
1134 ** If the code incorrectly assumes that it is the POSIX version that is | |
1135 ** available, the error message will often be an empty string. Not a | |
1136 ** huge problem. Incorrectly concluding that the GNU version is available | |
1137 ** could lead to a segfault though. | |
1138 */ | |
1139 #if defined(STRERROR_R_CHAR_P) || defined(__USE_GNU) | |
1140 zErr = | |
1141 # endif | |
1142 strerror_r(iErrno, aErr, sizeof(aErr)-1); | |
1143 | |
1144 #elif SQLITE_THREADSAFE | |
1145 /* This is a threadsafe build, but strerror_r() is not available. */ | |
1146 zErr = ""; | |
1147 #else | |
1148 /* Non-threadsafe build, use strerror(). */ | |
1149 zErr = strerror(iErrno); | |
1150 #endif | |
1151 | |
1152 if( zPath==0 ) zPath = ""; | |
1153 sqlite3_log(errcode, | |
1154 "os_unix.c:%d: (%d) %s(%s) - %s", | |
1155 iLine, iErrno, zFunc, zPath, zErr | |
1156 ); | |
1157 | |
1158 return errcode; | |
1159 } | |
1160 | |
1161 /* | |
1162 ** Close a file descriptor. | |
1163 ** | |
1164 ** We assume that close() almost always works, since it is only in a | |
1165 ** very sick application or on a very sick platform that it might fail. | |
1166 ** If it does fail, simply leak the file descriptor, but do log the | |
1167 ** error. | |
1168 ** | |
1169 ** Note that it is not safe to retry close() after EINTR since the | |
1170 ** file descriptor might have already been reused by another thread. | |
1171 ** So we don't even try to recover from an EINTR. Just log the error | |
1172 ** and move on. | |
1173 */ | |
1174 static void robust_close(unixFile *pFile, int h, int lineno){ | |
1175 if( osClose(h) ){ | |
1176 unixLogErrorAtLine(SQLITE_IOERR_CLOSE, "close", | |
1177 pFile ? pFile->zPath : 0, lineno); | |
1178 } | |
1179 } | |
1180 | |
1181 /* | |
1182 ** Close all file descriptors accumuated in the unixInodeInfo->pUnused list. | |
1183 */ | |
1184 static void closePendingFds(unixFile *pFile){ | |
1185 unixInodeInfo *pInode = pFile->pInode; | |
1186 UnixUnusedFd *p; | |
1187 UnixUnusedFd *pNext; | |
1188 for(p=pInode->pUnused; p; p=pNext){ | |
1189 pNext = p->pNext; | |
1190 robust_close(pFile, p->fd, __LINE__); | |
1191 sqlite3_free(p); | |
1192 } | |
1193 pInode->pUnused = 0; | |
1194 } | |
1195 | |
1196 /* | |
1197 ** Release a unixInodeInfo structure previously allocated by findInodeInfo(). | |
1198 ** | |
1199 ** The mutex entered using the unixEnterMutex() function must be held | |
1200 ** when this function is called. | |
1201 */ | |
1202 static void releaseInodeInfo(unixFile *pFile){ | |
1203 unixInodeInfo *pInode = pFile->pInode; | |
1204 assert( unixMutexHeld() ); | |
1205 if( ALWAYS(pInode) ){ | |
1206 pInode->nRef--; | |
1207 if( pInode->nRef==0 ){ | |
1208 assert( pInode->pShmNode==0 ); | |
1209 closePendingFds(pFile); | |
1210 if( pInode->pPrev ){ | |
1211 assert( pInode->pPrev->pNext==pInode ); | |
1212 pInode->pPrev->pNext = pInode->pNext; | |
1213 }else{ | |
1214 assert( inodeList==pInode ); | |
1215 inodeList = pInode->pNext; | |
1216 } | |
1217 if( pInode->pNext ){ | |
1218 assert( pInode->pNext->pPrev==pInode ); | |
1219 pInode->pNext->pPrev = pInode->pPrev; | |
1220 } | |
1221 sqlite3_free(pInode); | |
1222 } | |
1223 } | |
1224 } | |
1225 | |
1226 /* | |
1227 ** Given a file descriptor, locate the unixInodeInfo object that | |
1228 ** describes that file descriptor. Create a new one if necessary. The | |
1229 ** return value might be uninitialized if an error occurs. | |
1230 ** | |
1231 ** The mutex entered using the unixEnterMutex() function must be held | |
1232 ** when this function is called. | |
1233 ** | |
1234 ** Return an appropriate error code. | |
1235 */ | |
1236 static int findInodeInfo( | |
1237 unixFile *pFile, /* Unix file with file desc used in the key */ | |
1238 unixInodeInfo **ppInode /* Return the unixInodeInfo object here */ | |
1239 ){ | |
1240 int rc; /* System call return code */ | |
1241 int fd; /* The file descriptor for pFile */ | |
1242 struct unixFileId fileId; /* Lookup key for the unixInodeInfo */ | |
1243 struct stat statbuf; /* Low-level file information */ | |
1244 unixInodeInfo *pInode = 0; /* Candidate unixInodeInfo object */ | |
1245 | |
1246 assert( unixMutexHeld() ); | |
1247 | |
1248 /* Get low-level information about the file that we can used to | |
1249 ** create a unique name for the file. | |
1250 */ | |
1251 fd = pFile->h; | |
1252 rc = osFstat(fd, &statbuf); | |
1253 if( rc!=0 ){ | |
1254 pFile->lastErrno = errno; | |
1255 #ifdef EOVERFLOW | |
1256 if( pFile->lastErrno==EOVERFLOW ) return SQLITE_NOLFS; | |
1257 #endif | |
1258 return SQLITE_IOERR; | |
1259 } | |
1260 | |
1261 #ifdef __APPLE__ | |
1262 /* On OS X on an msdos filesystem, the inode number is reported | |
1263 ** incorrectly for zero-size files. See ticket #3260. To work | |
1264 ** around this problem (we consider it a bug in OS X, not SQLite) | |
1265 ** we always increase the file size to 1 by writing a single byte | |
1266 ** prior to accessing the inode number. The one byte written is | |
1267 ** an ASCII 'S' character which also happens to be the first byte | |
1268 ** in the header of every SQLite database. In this way, if there | |
1269 ** is a race condition such that another thread has already populated | |
1270 ** the first page of the database, no damage is done. | |
1271 */ | |
1272 if( statbuf.st_size==0 && (pFile->fsFlags & SQLITE_FSFLAGS_IS_MSDOS)!=0 ){ | |
1273 do{ rc = osWrite(fd, "S", 1); }while( rc<0 && errno==EINTR ); | |
1274 if( rc!=1 ){ | |
1275 pFile->lastErrno = errno; | |
1276 return SQLITE_IOERR; | |
1277 } | |
1278 rc = osFstat(fd, &statbuf); | |
1279 if( rc!=0 ){ | |
1280 pFile->lastErrno = errno; | |
1281 return SQLITE_IOERR; | |
1282 } | |
1283 } | |
1284 #endif | |
1285 | |
1286 memset(&fileId, 0, sizeof(fileId)); | |
1287 fileId.dev = statbuf.st_dev; | |
1288 #if OS_VXWORKS | |
1289 fileId.pId = pFile->pId; | |
1290 #else | |
1291 fileId.ino = statbuf.st_ino; | |
1292 #endif | |
1293 pInode = inodeList; | |
1294 while( pInode && memcmp(&fileId, &pInode->fileId, sizeof(fileId)) ){ | |
1295 pInode = pInode->pNext; | |
1296 } | |
1297 if( pInode==0 ){ | |
1298 pInode = sqlite3_malloc( sizeof(*pInode) ); | |
1299 if( pInode==0 ){ | |
1300 return SQLITE_NOMEM; | |
1301 } | |
1302 memset(pInode, 0, sizeof(*pInode)); | |
1303 memcpy(&pInode->fileId, &fileId, sizeof(fileId)); | |
1304 pInode->nRef = 1; | |
1305 pInode->pNext = inodeList; | |
1306 pInode->pPrev = 0; | |
1307 if( inodeList ) inodeList->pPrev = pInode; | |
1308 inodeList = pInode; | |
1309 }else{ | |
1310 pInode->nRef++; | |
1311 } | |
1312 *ppInode = pInode; | |
1313 return SQLITE_OK; | |
1314 } | |
1315 | |
1316 /* | |
1317 ** Return TRUE if pFile has been renamed or unlinked since it was first opened. | |
1318 */ | |
1319 static int fileHasMoved(unixFile *pFile){ | |
1320 #if OS_VXWORKS | |
1321 return pFile->pInode!=0 && pFile->pId!=pFile->pInode->fileId.pId; | |
1322 #else | |
1323 struct stat buf; | |
1324 return pFile->pInode!=0 && | |
1325 (osStat(pFile->zPath, &buf)!=0 || buf.st_ino!=pFile->pInode->fileId.ino); | |
1326 #endif | |
1327 } | |
1328 | |
1329 | |
1330 /* | |
1331 ** Check a unixFile that is a database. Verify the following: | |
1332 ** | |
1333 ** (1) There is exactly one hard link on the file | |
1334 ** (2) The file is not a symbolic link | |
1335 ** (3) The file has not been renamed or unlinked | |
1336 ** | |
1337 ** Issue sqlite3_log(SQLITE_WARNING,...) messages if anything is not right. | |
1338 */ | |
1339 static void verifyDbFile(unixFile *pFile){ | |
1340 struct stat buf; | |
1341 int rc; | |
1342 if( pFile->ctrlFlags & UNIXFILE_WARNED ){ | |
1343 /* One or more of the following warnings have already been issued. Do not | |
1344 ** repeat them so as not to clutter the error log */ | |
1345 return; | |
1346 } | |
1347 rc = osFstat(pFile->h, &buf); | |
1348 if( rc!=0 ){ | |
1349 sqlite3_log(SQLITE_WARNING, "cannot fstat db file %s", pFile->zPath); | |
1350 pFile->ctrlFlags |= UNIXFILE_WARNED; | |
1351 return; | |
1352 } | |
1353 if( buf.st_nlink==0 && (pFile->ctrlFlags & UNIXFILE_DELETE)==0 ){ | |
1354 sqlite3_log(SQLITE_WARNING, "file unlinked while open: %s", pFile->zPath); | |
1355 pFile->ctrlFlags |= UNIXFILE_WARNED; | |
1356 return; | |
1357 } | |
1358 if( buf.st_nlink>1 ){ | |
1359 sqlite3_log(SQLITE_WARNING, "multiple links to file: %s", pFile->zPath); | |
1360 pFile->ctrlFlags |= UNIXFILE_WARNED; | |
1361 return; | |
1362 } | |
1363 if( fileHasMoved(pFile) ){ | |
1364 sqlite3_log(SQLITE_WARNING, "file renamed while open: %s", pFile->zPath); | |
1365 pFile->ctrlFlags |= UNIXFILE_WARNED; | |
1366 return; | |
1367 } | |
1368 } | |
1369 | |
1370 | |
1371 /* | |
1372 ** This routine checks if there is a RESERVED lock held on the specified | |
1373 ** file by this or any other process. If such a lock is held, set *pResOut | |
1374 ** to a non-zero value otherwise *pResOut is set to zero. The return value | |
1375 ** is set to SQLITE_OK unless an I/O error occurs during lock checking. | |
1376 */ | |
1377 static int unixCheckReservedLock(sqlite3_file *id, int *pResOut){ | |
1378 int rc = SQLITE_OK; | |
1379 int reserved = 0; | |
1380 unixFile *pFile = (unixFile*)id; | |
1381 | |
1382 SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; ); | |
1383 | |
1384 assert( pFile ); | |
1385 unixEnterMutex(); /* Because pFile->pInode is shared across threads */ | |
1386 | |
1387 /* Check if a thread in this process holds such a lock */ | |
1388 if( pFile->pInode->eFileLock>SHARED_LOCK ){ | |
1389 reserved = 1; | |
1390 } | |
1391 | |
1392 /* Otherwise see if some other process holds it. | |
1393 */ | |
1394 #ifndef __DJGPP__ | |
1395 if( !reserved && !pFile->pInode->bProcessLock ){ | |
1396 struct flock lock; | |
1397 lock.l_whence = SEEK_SET; | |
1398 lock.l_start = RESERVED_BYTE; | |
1399 lock.l_len = 1; | |
1400 lock.l_type = F_WRLCK; | |
1401 if( osFcntl(pFile->h, F_GETLK, &lock) ){ | |
1402 rc = SQLITE_IOERR_CHECKRESERVEDLOCK; | |
1403 pFile->lastErrno = errno; | |
1404 } else if( lock.l_type!=F_UNLCK ){ | |
1405 reserved = 1; | |
1406 } | |
1407 } | |
1408 #endif | |
1409 | |
1410 unixLeaveMutex(); | |
1411 OSTRACE(("TEST WR-LOCK %d %d %d (unix)\n", pFile->h, rc, reserved)); | |
1412 | |
1413 *pResOut = reserved; | |
1414 return rc; | |
1415 } | |
1416 | |
1417 /* | |
1418 ** Attempt to set a system-lock on the file pFile. The lock is | |
1419 ** described by pLock. | |
1420 ** | |
1421 ** If the pFile was opened read/write from unix-excl, then the only lock | |
1422 ** ever obtained is an exclusive lock, and it is obtained exactly once | |
1423 ** the first time any lock is attempted. All subsequent system locking | |
1424 ** operations become no-ops. Locking operations still happen internally, | |
1425 ** in order to coordinate access between separate database connections | |
1426 ** within this process, but all of that is handled in memory and the | |
1427 ** operating system does not participate. | |
1428 ** | |
1429 ** This function is a pass-through to fcntl(F_SETLK) if pFile is using | |
1430 ** any VFS other than "unix-excl" or if pFile is opened on "unix-excl" | |
1431 ** and is read-only. | |
1432 ** | |
1433 ** Zero is returned if the call completes successfully, or -1 if a call | |
1434 ** to fcntl() fails. In this case, errno is set appropriately (by fcntl()). | |
1435 */ | |
1436 static int unixFileLock(unixFile *pFile, struct flock *pLock){ | |
1437 int rc; | |
1438 unixInodeInfo *pInode = pFile->pInode; | |
1439 assert( unixMutexHeld() ); | |
1440 assert( pInode!=0 ); | |
1441 if( ((pFile->ctrlFlags & UNIXFILE_EXCL)!=0 || pInode->bProcessLock) | |
1442 && ((pFile->ctrlFlags & UNIXFILE_RDONLY)==0) | |
1443 ){ | |
1444 if( pInode->bProcessLock==0 ){ | |
1445 struct flock lock; | |
1446 assert( pInode->nLock==0 ); | |
1447 lock.l_whence = SEEK_SET; | |
1448 lock.l_start = SHARED_FIRST; | |
1449 lock.l_len = SHARED_SIZE; | |
1450 lock.l_type = F_WRLCK; | |
1451 rc = osFcntl(pFile->h, F_SETLK, &lock); | |
1452 if( rc<0 ) return rc; | |
1453 pInode->bProcessLock = 1; | |
1454 pInode->nLock++; | |
1455 }else{ | |
1456 rc = 0; | |
1457 } | |
1458 }else{ | |
1459 rc = osFcntl(pFile->h, F_SETLK, pLock); | |
1460 } | |
1461 return rc; | |
1462 } | |
1463 | |
1464 /* | |
1465 ** Lock the file with the lock specified by parameter eFileLock - one | |
1466 ** of the following: | |
1467 ** | |
1468 ** (1) SHARED_LOCK | |
1469 ** (2) RESERVED_LOCK | |
1470 ** (3) PENDING_LOCK | |
1471 ** (4) EXCLUSIVE_LOCK | |
1472 ** | |
1473 ** Sometimes when requesting one lock state, additional lock states | |
1474 ** are inserted in between. The locking might fail on one of the later | |
1475 ** transitions leaving the lock state different from what it started but | |
1476 ** still short of its goal. The following chart shows the allowed | |
1477 ** transitions and the inserted intermediate states: | |
1478 ** | |
1479 ** UNLOCKED -> SHARED | |
1480 ** SHARED -> RESERVED | |
1481 ** SHARED -> (PENDING) -> EXCLUSIVE | |
1482 ** RESERVED -> (PENDING) -> EXCLUSIVE | |
1483 ** PENDING -> EXCLUSIVE | |
1484 ** | |
1485 ** This routine will only increase a lock. Use the sqlite3OsUnlock() | |
1486 ** routine to lower a locking level. | |
1487 */ | |
1488 static int unixLock(sqlite3_file *id, int eFileLock){ | |
1489 /* The following describes the implementation of the various locks and | |
1490 ** lock transitions in terms of the POSIX advisory shared and exclusive | |
1491 ** lock primitives (called read-locks and write-locks below, to avoid | |
1492 ** confusion with SQLite lock names). The algorithms are complicated | |
1493 ** slightly in order to be compatible with windows systems simultaneously | |
1494 ** accessing the same database file, in case that is ever required. | |
1495 ** | |
1496 ** Symbols defined in os.h indentify the 'pending byte' and the 'reserved | |
1497 ** byte', each single bytes at well known offsets, and the 'shared byte | |
1498 ** range', a range of 510 bytes at a well known offset. | |
1499 ** | |
1500 ** To obtain a SHARED lock, a read-lock is obtained on the 'pending | |
1501 ** byte'. If this is successful, a random byte from the 'shared byte | |
1502 ** range' is read-locked and the lock on the 'pending byte' released. | |
1503 ** | |
1504 ** A process may only obtain a RESERVED lock after it has a SHARED lock. | |
1505 ** A RESERVED lock is implemented by grabbing a write-lock on the | |
1506 ** 'reserved byte'. | |
1507 ** | |
1508 ** A process may only obtain a PENDING lock after it has obtained a | |
1509 ** SHARED lock. A PENDING lock is implemented by obtaining a write-lock | |
1510 ** on the 'pending byte'. This ensures that no new SHARED locks can be | |
1511 ** obtained, but existing SHARED locks are allowed to persist. A process | |
1512 ** does not have to obtain a RESERVED lock on the way to a PENDING lock. | |
1513 ** This property is used by the algorithm for rolling back a journal file | |
1514 ** after a crash. | |
1515 ** | |
1516 ** An EXCLUSIVE lock, obtained after a PENDING lock is held, is | |
1517 ** implemented by obtaining a write-lock on the entire 'shared byte | |
1518 ** range'. Since all other locks require a read-lock on one of the bytes | |
1519 ** within this range, this ensures that no other locks are held on the | |
1520 ** database. | |
1521 ** | |
1522 ** The reason a single byte cannot be used instead of the 'shared byte | |
1523 ** range' is that some versions of windows do not support read-locks. By | |
1524 ** locking a random byte from a range, concurrent SHARED locks may exist | |
1525 ** even if the locking primitive used is always a write-lock. | |
1526 */ | |
1527 int rc = SQLITE_OK; | |
1528 unixFile *pFile = (unixFile*)id; | |
1529 unixInodeInfo *pInode; | |
1530 struct flock lock; | |
1531 int tErrno = 0; | |
1532 | |
1533 assert( pFile ); | |
1534 OSTRACE(("LOCK %d %s was %s(%s,%d) pid=%d (unix)\n", pFile->h, | |
1535 azFileLock(eFileLock), azFileLock(pFile->eFileLock), | |
1536 azFileLock(pFile->pInode->eFileLock), pFile->pInode->nShared , getpid())); | |
1537 | |
1538 /* If there is already a lock of this type or more restrictive on the | |
1539 ** unixFile, do nothing. Don't use the end_lock: exit path, as | |
1540 ** unixEnterMutex() hasn't been called yet. | |
1541 */ | |
1542 if( pFile->eFileLock>=eFileLock ){ | |
1543 OSTRACE(("LOCK %d %s ok (already held) (unix)\n", pFile->h, | |
1544 azFileLock(eFileLock))); | |
1545 return SQLITE_OK; | |
1546 } | |
1547 | |
1548 /* Make sure the locking sequence is correct. | |
1549 ** (1) We never move from unlocked to anything higher than shared lock. | |
1550 ** (2) SQLite never explicitly requests a pendig lock. | |
1551 ** (3) A shared lock is always held when a reserve lock is requested. | |
1552 */ | |
1553 assert( pFile->eFileLock!=NO_LOCK || eFileLock==SHARED_LOCK ); | |
1554 assert( eFileLock!=PENDING_LOCK ); | |
1555 assert( eFileLock!=RESERVED_LOCK || pFile->eFileLock==SHARED_LOCK ); | |
1556 | |
1557 /* This mutex is needed because pFile->pInode is shared across threads | |
1558 */ | |
1559 unixEnterMutex(); | |
1560 pInode = pFile->pInode; | |
1561 | |
1562 /* If some thread using this PID has a lock via a different unixFile* | |
1563 ** handle that precludes the requested lock, return BUSY. | |
1564 */ | |
1565 if( (pFile->eFileLock!=pInode->eFileLock && | |
1566 (pInode->eFileLock>=PENDING_LOCK || eFileLock>SHARED_LOCK)) | |
1567 ){ | |
1568 rc = SQLITE_BUSY; | |
1569 goto end_lock; | |
1570 } | |
1571 | |
1572 /* If a SHARED lock is requested, and some thread using this PID already | |
1573 ** has a SHARED or RESERVED lock, then increment reference counts and | |
1574 ** return SQLITE_OK. | |
1575 */ | |
1576 if( eFileLock==SHARED_LOCK && | |
1577 (pInode->eFileLock==SHARED_LOCK || pInode->eFileLock==RESERVED_LOCK) ){ | |
1578 assert( eFileLock==SHARED_LOCK ); | |
1579 assert( pFile->eFileLock==0 ); | |
1580 assert( pInode->nShared>0 ); | |
1581 pFile->eFileLock = SHARED_LOCK; | |
1582 pInode->nShared++; | |
1583 pInode->nLock++; | |
1584 goto end_lock; | |
1585 } | |
1586 | |
1587 | |
1588 /* A PENDING lock is needed before acquiring a SHARED lock and before | |
1589 ** acquiring an EXCLUSIVE lock. For the SHARED lock, the PENDING will | |
1590 ** be released. | |
1591 */ | |
1592 lock.l_len = 1L; | |
1593 lock.l_whence = SEEK_SET; | |
1594 if( eFileLock==SHARED_LOCK | |
1595 || (eFileLock==EXCLUSIVE_LOCK && pFile->eFileLock<PENDING_LOCK) | |
1596 ){ | |
1597 lock.l_type = (eFileLock==SHARED_LOCK?F_RDLCK:F_WRLCK); | |
1598 lock.l_start = PENDING_BYTE; | |
1599 if( unixFileLock(pFile, &lock) ){ | |
1600 tErrno = errno; | |
1601 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK); | |
1602 if( rc!=SQLITE_BUSY ){ | |
1603 pFile->lastErrno = tErrno; | |
1604 } | |
1605 goto end_lock; | |
1606 } | |
1607 } | |
1608 | |
1609 | |
1610 /* If control gets to this point, then actually go ahead and make | |
1611 ** operating system calls for the specified lock. | |
1612 */ | |
1613 if( eFileLock==SHARED_LOCK ){ | |
1614 assert( pInode->nShared==0 ); | |
1615 assert( pInode->eFileLock==0 ); | |
1616 assert( rc==SQLITE_OK ); | |
1617 | |
1618 /* Now get the read-lock */ | |
1619 lock.l_start = SHARED_FIRST; | |
1620 lock.l_len = SHARED_SIZE; | |
1621 if( unixFileLock(pFile, &lock) ){ | |
1622 tErrno = errno; | |
1623 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK); | |
1624 } | |
1625 | |
1626 /* Drop the temporary PENDING lock */ | |
1627 lock.l_start = PENDING_BYTE; | |
1628 lock.l_len = 1L; | |
1629 lock.l_type = F_UNLCK; | |
1630 if( unixFileLock(pFile, &lock) && rc==SQLITE_OK ){ | |
1631 /* This could happen with a network mount */ | |
1632 tErrno = errno; | |
1633 rc = SQLITE_IOERR_UNLOCK; | |
1634 } | |
1635 | |
1636 if( rc ){ | |
1637 if( rc!=SQLITE_BUSY ){ | |
1638 pFile->lastErrno = tErrno; | |
1639 } | |
1640 goto end_lock; | |
1641 }else{ | |
1642 pFile->eFileLock = SHARED_LOCK; | |
1643 pInode->nLock++; | |
1644 pInode->nShared = 1; | |
1645 } | |
1646 }else if( eFileLock==EXCLUSIVE_LOCK && pInode->nShared>1 ){ | |
1647 /* We are trying for an exclusive lock but another thread in this | |
1648 ** same process is still holding a shared lock. */ | |
1649 rc = SQLITE_BUSY; | |
1650 }else{ | |
1651 /* The request was for a RESERVED or EXCLUSIVE lock. It is | |
1652 ** assumed that there is a SHARED or greater lock on the file | |
1653 ** already. | |
1654 */ | |
1655 assert( 0!=pFile->eFileLock ); | |
1656 lock.l_type = F_WRLCK; | |
1657 | |
1658 assert( eFileLock==RESERVED_LOCK || eFileLock==EXCLUSIVE_LOCK ); | |
1659 if( eFileLock==RESERVED_LOCK ){ | |
1660 lock.l_start = RESERVED_BYTE; | |
1661 lock.l_len = 1L; | |
1662 }else{ | |
1663 lock.l_start = SHARED_FIRST; | |
1664 lock.l_len = SHARED_SIZE; | |
1665 } | |
1666 | |
1667 if( unixFileLock(pFile, &lock) ){ | |
1668 tErrno = errno; | |
1669 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK); | |
1670 if( rc!=SQLITE_BUSY ){ | |
1671 pFile->lastErrno = tErrno; | |
1672 } | |
1673 } | |
1674 } | |
1675 | |
1676 | |
1677 #ifdef SQLITE_DEBUG | |
1678 /* Set up the transaction-counter change checking flags when | |
1679 ** transitioning from a SHARED to a RESERVED lock. The change | |
1680 ** from SHARED to RESERVED marks the beginning of a normal | |
1681 ** write operation (not a hot journal rollback). | |
1682 */ | |
1683 if( rc==SQLITE_OK | |
1684 && pFile->eFileLock<=SHARED_LOCK | |
1685 && eFileLock==RESERVED_LOCK | |
1686 ){ | |
1687 pFile->transCntrChng = 0; | |
1688 pFile->dbUpdate = 0; | |
1689 pFile->inNormalWrite = 1; | |
1690 } | |
1691 #endif | |
1692 | |
1693 | |
1694 if( rc==SQLITE_OK ){ | |
1695 pFile->eFileLock = eFileLock; | |
1696 pInode->eFileLock = eFileLock; | |
1697 }else if( eFileLock==EXCLUSIVE_LOCK ){ | |
1698 pFile->eFileLock = PENDING_LOCK; | |
1699 pInode->eFileLock = PENDING_LOCK; | |
1700 } | |
1701 | |
1702 end_lock: | |
1703 unixLeaveMutex(); | |
1704 OSTRACE(("LOCK %d %s %s (unix)\n", pFile->h, azFileLock(eFileLock), | |
1705 rc==SQLITE_OK ? "ok" : "failed")); | |
1706 return rc; | |
1707 } | |
1708 | |
1709 /* | |
1710 ** Add the file descriptor used by file handle pFile to the corresponding | |
1711 ** pUnused list. | |
1712 */ | |
1713 static void setPendingFd(unixFile *pFile){ | |
1714 unixInodeInfo *pInode = pFile->pInode; | |
1715 UnixUnusedFd *p = pFile->pUnused; | |
1716 p->pNext = pInode->pUnused; | |
1717 pInode->pUnused = p; | |
1718 pFile->h = -1; | |
1719 pFile->pUnused = 0; | |
1720 } | |
1721 | |
1722 /* | |
1723 ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock | |
1724 ** must be either NO_LOCK or SHARED_LOCK. | |
1725 ** | |
1726 ** If the locking level of the file descriptor is already at or below | |
1727 ** the requested locking level, this routine is a no-op. | |
1728 ** | |
1729 ** If handleNFSUnlock is true, then on downgrading an EXCLUSIVE_LOCK to SHARED | |
1730 ** the byte range is divided into 2 parts and the first part is unlocked then | |
1731 ** set to a read lock, then the other part is simply unlocked. This works | |
1732 ** around a bug in BSD NFS lockd (also seen on MacOSX 10.3+) that fails to | |
1733 ** remove the write lock on a region when a read lock is set. | |
1734 */ | |
1735 static int posixUnlock(sqlite3_file *id, int eFileLock, int handleNFSUnlock){ | |
1736 unixFile *pFile = (unixFile*)id; | |
1737 unixInodeInfo *pInode; | |
1738 struct flock lock; | |
1739 int rc = SQLITE_OK; | |
1740 | |
1741 assert( pFile ); | |
1742 OSTRACE(("UNLOCK %d %d was %d(%d,%d) pid=%d (unix)\n", pFile->h, eFileLock, | |
1743 pFile->eFileLock, pFile->pInode->eFileLock, pFile->pInode->nShared, | |
1744 getpid())); | |
1745 | |
1746 assert( eFileLock<=SHARED_LOCK ); | |
1747 if( pFile->eFileLock<=eFileLock ){ | |
1748 return SQLITE_OK; | |
1749 } | |
1750 unixEnterMutex(); | |
1751 pInode = pFile->pInode; | |
1752 assert( pInode->nShared!=0 ); | |
1753 if( pFile->eFileLock>SHARED_LOCK ){ | |
1754 assert( pInode->eFileLock==pFile->eFileLock ); | |
1755 | |
1756 #ifdef SQLITE_DEBUG | |
1757 /* When reducing a lock such that other processes can start | |
1758 ** reading the database file again, make sure that the | |
1759 ** transaction counter was updated if any part of the database | |
1760 ** file changed. If the transaction counter is not updated, | |
1761 ** other connections to the same file might not realize that | |
1762 ** the file has changed and hence might not know to flush their | |
1763 ** cache. The use of a stale cache can lead to database corruption. | |
1764 */ | |
1765 pFile->inNormalWrite = 0; | |
1766 #endif | |
1767 | |
1768 /* downgrading to a shared lock on NFS involves clearing the write lock | |
1769 ** before establishing the readlock - to avoid a race condition we downgrade | |
1770 ** the lock in 2 blocks, so that part of the range will be covered by a | |
1771 ** write lock until the rest is covered by a read lock: | |
1772 ** 1: [WWWWW] | |
1773 ** 2: [....W] | |
1774 ** 3: [RRRRW] | |
1775 ** 4: [RRRR.] | |
1776 */ | |
1777 if( eFileLock==SHARED_LOCK ){ | |
1778 | |
1779 #if !defined(__APPLE__) || !SQLITE_ENABLE_LOCKING_STYLE | |
1780 (void)handleNFSUnlock; | |
1781 assert( handleNFSUnlock==0 ); | |
1782 #endif | |
1783 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE | |
1784 if( handleNFSUnlock ){ | |
1785 int tErrno; /* Error code from system call errors */ | |
1786 off_t divSize = SHARED_SIZE - 1; | |
1787 | |
1788 lock.l_type = F_UNLCK; | |
1789 lock.l_whence = SEEK_SET; | |
1790 lock.l_start = SHARED_FIRST; | |
1791 lock.l_len = divSize; | |
1792 if( unixFileLock(pFile, &lock)==(-1) ){ | |
1793 tErrno = errno; | |
1794 rc = SQLITE_IOERR_UNLOCK; | |
1795 if( IS_LOCK_ERROR(rc) ){ | |
1796 pFile->lastErrno = tErrno; | |
1797 } | |
1798 goto end_unlock; | |
1799 } | |
1800 lock.l_type = F_RDLCK; | |
1801 lock.l_whence = SEEK_SET; | |
1802 lock.l_start = SHARED_FIRST; | |
1803 lock.l_len = divSize; | |
1804 if( unixFileLock(pFile, &lock)==(-1) ){ | |
1805 tErrno = errno; | |
1806 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_RDLOCK); | |
1807 if( IS_LOCK_ERROR(rc) ){ | |
1808 pFile->lastErrno = tErrno; | |
1809 } | |
1810 goto end_unlock; | |
1811 } | |
1812 lock.l_type = F_UNLCK; | |
1813 lock.l_whence = SEEK_SET; | |
1814 lock.l_start = SHARED_FIRST+divSize; | |
1815 lock.l_len = SHARED_SIZE-divSize; | |
1816 if( unixFileLock(pFile, &lock)==(-1) ){ | |
1817 tErrno = errno; | |
1818 rc = SQLITE_IOERR_UNLOCK; | |
1819 if( IS_LOCK_ERROR(rc) ){ | |
1820 pFile->lastErrno = tErrno; | |
1821 } | |
1822 goto end_unlock; | |
1823 } | |
1824 }else | |
1825 #endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */ | |
1826 { | |
1827 lock.l_type = F_RDLCK; | |
1828 lock.l_whence = SEEK_SET; | |
1829 lock.l_start = SHARED_FIRST; | |
1830 lock.l_len = SHARED_SIZE; | |
1831 if( unixFileLock(pFile, &lock) ){ | |
1832 /* In theory, the call to unixFileLock() cannot fail because another | |
1833 ** process is holding an incompatible lock. If it does, this | |
1834 ** indicates that the other process is not following the locking | |
1835 ** protocol. If this happens, return SQLITE_IOERR_RDLOCK. Returning | |
1836 ** SQLITE_BUSY would confuse the upper layer (in practice it causes | |
1837 ** an assert to fail). */ | |
1838 rc = SQLITE_IOERR_RDLOCK; | |
1839 pFile->lastErrno = errno; | |
1840 goto end_unlock; | |
1841 } | |
1842 } | |
1843 } | |
1844 lock.l_type = F_UNLCK; | |
1845 lock.l_whence = SEEK_SET; | |
1846 lock.l_start = PENDING_BYTE; | |
1847 lock.l_len = 2L; assert( PENDING_BYTE+1==RESERVED_BYTE ); | |
1848 if( unixFileLock(pFile, &lock)==0 ){ | |
1849 pInode->eFileLock = SHARED_LOCK; | |
1850 }else{ | |
1851 rc = SQLITE_IOERR_UNLOCK; | |
1852 pFile->lastErrno = errno; | |
1853 goto end_unlock; | |
1854 } | |
1855 } | |
1856 if( eFileLock==NO_LOCK ){ | |
1857 /* Decrement the shared lock counter. Release the lock using an | |
1858 ** OS call only when all threads in this same process have released | |
1859 ** the lock. | |
1860 */ | |
1861 pInode->nShared--; | |
1862 if( pInode->nShared==0 ){ | |
1863 lock.l_type = F_UNLCK; | |
1864 lock.l_whence = SEEK_SET; | |
1865 lock.l_start = lock.l_len = 0L; | |
1866 if( unixFileLock(pFile, &lock)==0 ){ | |
1867 pInode->eFileLock = NO_LOCK; | |
1868 }else{ | |
1869 rc = SQLITE_IOERR_UNLOCK; | |
1870 pFile->lastErrno = errno; | |
1871 pInode->eFileLock = NO_LOCK; | |
1872 pFile->eFileLock = NO_LOCK; | |
1873 } | |
1874 } | |
1875 | |
1876 /* Decrement the count of locks against this same file. When the | |
1877 ** count reaches zero, close any other file descriptors whose close | |
1878 ** was deferred because of outstanding locks. | |
1879 */ | |
1880 pInode->nLock--; | |
1881 assert( pInode->nLock>=0 ); | |
1882 if( pInode->nLock==0 ){ | |
1883 closePendingFds(pFile); | |
1884 } | |
1885 } | |
1886 | |
1887 end_unlock: | |
1888 unixLeaveMutex(); | |
1889 if( rc==SQLITE_OK ) pFile->eFileLock = eFileLock; | |
1890 return rc; | |
1891 } | |
1892 | |
1893 /* | |
1894 ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock | |
1895 ** must be either NO_LOCK or SHARED_LOCK. | |
1896 ** | |
1897 ** If the locking level of the file descriptor is already at or below | |
1898 ** the requested locking level, this routine is a no-op. | |
1899 */ | |
1900 static int unixUnlock(sqlite3_file *id, int eFileLock){ | |
1901 #if SQLITE_MAX_MMAP_SIZE>0 | |
1902 assert( eFileLock==SHARED_LOCK || ((unixFile *)id)->nFetchOut==0 ); | |
1903 #endif | |
1904 return posixUnlock(id, eFileLock, 0); | |
1905 } | |
1906 | |
1907 #if SQLITE_MAX_MMAP_SIZE>0 | |
1908 static int unixMapfile(unixFile *pFd, i64 nByte); | |
1909 static void unixUnmapfile(unixFile *pFd); | |
1910 #endif | |
1911 | |
1912 /* | |
1913 ** This function performs the parts of the "close file" operation | |
1914 ** common to all locking schemes. It closes the directory and file | |
1915 ** handles, if they are valid, and sets all fields of the unixFile | |
1916 ** structure to 0. | |
1917 ** | |
1918 ** It is *not* necessary to hold the mutex when this routine is called, | |
1919 ** even on VxWorks. A mutex will be acquired on VxWorks by the | |
1920 ** vxworksReleaseFileId() routine. | |
1921 */ | |
1922 static int closeUnixFile(sqlite3_file *id){ | |
1923 unixFile *pFile = (unixFile*)id; | |
1924 #if SQLITE_MAX_MMAP_SIZE>0 | |
1925 unixUnmapfile(pFile); | |
1926 #endif | |
1927 if( pFile->h>=0 ){ | |
1928 robust_close(pFile, pFile->h, __LINE__); | |
1929 pFile->h = -1; | |
1930 } | |
1931 #if OS_VXWORKS | |
1932 if( pFile->pId ){ | |
1933 if( pFile->ctrlFlags & UNIXFILE_DELETE ){ | |
1934 osUnlink(pFile->pId->zCanonicalName); | |
1935 } | |
1936 vxworksReleaseFileId(pFile->pId); | |
1937 pFile->pId = 0; | |
1938 } | |
1939 #endif | |
1940 #ifdef SQLITE_UNLINK_AFTER_CLOSE | |
1941 if( pFile->ctrlFlags & UNIXFILE_DELETE ){ | |
1942 osUnlink(pFile->zPath); | |
1943 sqlite3_free(*(char**)&pFile->zPath); | |
1944 pFile->zPath = 0; | |
1945 } | |
1946 #endif | |
1947 OSTRACE(("CLOSE %-3d\n", pFile->h)); | |
1948 OpenCounter(-1); | |
1949 sqlite3_free(pFile->pUnused); | |
1950 memset(pFile, 0, sizeof(unixFile)); | |
1951 return SQLITE_OK; | |
1952 } | |
1953 | |
1954 /* | |
1955 ** Close a file. | |
1956 */ | |
1957 static int unixClose(sqlite3_file *id){ | |
1958 int rc = SQLITE_OK; | |
1959 unixFile *pFile = (unixFile *)id; | |
1960 verifyDbFile(pFile); | |
1961 unixUnlock(id, NO_LOCK); | |
1962 unixEnterMutex(); | |
1963 | |
1964 /* unixFile.pInode is always valid here. Otherwise, a different close | |
1965 ** routine (e.g. nolockClose()) would be called instead. | |
1966 */ | |
1967 assert( pFile->pInode->nLock>0 || pFile->pInode->bProcessLock==0 ); | |
1968 if( ALWAYS(pFile->pInode) && pFile->pInode->nLock ){ | |
1969 /* If there are outstanding locks, do not actually close the file just | |
1970 ** yet because that would clear those locks. Instead, add the file | |
1971 ** descriptor to pInode->pUnused list. It will be automatically closed | |
1972 ** when the last lock is cleared. | |
1973 */ | |
1974 setPendingFd(pFile); | |
1975 } | |
1976 releaseInodeInfo(pFile); | |
1977 rc = closeUnixFile(id); | |
1978 unixLeaveMutex(); | |
1979 return rc; | |
1980 } | |
1981 | |
1982 /************** End of the posix advisory lock implementation ***************** | |
1983 ******************************************************************************/ | |
1984 | |
1985 /****************************************************************************** | |
1986 ****************************** No-op Locking ********************************** | |
1987 ** | |
1988 ** Of the various locking implementations available, this is by far the | |
1989 ** simplest: locking is ignored. No attempt is made to lock the database | |
1990 ** file for reading or writing. | |
1991 ** | |
1992 ** This locking mode is appropriate for use on read-only databases | |
1993 ** (ex: databases that are burned into CD-ROM, for example.) It can | |
1994 ** also be used if the application employs some external mechanism to | |
1995 ** prevent simultaneous access of the same database by two or more | |
1996 ** database connections. But there is a serious risk of database | |
1997 ** corruption if this locking mode is used in situations where multiple | |
1998 ** database connections are accessing the same database file at the same | |
1999 ** time and one or more of those connections are writing. | |
2000 */ | |
2001 | |
2002 static int nolockCheckReservedLock(sqlite3_file *NotUsed, int *pResOut){ | |
2003 UNUSED_PARAMETER(NotUsed); | |
2004 *pResOut = 0; | |
2005 return SQLITE_OK; | |
2006 } | |
2007 static int nolockLock(sqlite3_file *NotUsed, int NotUsed2){ | |
2008 UNUSED_PARAMETER2(NotUsed, NotUsed2); | |
2009 return SQLITE_OK; | |
2010 } | |
2011 static int nolockUnlock(sqlite3_file *NotUsed, int NotUsed2){ | |
2012 UNUSED_PARAMETER2(NotUsed, NotUsed2); | |
2013 return SQLITE_OK; | |
2014 } | |
2015 | |
2016 /* | |
2017 ** Close the file. | |
2018 */ | |
2019 static int nolockClose(sqlite3_file *id) { | |
2020 return closeUnixFile(id); | |
2021 } | |
2022 | |
2023 /******************* End of the no-op lock implementation ********************* | |
2024 ******************************************************************************/ | |
2025 | |
2026 /****************************************************************************** | |
2027 ************************* Begin dot-file Locking ****************************** | |
2028 ** | |
2029 ** The dotfile locking implementation uses the existence of separate lock | |
2030 ** files (really a directory) to control access to the database. This works | |
2031 ** on just about every filesystem imaginable. But there are serious downsides: | |
2032 ** | |
2033 ** (1) There is zero concurrency. A single reader blocks all other | |
2034 ** connections from reading or writing the database. | |
2035 ** | |
2036 ** (2) An application crash or power loss can leave stale lock files | |
2037 ** sitting around that need to be cleared manually. | |
2038 ** | |
2039 ** Nevertheless, a dotlock is an appropriate locking mode for use if no | |
2040 ** other locking strategy is available. | |
2041 ** | |
2042 ** Dotfile locking works by creating a subdirectory in the same directory as | |
2043 ** the database and with the same name but with a ".lock" extension added. | |
2044 ** The existence of a lock directory implies an EXCLUSIVE lock. All other | |
2045 ** lock types (SHARED, RESERVED, PENDING) are mapped into EXCLUSIVE. | |
2046 */ | |
2047 | |
2048 /* | |
2049 ** The file suffix added to the data base filename in order to create the | |
2050 ** lock directory. | |
2051 */ | |
2052 #define DOTLOCK_SUFFIX ".lock" | |
2053 | |
2054 /* | |
2055 ** This routine checks if there is a RESERVED lock held on the specified | |
2056 ** file by this or any other process. If such a lock is held, set *pResOut | |
2057 ** to a non-zero value otherwise *pResOut is set to zero. The return value | |
2058 ** is set to SQLITE_OK unless an I/O error occurs during lock checking. | |
2059 ** | |
2060 ** In dotfile locking, either a lock exists or it does not. So in this | |
2061 ** variation of CheckReservedLock(), *pResOut is set to true if any lock | |
2062 ** is held on the file and false if the file is unlocked. | |
2063 */ | |
2064 static int dotlockCheckReservedLock(sqlite3_file *id, int *pResOut) { | |
2065 int rc = SQLITE_OK; | |
2066 int reserved = 0; | |
2067 unixFile *pFile = (unixFile*)id; | |
2068 | |
2069 SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; ); | |
2070 | |
2071 assert( pFile ); | |
2072 | |
2073 /* Check if a thread in this process holds such a lock */ | |
2074 if( pFile->eFileLock>SHARED_LOCK ){ | |
2075 /* Either this connection or some other connection in the same process | |
2076 ** holds a lock on the file. No need to check further. */ | |
2077 reserved = 1; | |
2078 }else{ | |
2079 /* The lock is held if and only if the lockfile exists */ | |
2080 const char *zLockFile = (const char*)pFile->lockingContext; | |
2081 reserved = osAccess(zLockFile, 0)==0; | |
2082 } | |
2083 OSTRACE(("TEST WR-LOCK %d %d %d (dotlock)\n", pFile->h, rc, reserved)); | |
2084 *pResOut = reserved; | |
2085 return rc; | |
2086 } | |
2087 | |
2088 /* | |
2089 ** Lock the file with the lock specified by parameter eFileLock - one | |
2090 ** of the following: | |
2091 ** | |
2092 ** (1) SHARED_LOCK | |
2093 ** (2) RESERVED_LOCK | |
2094 ** (3) PENDING_LOCK | |
2095 ** (4) EXCLUSIVE_LOCK | |
2096 ** | |
2097 ** Sometimes when requesting one lock state, additional lock states | |
2098 ** are inserted in between. The locking might fail on one of the later | |
2099 ** transitions leaving the lock state different from what it started but | |
2100 ** still short of its goal. The following chart shows the allowed | |
2101 ** transitions and the inserted intermediate states: | |
2102 ** | |
2103 ** UNLOCKED -> SHARED | |
2104 ** SHARED -> RESERVED | |
2105 ** SHARED -> (PENDING) -> EXCLUSIVE | |
2106 ** RESERVED -> (PENDING) -> EXCLUSIVE | |
2107 ** PENDING -> EXCLUSIVE | |
2108 ** | |
2109 ** This routine will only increase a lock. Use the sqlite3OsUnlock() | |
2110 ** routine to lower a locking level. | |
2111 ** | |
2112 ** With dotfile locking, we really only support state (4): EXCLUSIVE. | |
2113 ** But we track the other locking levels internally. | |
2114 */ | |
2115 static int dotlockLock(sqlite3_file *id, int eFileLock) { | |
2116 unixFile *pFile = (unixFile*)id; | |
2117 char *zLockFile = (char *)pFile->lockingContext; | |
2118 int rc = SQLITE_OK; | |
2119 | |
2120 | |
2121 /* If we have any lock, then the lock file already exists. All we have | |
2122 ** to do is adjust our internal record of the lock level. | |
2123 */ | |
2124 if( pFile->eFileLock > NO_LOCK ){ | |
2125 pFile->eFileLock = eFileLock; | |
2126 /* Always update the timestamp on the old file */ | |
2127 #ifdef HAVE_UTIME | |
2128 utime(zLockFile, NULL); | |
2129 #else | |
2130 utimes(zLockFile, NULL); | |
2131 #endif | |
2132 return SQLITE_OK; | |
2133 } | |
2134 | |
2135 /* grab an exclusive lock */ | |
2136 rc = osMkdir(zLockFile, 0777); | |
2137 if( rc<0 ){ | |
2138 /* failed to open/create the lock directory */ | |
2139 int tErrno = errno; | |
2140 if( EEXIST == tErrno ){ | |
2141 rc = SQLITE_BUSY; | |
2142 } else { | |
2143 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK); | |
2144 if( IS_LOCK_ERROR(rc) ){ | |
2145 pFile->lastErrno = tErrno; | |
2146 } | |
2147 } | |
2148 return rc; | |
2149 } | |
2150 | |
2151 /* got it, set the type and return ok */ | |
2152 pFile->eFileLock = eFileLock; | |
2153 return rc; | |
2154 } | |
2155 | |
2156 /* | |
2157 ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock | |
2158 ** must be either NO_LOCK or SHARED_LOCK. | |
2159 ** | |
2160 ** If the locking level of the file descriptor is already at or below | |
2161 ** the requested locking level, this routine is a no-op. | |
2162 ** | |
2163 ** When the locking level reaches NO_LOCK, delete the lock file. | |
2164 */ | |
2165 static int dotlockUnlock(sqlite3_file *id, int eFileLock) { | |
2166 unixFile *pFile = (unixFile*)id; | |
2167 char *zLockFile = (char *)pFile->lockingContext; | |
2168 int rc; | |
2169 | |
2170 assert( pFile ); | |
2171 OSTRACE(("UNLOCK %d %d was %d pid=%d (dotlock)\n", pFile->h, eFileLock, | |
2172 pFile->eFileLock, getpid())); | |
2173 assert( eFileLock<=SHARED_LOCK ); | |
2174 | |
2175 /* no-op if possible */ | |
2176 if( pFile->eFileLock==eFileLock ){ | |
2177 return SQLITE_OK; | |
2178 } | |
2179 | |
2180 /* To downgrade to shared, simply update our internal notion of the | |
2181 ** lock state. No need to mess with the file on disk. | |
2182 */ | |
2183 if( eFileLock==SHARED_LOCK ){ | |
2184 pFile->eFileLock = SHARED_LOCK; | |
2185 return SQLITE_OK; | |
2186 } | |
2187 | |
2188 /* To fully unlock the database, delete the lock file */ | |
2189 assert( eFileLock==NO_LOCK ); | |
2190 rc = osRmdir(zLockFile); | |
2191 if( rc<0 && errno==ENOTDIR ) rc = osUnlink(zLockFile); | |
2192 if( rc<0 ){ | |
2193 int tErrno = errno; | |
2194 rc = 0; | |
2195 if( ENOENT != tErrno ){ | |
2196 rc = SQLITE_IOERR_UNLOCK; | |
2197 } | |
2198 if( IS_LOCK_ERROR(rc) ){ | |
2199 pFile->lastErrno = tErrno; | |
2200 } | |
2201 return rc; | |
2202 } | |
2203 pFile->eFileLock = NO_LOCK; | |
2204 return SQLITE_OK; | |
2205 } | |
2206 | |
2207 /* | |
2208 ** Close a file. Make sure the lock has been released before closing. | |
2209 */ | |
2210 static int dotlockClose(sqlite3_file *id) { | |
2211 int rc = SQLITE_OK; | |
2212 if( id ){ | |
2213 unixFile *pFile = (unixFile*)id; | |
2214 dotlockUnlock(id, NO_LOCK); | |
2215 sqlite3_free(pFile->lockingContext); | |
2216 rc = closeUnixFile(id); | |
2217 } | |
2218 return rc; | |
2219 } | |
2220 /****************** End of the dot-file lock implementation ******************* | |
2221 ******************************************************************************/ | |
2222 | |
2223 /****************************************************************************** | |
2224 ************************** Begin flock Locking ******************************** | |
2225 ** | |
2226 ** Use the flock() system call to do file locking. | |
2227 ** | |
2228 ** flock() locking is like dot-file locking in that the various | |
2229 ** fine-grain locking levels supported by SQLite are collapsed into | |
2230 ** a single exclusive lock. In other words, SHARED, RESERVED, and | |
2231 ** PENDING locks are the same thing as an EXCLUSIVE lock. SQLite | |
2232 ** still works when you do this, but concurrency is reduced since | |
2233 ** only a single process can be reading the database at a time. | |
2234 ** | |
2235 ** Omit this section if SQLITE_ENABLE_LOCKING_STYLE is turned off or if | |
2236 ** compiling for VXWORKS. | |
2237 */ | |
2238 #if SQLITE_ENABLE_LOCKING_STYLE && !OS_VXWORKS | |
2239 | |
2240 /* | |
2241 ** Retry flock() calls that fail with EINTR | |
2242 */ | |
2243 #ifdef EINTR | |
2244 static int robust_flock(int fd, int op){ | |
2245 int rc; | |
2246 do{ rc = flock(fd,op); }while( rc<0 && errno==EINTR ); | |
2247 return rc; | |
2248 } | |
2249 #else | |
2250 # define robust_flock(a,b) flock(a,b) | |
2251 #endif | |
2252 | |
2253 | |
2254 /* | |
2255 ** This routine checks if there is a RESERVED lock held on the specified | |
2256 ** file by this or any other process. If such a lock is held, set *pResOut | |
2257 ** to a non-zero value otherwise *pResOut is set to zero. The return value | |
2258 ** is set to SQLITE_OK unless an I/O error occurs during lock checking. | |
2259 */ | |
2260 static int flockCheckReservedLock(sqlite3_file *id, int *pResOut){ | |
2261 int rc = SQLITE_OK; | |
2262 int reserved = 0; | |
2263 unixFile *pFile = (unixFile*)id; | |
2264 | |
2265 SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; ); | |
2266 | |
2267 assert( pFile ); | |
2268 | |
2269 /* Check if a thread in this process holds such a lock */ | |
2270 if( pFile->eFileLock>SHARED_LOCK ){ | |
2271 reserved = 1; | |
2272 } | |
2273 | |
2274 /* Otherwise see if some other process holds it. */ | |
2275 if( !reserved ){ | |
2276 /* attempt to get the lock */ | |
2277 int lrc = robust_flock(pFile->h, LOCK_EX | LOCK_NB); | |
2278 if( !lrc ){ | |
2279 /* got the lock, unlock it */ | |
2280 lrc = robust_flock(pFile->h, LOCK_UN); | |
2281 if ( lrc ) { | |
2282 int tErrno = errno; | |
2283 /* unlock failed with an error */ | |
2284 lrc = SQLITE_IOERR_UNLOCK; | |
2285 if( IS_LOCK_ERROR(lrc) ){ | |
2286 pFile->lastErrno = tErrno; | |
2287 rc = lrc; | |
2288 } | |
2289 } | |
2290 } else { | |
2291 int tErrno = errno; | |
2292 reserved = 1; | |
2293 /* someone else might have it reserved */ | |
2294 lrc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK); | |
2295 if( IS_LOCK_ERROR(lrc) ){ | |
2296 pFile->lastErrno = tErrno; | |
2297 rc = lrc; | |
2298 } | |
2299 } | |
2300 } | |
2301 OSTRACE(("TEST WR-LOCK %d %d %d (flock)\n", pFile->h, rc, reserved)); | |
2302 | |
2303 #ifdef SQLITE_IGNORE_FLOCK_LOCK_ERRORS | |
2304 if( (rc & SQLITE_IOERR) == SQLITE_IOERR ){ | |
2305 rc = SQLITE_OK; | |
2306 reserved=1; | |
2307 } | |
2308 #endif /* SQLITE_IGNORE_FLOCK_LOCK_ERRORS */ | |
2309 *pResOut = reserved; | |
2310 return rc; | |
2311 } | |
2312 | |
2313 /* | |
2314 ** Lock the file with the lock specified by parameter eFileLock - one | |
2315 ** of the following: | |
2316 ** | |
2317 ** (1) SHARED_LOCK | |
2318 ** (2) RESERVED_LOCK | |
2319 ** (3) PENDING_LOCK | |
2320 ** (4) EXCLUSIVE_LOCK | |
2321 ** | |
2322 ** Sometimes when requesting one lock state, additional lock states | |
2323 ** are inserted in between. The locking might fail on one of the later | |
2324 ** transitions leaving the lock state different from what it started but | |
2325 ** still short of its goal. The following chart shows the allowed | |
2326 ** transitions and the inserted intermediate states: | |
2327 ** | |
2328 ** UNLOCKED -> SHARED | |
2329 ** SHARED -> RESERVED | |
2330 ** SHARED -> (PENDING) -> EXCLUSIVE | |
2331 ** RESERVED -> (PENDING) -> EXCLUSIVE | |
2332 ** PENDING -> EXCLUSIVE | |
2333 ** | |
2334 ** flock() only really support EXCLUSIVE locks. We track intermediate | |
2335 ** lock states in the sqlite3_file structure, but all locks SHARED or | |
2336 ** above are really EXCLUSIVE locks and exclude all other processes from | |
2337 ** access the file. | |
2338 ** | |
2339 ** This routine will only increase a lock. Use the sqlite3OsUnlock() | |
2340 ** routine to lower a locking level. | |
2341 */ | |
2342 static int flockLock(sqlite3_file *id, int eFileLock) { | |
2343 int rc = SQLITE_OK; | |
2344 unixFile *pFile = (unixFile*)id; | |
2345 | |
2346 assert( pFile ); | |
2347 | |
2348 /* if we already have a lock, it is exclusive. | |
2349 ** Just adjust level and punt on outta here. */ | |
2350 if (pFile->eFileLock > NO_LOCK) { | |
2351 pFile->eFileLock = eFileLock; | |
2352 return SQLITE_OK; | |
2353 } | |
2354 | |
2355 /* grab an exclusive lock */ | |
2356 | |
2357 if (robust_flock(pFile->h, LOCK_EX | LOCK_NB)) { | |
2358 int tErrno = errno; | |
2359 /* didn't get, must be busy */ | |
2360 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK); | |
2361 if( IS_LOCK_ERROR(rc) ){ | |
2362 pFile->lastErrno = tErrno; | |
2363 } | |
2364 } else { | |
2365 /* got it, set the type and return ok */ | |
2366 pFile->eFileLock = eFileLock; | |
2367 } | |
2368 OSTRACE(("LOCK %d %s %s (flock)\n", pFile->h, azFileLock(eFileLock), | |
2369 rc==SQLITE_OK ? "ok" : "failed")); | |
2370 #ifdef SQLITE_IGNORE_FLOCK_LOCK_ERRORS | |
2371 if( (rc & SQLITE_IOERR) == SQLITE_IOERR ){ | |
2372 rc = SQLITE_BUSY; | |
2373 } | |
2374 #endif /* SQLITE_IGNORE_FLOCK_LOCK_ERRORS */ | |
2375 return rc; | |
2376 } | |
2377 | |
2378 | |
2379 /* | |
2380 ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock | |
2381 ** must be either NO_LOCK or SHARED_LOCK. | |
2382 ** | |
2383 ** If the locking level of the file descriptor is already at or below | |
2384 ** the requested locking level, this routine is a no-op. | |
2385 */ | |
2386 static int flockUnlock(sqlite3_file *id, int eFileLock) { | |
2387 unixFile *pFile = (unixFile*)id; | |
2388 | |
2389 assert( pFile ); | |
2390 OSTRACE(("UNLOCK %d %d was %d pid=%d (flock)\n", pFile->h, eFileLock, | |
2391 pFile->eFileLock, getpid())); | |
2392 assert( eFileLock<=SHARED_LOCK ); | |
2393 | |
2394 /* no-op if possible */ | |
2395 if( pFile->eFileLock==eFileLock ){ | |
2396 return SQLITE_OK; | |
2397 } | |
2398 | |
2399 /* shared can just be set because we always have an exclusive */ | |
2400 if (eFileLock==SHARED_LOCK) { | |
2401 pFile->eFileLock = eFileLock; | |
2402 return SQLITE_OK; | |
2403 } | |
2404 | |
2405 /* no, really, unlock. */ | |
2406 if( robust_flock(pFile->h, LOCK_UN) ){ | |
2407 #ifdef SQLITE_IGNORE_FLOCK_LOCK_ERRORS | |
2408 return SQLITE_OK; | |
2409 #endif /* SQLITE_IGNORE_FLOCK_LOCK_ERRORS */ | |
2410 return SQLITE_IOERR_UNLOCK; | |
2411 }else{ | |
2412 pFile->eFileLock = NO_LOCK; | |
2413 return SQLITE_OK; | |
2414 } | |
2415 } | |
2416 | |
2417 /* | |
2418 ** Close a file. | |
2419 */ | |
2420 static int flockClose(sqlite3_file *id) { | |
2421 int rc = SQLITE_OK; | |
2422 if( id ){ | |
2423 flockUnlock(id, NO_LOCK); | |
2424 rc = closeUnixFile(id); | |
2425 } | |
2426 return rc; | |
2427 } | |
2428 | |
2429 #endif /* SQLITE_ENABLE_LOCKING_STYLE && !OS_VXWORK */ | |
2430 | |
2431 /******************* End of the flock lock implementation ********************* | |
2432 ******************************************************************************/ | |
2433 | |
2434 /****************************************************************************** | |
2435 ************************ Begin Named Semaphore Locking ************************ | |
2436 ** | |
2437 ** Named semaphore locking is only supported on VxWorks. | |
2438 ** | |
2439 ** Semaphore locking is like dot-lock and flock in that it really only | |
2440 ** supports EXCLUSIVE locking. Only a single process can read or write | |
2441 ** the database file at a time. This reduces potential concurrency, but | |
2442 ** makes the lock implementation much easier. | |
2443 */ | |
2444 #if OS_VXWORKS | |
2445 | |
2446 /* | |
2447 ** This routine checks if there is a RESERVED lock held on the specified | |
2448 ** file by this or any other process. If such a lock is held, set *pResOut | |
2449 ** to a non-zero value otherwise *pResOut is set to zero. The return value | |
2450 ** is set to SQLITE_OK unless an I/O error occurs during lock checking. | |
2451 */ | |
2452 static int semCheckReservedLock(sqlite3_file *id, int *pResOut) { | |
2453 int rc = SQLITE_OK; | |
2454 int reserved = 0; | |
2455 unixFile *pFile = (unixFile*)id; | |
2456 | |
2457 SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; ); | |
2458 | |
2459 assert( pFile ); | |
2460 | |
2461 /* Check if a thread in this process holds such a lock */ | |
2462 if( pFile->eFileLock>SHARED_LOCK ){ | |
2463 reserved = 1; | |
2464 } | |
2465 | |
2466 /* Otherwise see if some other process holds it. */ | |
2467 if( !reserved ){ | |
2468 sem_t *pSem = pFile->pInode->pSem; | |
2469 | |
2470 if( sem_trywait(pSem)==-1 ){ | |
2471 int tErrno = errno; | |
2472 if( EAGAIN != tErrno ){ | |
2473 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_CHECKRESERVEDLOCK); | |
2474 pFile->lastErrno = tErrno; | |
2475 } else { | |
2476 /* someone else has the lock when we are in NO_LOCK */ | |
2477 reserved = (pFile->eFileLock < SHARED_LOCK); | |
2478 } | |
2479 }else{ | |
2480 /* we could have it if we want it */ | |
2481 sem_post(pSem); | |
2482 } | |
2483 } | |
2484 OSTRACE(("TEST WR-LOCK %d %d %d (sem)\n", pFile->h, rc, reserved)); | |
2485 | |
2486 *pResOut = reserved; | |
2487 return rc; | |
2488 } | |
2489 | |
2490 /* | |
2491 ** Lock the file with the lock specified by parameter eFileLock - one | |
2492 ** of the following: | |
2493 ** | |
2494 ** (1) SHARED_LOCK | |
2495 ** (2) RESERVED_LOCK | |
2496 ** (3) PENDING_LOCK | |
2497 ** (4) EXCLUSIVE_LOCK | |
2498 ** | |
2499 ** Sometimes when requesting one lock state, additional lock states | |
2500 ** are inserted in between. The locking might fail on one of the later | |
2501 ** transitions leaving the lock state different from what it started but | |
2502 ** still short of its goal. The following chart shows the allowed | |
2503 ** transitions and the inserted intermediate states: | |
2504 ** | |
2505 ** UNLOCKED -> SHARED | |
2506 ** SHARED -> RESERVED | |
2507 ** SHARED -> (PENDING) -> EXCLUSIVE | |
2508 ** RESERVED -> (PENDING) -> EXCLUSIVE | |
2509 ** PENDING -> EXCLUSIVE | |
2510 ** | |
2511 ** Semaphore locks only really support EXCLUSIVE locks. We track intermediate | |
2512 ** lock states in the sqlite3_file structure, but all locks SHARED or | |
2513 ** above are really EXCLUSIVE locks and exclude all other processes from | |
2514 ** access the file. | |
2515 ** | |
2516 ** This routine will only increase a lock. Use the sqlite3OsUnlock() | |
2517 ** routine to lower a locking level. | |
2518 */ | |
2519 static int semLock(sqlite3_file *id, int eFileLock) { | |
2520 unixFile *pFile = (unixFile*)id; | |
2521 sem_t *pSem = pFile->pInode->pSem; | |
2522 int rc = SQLITE_OK; | |
2523 | |
2524 /* if we already have a lock, it is exclusive. | |
2525 ** Just adjust level and punt on outta here. */ | |
2526 if (pFile->eFileLock > NO_LOCK) { | |
2527 pFile->eFileLock = eFileLock; | |
2528 rc = SQLITE_OK; | |
2529 goto sem_end_lock; | |
2530 } | |
2531 | |
2532 /* lock semaphore now but bail out when already locked. */ | |
2533 if( sem_trywait(pSem)==-1 ){ | |
2534 rc = SQLITE_BUSY; | |
2535 goto sem_end_lock; | |
2536 } | |
2537 | |
2538 /* got it, set the type and return ok */ | |
2539 pFile->eFileLock = eFileLock; | |
2540 | |
2541 sem_end_lock: | |
2542 return rc; | |
2543 } | |
2544 | |
2545 /* | |
2546 ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock | |
2547 ** must be either NO_LOCK or SHARED_LOCK. | |
2548 ** | |
2549 ** If the locking level of the file descriptor is already at or below | |
2550 ** the requested locking level, this routine is a no-op. | |
2551 */ | |
2552 static int semUnlock(sqlite3_file *id, int eFileLock) { | |
2553 unixFile *pFile = (unixFile*)id; | |
2554 sem_t *pSem = pFile->pInode->pSem; | |
2555 | |
2556 assert( pFile ); | |
2557 assert( pSem ); | |
2558 OSTRACE(("UNLOCK %d %d was %d pid=%d (sem)\n", pFile->h, eFileLock, | |
2559 pFile->eFileLock, getpid())); | |
2560 assert( eFileLock<=SHARED_LOCK ); | |
2561 | |
2562 /* no-op if possible */ | |
2563 if( pFile->eFileLock==eFileLock ){ | |
2564 return SQLITE_OK; | |
2565 } | |
2566 | |
2567 /* shared can just be set because we always have an exclusive */ | |
2568 if (eFileLock==SHARED_LOCK) { | |
2569 pFile->eFileLock = eFileLock; | |
2570 return SQLITE_OK; | |
2571 } | |
2572 | |
2573 /* no, really unlock. */ | |
2574 if ( sem_post(pSem)==-1 ) { | |
2575 int rc, tErrno = errno; | |
2576 rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_UNLOCK); | |
2577 if( IS_LOCK_ERROR(rc) ){ | |
2578 pFile->lastErrno = tErrno; | |
2579 } | |
2580 return rc; | |
2581 } | |
2582 pFile->eFileLock = NO_LOCK; | |
2583 return SQLITE_OK; | |
2584 } | |
2585 | |
2586 /* | |
2587 ** Close a file. | |
2588 */ | |
2589 static int semClose(sqlite3_file *id) { | |
2590 if( id ){ | |
2591 unixFile *pFile = (unixFile*)id; | |
2592 semUnlock(id, NO_LOCK); | |
2593 assert( pFile ); | |
2594 unixEnterMutex(); | |
2595 releaseInodeInfo(pFile); | |
2596 unixLeaveMutex(); | |
2597 closeUnixFile(id); | |
2598 } | |
2599 return SQLITE_OK; | |
2600 } | |
2601 | |
2602 #endif /* OS_VXWORKS */ | |
2603 /* | |
2604 ** Named semaphore locking is only available on VxWorks. | |
2605 ** | |
2606 *************** End of the named semaphore lock implementation **************** | |
2607 ******************************************************************************/ | |
2608 | |
2609 | |
2610 /****************************************************************************** | |
2611 *************************** Begin AFP Locking ********************************* | |
2612 ** | |
2613 ** AFP is the Apple Filing Protocol. AFP is a network filesystem found | |
2614 ** on Apple Macintosh computers - both OS9 and OSX. | |
2615 ** | |
2616 ** Third-party implementations of AFP are available. But this code here | |
2617 ** only works on OSX. | |
2618 */ | |
2619 | |
2620 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE | |
2621 /* | |
2622 ** The afpLockingContext structure contains all afp lock specific state | |
2623 */ | |
2624 typedef struct afpLockingContext afpLockingContext; | |
2625 struct afpLockingContext { | |
2626 int reserved; | |
2627 const char *dbPath; /* Name of the open file */ | |
2628 }; | |
2629 | |
2630 struct ByteRangeLockPB2 | |
2631 { | |
2632 unsigned long long offset; /* offset to first byte to lock */ | |
2633 unsigned long long length; /* nbr of bytes to lock */ | |
2634 unsigned long long retRangeStart; /* nbr of 1st byte locked if successful */ | |
2635 unsigned char unLockFlag; /* 1 = unlock, 0 = lock */ | |
2636 unsigned char startEndFlag; /* 1=rel to end of fork, 0=rel to start */ | |
2637 int fd; /* file desc to assoc this lock with */ | |
2638 }; | |
2639 | |
2640 #define afpfsByteRangeLock2FSCTL _IOWR('z', 23, struct ByteRangeLockPB2) | |
2641 | |
2642 /* | |
2643 ** This is a utility for setting or clearing a bit-range lock on an | |
2644 ** AFP filesystem. | |
2645 ** | |
2646 ** Return SQLITE_OK on success, SQLITE_BUSY on failure. | |
2647 */ | |
2648 static int afpSetLock( | |
2649 const char *path, /* Name of the file to be locked or unlocked */ | |
2650 unixFile *pFile, /* Open file descriptor on path */ | |
2651 unsigned long long offset, /* First byte to be locked */ | |
2652 unsigned long long length, /* Number of bytes to lock */ | |
2653 int setLockFlag /* True to set lock. False to clear lock */ | |
2654 ){ | |
2655 struct ByteRangeLockPB2 pb; | |
2656 int err; | |
2657 | |
2658 pb.unLockFlag = setLockFlag ? 0 : 1; | |
2659 pb.startEndFlag = 0; | |
2660 pb.offset = offset; | |
2661 pb.length = length; | |
2662 pb.fd = pFile->h; | |
2663 | |
2664 OSTRACE(("AFPSETLOCK [%s] for %d%s in range %llx:%llx\n", | |
2665 (setLockFlag?"ON":"OFF"), pFile->h, (pb.fd==-1?"[testval-1]":""), | |
2666 offset, length)); | |
2667 err = fsctl(path, afpfsByteRangeLock2FSCTL, &pb, 0); | |
2668 if ( err==-1 ) { | |
2669 int rc; | |
2670 int tErrno = errno; | |
2671 OSTRACE(("AFPSETLOCK failed to fsctl() '%s' %d %s\n", | |
2672 path, tErrno, strerror(tErrno))); | |
2673 #ifdef SQLITE_IGNORE_AFP_LOCK_ERRORS | |
2674 rc = SQLITE_BUSY; | |
2675 #else | |
2676 rc = sqliteErrorFromPosixError(tErrno, | |
2677 setLockFlag ? SQLITE_IOERR_LOCK : SQLITE_IOERR_UNLOCK); | |
2678 #endif /* SQLITE_IGNORE_AFP_LOCK_ERRORS */ | |
2679 if( IS_LOCK_ERROR(rc) ){ | |
2680 pFile->lastErrno = tErrno; | |
2681 } | |
2682 return rc; | |
2683 } else { | |
2684 return SQLITE_OK; | |
2685 } | |
2686 } | |
2687 | |
2688 /* | |
2689 ** This routine checks if there is a RESERVED lock held on the specified | |
2690 ** file by this or any other process. If such a lock is held, set *pResOut | |
2691 ** to a non-zero value otherwise *pResOut is set to zero. The return value | |
2692 ** is set to SQLITE_OK unless an I/O error occurs during lock checking. | |
2693 */ | |
2694 static int afpCheckReservedLock(sqlite3_file *id, int *pResOut){ | |
2695 int rc = SQLITE_OK; | |
2696 int reserved = 0; | |
2697 unixFile *pFile = (unixFile*)id; | |
2698 afpLockingContext *context; | |
2699 | |
2700 SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; ); | |
2701 | |
2702 assert( pFile ); | |
2703 context = (afpLockingContext *) pFile->lockingContext; | |
2704 if( context->reserved ){ | |
2705 *pResOut = 1; | |
2706 return SQLITE_OK; | |
2707 } | |
2708 unixEnterMutex(); /* Because pFile->pInode is shared across threads */ | |
2709 | |
2710 /* Check if a thread in this process holds such a lock */ | |
2711 if( pFile->pInode->eFileLock>SHARED_LOCK ){ | |
2712 reserved = 1; | |
2713 } | |
2714 | |
2715 /* Otherwise see if some other process holds it. | |
2716 */ | |
2717 if( !reserved ){ | |
2718 /* lock the RESERVED byte */ | |
2719 int lrc = afpSetLock(context->dbPath, pFile, RESERVED_BYTE, 1,1); | |
2720 if( SQLITE_OK==lrc ){ | |
2721 /* if we succeeded in taking the reserved lock, unlock it to restore | |
2722 ** the original state */ | |
2723 lrc = afpSetLock(context->dbPath, pFile, RESERVED_BYTE, 1, 0); | |
2724 } else { | |
2725 /* if we failed to get the lock then someone else must have it */ | |
2726 reserved = 1; | |
2727 } | |
2728 if( IS_LOCK_ERROR(lrc) ){ | |
2729 rc=lrc; | |
2730 } | |
2731 } | |
2732 | |
2733 unixLeaveMutex(); | |
2734 OSTRACE(("TEST WR-LOCK %d %d %d (afp)\n", pFile->h, rc, reserved)); | |
2735 | |
2736 *pResOut = reserved; | |
2737 return rc; | |
2738 } | |
2739 | |
2740 /* | |
2741 ** Lock the file with the lock specified by parameter eFileLock - one | |
2742 ** of the following: | |
2743 ** | |
2744 ** (1) SHARED_LOCK | |
2745 ** (2) RESERVED_LOCK | |
2746 ** (3) PENDING_LOCK | |
2747 ** (4) EXCLUSIVE_LOCK | |
2748 ** | |
2749 ** Sometimes when requesting one lock state, additional lock states | |
2750 ** are inserted in between. The locking might fail on one of the later | |
2751 ** transitions leaving the lock state different from what it started but | |
2752 ** still short of its goal. The following chart shows the allowed | |
2753 ** transitions and the inserted intermediate states: | |
2754 ** | |
2755 ** UNLOCKED -> SHARED | |
2756 ** SHARED -> RESERVED | |
2757 ** SHARED -> (PENDING) -> EXCLUSIVE | |
2758 ** RESERVED -> (PENDING) -> EXCLUSIVE | |
2759 ** PENDING -> EXCLUSIVE | |
2760 ** | |
2761 ** This routine will only increase a lock. Use the sqlite3OsUnlock() | |
2762 ** routine to lower a locking level. | |
2763 */ | |
2764 static int afpLock(sqlite3_file *id, int eFileLock){ | |
2765 int rc = SQLITE_OK; | |
2766 unixFile *pFile = (unixFile*)id; | |
2767 unixInodeInfo *pInode = pFile->pInode; | |
2768 afpLockingContext *context = (afpLockingContext *) pFile->lockingContext; | |
2769 | |
2770 assert( pFile ); | |
2771 OSTRACE(("LOCK %d %s was %s(%s,%d) pid=%d (afp)\n", pFile->h, | |
2772 azFileLock(eFileLock), azFileLock(pFile->eFileLock), | |
2773 azFileLock(pInode->eFileLock), pInode->nShared , getpid())); | |
2774 | |
2775 /* If there is already a lock of this type or more restrictive on the | |
2776 ** unixFile, do nothing. Don't use the afp_end_lock: exit path, as | |
2777 ** unixEnterMutex() hasn't been called yet. | |
2778 */ | |
2779 if( pFile->eFileLock>=eFileLock ){ | |
2780 OSTRACE(("LOCK %d %s ok (already held) (afp)\n", pFile->h, | |
2781 azFileLock(eFileLock))); | |
2782 return SQLITE_OK; | |
2783 } | |
2784 | |
2785 /* Make sure the locking sequence is correct | |
2786 ** (1) We never move from unlocked to anything higher than shared lock. | |
2787 ** (2) SQLite never explicitly requests a pendig lock. | |
2788 ** (3) A shared lock is always held when a reserve lock is requested. | |
2789 */ | |
2790 assert( pFile->eFileLock!=NO_LOCK || eFileLock==SHARED_LOCK ); | |
2791 assert( eFileLock!=PENDING_LOCK ); | |
2792 assert( eFileLock!=RESERVED_LOCK || pFile->eFileLock==SHARED_LOCK ); | |
2793 | |
2794 /* This mutex is needed because pFile->pInode is shared across threads | |
2795 */ | |
2796 unixEnterMutex(); | |
2797 pInode = pFile->pInode; | |
2798 | |
2799 /* If some thread using this PID has a lock via a different unixFile* | |
2800 ** handle that precludes the requested lock, return BUSY. | |
2801 */ | |
2802 if( (pFile->eFileLock!=pInode->eFileLock && | |
2803 (pInode->eFileLock>=PENDING_LOCK || eFileLock>SHARED_LOCK)) | |
2804 ){ | |
2805 rc = SQLITE_BUSY; | |
2806 goto afp_end_lock; | |
2807 } | |
2808 | |
2809 /* If a SHARED lock is requested, and some thread using this PID already | |
2810 ** has a SHARED or RESERVED lock, then increment reference counts and | |
2811 ** return SQLITE_OK. | |
2812 */ | |
2813 if( eFileLock==SHARED_LOCK && | |
2814 (pInode->eFileLock==SHARED_LOCK || pInode->eFileLock==RESERVED_LOCK) ){ | |
2815 assert( eFileLock==SHARED_LOCK ); | |
2816 assert( pFile->eFileLock==0 ); | |
2817 assert( pInode->nShared>0 ); | |
2818 pFile->eFileLock = SHARED_LOCK; | |
2819 pInode->nShared++; | |
2820 pInode->nLock++; | |
2821 goto afp_end_lock; | |
2822 } | |
2823 | |
2824 /* A PENDING lock is needed before acquiring a SHARED lock and before | |
2825 ** acquiring an EXCLUSIVE lock. For the SHARED lock, the PENDING will | |
2826 ** be released. | |
2827 */ | |
2828 if( eFileLock==SHARED_LOCK | |
2829 || (eFileLock==EXCLUSIVE_LOCK && pFile->eFileLock<PENDING_LOCK) | |
2830 ){ | |
2831 int failed; | |
2832 failed = afpSetLock(context->dbPath, pFile, PENDING_BYTE, 1, 1); | |
2833 if (failed) { | |
2834 rc = failed; | |
2835 goto afp_end_lock; | |
2836 } | |
2837 } | |
2838 | |
2839 /* If control gets to this point, then actually go ahead and make | |
2840 ** operating system calls for the specified lock. | |
2841 */ | |
2842 if( eFileLock==SHARED_LOCK ){ | |
2843 int lrc1, lrc2, lrc1Errno = 0; | |
2844 long lk, mask; | |
2845 | |
2846 assert( pInode->nShared==0 ); | |
2847 assert( pInode->eFileLock==0 ); | |
2848 | |
2849 mask = (sizeof(long)==8) ? LARGEST_INT64 : 0x7fffffff; | |
2850 /* Now get the read-lock SHARED_LOCK */ | |
2851 /* note that the quality of the randomness doesn't matter that much */ | |
2852 lk = random(); | |
2853 pInode->sharedByte = (lk & mask)%(SHARED_SIZE - 1); | |
2854 lrc1 = afpSetLock(context->dbPath, pFile, | |
2855 SHARED_FIRST+pInode->sharedByte, 1, 1); | |
2856 if( IS_LOCK_ERROR(lrc1) ){ | |
2857 lrc1Errno = pFile->lastErrno; | |
2858 } | |
2859 /* Drop the temporary PENDING lock */ | |
2860 lrc2 = afpSetLock(context->dbPath, pFile, PENDING_BYTE, 1, 0); | |
2861 | |
2862 if( IS_LOCK_ERROR(lrc1) ) { | |
2863 pFile->lastErrno = lrc1Errno; | |
2864 rc = lrc1; | |
2865 goto afp_end_lock; | |
2866 } else if( IS_LOCK_ERROR(lrc2) ){ | |
2867 rc = lrc2; | |
2868 goto afp_end_lock; | |
2869 } else if( lrc1 != SQLITE_OK ) { | |
2870 rc = lrc1; | |
2871 } else { | |
2872 pFile->eFileLock = SHARED_LOCK; | |
2873 pInode->nLock++; | |
2874 pInode->nShared = 1; | |
2875 } | |
2876 }else if( eFileLock==EXCLUSIVE_LOCK && pInode->nShared>1 ){ | |
2877 /* We are trying for an exclusive lock but another thread in this | |
2878 ** same process is still holding a shared lock. */ | |
2879 rc = SQLITE_BUSY; | |
2880 }else{ | |
2881 /* The request was for a RESERVED or EXCLUSIVE lock. It is | |
2882 ** assumed that there is a SHARED or greater lock on the file | |
2883 ** already. | |
2884 */ | |
2885 int failed = 0; | |
2886 assert( 0!=pFile->eFileLock ); | |
2887 if (eFileLock >= RESERVED_LOCK && pFile->eFileLock < RESERVED_LOCK) { | |
2888 /* Acquire a RESERVED lock */ | |
2889 failed = afpSetLock(context->dbPath, pFile, RESERVED_BYTE, 1,1); | |
2890 if( !failed ){ | |
2891 context->reserved = 1; | |
2892 } | |
2893 } | |
2894 if (!failed && eFileLock == EXCLUSIVE_LOCK) { | |
2895 /* Acquire an EXCLUSIVE lock */ | |
2896 | |
2897 /* Remove the shared lock before trying the range. we'll need to | |
2898 ** reestablish the shared lock if we can't get the afpUnlock | |
2899 */ | |
2900 if( !(failed = afpSetLock(context->dbPath, pFile, SHARED_FIRST + | |
2901 pInode->sharedByte, 1, 0)) ){ | |
2902 int failed2 = SQLITE_OK; | |
2903 /* now attemmpt to get the exclusive lock range */ | |
2904 failed = afpSetLock(context->dbPath, pFile, SHARED_FIRST, | |
2905 SHARED_SIZE, 1); | |
2906 if( failed && (failed2 = afpSetLock(context->dbPath, pFile, | |
2907 SHARED_FIRST + pInode->sharedByte, 1, 1)) ){ | |
2908 /* Can't reestablish the shared lock. Sqlite can't deal, this is | |
2909 ** a critical I/O error | |
2910 */ | |
2911 rc = ((failed & SQLITE_IOERR) == SQLITE_IOERR) ? failed2 : | |
2912 SQLITE_IOERR_LOCK; | |
2913 goto afp_end_lock; | |
2914 } | |
2915 }else{ | |
2916 rc = failed; | |
2917 } | |
2918 } | |
2919 if( failed ){ | |
2920 rc = failed; | |
2921 } | |
2922 } | |
2923 | |
2924 if( rc==SQLITE_OK ){ | |
2925 pFile->eFileLock = eFileLock; | |
2926 pInode->eFileLock = eFileLock; | |
2927 }else if( eFileLock==EXCLUSIVE_LOCK ){ | |
2928 pFile->eFileLock = PENDING_LOCK; | |
2929 pInode->eFileLock = PENDING_LOCK; | |
2930 } | |
2931 | |
2932 afp_end_lock: | |
2933 unixLeaveMutex(); | |
2934 OSTRACE(("LOCK %d %s %s (afp)\n", pFile->h, azFileLock(eFileLock), | |
2935 rc==SQLITE_OK ? "ok" : "failed")); | |
2936 return rc; | |
2937 } | |
2938 | |
2939 /* | |
2940 ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock | |
2941 ** must be either NO_LOCK or SHARED_LOCK. | |
2942 ** | |
2943 ** If the locking level of the file descriptor is already at or below | |
2944 ** the requested locking level, this routine is a no-op. | |
2945 */ | |
2946 static int afpUnlock(sqlite3_file *id, int eFileLock) { | |
2947 int rc = SQLITE_OK; | |
2948 unixFile *pFile = (unixFile*)id; | |
2949 unixInodeInfo *pInode; | |
2950 afpLockingContext *context = (afpLockingContext *) pFile->lockingContext; | |
2951 int skipShared = 0; | |
2952 #ifdef SQLITE_TEST | |
2953 int h = pFile->h; | |
2954 #endif | |
2955 | |
2956 assert( pFile ); | |
2957 OSTRACE(("UNLOCK %d %d was %d(%d,%d) pid=%d (afp)\n", pFile->h, eFileLock, | |
2958 pFile->eFileLock, pFile->pInode->eFileLock, pFile->pInode->nShared, | |
2959 getpid())); | |
2960 | |
2961 assert( eFileLock<=SHARED_LOCK ); | |
2962 if( pFile->eFileLock<=eFileLock ){ | |
2963 return SQLITE_OK; | |
2964 } | |
2965 unixEnterMutex(); | |
2966 pInode = pFile->pInode; | |
2967 assert( pInode->nShared!=0 ); | |
2968 if( pFile->eFileLock>SHARED_LOCK ){ | |
2969 assert( pInode->eFileLock==pFile->eFileLock ); | |
2970 SimulateIOErrorBenign(1); | |
2971 SimulateIOError( h=(-1) ) | |
2972 SimulateIOErrorBenign(0); | |
2973 | |
2974 #ifdef SQLITE_DEBUG | |
2975 /* When reducing a lock such that other processes can start | |
2976 ** reading the database file again, make sure that the | |
2977 ** transaction counter was updated if any part of the database | |
2978 ** file changed. If the transaction counter is not updated, | |
2979 ** other connections to the same file might not realize that | |
2980 ** the file has changed and hence might not know to flush their | |
2981 ** cache. The use of a stale cache can lead to database corruption. | |
2982 */ | |
2983 assert( pFile->inNormalWrite==0 | |
2984 || pFile->dbUpdate==0 | |
2985 || pFile->transCntrChng==1 ); | |
2986 pFile->inNormalWrite = 0; | |
2987 #endif | |
2988 | |
2989 if( pFile->eFileLock==EXCLUSIVE_LOCK ){ | |
2990 rc = afpSetLock(context->dbPath, pFile, SHARED_FIRST, SHARED_SIZE, 0); | |
2991 if( rc==SQLITE_OK && (eFileLock==SHARED_LOCK || pInode->nShared>1) ){ | |
2992 /* only re-establish the shared lock if necessary */ | |
2993 int sharedLockByte = SHARED_FIRST+pInode->sharedByte; | |
2994 rc = afpSetLock(context->dbPath, pFile, sharedLockByte, 1, 1); | |
2995 } else { | |
2996 skipShared = 1; | |
2997 } | |
2998 } | |
2999 if( rc==SQLITE_OK && pFile->eFileLock>=PENDING_LOCK ){ | |
3000 rc = afpSetLock(context->dbPath, pFile, PENDING_BYTE, 1, 0); | |
3001 } | |
3002 if( rc==SQLITE_OK && pFile->eFileLock>=RESERVED_LOCK && context->reserved ){ | |
3003 rc = afpSetLock(context->dbPath, pFile, RESERVED_BYTE, 1, 0); | |
3004 if( !rc ){ | |
3005 context->reserved = 0; | |
3006 } | |
3007 } | |
3008 if( rc==SQLITE_OK && (eFileLock==SHARED_LOCK || pInode->nShared>1)){ | |
3009 pInode->eFileLock = SHARED_LOCK; | |
3010 } | |
3011 } | |
3012 if( rc==SQLITE_OK && eFileLock==NO_LOCK ){ | |
3013 | |
3014 /* Decrement the shared lock counter. Release the lock using an | |
3015 ** OS call only when all threads in this same process have released | |
3016 ** the lock. | |
3017 */ | |
3018 unsigned long long sharedLockByte = SHARED_FIRST+pInode->sharedByte; | |
3019 pInode->nShared--; | |
3020 if( pInode->nShared==0 ){ | |
3021 SimulateIOErrorBenign(1); | |
3022 SimulateIOError( h=(-1) ) | |
3023 SimulateIOErrorBenign(0); | |
3024 if( !skipShared ){ | |
3025 rc = afpSetLock(context->dbPath, pFile, sharedLockByte, 1, 0); | |
3026 } | |
3027 if( !rc ){ | |
3028 pInode->eFileLock = NO_LOCK; | |
3029 pFile->eFileLock = NO_LOCK; | |
3030 } | |
3031 } | |
3032 if( rc==SQLITE_OK ){ | |
3033 pInode->nLock--; | |
3034 assert( pInode->nLock>=0 ); | |
3035 if( pInode->nLock==0 ){ | |
3036 closePendingFds(pFile); | |
3037 } | |
3038 } | |
3039 } | |
3040 | |
3041 unixLeaveMutex(); | |
3042 if( rc==SQLITE_OK ) pFile->eFileLock = eFileLock; | |
3043 return rc; | |
3044 } | |
3045 | |
3046 /* | |
3047 ** Close a file & cleanup AFP specific locking context | |
3048 */ | |
3049 static int afpClose(sqlite3_file *id) { | |
3050 int rc = SQLITE_OK; | |
3051 if( id ){ | |
3052 unixFile *pFile = (unixFile*)id; | |
3053 afpUnlock(id, NO_LOCK); | |
3054 unixEnterMutex(); | |
3055 if( pFile->pInode && pFile->pInode->nLock ){ | |
3056 /* If there are outstanding locks, do not actually close the file just | |
3057 ** yet because that would clear those locks. Instead, add the file | |
3058 ** descriptor to pInode->aPending. It will be automatically closed when | |
3059 ** the last lock is cleared. | |
3060 */ | |
3061 setPendingFd(pFile); | |
3062 } | |
3063 releaseInodeInfo(pFile); | |
3064 sqlite3_free(pFile->lockingContext); | |
3065 rc = closeUnixFile(id); | |
3066 unixLeaveMutex(); | |
3067 } | |
3068 return rc; | |
3069 } | |
3070 | |
3071 #endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */ | |
3072 /* | |
3073 ** The code above is the AFP lock implementation. The code is specific | |
3074 ** to MacOSX and does not work on other unix platforms. No alternative | |
3075 ** is available. If you don't compile for a mac, then the "unix-afp" | |
3076 ** VFS is not available. | |
3077 ** | |
3078 ********************* End of the AFP lock implementation ********************** | |
3079 ******************************************************************************/ | |
3080 | |
3081 /****************************************************************************** | |
3082 *************************** Begin NFS Locking ********************************/ | |
3083 | |
3084 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE | |
3085 /* | |
3086 ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock | |
3087 ** must be either NO_LOCK or SHARED_LOCK. | |
3088 ** | |
3089 ** If the locking level of the file descriptor is already at or below | |
3090 ** the requested locking level, this routine is a no-op. | |
3091 */ | |
3092 static int nfsUnlock(sqlite3_file *id, int eFileLock){ | |
3093 return posixUnlock(id, eFileLock, 1); | |
3094 } | |
3095 | |
3096 #endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */ | |
3097 /* | |
3098 ** The code above is the NFS lock implementation. The code is specific | |
3099 ** to MacOSX and does not work on other unix platforms. No alternative | |
3100 ** is available. | |
3101 ** | |
3102 ********************* End of the NFS lock implementation ********************** | |
3103 ******************************************************************************/ | |
3104 | |
3105 /****************************************************************************** | |
3106 **************** Non-locking sqlite3_file methods ***************************** | |
3107 ** | |
3108 ** The next division contains implementations for all methods of the | |
3109 ** sqlite3_file object other than the locking methods. The locking | |
3110 ** methods were defined in divisions above (one locking method per | |
3111 ** division). Those methods that are common to all locking modes | |
3112 ** are gather together into this division. | |
3113 */ | |
3114 | |
3115 /* | |
3116 ** Seek to the offset passed as the second argument, then read cnt | |
3117 ** bytes into pBuf. Return the number of bytes actually read. | |
3118 ** | |
3119 ** NB: If you define USE_PREAD or USE_PREAD64, then it might also | |
3120 ** be necessary to define _XOPEN_SOURCE to be 500. This varies from | |
3121 ** one system to another. Since SQLite does not define USE_PREAD | |
3122 ** in any form by default, we will not attempt to define _XOPEN_SOURCE. | |
3123 ** See tickets #2741 and #2681. | |
3124 ** | |
3125 ** To avoid stomping the errno value on a failed read the lastErrno value | |
3126 ** is set before returning. | |
3127 */ | |
3128 static int seekAndRead(unixFile *id, sqlite3_int64 offset, void *pBuf, int cnt){ | |
3129 int got; | |
3130 int prior = 0; | |
3131 #if (!defined(USE_PREAD) && !defined(USE_PREAD64)) | |
3132 i64 newOffset; | |
3133 #endif | |
3134 TIMER_START; | |
3135 assert( cnt==(cnt&0x1ffff) ); | |
3136 assert( id->h>2 ); | |
3137 cnt &= 0x1ffff; | |
3138 do{ | |
3139 #if defined(USE_PREAD) | |
3140 got = osPread(id->h, pBuf, cnt, offset); | |
3141 SimulateIOError( got = -1 ); | |
3142 #elif defined(USE_PREAD64) | |
3143 got = osPread64(id->h, pBuf, cnt, offset); | |
3144 SimulateIOError( got = -1 ); | |
3145 #else | |
3146 newOffset = lseek(id->h, offset, SEEK_SET); | |
3147 SimulateIOError( newOffset-- ); | |
3148 if( newOffset!=offset ){ | |
3149 if( newOffset == -1 ){ | |
3150 ((unixFile*)id)->lastErrno = errno; | |
3151 }else{ | |
3152 ((unixFile*)id)->lastErrno = 0; | |
3153 } | |
3154 return -1; | |
3155 } | |
3156 got = osRead(id->h, pBuf, cnt); | |
3157 #endif | |
3158 if( got==cnt ) break; | |
3159 if( got<0 ){ | |
3160 if( errno==EINTR ){ got = 1; continue; } | |
3161 prior = 0; | |
3162 ((unixFile*)id)->lastErrno = errno; | |
3163 break; | |
3164 }else if( got>0 ){ | |
3165 cnt -= got; | |
3166 offset += got; | |
3167 prior += got; | |
3168 pBuf = (void*)(got + (char*)pBuf); | |
3169 } | |
3170 }while( got>0 ); | |
3171 TIMER_END; | |
3172 OSTRACE(("READ %-3d %5d %7lld %llu\n", | |
3173 id->h, got+prior, offset-prior, TIMER_ELAPSED)); | |
3174 return got+prior; | |
3175 } | |
3176 | |
3177 /* | |
3178 ** Read data from a file into a buffer. Return SQLITE_OK if all | |
3179 ** bytes were read successfully and SQLITE_IOERR if anything goes | |
3180 ** wrong. | |
3181 */ | |
3182 static int unixRead( | |
3183 sqlite3_file *id, | |
3184 void *pBuf, | |
3185 int amt, | |
3186 sqlite3_int64 offset | |
3187 ){ | |
3188 unixFile *pFile = (unixFile *)id; | |
3189 int got; | |
3190 assert( id ); | |
3191 assert( offset>=0 ); | |
3192 assert( amt>0 ); | |
3193 | |
3194 /* If this is a database file (not a journal, master-journal or temp | |
3195 ** file), the bytes in the locking range should never be read or written. */ | |
3196 #if 0 | |
3197 assert( pFile->pUnused==0 | |
3198 || offset>=PENDING_BYTE+512 | |
3199 || offset+amt<=PENDING_BYTE | |
3200 ); | |
3201 #endif | |
3202 | |
3203 #if SQLITE_MAX_MMAP_SIZE>0 | |
3204 /* Deal with as much of this read request as possible by transfering | |
3205 ** data from the memory mapping using memcpy(). */ | |
3206 if( offset<pFile->mmapSize ){ | |
3207 if( offset+amt <= pFile->mmapSize ){ | |
3208 memcpy(pBuf, &((u8 *)(pFile->pMapRegion))[offset], amt); | |
3209 return SQLITE_OK; | |
3210 }else{ | |
3211 int nCopy = pFile->mmapSize - offset; | |
3212 memcpy(pBuf, &((u8 *)(pFile->pMapRegion))[offset], nCopy); | |
3213 pBuf = &((u8 *)pBuf)[nCopy]; | |
3214 amt -= nCopy; | |
3215 offset += nCopy; | |
3216 } | |
3217 } | |
3218 #endif | |
3219 | |
3220 got = seekAndRead(pFile, offset, pBuf, amt); | |
3221 if( got==amt ){ | |
3222 return SQLITE_OK; | |
3223 }else if( got<0 ){ | |
3224 /* lastErrno set by seekAndRead */ | |
3225 return SQLITE_IOERR_READ; | |
3226 }else{ | |
3227 pFile->lastErrno = 0; /* not a system error */ | |
3228 /* Unread parts of the buffer must be zero-filled */ | |
3229 memset(&((char*)pBuf)[got], 0, amt-got); | |
3230 return SQLITE_IOERR_SHORT_READ; | |
3231 } | |
3232 } | |
3233 | |
3234 /* | |
3235 ** Attempt to seek the file-descriptor passed as the first argument to | |
3236 ** absolute offset iOff, then attempt to write nBuf bytes of data from | |
3237 ** pBuf to it. If an error occurs, return -1 and set *piErrno. Otherwise, | |
3238 ** return the actual number of bytes written (which may be less than | |
3239 ** nBuf). | |
3240 */ | |
3241 static int seekAndWriteFd( | |
3242 int fd, /* File descriptor to write to */ | |
3243 i64 iOff, /* File offset to begin writing at */ | |
3244 const void *pBuf, /* Copy data from this buffer to the file */ | |
3245 int nBuf, /* Size of buffer pBuf in bytes */ | |
3246 int *piErrno /* OUT: Error number if error occurs */ | |
3247 ){ | |
3248 int rc = 0; /* Value returned by system call */ | |
3249 | |
3250 assert( nBuf==(nBuf&0x1ffff) ); | |
3251 assert( fd>2 ); | |
3252 nBuf &= 0x1ffff; | |
3253 TIMER_START; | |
3254 | |
3255 #if defined(USE_PREAD) | |
3256 do{ rc = osPwrite(fd, pBuf, nBuf, iOff); }while( rc<0 && errno==EINTR ); | |
3257 #elif defined(USE_PREAD64) | |
3258 do{ rc = osPwrite64(fd, pBuf, nBuf, iOff);}while( rc<0 && errno==EINTR); | |
3259 #else | |
3260 do{ | |
3261 i64 iSeek = lseek(fd, iOff, SEEK_SET); | |
3262 SimulateIOError( iSeek-- ); | |
3263 | |
3264 if( iSeek!=iOff ){ | |
3265 if( piErrno ) *piErrno = (iSeek==-1 ? errno : 0); | |
3266 return -1; | |
3267 } | |
3268 rc = osWrite(fd, pBuf, nBuf); | |
3269 }while( rc<0 && errno==EINTR ); | |
3270 #endif | |
3271 | |
3272 TIMER_END; | |
3273 OSTRACE(("WRITE %-3d %5d %7lld %llu\n", fd, rc, iOff, TIMER_ELAPSED)); | |
3274 | |
3275 if( rc<0 && piErrno ) *piErrno = errno; | |
3276 return rc; | |
3277 } | |
3278 | |
3279 | |
3280 /* | |
3281 ** Seek to the offset in id->offset then read cnt bytes into pBuf. | |
3282 ** Return the number of bytes actually read. Update the offset. | |
3283 ** | |
3284 ** To avoid stomping the errno value on a failed write the lastErrno value | |
3285 ** is set before returning. | |
3286 */ | |
3287 static int seekAndWrite(unixFile *id, i64 offset, const void *pBuf, int cnt){ | |
3288 return seekAndWriteFd(id->h, offset, pBuf, cnt, &id->lastErrno); | |
3289 } | |
3290 | |
3291 | |
3292 /* | |
3293 ** Write data from a buffer into a file. Return SQLITE_OK on success | |
3294 ** or some other error code on failure. | |
3295 */ | |
3296 static int unixWrite( | |
3297 sqlite3_file *id, | |
3298 const void *pBuf, | |
3299 int amt, | |
3300 sqlite3_int64 offset | |
3301 ){ | |
3302 unixFile *pFile = (unixFile*)id; | |
3303 int wrote = 0; | |
3304 assert( id ); | |
3305 assert( amt>0 ); | |
3306 | |
3307 /* If this is a database file (not a journal, master-journal or temp | |
3308 ** file), the bytes in the locking range should never be read or written. */ | |
3309 #if 0 | |
3310 assert( pFile->pUnused==0 | |
3311 || offset>=PENDING_BYTE+512 | |
3312 || offset+amt<=PENDING_BYTE | |
3313 ); | |
3314 #endif | |
3315 | |
3316 #ifdef SQLITE_DEBUG | |
3317 /* If we are doing a normal write to a database file (as opposed to | |
3318 ** doing a hot-journal rollback or a write to some file other than a | |
3319 ** normal database file) then record the fact that the database | |
3320 ** has changed. If the transaction counter is modified, record that | |
3321 ** fact too. | |
3322 */ | |
3323 if( pFile->inNormalWrite ){ | |
3324 pFile->dbUpdate = 1; /* The database has been modified */ | |
3325 if( offset<=24 && offset+amt>=27 ){ | |
3326 int rc; | |
3327 char oldCntr[4]; | |
3328 SimulateIOErrorBenign(1); | |
3329 rc = seekAndRead(pFile, 24, oldCntr, 4); | |
3330 SimulateIOErrorBenign(0); | |
3331 if( rc!=4 || memcmp(oldCntr, &((char*)pBuf)[24-offset], 4)!=0 ){ | |
3332 pFile->transCntrChng = 1; /* The transaction counter has changed */ | |
3333 } | |
3334 } | |
3335 } | |
3336 #endif | |
3337 | |
3338 #if SQLITE_MAX_MMAP_SIZE>0 | |
3339 /* Deal with as much of this write request as possible by transfering | |
3340 ** data from the memory mapping using memcpy(). */ | |
3341 if( offset<pFile->mmapSize ){ | |
3342 if( offset+amt <= pFile->mmapSize ){ | |
3343 memcpy(&((u8 *)(pFile->pMapRegion))[offset], pBuf, amt); | |
3344 return SQLITE_OK; | |
3345 }else{ | |
3346 int nCopy = pFile->mmapSize - offset; | |
3347 memcpy(&((u8 *)(pFile->pMapRegion))[offset], pBuf, nCopy); | |
3348 pBuf = &((u8 *)pBuf)[nCopy]; | |
3349 amt -= nCopy; | |
3350 offset += nCopy; | |
3351 } | |
3352 } | |
3353 #endif | |
3354 | |
3355 while( amt>0 && (wrote = seekAndWrite(pFile, offset, pBuf, amt))>0 ){ | |
3356 amt -= wrote; | |
3357 offset += wrote; | |
3358 pBuf = &((char*)pBuf)[wrote]; | |
3359 } | |
3360 SimulateIOError(( wrote=(-1), amt=1 )); | |
3361 SimulateDiskfullError(( wrote=0, amt=1 )); | |
3362 | |
3363 if( amt>0 ){ | |
3364 if( wrote<0 && pFile->lastErrno!=ENOSPC ){ | |
3365 /* lastErrno set by seekAndWrite */ | |
3366 return SQLITE_IOERR_WRITE; | |
3367 }else{ | |
3368 pFile->lastErrno = 0; /* not a system error */ | |
3369 return SQLITE_FULL; | |
3370 } | |
3371 } | |
3372 | |
3373 return SQLITE_OK; | |
3374 } | |
3375 | |
3376 #ifdef SQLITE_TEST | |
3377 /* | |
3378 ** Count the number of fullsyncs and normal syncs. This is used to test | |
3379 ** that syncs and fullsyncs are occurring at the right times. | |
3380 */ | |
3381 int sqlite3_sync_count = 0; | |
3382 int sqlite3_fullsync_count = 0; | |
3383 #endif | |
3384 | |
3385 /* | |
3386 ** We do not trust systems to provide a working fdatasync(). Some do. | |
3387 ** Others do no. To be safe, we will stick with the (slightly slower) | |
3388 ** fsync(). If you know that your system does support fdatasync() correctly, | |
3389 ** then simply compile with -Dfdatasync=fdatasync | |
3390 */ | |
3391 #if !defined(fdatasync) | |
3392 # define fdatasync fsync | |
3393 #endif | |
3394 | |
3395 /* | |
3396 ** Define HAVE_FULLFSYNC to 0 or 1 depending on whether or not | |
3397 ** the F_FULLFSYNC macro is defined. F_FULLFSYNC is currently | |
3398 ** only available on Mac OS X. But that could change. | |
3399 */ | |
3400 #ifdef F_FULLFSYNC | |
3401 # define HAVE_FULLFSYNC 1 | |
3402 #else | |
3403 # define HAVE_FULLFSYNC 0 | |
3404 #endif | |
3405 | |
3406 | |
3407 /* | |
3408 ** The fsync() system call does not work as advertised on many | |
3409 ** unix systems. The following procedure is an attempt to make | |
3410 ** it work better. | |
3411 ** | |
3412 ** The SQLITE_NO_SYNC macro disables all fsync()s. This is useful | |
3413 ** for testing when we want to run through the test suite quickly. | |
3414 ** You are strongly advised *not* to deploy with SQLITE_NO_SYNC | |
3415 ** enabled, however, since with SQLITE_NO_SYNC enabled, an OS crash | |
3416 ** or power failure will likely corrupt the database file. | |
3417 ** | |
3418 ** SQLite sets the dataOnly flag if the size of the file is unchanged. | |
3419 ** The idea behind dataOnly is that it should only write the file content | |
3420 ** to disk, not the inode. We only set dataOnly if the file size is | |
3421 ** unchanged since the file size is part of the inode. However, | |
3422 ** Ted Ts'o tells us that fdatasync() will also write the inode if the | |
3423 ** file size has changed. The only real difference between fdatasync() | |
3424 ** and fsync(), Ted tells us, is that fdatasync() will not flush the | |
3425 ** inode if the mtime or owner or other inode attributes have changed. | |
3426 ** We only care about the file size, not the other file attributes, so | |
3427 ** as far as SQLite is concerned, an fdatasync() is always adequate. | |
3428 ** So, we always use fdatasync() if it is available, regardless of | |
3429 ** the value of the dataOnly flag. | |
3430 */ | |
3431 static int full_fsync(int fd, int fullSync, int dataOnly){ | |
3432 int rc; | |
3433 | |
3434 /* The following "ifdef/elif/else/" block has the same structure as | |
3435 ** the one below. It is replicated here solely to avoid cluttering | |
3436 ** up the real code with the UNUSED_PARAMETER() macros. | |
3437 */ | |
3438 #ifdef SQLITE_NO_SYNC | |
3439 UNUSED_PARAMETER(fd); | |
3440 UNUSED_PARAMETER(fullSync); | |
3441 UNUSED_PARAMETER(dataOnly); | |
3442 #elif HAVE_FULLFSYNC | |
3443 UNUSED_PARAMETER(dataOnly); | |
3444 #else | |
3445 UNUSED_PARAMETER(fullSync); | |
3446 UNUSED_PARAMETER(dataOnly); | |
3447 #endif | |
3448 | |
3449 /* Record the number of times that we do a normal fsync() and | |
3450 ** FULLSYNC. This is used during testing to verify that this procedure | |
3451 ** gets called with the correct arguments. | |
3452 */ | |
3453 #ifdef SQLITE_TEST | |
3454 if( fullSync ) sqlite3_fullsync_count++; | |
3455 sqlite3_sync_count++; | |
3456 #endif | |
3457 | |
3458 /* If we compiled with the SQLITE_NO_SYNC flag, then syncing is a | |
3459 ** no-op | |
3460 */ | |
3461 #ifdef SQLITE_NO_SYNC | |
3462 rc = SQLITE_OK; | |
3463 #elif HAVE_FULLFSYNC | |
3464 if( fullSync ){ | |
3465 rc = osFcntl(fd, F_FULLFSYNC, 0); | |
3466 }else{ | |
3467 rc = 1; | |
3468 } | |
3469 /* If the FULLFSYNC failed, fall back to attempting an fsync(). | |
3470 ** It shouldn't be possible for fullfsync to fail on the local | |
3471 ** file system (on OSX), so failure indicates that FULLFSYNC | |
3472 ** isn't supported for this file system. So, attempt an fsync | |
3473 ** and (for now) ignore the overhead of a superfluous fcntl call. | |
3474 ** It'd be better to detect fullfsync support once and avoid | |
3475 ** the fcntl call every time sync is called. | |
3476 */ | |
3477 if( rc ) rc = fsync(fd); | |
3478 | |
3479 #elif defined(__APPLE__) | |
3480 /* fdatasync() on HFS+ doesn't yet flush the file size if it changed correctly | |
3481 ** so currently we default to the macro that redefines fdatasync to fsync | |
3482 */ | |
3483 rc = fsync(fd); | |
3484 #else | |
3485 rc = fdatasync(fd); | |
3486 #if OS_VXWORKS | |
3487 if( rc==-1 && errno==ENOTSUP ){ | |
3488 rc = fsync(fd); | |
3489 } | |
3490 #endif /* OS_VXWORKS */ | |
3491 #endif /* ifdef SQLITE_NO_SYNC elif HAVE_FULLFSYNC */ | |
3492 | |
3493 if( OS_VXWORKS && rc!= -1 ){ | |
3494 rc = 0; | |
3495 } | |
3496 return rc; | |
3497 } | |
3498 | |
3499 /* | |
3500 ** Open a file descriptor to the directory containing file zFilename. | |
3501 ** If successful, *pFd is set to the opened file descriptor and | |
3502 ** SQLITE_OK is returned. If an error occurs, either SQLITE_NOMEM | |
3503 ** or SQLITE_CANTOPEN is returned and *pFd is set to an undefined | |
3504 ** value. | |
3505 ** | |
3506 ** The directory file descriptor is used for only one thing - to | |
3507 ** fsync() a directory to make sure file creation and deletion events | |
3508 ** are flushed to disk. Such fsyncs are not needed on newer | |
3509 ** journaling filesystems, but are required on older filesystems. | |
3510 ** | |
3511 ** This routine can be overridden using the xSetSysCall interface. | |
3512 ** The ability to override this routine was added in support of the | |
3513 ** chromium sandbox. Opening a directory is a security risk (we are | |
3514 ** told) so making it overrideable allows the chromium sandbox to | |
3515 ** replace this routine with a harmless no-op. To make this routine | |
3516 ** a no-op, replace it with a stub that returns SQLITE_OK but leaves | |
3517 ** *pFd set to a negative number. | |
3518 ** | |
3519 ** If SQLITE_OK is returned, the caller is responsible for closing | |
3520 ** the file descriptor *pFd using close(). | |
3521 */ | |
3522 static int openDirectory(const char *zFilename, int *pFd){ | |
3523 int ii; | |
3524 int fd = -1; | |
3525 char zDirname[MAX_PATHNAME+1]; | |
3526 | |
3527 sqlite3_snprintf(MAX_PATHNAME, zDirname, "%s", zFilename); | |
3528 for(ii=(int)strlen(zDirname); ii>1 && zDirname[ii]!='/'; ii--); | |
3529 if( ii>0 ){ | |
3530 zDirname[ii] = '\0'; | |
3531 fd = robust_open(zDirname, O_RDONLY|O_BINARY, 0); | |
3532 if( fd>=0 ){ | |
3533 OSTRACE(("OPENDIR %-3d %s\n", fd, zDirname)); | |
3534 } | |
3535 } | |
3536 *pFd = fd; | |
3537 return (fd>=0?SQLITE_OK:unixLogError(SQLITE_CANTOPEN_BKPT, "open", zDirname)); | |
3538 } | |
3539 | |
3540 /* | |
3541 ** Make sure all writes to a particular file are committed to disk. | |
3542 ** | |
3543 ** If dataOnly==0 then both the file itself and its metadata (file | |
3544 ** size, access time, etc) are synced. If dataOnly!=0 then only the | |
3545 ** file data is synced. | |
3546 ** | |
3547 ** Under Unix, also make sure that the directory entry for the file | |
3548 ** has been created by fsync-ing the directory that contains the file. | |
3549 ** If we do not do this and we encounter a power failure, the directory | |
3550 ** entry for the journal might not exist after we reboot. The next | |
3551 ** SQLite to access the file will not know that the journal exists (because | |
3552 ** the directory entry for the journal was never created) and the transaction | |
3553 ** will not roll back - possibly leading to database corruption. | |
3554 */ | |
3555 static int unixSync(sqlite3_file *id, int flags){ | |
3556 int rc; | |
3557 unixFile *pFile = (unixFile*)id; | |
3558 | |
3559 int isDataOnly = (flags&SQLITE_SYNC_DATAONLY); | |
3560 int isFullsync = (flags&0x0F)==SQLITE_SYNC_FULL; | |
3561 | |
3562 /* Check that one of SQLITE_SYNC_NORMAL or FULL was passed */ | |
3563 assert((flags&0x0F)==SQLITE_SYNC_NORMAL | |
3564 || (flags&0x0F)==SQLITE_SYNC_FULL | |
3565 ); | |
3566 | |
3567 /* Unix cannot, but some systems may return SQLITE_FULL from here. This | |
3568 ** line is to test that doing so does not cause any problems. | |
3569 */ | |
3570 SimulateDiskfullError( return SQLITE_FULL ); | |
3571 | |
3572 assert( pFile ); | |
3573 OSTRACE(("SYNC %-3d\n", pFile->h)); | |
3574 rc = full_fsync(pFile->h, isFullsync, isDataOnly); | |
3575 SimulateIOError( rc=1 ); | |
3576 if( rc ){ | |
3577 pFile->lastErrno = errno; | |
3578 return unixLogError(SQLITE_IOERR_FSYNC, "full_fsync", pFile->zPath); | |
3579 } | |
3580 | |
3581 /* Also fsync the directory containing the file if the DIRSYNC flag | |
3582 ** is set. This is a one-time occurrence. Many systems (examples: AIX) | |
3583 ** are unable to fsync a directory, so ignore errors on the fsync. | |
3584 */ | |
3585 if( pFile->ctrlFlags & UNIXFILE_DIRSYNC ){ | |
3586 int dirfd; | |
3587 OSTRACE(("DIRSYNC %s (have_fullfsync=%d fullsync=%d)\n", pFile->zPath, | |
3588 HAVE_FULLFSYNC, isFullsync)); | |
3589 rc = osOpenDirectory(pFile->zPath, &dirfd); | |
3590 if( rc==SQLITE_OK && dirfd>=0 ){ | |
3591 full_fsync(dirfd, 0, 0); | |
3592 robust_close(pFile, dirfd, __LINE__); | |
3593 }else if( rc==SQLITE_CANTOPEN ){ | |
3594 rc = SQLITE_OK; | |
3595 } | |
3596 pFile->ctrlFlags &= ~UNIXFILE_DIRSYNC; | |
3597 } | |
3598 return rc; | |
3599 } | |
3600 | |
3601 /* | |
3602 ** Truncate an open file to a specified size | |
3603 */ | |
3604 static int unixTruncate(sqlite3_file *id, i64 nByte){ | |
3605 unixFile *pFile = (unixFile *)id; | |
3606 int rc; | |
3607 assert( pFile ); | |
3608 SimulateIOError( return SQLITE_IOERR_TRUNCATE ); | |
3609 | |
3610 /* If the user has configured a chunk-size for this file, truncate the | |
3611 ** file so that it consists of an integer number of chunks (i.e. the | |
3612 ** actual file size after the operation may be larger than the requested | |
3613 ** size). | |
3614 */ | |
3615 if( pFile->szChunk>0 ){ | |
3616 nByte = ((nByte + pFile->szChunk - 1)/pFile->szChunk) * pFile->szChunk; | |
3617 } | |
3618 | |
3619 rc = robust_ftruncate(pFile->h, nByte); | |
3620 if( rc ){ | |
3621 pFile->lastErrno = errno; | |
3622 return unixLogError(SQLITE_IOERR_TRUNCATE, "ftruncate", pFile->zPath); | |
3623 }else{ | |
3624 #ifdef SQLITE_DEBUG | |
3625 /* If we are doing a normal write to a database file (as opposed to | |
3626 ** doing a hot-journal rollback or a write to some file other than a | |
3627 ** normal database file) and we truncate the file to zero length, | |
3628 ** that effectively updates the change counter. This might happen | |
3629 ** when restoring a database using the backup API from a zero-length | |
3630 ** source. | |
3631 */ | |
3632 if( pFile->inNormalWrite && nByte==0 ){ | |
3633 pFile->transCntrChng = 1; | |
3634 } | |
3635 #endif | |
3636 | |
3637 #if SQLITE_MAX_MMAP_SIZE>0 | |
3638 /* If the file was just truncated to a size smaller than the currently | |
3639 ** mapped region, reduce the effective mapping size as well. SQLite will | |
3640 ** use read() and write() to access data beyond this point from now on. | |
3641 */ | |
3642 if( nByte<pFile->mmapSize ){ | |
3643 pFile->mmapSize = nByte; | |
3644 } | |
3645 #endif | |
3646 | |
3647 return SQLITE_OK; | |
3648 } | |
3649 } | |
3650 | |
3651 /* | |
3652 ** Determine the current size of a file in bytes | |
3653 */ | |
3654 static int unixFileSize(sqlite3_file *id, i64 *pSize){ | |
3655 int rc; | |
3656 struct stat buf; | |
3657 assert( id ); | |
3658 rc = osFstat(((unixFile*)id)->h, &buf); | |
3659 SimulateIOError( rc=1 ); | |
3660 if( rc!=0 ){ | |
3661 ((unixFile*)id)->lastErrno = errno; | |
3662 return SQLITE_IOERR_FSTAT; | |
3663 } | |
3664 *pSize = buf.st_size; | |
3665 | |
3666 /* When opening a zero-size database, the findInodeInfo() procedure | |
3667 ** writes a single byte into that file in order to work around a bug | |
3668 ** in the OS-X msdos filesystem. In order to avoid problems with upper | |
3669 ** layers, we need to report this file size as zero even though it is | |
3670 ** really 1. Ticket #3260. | |
3671 */ | |
3672 if( *pSize==1 ) *pSize = 0; | |
3673 | |
3674 | |
3675 return SQLITE_OK; | |
3676 } | |
3677 | |
3678 #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__) | |
3679 /* | |
3680 ** Handler for proxy-locking file-control verbs. Defined below in the | |
3681 ** proxying locking division. | |
3682 */ | |
3683 static int proxyFileControl(sqlite3_file*,int,void*); | |
3684 #endif | |
3685 | |
3686 /* | |
3687 ** This function is called to handle the SQLITE_FCNTL_SIZE_HINT | |
3688 ** file-control operation. Enlarge the database to nBytes in size | |
3689 ** (rounded up to the next chunk-size). If the database is already | |
3690 ** nBytes or larger, this routine is a no-op. | |
3691 */ | |
3692 static int fcntlSizeHint(unixFile *pFile, i64 nByte){ | |
3693 if( pFile->szChunk>0 ){ | |
3694 i64 nSize; /* Required file size */ | |
3695 struct stat buf; /* Used to hold return values of fstat() */ | |
3696 | |
3697 if( osFstat(pFile->h, &buf) ) return SQLITE_IOERR_FSTAT; | |
3698 | |
3699 nSize = ((nByte+pFile->szChunk-1) / pFile->szChunk) * pFile->szChunk; | |
3700 if( nSize>(i64)buf.st_size ){ | |
3701 | |
3702 #if defined(HAVE_POSIX_FALLOCATE) && HAVE_POSIX_FALLOCATE | |
3703 /* The code below is handling the return value of osFallocate() | |
3704 ** correctly. posix_fallocate() is defined to "returns zero on success, | |
3705 ** or an error number on failure". See the manpage for details. */ | |
3706 int err; | |
3707 do{ | |
3708 err = osFallocate(pFile->h, buf.st_size, nSize-buf.st_size); | |
3709 }while( err==EINTR ); | |
3710 if( err ) return SQLITE_IOERR_WRITE; | |
3711 #else | |
3712 /* If the OS does not have posix_fallocate(), fake it. First use | |
3713 ** ftruncate() to set the file size, then write a single byte to | |
3714 ** the last byte in each block within the extended region. This | |
3715 ** is the same technique used by glibc to implement posix_fallocate() | |
3716 ** on systems that do not have a real fallocate() system call. | |
3717 */ | |
3718 int nBlk = buf.st_blksize; /* File-system block size */ | |
3719 i64 iWrite; /* Next offset to write to */ | |
3720 | |
3721 if( robust_ftruncate(pFile->h, nSize) ){ | |
3722 pFile->lastErrno = errno; | |
3723 return unixLogError(SQLITE_IOERR_TRUNCATE, "ftruncate", pFile->zPath); | |
3724 } | |
3725 iWrite = ((buf.st_size + 2*nBlk - 1)/nBlk)*nBlk-1; | |
3726 while( iWrite<nSize ){ | |
3727 int nWrite = seekAndWrite(pFile, iWrite, "", 1); | |
3728 if( nWrite!=1 ) return SQLITE_IOERR_WRITE; | |
3729 iWrite += nBlk; | |
3730 } | |
3731 #endif | |
3732 } | |
3733 } | |
3734 | |
3735 #if SQLITE_MAX_MMAP_SIZE>0 | |
3736 if( pFile->mmapSizeMax>0 && nByte>pFile->mmapSize ){ | |
3737 int rc; | |
3738 if( pFile->szChunk<=0 ){ | |
3739 if( robust_ftruncate(pFile->h, nByte) ){ | |
3740 pFile->lastErrno = errno; | |
3741 return unixLogError(SQLITE_IOERR_TRUNCATE, "ftruncate", pFile->zPath); | |
3742 } | |
3743 } | |
3744 | |
3745 rc = unixMapfile(pFile, nByte); | |
3746 return rc; | |
3747 } | |
3748 #endif | |
3749 | |
3750 return SQLITE_OK; | |
3751 } | |
3752 | |
3753 /* | |
3754 ** If *pArg is initially negative then this is a query. Set *pArg to | |
3755 ** 1 or 0 depending on whether or not bit mask of pFile->ctrlFlags is set. | |
3756 ** | |
3757 ** If *pArg is 0 or 1, then clear or set the mask bit of pFile->ctrlFlags. | |
3758 */ | |
3759 static void unixModeBit(unixFile *pFile, unsigned char mask, int *pArg){ | |
3760 if( *pArg<0 ){ | |
3761 *pArg = (pFile->ctrlFlags & mask)!=0; | |
3762 }else if( (*pArg)==0 ){ | |
3763 pFile->ctrlFlags &= ~mask; | |
3764 }else{ | |
3765 pFile->ctrlFlags |= mask; | |
3766 } | |
3767 } | |
3768 | |
3769 /* Forward declaration */ | |
3770 static int unixGetTempname(int nBuf, char *zBuf); | |
3771 | |
3772 /* | |
3773 ** Information and control of an open file handle. | |
3774 */ | |
3775 static int unixFileControl(sqlite3_file *id, int op, void *pArg){ | |
3776 unixFile *pFile = (unixFile*)id; | |
3777 switch( op ){ | |
3778 case SQLITE_FCNTL_LOCKSTATE: { | |
3779 *(int*)pArg = pFile->eFileLock; | |
3780 return SQLITE_OK; | |
3781 } | |
3782 case SQLITE_LAST_ERRNO: { | |
3783 *(int*)pArg = pFile->lastErrno; | |
3784 return SQLITE_OK; | |
3785 } | |
3786 case SQLITE_FCNTL_CHUNK_SIZE: { | |
3787 pFile->szChunk = *(int *)pArg; | |
3788 return SQLITE_OK; | |
3789 } | |
3790 case SQLITE_FCNTL_SIZE_HINT: { | |
3791 int rc; | |
3792 SimulateIOErrorBenign(1); | |
3793 rc = fcntlSizeHint(pFile, *(i64 *)pArg); | |
3794 SimulateIOErrorBenign(0); | |
3795 return rc; | |
3796 } | |
3797 case SQLITE_FCNTL_PERSIST_WAL: { | |
3798 unixModeBit(pFile, UNIXFILE_PERSIST_WAL, (int*)pArg); | |
3799 return SQLITE_OK; | |
3800 } | |
3801 case SQLITE_FCNTL_POWERSAFE_OVERWRITE: { | |
3802 unixModeBit(pFile, UNIXFILE_PSOW, (int*)pArg); | |
3803 return SQLITE_OK; | |
3804 } | |
3805 case SQLITE_FCNTL_VFSNAME: { | |
3806 *(char**)pArg = sqlite3_mprintf("%s", pFile->pVfs->zName); | |
3807 return SQLITE_OK; | |
3808 } | |
3809 case SQLITE_FCNTL_TEMPFILENAME: { | |
3810 char *zTFile = sqlite3_malloc( pFile->pVfs->mxPathname ); | |
3811 if( zTFile ){ | |
3812 unixGetTempname(pFile->pVfs->mxPathname, zTFile); | |
3813 *(char**)pArg = zTFile; | |
3814 } | |
3815 return SQLITE_OK; | |
3816 } | |
3817 case SQLITE_FCNTL_HAS_MOVED: { | |
3818 *(int*)pArg = fileHasMoved(pFile); | |
3819 return SQLITE_OK; | |
3820 } | |
3821 #if SQLITE_MAX_MMAP_SIZE>0 | |
3822 case SQLITE_FCNTL_MMAP_SIZE: { | |
3823 i64 newLimit = *(i64*)pArg; | |
3824 int rc = SQLITE_OK; | |
3825 if( newLimit>sqlite3GlobalConfig.mxMmap ){ | |
3826 newLimit = sqlite3GlobalConfig.mxMmap; | |
3827 } | |
3828 *(i64*)pArg = pFile->mmapSizeMax; | |
3829 if( newLimit>=0 && newLimit!=pFile->mmapSizeMax && pFile->nFetchOut==0 ){ | |
3830 pFile->mmapSizeMax = newLimit; | |
3831 if( pFile->mmapSize>0 ){ | |
3832 unixUnmapfile(pFile); | |
3833 rc = unixMapfile(pFile, -1); | |
3834 } | |
3835 } | |
3836 return rc; | |
3837 } | |
3838 #endif | |
3839 #ifdef SQLITE_DEBUG | |
3840 /* The pager calls this method to signal that it has done | |
3841 ** a rollback and that the database is therefore unchanged and | |
3842 ** it hence it is OK for the transaction change counter to be | |
3843 ** unchanged. | |
3844 */ | |
3845 case SQLITE_FCNTL_DB_UNCHANGED: { | |
3846 ((unixFile*)id)->dbUpdate = 0; | |
3847 return SQLITE_OK; | |
3848 } | |
3849 #endif | |
3850 #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__) | |
3851 case SQLITE_SET_LOCKPROXYFILE: | |
3852 case SQLITE_GET_LOCKPROXYFILE: { | |
3853 return proxyFileControl(id,op,pArg); | |
3854 } | |
3855 #endif /* SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__) */ | |
3856 } | |
3857 return SQLITE_NOTFOUND; | |
3858 } | |
3859 | |
3860 /* | |
3861 ** Return the sector size in bytes of the underlying block device for | |
3862 ** the specified file. This is almost always 512 bytes, but may be | |
3863 ** larger for some devices. | |
3864 ** | |
3865 ** SQLite code assumes this function cannot fail. It also assumes that | |
3866 ** if two files are created in the same file-system directory (i.e. | |
3867 ** a database and its journal file) that the sector size will be the | |
3868 ** same for both. | |
3869 */ | |
3870 #ifndef __QNXNTO__ | |
3871 static int unixSectorSize(sqlite3_file *NotUsed){ | |
3872 UNUSED_PARAMETER(NotUsed); | |
3873 return SQLITE_DEFAULT_SECTOR_SIZE; | |
3874 } | |
3875 #endif | |
3876 | |
3877 /* | |
3878 ** The following version of unixSectorSize() is optimized for QNX. | |
3879 */ | |
3880 #ifdef __QNXNTO__ | |
3881 #include <sys/dcmd_blk.h> | |
3882 #include <sys/statvfs.h> | |
3883 static int unixSectorSize(sqlite3_file *id){ | |
3884 unixFile *pFile = (unixFile*)id; | |
3885 if( pFile->sectorSize == 0 ){ | |
3886 struct statvfs fsInfo; | |
3887 | |
3888 /* Set defaults for non-supported filesystems */ | |
3889 pFile->sectorSize = SQLITE_DEFAULT_SECTOR_SIZE; | |
3890 pFile->deviceCharacteristics = 0; | |
3891 if( fstatvfs(pFile->h, &fsInfo) == -1 ) { | |
3892 return pFile->sectorSize; | |
3893 } | |
3894 | |
3895 if( !strcmp(fsInfo.f_basetype, "tmp") ) { | |
3896 pFile->sectorSize = fsInfo.f_bsize; | |
3897 pFile->deviceCharacteristics = | |
3898 SQLITE_IOCAP_ATOMIC4K | /* All ram filesystem writes are atomic */ | |
3899 SQLITE_IOCAP_SAFE_APPEND | /* growing the file does not occur until | |
3900 ** the write succeeds */ | |
3901 SQLITE_IOCAP_SEQUENTIAL | /* The ram filesystem has no write behind | |
3902 ** so it is ordered */ | |
3903 0; | |
3904 }else if( strstr(fsInfo.f_basetype, "etfs") ){ | |
3905 pFile->sectorSize = fsInfo.f_bsize; | |
3906 pFile->deviceCharacteristics = | |
3907 /* etfs cluster size writes are atomic */ | |
3908 (pFile->sectorSize / 512 * SQLITE_IOCAP_ATOMIC512) | | |
3909 SQLITE_IOCAP_SAFE_APPEND | /* growing the file does not occur until | |
3910 ** the write succeeds */ | |
3911 SQLITE_IOCAP_SEQUENTIAL | /* The ram filesystem has no write behind | |
3912 ** so it is ordered */ | |
3913 0; | |
3914 }else if( !strcmp(fsInfo.f_basetype, "qnx6") ){ | |
3915 pFile->sectorSize = fsInfo.f_bsize; | |
3916 pFile->deviceCharacteristics = | |
3917 SQLITE_IOCAP_ATOMIC | /* All filesystem writes are atomic */ | |
3918 SQLITE_IOCAP_SAFE_APPEND | /* growing the file does not occur until | |
3919 ** the write succeeds */ | |
3920 SQLITE_IOCAP_SEQUENTIAL | /* The ram filesystem has no write behind | |
3921 ** so it is ordered */ | |
3922 0; | |
3923 }else if( !strcmp(fsInfo.f_basetype, "qnx4") ){ | |
3924 pFile->sectorSize = fsInfo.f_bsize; | |
3925 pFile->deviceCharacteristics = | |
3926 /* full bitset of atomics from max sector size and smaller */ | |
3927 ((pFile->sectorSize / 512 * SQLITE_IOCAP_ATOMIC512) << 1) - 2 | | |
3928 SQLITE_IOCAP_SEQUENTIAL | /* The ram filesystem has no write behind | |
3929 ** so it is ordered */ | |
3930 0; | |
3931 }else if( strstr(fsInfo.f_basetype, "dos") ){ | |
3932 pFile->sectorSize = fsInfo.f_bsize; | |
3933 pFile->deviceCharacteristics = | |
3934 /* full bitset of atomics from max sector size and smaller */ | |
3935 ((pFile->sectorSize / 512 * SQLITE_IOCAP_ATOMIC512) << 1) - 2 | | |
3936 SQLITE_IOCAP_SEQUENTIAL | /* The ram filesystem has no write behind | |
3937 ** so it is ordered */ | |
3938 0; | |
3939 }else{ | |
3940 pFile->deviceCharacteristics = | |
3941 SQLITE_IOCAP_ATOMIC512 | /* blocks are atomic */ | |
3942 SQLITE_IOCAP_SAFE_APPEND | /* growing the file does not occur until | |
3943 ** the write succeeds */ | |
3944 0; | |
3945 } | |
3946 } | |
3947 /* Last chance verification. If the sector size isn't a multiple of 512 | |
3948 ** then it isn't valid.*/ | |
3949 if( pFile->sectorSize % 512 != 0 ){ | |
3950 pFile->deviceCharacteristics = 0; | |
3951 pFile->sectorSize = SQLITE_DEFAULT_SECTOR_SIZE; | |
3952 } | |
3953 return pFile->sectorSize; | |
3954 } | |
3955 #endif /* __QNXNTO__ */ | |
3956 | |
3957 /* | |
3958 ** Return the device characteristics for the file. | |
3959 ** | |
3960 ** This VFS is set up to return SQLITE_IOCAP_POWERSAFE_OVERWRITE by default. | |
3961 ** However, that choice is controversial since technically the underlying | |
3962 ** file system does not always provide powersafe overwrites. (In other | |
3963 ** words, after a power-loss event, parts of the file that were never | |
3964 ** written might end up being altered.) However, non-PSOW behavior is very, | |
3965 ** very rare. And asserting PSOW makes a large reduction in the amount | |
3966 ** of required I/O for journaling, since a lot of padding is eliminated. | |
3967 ** Hence, while POWERSAFE_OVERWRITE is on by default, there is a file-control | |
3968 ** available to turn it off and URI query parameter available to turn it off. | |
3969 */ | |
3970 static int unixDeviceCharacteristics(sqlite3_file *id){ | |
3971 unixFile *p = (unixFile*)id; | |
3972 int rc = 0; | |
3973 #ifdef __QNXNTO__ | |
3974 if( p->sectorSize==0 ) unixSectorSize(id); | |
3975 rc = p->deviceCharacteristics; | |
3976 #endif | |
3977 if( p->ctrlFlags & UNIXFILE_PSOW ){ | |
3978 rc |= SQLITE_IOCAP_POWERSAFE_OVERWRITE; | |
3979 } | |
3980 return rc; | |
3981 } | |
3982 | |
3983 #if !defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0 | |
3984 | |
3985 /* | |
3986 ** Return the system page size. | |
3987 ** | |
3988 ** This function should not be called directly by other code in this file. | |
3989 ** Instead, it should be called via macro osGetpagesize(). | |
3990 */ | |
3991 static int unixGetpagesize(void){ | |
3992 #if defined(_BSD_SOURCE) | |
3993 return getpagesize(); | |
3994 #else | |
3995 return (int)sysconf(_SC_PAGESIZE); | |
3996 #endif | |
3997 } | |
3998 | |
3999 #endif /* !defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0 */ | |
4000 | |
4001 #ifndef SQLITE_OMIT_WAL | |
4002 | |
4003 /* | |
4004 ** Object used to represent an shared memory buffer. | |
4005 ** | |
4006 ** When multiple threads all reference the same wal-index, each thread | |
4007 ** has its own unixShm object, but they all point to a single instance | |
4008 ** of this unixShmNode object. In other words, each wal-index is opened | |
4009 ** only once per process. | |
4010 ** | |
4011 ** Each unixShmNode object is connected to a single unixInodeInfo object. | |
4012 ** We could coalesce this object into unixInodeInfo, but that would mean | |
4013 ** every open file that does not use shared memory (in other words, most | |
4014 ** open files) would have to carry around this extra information. So | |
4015 ** the unixInodeInfo object contains a pointer to this unixShmNode object | |
4016 ** and the unixShmNode object is created only when needed. | |
4017 ** | |
4018 ** unixMutexHeld() must be true when creating or destroying | |
4019 ** this object or while reading or writing the following fields: | |
4020 ** | |
4021 ** nRef | |
4022 ** | |
4023 ** The following fields are read-only after the object is created: | |
4024 ** | |
4025 ** fid | |
4026 ** zFilename | |
4027 ** | |
4028 ** Either unixShmNode.mutex must be held or unixShmNode.nRef==0 and | |
4029 ** unixMutexHeld() is true when reading or writing any other field | |
4030 ** in this structure. | |
4031 */ | |
4032 struct unixShmNode { | |
4033 unixInodeInfo *pInode; /* unixInodeInfo that owns this SHM node */ | |
4034 sqlite3_mutex *mutex; /* Mutex to access this object */ | |
4035 char *zFilename; /* Name of the mmapped file */ | |
4036 int h; /* Open file descriptor */ | |
4037 int szRegion; /* Size of shared-memory regions */ | |
4038 u16 nRegion; /* Size of array apRegion */ | |
4039 u8 isReadonly; /* True if read-only */ | |
4040 char **apRegion; /* Array of mapped shared-memory regions */ | |
4041 int nRef; /* Number of unixShm objects pointing to this */ | |
4042 unixShm *pFirst; /* All unixShm objects pointing to this */ | |
4043 #ifdef SQLITE_DEBUG | |
4044 u8 exclMask; /* Mask of exclusive locks held */ | |
4045 u8 sharedMask; /* Mask of shared locks held */ | |
4046 u8 nextShmId; /* Next available unixShm.id value */ | |
4047 #endif | |
4048 }; | |
4049 | |
4050 /* | |
4051 ** Structure used internally by this VFS to record the state of an | |
4052 ** open shared memory connection. | |
4053 ** | |
4054 ** The following fields are initialized when this object is created and | |
4055 ** are read-only thereafter: | |
4056 ** | |
4057 ** unixShm.pFile | |
4058 ** unixShm.id | |
4059 ** | |
4060 ** All other fields are read/write. The unixShm.pFile->mutex must be held | |
4061 ** while accessing any read/write fields. | |
4062 */ | |
4063 struct unixShm { | |
4064 unixShmNode *pShmNode; /* The underlying unixShmNode object */ | |
4065 unixShm *pNext; /* Next unixShm with the same unixShmNode */ | |
4066 u8 hasMutex; /* True if holding the unixShmNode mutex */ | |
4067 u8 id; /* Id of this connection within its unixShmNode */ | |
4068 u16 sharedMask; /* Mask of shared locks held */ | |
4069 u16 exclMask; /* Mask of exclusive locks held */ | |
4070 }; | |
4071 | |
4072 /* | |
4073 ** Constants used for locking | |
4074 */ | |
4075 #define UNIX_SHM_BASE ((22+SQLITE_SHM_NLOCK)*4) /* first lock byte */ | |
4076 #define UNIX_SHM_DMS (UNIX_SHM_BASE+SQLITE_SHM_NLOCK) /* deadman switch */ | |
4077 | |
4078 /* | |
4079 ** Apply posix advisory locks for all bytes from ofst through ofst+n-1. | |
4080 ** | |
4081 ** Locks block if the mask is exactly UNIX_SHM_C and are non-blocking | |
4082 ** otherwise. | |
4083 */ | |
4084 static int unixShmSystemLock( | |
4085 unixShmNode *pShmNode, /* Apply locks to this open shared-memory segment */ | |
4086 int lockType, /* F_UNLCK, F_RDLCK, or F_WRLCK */ | |
4087 int ofst, /* First byte of the locking range */ | |
4088 int n /* Number of bytes to lock */ | |
4089 ){ | |
4090 struct flock f; /* The posix advisory locking structure */ | |
4091 int rc = SQLITE_OK; /* Result code form fcntl() */ | |
4092 | |
4093 /* Access to the unixShmNode object is serialized by the caller */ | |
4094 assert( sqlite3_mutex_held(pShmNode->mutex) || pShmNode->nRef==0 ); | |
4095 | |
4096 /* Shared locks never span more than one byte */ | |
4097 assert( n==1 || lockType!=F_RDLCK ); | |
4098 | |
4099 /* Locks are within range */ | |
4100 assert( n>=1 && n<SQLITE_SHM_NLOCK ); | |
4101 | |
4102 if( pShmNode->h>=0 ){ | |
4103 /* Initialize the locking parameters */ | |
4104 memset(&f, 0, sizeof(f)); | |
4105 f.l_type = lockType; | |
4106 f.l_whence = SEEK_SET; | |
4107 f.l_start = ofst; | |
4108 f.l_len = n; | |
4109 | |
4110 rc = osFcntl(pShmNode->h, F_SETLK, &f); | |
4111 rc = (rc!=(-1)) ? SQLITE_OK : SQLITE_BUSY; | |
4112 } | |
4113 | |
4114 /* Update the global lock state and do debug tracing */ | |
4115 #ifdef SQLITE_DEBUG | |
4116 { u16 mask; | |
4117 OSTRACE(("SHM-LOCK ")); | |
4118 mask = ofst>31 ? 0xffff : (1<<(ofst+n)) - (1<<ofst); | |
4119 if( rc==SQLITE_OK ){ | |
4120 if( lockType==F_UNLCK ){ | |
4121 OSTRACE(("unlock %d ok", ofst)); | |
4122 pShmNode->exclMask &= ~mask; | |
4123 pShmNode->sharedMask &= ~mask; | |
4124 }else if( lockType==F_RDLCK ){ | |
4125 OSTRACE(("read-lock %d ok", ofst)); | |
4126 pShmNode->exclMask &= ~mask; | |
4127 pShmNode->sharedMask |= mask; | |
4128 }else{ | |
4129 assert( lockType==F_WRLCK ); | |
4130 OSTRACE(("write-lock %d ok", ofst)); | |
4131 pShmNode->exclMask |= mask; | |
4132 pShmNode->sharedMask &= ~mask; | |
4133 } | |
4134 }else{ | |
4135 if( lockType==F_UNLCK ){ | |
4136 OSTRACE(("unlock %d failed", ofst)); | |
4137 }else if( lockType==F_RDLCK ){ | |
4138 OSTRACE(("read-lock failed")); | |
4139 }else{ | |
4140 assert( lockType==F_WRLCK ); | |
4141 OSTRACE(("write-lock %d failed", ofst)); | |
4142 } | |
4143 } | |
4144 OSTRACE((" - afterwards %03x,%03x\n", | |
4145 pShmNode->sharedMask, pShmNode->exclMask)); | |
4146 } | |
4147 #endif | |
4148 | |
4149 return rc; | |
4150 } | |
4151 | |
4152 /* | |
4153 ** Return the minimum number of 32KB shm regions that should be mapped at | |
4154 ** a time, assuming that each mapping must be an integer multiple of the | |
4155 ** current system page-size. | |
4156 ** | |
4157 ** Usually, this is 1. The exception seems to be systems that are configured | |
4158 ** to use 64KB pages - in this case each mapping must cover at least two | |
4159 ** shm regions. | |
4160 */ | |
4161 static int unixShmRegionPerMap(void){ | |
4162 int shmsz = 32*1024; /* SHM region size */ | |
4163 int pgsz = osGetpagesize(); /* System page size */ | |
4164 assert( ((pgsz-1)&pgsz)==0 ); /* Page size must be a power of 2 */ | |
4165 if( pgsz<shmsz ) return 1; | |
4166 return pgsz/shmsz; | |
4167 } | |
4168 | |
4169 /* | |
4170 ** Purge the unixShmNodeList list of all entries with unixShmNode.nRef==0. | |
4171 ** | |
4172 ** This is not a VFS shared-memory method; it is a utility function called | |
4173 ** by VFS shared-memory methods. | |
4174 */ | |
4175 static void unixShmPurge(unixFile *pFd){ | |
4176 unixShmNode *p = pFd->pInode->pShmNode; | |
4177 assert( unixMutexHeld() ); | |
4178 if( p && p->nRef==0 ){ | |
4179 int nShmPerMap = unixShmRegionPerMap(); | |
4180 int i; | |
4181 assert( p->pInode==pFd->pInode ); | |
4182 sqlite3_mutex_free(p->mutex); | |
4183 for(i=0; i<p->nRegion; i+=nShmPerMap){ | |
4184 if( p->h>=0 ){ | |
4185 osMunmap(p->apRegion[i], p->szRegion); | |
4186 }else{ | |
4187 sqlite3_free(p->apRegion[i]); | |
4188 } | |
4189 } | |
4190 sqlite3_free(p->apRegion); | |
4191 if( p->h>=0 ){ | |
4192 robust_close(pFd, p->h, __LINE__); | |
4193 p->h = -1; | |
4194 } | |
4195 p->pInode->pShmNode = 0; | |
4196 sqlite3_free(p); | |
4197 } | |
4198 } | |
4199 | |
4200 /* | |
4201 ** Open a shared-memory area associated with open database file pDbFd. | |
4202 ** This particular implementation uses mmapped files. | |
4203 ** | |
4204 ** The file used to implement shared-memory is in the same directory | |
4205 ** as the open database file and has the same name as the open database | |
4206 ** file with the "-shm" suffix added. For example, if the database file | |
4207 ** is "/home/user1/config.db" then the file that is created and mmapped | |
4208 ** for shared memory will be called "/home/user1/config.db-shm". | |
4209 ** | |
4210 ** Another approach to is to use files in /dev/shm or /dev/tmp or an | |
4211 ** some other tmpfs mount. But if a file in a different directory | |
4212 ** from the database file is used, then differing access permissions | |
4213 ** or a chroot() might cause two different processes on the same | |
4214 ** database to end up using different files for shared memory - | |
4215 ** meaning that their memory would not really be shared - resulting | |
4216 ** in database corruption. Nevertheless, this tmpfs file usage | |
4217 ** can be enabled at compile-time using -DSQLITE_SHM_DIRECTORY="/dev/shm" | |
4218 ** or the equivalent. The use of the SQLITE_SHM_DIRECTORY compile-time | |
4219 ** option results in an incompatible build of SQLite; builds of SQLite | |
4220 ** that with differing SQLITE_SHM_DIRECTORY settings attempt to use the | |
4221 ** same database file at the same time, database corruption will likely | |
4222 ** result. The SQLITE_SHM_DIRECTORY compile-time option is considered | |
4223 ** "unsupported" and may go away in a future SQLite release. | |
4224 ** | |
4225 ** When opening a new shared-memory file, if no other instances of that | |
4226 ** file are currently open, in this process or in other processes, then | |
4227 ** the file must be truncated to zero length or have its header cleared. | |
4228 ** | |
4229 ** If the original database file (pDbFd) is using the "unix-excl" VFS | |
4230 ** that means that an exclusive lock is held on the database file and | |
4231 ** that no other processes are able to read or write the database. In | |
4232 ** that case, we do not really need shared memory. No shared memory | |
4233 ** file is created. The shared memory will be simulated with heap memory. | |
4234 */ | |
4235 static int unixOpenSharedMemory(unixFile *pDbFd){ | |
4236 struct unixShm *p = 0; /* The connection to be opened */ | |
4237 struct unixShmNode *pShmNode; /* The underlying mmapped file */ | |
4238 int rc; /* Result code */ | |
4239 unixInodeInfo *pInode; /* The inode of fd */ | |
4240 char *zShmFilename; /* Name of the file used for SHM */ | |
4241 int nShmFilename; /* Size of the SHM filename in bytes */ | |
4242 | |
4243 /* Allocate space for the new unixShm object. */ | |
4244 p = sqlite3_malloc( sizeof(*p) ); | |
4245 if( p==0 ) return SQLITE_NOMEM; | |
4246 memset(p, 0, sizeof(*p)); | |
4247 assert( pDbFd->pShm==0 ); | |
4248 | |
4249 /* Check to see if a unixShmNode object already exists. Reuse an existing | |
4250 ** one if present. Create a new one if necessary. | |
4251 */ | |
4252 unixEnterMutex(); | |
4253 pInode = pDbFd->pInode; | |
4254 pShmNode = pInode->pShmNode; | |
4255 if( pShmNode==0 ){ | |
4256 struct stat sStat; /* fstat() info for database file */ | |
4257 | |
4258 /* Call fstat() to figure out the permissions on the database file. If | |
4259 ** a new *-shm file is created, an attempt will be made to create it | |
4260 ** with the same permissions. | |
4261 */ | |
4262 if( osFstat(pDbFd->h, &sStat) && pInode->bProcessLock==0 ){ | |
4263 rc = SQLITE_IOERR_FSTAT; | |
4264 goto shm_open_err; | |
4265 } | |
4266 | |
4267 #ifdef SQLITE_SHM_DIRECTORY | |
4268 nShmFilename = sizeof(SQLITE_SHM_DIRECTORY) + 31; | |
4269 #else | |
4270 nShmFilename = 6 + (int)strlen(pDbFd->zPath); | |
4271 #endif | |
4272 pShmNode = sqlite3_malloc( sizeof(*pShmNode) + nShmFilename ); | |
4273 if( pShmNode==0 ){ | |
4274 rc = SQLITE_NOMEM; | |
4275 goto shm_open_err; | |
4276 } | |
4277 memset(pShmNode, 0, sizeof(*pShmNode)+nShmFilename); | |
4278 zShmFilename = pShmNode->zFilename = (char*)&pShmNode[1]; | |
4279 #ifdef SQLITE_SHM_DIRECTORY | |
4280 sqlite3_snprintf(nShmFilename, zShmFilename, | |
4281 SQLITE_SHM_DIRECTORY "/sqlite-shm-%x-%x", | |
4282 (u32)sStat.st_ino, (u32)sStat.st_dev); | |
4283 #else | |
4284 sqlite3_snprintf(nShmFilename, zShmFilename, "%s-shm", pDbFd->zPath); | |
4285 sqlite3FileSuffix3(pDbFd->zPath, zShmFilename); | |
4286 #endif | |
4287 pShmNode->h = -1; | |
4288 pDbFd->pInode->pShmNode = pShmNode; | |
4289 pShmNode->pInode = pDbFd->pInode; | |
4290 pShmNode->mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_FAST); | |
4291 if( pShmNode->mutex==0 ){ | |
4292 rc = SQLITE_NOMEM; | |
4293 goto shm_open_err; | |
4294 } | |
4295 | |
4296 if( pInode->bProcessLock==0 ){ | |
4297 int openFlags = O_RDWR | O_CREAT; | |
4298 if( sqlite3_uri_boolean(pDbFd->zPath, "readonly_shm", 0) ){ | |
4299 openFlags = O_RDONLY; | |
4300 pShmNode->isReadonly = 1; | |
4301 } | |
4302 pShmNode->h = robust_open(zShmFilename, openFlags, (sStat.st_mode&0777)); | |
4303 if( pShmNode->h<0 ){ | |
4304 rc = unixLogError(SQLITE_CANTOPEN_BKPT, "open", zShmFilename); | |
4305 goto shm_open_err; | |
4306 } | |
4307 | |
4308 /* If this process is running as root, make sure that the SHM file | |
4309 ** is owned by the same user that owns the original database. Otherwise, | |
4310 ** the original owner will not be able to connect. | |
4311 */ | |
4312 osFchown(pShmNode->h, sStat.st_uid, sStat.st_gid); | |
4313 | |
4314 /* Check to see if another process is holding the dead-man switch. | |
4315 ** If not, truncate the file to zero length. | |
4316 */ | |
4317 rc = SQLITE_OK; | |
4318 if( unixShmSystemLock(pShmNode, F_WRLCK, UNIX_SHM_DMS, 1)==SQLITE_OK ){ | |
4319 if( robust_ftruncate(pShmNode->h, 0) ){ | |
4320 rc = unixLogError(SQLITE_IOERR_SHMOPEN, "ftruncate", zShmFilename); | |
4321 } | |
4322 } | |
4323 if( rc==SQLITE_OK ){ | |
4324 rc = unixShmSystemLock(pShmNode, F_RDLCK, UNIX_SHM_DMS, 1); | |
4325 } | |
4326 if( rc ) goto shm_open_err; | |
4327 } | |
4328 } | |
4329 | |
4330 /* Make the new connection a child of the unixShmNode */ | |
4331 p->pShmNode = pShmNode; | |
4332 #ifdef SQLITE_DEBUG | |
4333 p->id = pShmNode->nextShmId++; | |
4334 #endif | |
4335 pShmNode->nRef++; | |
4336 pDbFd->pShm = p; | |
4337 unixLeaveMutex(); | |
4338 | |
4339 /* The reference count on pShmNode has already been incremented under | |
4340 ** the cover of the unixEnterMutex() mutex and the pointer from the | |
4341 ** new (struct unixShm) object to the pShmNode has been set. All that is | |
4342 ** left to do is to link the new object into the linked list starting | |
4343 ** at pShmNode->pFirst. This must be done while holding the pShmNode->mutex | |
4344 ** mutex. | |
4345 */ | |
4346 sqlite3_mutex_enter(pShmNode->mutex); | |
4347 p->pNext = pShmNode->pFirst; | |
4348 pShmNode->pFirst = p; | |
4349 sqlite3_mutex_leave(pShmNode->mutex); | |
4350 return SQLITE_OK; | |
4351 | |
4352 /* Jump here on any error */ | |
4353 shm_open_err: | |
4354 unixShmPurge(pDbFd); /* This call frees pShmNode if required */ | |
4355 sqlite3_free(p); | |
4356 unixLeaveMutex(); | |
4357 return rc; | |
4358 } | |
4359 | |
4360 /* | |
4361 ** This function is called to obtain a pointer to region iRegion of the | |
4362 ** shared-memory associated with the database file fd. Shared-memory regions | |
4363 ** are numbered starting from zero. Each shared-memory region is szRegion | |
4364 ** bytes in size. | |
4365 ** | |
4366 ** If an error occurs, an error code is returned and *pp is set to NULL. | |
4367 ** | |
4368 ** Otherwise, if the bExtend parameter is 0 and the requested shared-memory | |
4369 ** region has not been allocated (by any client, including one running in a | |
4370 ** separate process), then *pp is set to NULL and SQLITE_OK returned. If | |
4371 ** bExtend is non-zero and the requested shared-memory region has not yet | |
4372 ** been allocated, it is allocated by this function. | |
4373 ** | |
4374 ** If the shared-memory region has already been allocated or is allocated by | |
4375 ** this call as described above, then it is mapped into this processes | |
4376 ** address space (if it is not already), *pp is set to point to the mapped | |
4377 ** memory and SQLITE_OK returned. | |
4378 */ | |
4379 static int unixShmMap( | |
4380 sqlite3_file *fd, /* Handle open on database file */ | |
4381 int iRegion, /* Region to retrieve */ | |
4382 int szRegion, /* Size of regions */ | |
4383 int bExtend, /* True to extend file if necessary */ | |
4384 void volatile **pp /* OUT: Mapped memory */ | |
4385 ){ | |
4386 unixFile *pDbFd = (unixFile*)fd; | |
4387 unixShm *p; | |
4388 unixShmNode *pShmNode; | |
4389 int rc = SQLITE_OK; | |
4390 int nShmPerMap = unixShmRegionPerMap(); | |
4391 int nReqRegion; | |
4392 | |
4393 /* If the shared-memory file has not yet been opened, open it now. */ | |
4394 if( pDbFd->pShm==0 ){ | |
4395 rc = unixOpenSharedMemory(pDbFd); | |
4396 if( rc!=SQLITE_OK ) return rc; | |
4397 } | |
4398 | |
4399 p = pDbFd->pShm; | |
4400 pShmNode = p->pShmNode; | |
4401 sqlite3_mutex_enter(pShmNode->mutex); | |
4402 assert( szRegion==pShmNode->szRegion || pShmNode->nRegion==0 ); | |
4403 assert( pShmNode->pInode==pDbFd->pInode ); | |
4404 assert( pShmNode->h>=0 || pDbFd->pInode->bProcessLock==1 ); | |
4405 assert( pShmNode->h<0 || pDbFd->pInode->bProcessLock==0 ); | |
4406 | |
4407 /* Minimum number of regions required to be mapped. */ | |
4408 nReqRegion = ((iRegion+nShmPerMap) / nShmPerMap) * nShmPerMap; | |
4409 | |
4410 if( pShmNode->nRegion<nReqRegion ){ | |
4411 char **apNew; /* New apRegion[] array */ | |
4412 int nByte = nReqRegion*szRegion; /* Minimum required file size */ | |
4413 struct stat sStat; /* Used by fstat() */ | |
4414 | |
4415 pShmNode->szRegion = szRegion; | |
4416 | |
4417 if( pShmNode->h>=0 ){ | |
4418 /* The requested region is not mapped into this processes address space. | |
4419 ** Check to see if it has been allocated (i.e. if the wal-index file is | |
4420 ** large enough to contain the requested region). | |
4421 */ | |
4422 if( osFstat(pShmNode->h, &sStat) ){ | |
4423 rc = SQLITE_IOERR_SHMSIZE; | |
4424 goto shmpage_out; | |
4425 } | |
4426 | |
4427 if( sStat.st_size<nByte ){ | |
4428 /* The requested memory region does not exist. If bExtend is set to | |
4429 ** false, exit early. *pp will be set to NULL and SQLITE_OK returned. | |
4430 */ | |
4431 if( !bExtend ){ | |
4432 goto shmpage_out; | |
4433 } | |
4434 | |
4435 /* Alternatively, if bExtend is true, extend the file. Do this by | |
4436 ** writing a single byte to the end of each (OS) page being | |
4437 ** allocated or extended. Technically, we need only write to the | |
4438 ** last page in order to extend the file. But writing to all new | |
4439 ** pages forces the OS to allocate them immediately, which reduces | |
4440 ** the chances of SIGBUS while accessing the mapped region later on. | |
4441 */ | |
4442 else{ | |
4443 static const int pgsz = 4096; | |
4444 int iPg; | |
4445 | |
4446 /* Write to the last byte of each newly allocated or extended page */ | |
4447 assert( (nByte % pgsz)==0 ); | |
4448 for(iPg=(sStat.st_size/pgsz); iPg<(nByte/pgsz); iPg++){ | |
4449 if( seekAndWriteFd(pShmNode->h, iPg*pgsz + pgsz-1, "", 1, 0)!=1 ){ | |
4450 const char *zFile = pShmNode->zFilename; | |
4451 rc = unixLogError(SQLITE_IOERR_SHMSIZE, "write", zFile); | |
4452 goto shmpage_out; | |
4453 } | |
4454 } | |
4455 } | |
4456 } | |
4457 } | |
4458 | |
4459 /* Map the requested memory region into this processes address space. */ | |
4460 apNew = (char **)sqlite3_realloc( | |
4461 pShmNode->apRegion, nReqRegion*sizeof(char *) | |
4462 ); | |
4463 if( !apNew ){ | |
4464 rc = SQLITE_IOERR_NOMEM; | |
4465 goto shmpage_out; | |
4466 } | |
4467 pShmNode->apRegion = apNew; | |
4468 while( pShmNode->nRegion<nReqRegion ){ | |
4469 int nMap = szRegion*nShmPerMap; | |
4470 int i; | |
4471 void *pMem; | |
4472 if( pShmNode->h>=0 ){ | |
4473 pMem = osMmap(0, nMap, | |
4474 pShmNode->isReadonly ? PROT_READ : PROT_READ|PROT_WRITE, | |
4475 MAP_SHARED, pShmNode->h, szRegion*(i64)pShmNode->nRegion | |
4476 ); | |
4477 if( pMem==MAP_FAILED ){ | |
4478 rc = unixLogError(SQLITE_IOERR_SHMMAP, "mmap", pShmNode->zFilename); | |
4479 goto shmpage_out; | |
4480 } | |
4481 }else{ | |
4482 pMem = sqlite3_malloc(szRegion); | |
4483 if( pMem==0 ){ | |
4484 rc = SQLITE_NOMEM; | |
4485 goto shmpage_out; | |
4486 } | |
4487 memset(pMem, 0, szRegion); | |
4488 } | |
4489 | |
4490 for(i=0; i<nShmPerMap; i++){ | |
4491 pShmNode->apRegion[pShmNode->nRegion+i] = &((char*)pMem)[szRegion*i]; | |
4492 } | |
4493 pShmNode->nRegion += nShmPerMap; | |
4494 } | |
4495 } | |
4496 | |
4497 shmpage_out: | |
4498 if( pShmNode->nRegion>iRegion ){ | |
4499 *pp = pShmNode->apRegion[iRegion]; | |
4500 }else{ | |
4501 *pp = 0; | |
4502 } | |
4503 if( pShmNode->isReadonly && rc==SQLITE_OK ) rc = SQLITE_READONLY; | |
4504 sqlite3_mutex_leave(pShmNode->mutex); | |
4505 return rc; | |
4506 } | |
4507 | |
4508 /* | |
4509 ** Change the lock state for a shared-memory segment. | |
4510 ** | |
4511 ** Note that the relationship between SHAREd and EXCLUSIVE locks is a little | |
4512 ** different here than in posix. In xShmLock(), one can go from unlocked | |
4513 ** to shared and back or from unlocked to exclusive and back. But one may | |
4514 ** not go from shared to exclusive or from exclusive to shared. | |
4515 */ | |
4516 static int unixShmLock( | |
4517 sqlite3_file *fd, /* Database file holding the shared memory */ | |
4518 int ofst, /* First lock to acquire or release */ | |
4519 int n, /* Number of locks to acquire or release */ | |
4520 int flags /* What to do with the lock */ | |
4521 ){ | |
4522 unixFile *pDbFd = (unixFile*)fd; /* Connection holding shared memory */ | |
4523 unixShm *p = pDbFd->pShm; /* The shared memory being locked */ | |
4524 unixShm *pX; /* For looping over all siblings */ | |
4525 unixShmNode *pShmNode = p->pShmNode; /* The underlying file iNode */ | |
4526 int rc = SQLITE_OK; /* Result code */ | |
4527 u16 mask; /* Mask of locks to take or release */ | |
4528 | |
4529 assert( pShmNode==pDbFd->pInode->pShmNode ); | |
4530 assert( pShmNode->pInode==pDbFd->pInode ); | |
4531 assert( ofst>=0 && ofst+n<=SQLITE_SHM_NLOCK ); | |
4532 assert( n>=1 ); | |
4533 assert( flags==(SQLITE_SHM_LOCK | SQLITE_SHM_SHARED) | |
4534 || flags==(SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE) | |
4535 || flags==(SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED) | |
4536 || flags==(SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE) ); | |
4537 assert( n==1 || (flags & SQLITE_SHM_EXCLUSIVE)!=0 ); | |
4538 assert( pShmNode->h>=0 || pDbFd->pInode->bProcessLock==1 ); | |
4539 assert( pShmNode->h<0 || pDbFd->pInode->bProcessLock==0 ); | |
4540 | |
4541 mask = (1<<(ofst+n)) - (1<<ofst); | |
4542 assert( n>1 || mask==(1<<ofst) ); | |
4543 sqlite3_mutex_enter(pShmNode->mutex); | |
4544 if( flags & SQLITE_SHM_UNLOCK ){ | |
4545 u16 allMask = 0; /* Mask of locks held by siblings */ | |
4546 | |
4547 /* See if any siblings hold this same lock */ | |
4548 for(pX=pShmNode->pFirst; pX; pX=pX->pNext){ | |
4549 if( pX==p ) continue; | |
4550 assert( (pX->exclMask & (p->exclMask|p->sharedMask))==0 ); | |
4551 allMask |= pX->sharedMask; | |
4552 } | |
4553 | |
4554 /* Unlock the system-level locks */ | |
4555 if( (mask & allMask)==0 ){ | |
4556 rc = unixShmSystemLock(pShmNode, F_UNLCK, ofst+UNIX_SHM_BASE, n); | |
4557 }else{ | |
4558 rc = SQLITE_OK; | |
4559 } | |
4560 | |
4561 /* Undo the local locks */ | |
4562 if( rc==SQLITE_OK ){ | |
4563 p->exclMask &= ~mask; | |
4564 p->sharedMask &= ~mask; | |
4565 } | |
4566 }else if( flags & SQLITE_SHM_SHARED ){ | |
4567 u16 allShared = 0; /* Union of locks held by connections other than "p" */ | |
4568 | |
4569 /* Find out which shared locks are already held by sibling connections. | |
4570 ** If any sibling already holds an exclusive lock, go ahead and return | |
4571 ** SQLITE_BUSY. | |
4572 */ | |
4573 for(pX=pShmNode->pFirst; pX; pX=pX->pNext){ | |
4574 if( (pX->exclMask & mask)!=0 ){ | |
4575 rc = SQLITE_BUSY; | |
4576 break; | |
4577 } | |
4578 allShared |= pX->sharedMask; | |
4579 } | |
4580 | |
4581 /* Get shared locks at the system level, if necessary */ | |
4582 if( rc==SQLITE_OK ){ | |
4583 if( (allShared & mask)==0 ){ | |
4584 rc = unixShmSystemLock(pShmNode, F_RDLCK, ofst+UNIX_SHM_BASE, n); | |
4585 }else{ | |
4586 rc = SQLITE_OK; | |
4587 } | |
4588 } | |
4589 | |
4590 /* Get the local shared locks */ | |
4591 if( rc==SQLITE_OK ){ | |
4592 p->sharedMask |= mask; | |
4593 } | |
4594 }else{ | |
4595 /* Make sure no sibling connections hold locks that will block this | |
4596 ** lock. If any do, return SQLITE_BUSY right away. | |
4597 */ | |
4598 for(pX=pShmNode->pFirst; pX; pX=pX->pNext){ | |
4599 if( (pX->exclMask & mask)!=0 || (pX->sharedMask & mask)!=0 ){ | |
4600 rc = SQLITE_BUSY; | |
4601 break; | |
4602 } | |
4603 } | |
4604 | |
4605 /* Get the exclusive locks at the system level. Then if successful | |
4606 ** also mark the local connection as being locked. | |
4607 */ | |
4608 if( rc==SQLITE_OK ){ | |
4609 rc = unixShmSystemLock(pShmNode, F_WRLCK, ofst+UNIX_SHM_BASE, n); | |
4610 if( rc==SQLITE_OK ){ | |
4611 assert( (p->sharedMask & mask)==0 ); | |
4612 p->exclMask |= mask; | |
4613 } | |
4614 } | |
4615 } | |
4616 sqlite3_mutex_leave(pShmNode->mutex); | |
4617 OSTRACE(("SHM-LOCK shmid-%d, pid-%d got %03x,%03x\n", | |
4618 p->id, getpid(), p->sharedMask, p->exclMask)); | |
4619 return rc; | |
4620 } | |
4621 | |
4622 /* | |
4623 ** Implement a memory barrier or memory fence on shared memory. | |
4624 ** | |
4625 ** All loads and stores begun before the barrier must complete before | |
4626 ** any load or store begun after the barrier. | |
4627 */ | |
4628 static void unixShmBarrier( | |
4629 sqlite3_file *fd /* Database file holding the shared memory */ | |
4630 ){ | |
4631 UNUSED_PARAMETER(fd); | |
4632 unixEnterMutex(); | |
4633 unixLeaveMutex(); | |
4634 } | |
4635 | |
4636 /* | |
4637 ** Close a connection to shared-memory. Delete the underlying | |
4638 ** storage if deleteFlag is true. | |
4639 ** | |
4640 ** If there is no shared memory associated with the connection then this | |
4641 ** routine is a harmless no-op. | |
4642 */ | |
4643 static int unixShmUnmap( | |
4644 sqlite3_file *fd, /* The underlying database file */ | |
4645 int deleteFlag /* Delete shared-memory if true */ | |
4646 ){ | |
4647 unixShm *p; /* The connection to be closed */ | |
4648 unixShmNode *pShmNode; /* The underlying shared-memory file */ | |
4649 unixShm **pp; /* For looping over sibling connections */ | |
4650 unixFile *pDbFd; /* The underlying database file */ | |
4651 | |
4652 pDbFd = (unixFile*)fd; | |
4653 p = pDbFd->pShm; | |
4654 if( p==0 ) return SQLITE_OK; | |
4655 pShmNode = p->pShmNode; | |
4656 | |
4657 assert( pShmNode==pDbFd->pInode->pShmNode ); | |
4658 assert( pShmNode->pInode==pDbFd->pInode ); | |
4659 | |
4660 /* Remove connection p from the set of connections associated | |
4661 ** with pShmNode */ | |
4662 sqlite3_mutex_enter(pShmNode->mutex); | |
4663 for(pp=&pShmNode->pFirst; (*pp)!=p; pp = &(*pp)->pNext){} | |
4664 *pp = p->pNext; | |
4665 | |
4666 /* Free the connection p */ | |
4667 sqlite3_free(p); | |
4668 pDbFd->pShm = 0; | |
4669 sqlite3_mutex_leave(pShmNode->mutex); | |
4670 | |
4671 /* If pShmNode->nRef has reached 0, then close the underlying | |
4672 ** shared-memory file, too */ | |
4673 unixEnterMutex(); | |
4674 assert( pShmNode->nRef>0 ); | |
4675 pShmNode->nRef--; | |
4676 if( pShmNode->nRef==0 ){ | |
4677 if( deleteFlag && pShmNode->h>=0 ) osUnlink(pShmNode->zFilename); | |
4678 unixShmPurge(pDbFd); | |
4679 } | |
4680 unixLeaveMutex(); | |
4681 | |
4682 return SQLITE_OK; | |
4683 } | |
4684 | |
4685 | |
4686 #else | |
4687 # define unixShmMap 0 | |
4688 # define unixShmLock 0 | |
4689 # define unixShmBarrier 0 | |
4690 # define unixShmUnmap 0 | |
4691 #endif /* #ifndef SQLITE_OMIT_WAL */ | |
4692 | |
4693 #if SQLITE_MAX_MMAP_SIZE>0 | |
4694 /* | |
4695 ** If it is currently memory mapped, unmap file pFd. | |
4696 */ | |
4697 static void unixUnmapfile(unixFile *pFd){ | |
4698 assert( pFd->nFetchOut==0 ); | |
4699 if( pFd->pMapRegion ){ | |
4700 osMunmap(pFd->pMapRegion, pFd->mmapSizeActual); | |
4701 pFd->pMapRegion = 0; | |
4702 pFd->mmapSize = 0; | |
4703 pFd->mmapSizeActual = 0; | |
4704 } | |
4705 } | |
4706 | |
4707 /* | |
4708 ** Attempt to set the size of the memory mapping maintained by file | |
4709 ** descriptor pFd to nNew bytes. Any existing mapping is discarded. | |
4710 ** | |
4711 ** If successful, this function sets the following variables: | |
4712 ** | |
4713 ** unixFile.pMapRegion | |
4714 ** unixFile.mmapSize | |
4715 ** unixFile.mmapSizeActual | |
4716 ** | |
4717 ** If unsuccessful, an error message is logged via sqlite3_log() and | |
4718 ** the three variables above are zeroed. In this case SQLite should | |
4719 ** continue accessing the database using the xRead() and xWrite() | |
4720 ** methods. | |
4721 */ | |
4722 static void unixRemapfile( | |
4723 unixFile *pFd, /* File descriptor object */ | |
4724 i64 nNew /* Required mapping size */ | |
4725 ){ | |
4726 const char *zErr = "mmap"; | |
4727 int h = pFd->h; /* File descriptor open on db file */ | |
4728 u8 *pOrig = (u8 *)pFd->pMapRegion; /* Pointer to current file mapping */ | |
4729 i64 nOrig = pFd->mmapSizeActual; /* Size of pOrig region in bytes */ | |
4730 u8 *pNew = 0; /* Location of new mapping */ | |
4731 int flags = PROT_READ; /* Flags to pass to mmap() */ | |
4732 | |
4733 assert( pFd->nFetchOut==0 ); | |
4734 assert( nNew>pFd->mmapSize ); | |
4735 assert( nNew<=pFd->mmapSizeMax ); | |
4736 assert( nNew>0 ); | |
4737 assert( pFd->mmapSizeActual>=pFd->mmapSize ); | |
4738 assert( MAP_FAILED!=0 ); | |
4739 | |
4740 if( (pFd->ctrlFlags & UNIXFILE_RDONLY)==0 ) flags |= PROT_WRITE; | |
4741 | |
4742 if( pOrig ){ | |
4743 #if HAVE_MREMAP | |
4744 i64 nReuse = pFd->mmapSize; | |
4745 #else | |
4746 const int szSyspage = osGetpagesize(); | |
4747 i64 nReuse = (pFd->mmapSize & ~(szSyspage-1)); | |
4748 #endif | |
4749 u8 *pReq = &pOrig[nReuse]; | |
4750 | |
4751 /* Unmap any pages of the existing mapping that cannot be reused. */ | |
4752 if( nReuse!=nOrig ){ | |
4753 osMunmap(pReq, nOrig-nReuse); | |
4754 } | |
4755 | |
4756 #if HAVE_MREMAP | |
4757 pNew = osMremap(pOrig, nReuse, nNew, MREMAP_MAYMOVE); | |
4758 zErr = "mremap"; | |
4759 #else | |
4760 pNew = osMmap(pReq, nNew-nReuse, flags, MAP_SHARED, h, nReuse); | |
4761 if( pNew!=MAP_FAILED ){ | |
4762 if( pNew!=pReq ){ | |
4763 osMunmap(pNew, nNew - nReuse); | |
4764 pNew = 0; | |
4765 }else{ | |
4766 pNew = pOrig; | |
4767 } | |
4768 } | |
4769 #endif | |
4770 | |
4771 /* The attempt to extend the existing mapping failed. Free it. */ | |
4772 if( pNew==MAP_FAILED || pNew==0 ){ | |
4773 osMunmap(pOrig, nReuse); | |
4774 } | |
4775 } | |
4776 | |
4777 /* If pNew is still NULL, try to create an entirely new mapping. */ | |
4778 if( pNew==0 ){ | |
4779 pNew = osMmap(0, nNew, flags, MAP_SHARED, h, 0); | |
4780 } | |
4781 | |
4782 if( pNew==MAP_FAILED ){ | |
4783 pNew = 0; | |
4784 nNew = 0; | |
4785 unixLogError(SQLITE_OK, zErr, pFd->zPath); | |
4786 | |
4787 /* If the mmap() above failed, assume that all subsequent mmap() calls | |
4788 ** will probably fail too. Fall back to using xRead/xWrite exclusively | |
4789 ** in this case. */ | |
4790 pFd->mmapSizeMax = 0; | |
4791 } | |
4792 pFd->pMapRegion = (void *)pNew; | |
4793 pFd->mmapSize = pFd->mmapSizeActual = nNew; | |
4794 } | |
4795 | |
4796 /* | |
4797 ** Memory map or remap the file opened by file-descriptor pFd (if the file | |
4798 ** is already mapped, the existing mapping is replaced by the new). Or, if | |
4799 ** there already exists a mapping for this file, and there are still | |
4800 ** outstanding xFetch() references to it, this function is a no-op. | |
4801 ** | |
4802 ** If parameter nByte is non-negative, then it is the requested size of | |
4803 ** the mapping to create. Otherwise, if nByte is less than zero, then the | |
4804 ** requested size is the size of the file on disk. The actual size of the | |
4805 ** created mapping is either the requested size or the value configured | |
4806 ** using SQLITE_FCNTL_MMAP_LIMIT, whichever is smaller. | |
4807 ** | |
4808 ** SQLITE_OK is returned if no error occurs (even if the mapping is not | |
4809 ** recreated as a result of outstanding references) or an SQLite error | |
4810 ** code otherwise. | |
4811 */ | |
4812 static int unixMapfile(unixFile *pFd, i64 nByte){ | |
4813 i64 nMap = nByte; | |
4814 int rc; | |
4815 | |
4816 assert( nMap>=0 || pFd->nFetchOut==0 ); | |
4817 if( pFd->nFetchOut>0 ) return SQLITE_OK; | |
4818 | |
4819 if( nMap<0 ){ | |
4820 struct stat statbuf; /* Low-level file information */ | |
4821 rc = osFstat(pFd->h, &statbuf); | |
4822 if( rc!=SQLITE_OK ){ | |
4823 return SQLITE_IOERR_FSTAT; | |
4824 } | |
4825 nMap = statbuf.st_size; | |
4826 } | |
4827 if( nMap>pFd->mmapSizeMax ){ | |
4828 nMap = pFd->mmapSizeMax; | |
4829 } | |
4830 | |
4831 if( nMap!=pFd->mmapSize ){ | |
4832 if( nMap>0 ){ | |
4833 unixRemapfile(pFd, nMap); | |
4834 }else{ | |
4835 unixUnmapfile(pFd); | |
4836 } | |
4837 } | |
4838 | |
4839 return SQLITE_OK; | |
4840 } | |
4841 #endif /* SQLITE_MAX_MMAP_SIZE>0 */ | |
4842 | |
4843 /* | |
4844 ** If possible, return a pointer to a mapping of file fd starting at offset | |
4845 ** iOff. The mapping must be valid for at least nAmt bytes. | |
4846 ** | |
4847 ** If such a pointer can be obtained, store it in *pp and return SQLITE_OK. | |
4848 ** Or, if one cannot but no error occurs, set *pp to 0 and return SQLITE_OK. | |
4849 ** Finally, if an error does occur, return an SQLite error code. The final | |
4850 ** value of *pp is undefined in this case. | |
4851 ** | |
4852 ** If this function does return a pointer, the caller must eventually | |
4853 ** release the reference by calling unixUnfetch(). | |
4854 */ | |
4855 static int unixFetch(sqlite3_file *fd, i64 iOff, int nAmt, void **pp){ | |
4856 #if SQLITE_MAX_MMAP_SIZE>0 | |
4857 unixFile *pFd = (unixFile *)fd; /* The underlying database file */ | |
4858 #endif | |
4859 *pp = 0; | |
4860 | |
4861 #if SQLITE_MAX_MMAP_SIZE>0 | |
4862 if( pFd->mmapSizeMax>0 ){ | |
4863 if( pFd->pMapRegion==0 ){ | |
4864 int rc = unixMapfile(pFd, -1); | |
4865 if( rc!=SQLITE_OK ) return rc; | |
4866 } | |
4867 if( pFd->mmapSize >= iOff+nAmt ){ | |
4868 *pp = &((u8 *)pFd->pMapRegion)[iOff]; | |
4869 pFd->nFetchOut++; | |
4870 } | |
4871 } | |
4872 #endif | |
4873 return SQLITE_OK; | |
4874 } | |
4875 | |
4876 /* | |
4877 ** If the third argument is non-NULL, then this function releases a | |
4878 ** reference obtained by an earlier call to unixFetch(). The second | |
4879 ** argument passed to this function must be the same as the corresponding | |
4880 ** argument that was passed to the unixFetch() invocation. | |
4881 ** | |
4882 ** Or, if the third argument is NULL, then this function is being called | |
4883 ** to inform the VFS layer that, according to POSIX, any existing mapping | |
4884 ** may now be invalid and should be unmapped. | |
4885 */ | |
4886 static int unixUnfetch(sqlite3_file *fd, i64 iOff, void *p){ | |
4887 #if SQLITE_MAX_MMAP_SIZE>0 | |
4888 unixFile *pFd = (unixFile *)fd; /* The underlying database file */ | |
4889 UNUSED_PARAMETER(iOff); | |
4890 | |
4891 /* If p==0 (unmap the entire file) then there must be no outstanding | |
4892 ** xFetch references. Or, if p!=0 (meaning it is an xFetch reference), | |
4893 ** then there must be at least one outstanding. */ | |
4894 assert( (p==0)==(pFd->nFetchOut==0) ); | |
4895 | |
4896 /* If p!=0, it must match the iOff value. */ | |
4897 assert( p==0 || p==&((u8 *)pFd->pMapRegion)[iOff] ); | |
4898 | |
4899 if( p ){ | |
4900 pFd->nFetchOut--; | |
4901 }else{ | |
4902 unixUnmapfile(pFd); | |
4903 } | |
4904 | |
4905 assert( pFd->nFetchOut>=0 ); | |
4906 #else | |
4907 UNUSED_PARAMETER(fd); | |
4908 UNUSED_PARAMETER(p); | |
4909 UNUSED_PARAMETER(iOff); | |
4910 #endif | |
4911 return SQLITE_OK; | |
4912 } | |
4913 | |
4914 /* | |
4915 ** Here ends the implementation of all sqlite3_file methods. | |
4916 ** | |
4917 ********************** End sqlite3_file Methods ******************************* | |
4918 ******************************************************************************/ | |
4919 | |
4920 /* | |
4921 ** This division contains definitions of sqlite3_io_methods objects that | |
4922 ** implement various file locking strategies. It also contains definitions | |
4923 ** of "finder" functions. A finder-function is used to locate the appropriate | |
4924 ** sqlite3_io_methods object for a particular database file. The pAppData | |
4925 ** field of the sqlite3_vfs VFS objects are initialized to be pointers to | |
4926 ** the correct finder-function for that VFS. | |
4927 ** | |
4928 ** Most finder functions return a pointer to a fixed sqlite3_io_methods | |
4929 ** object. The only interesting finder-function is autolockIoFinder, which | |
4930 ** looks at the filesystem type and tries to guess the best locking | |
4931 ** strategy from that. | |
4932 ** | |
4933 ** For finder-function F, two objects are created: | |
4934 ** | |
4935 ** (1) The real finder-function named "FImpt()". | |
4936 ** | |
4937 ** (2) A constant pointer to this function named just "F". | |
4938 ** | |
4939 ** | |
4940 ** A pointer to the F pointer is used as the pAppData value for VFS | |
4941 ** objects. We have to do this instead of letting pAppData point | |
4942 ** directly at the finder-function since C90 rules prevent a void* | |
4943 ** from be cast into a function pointer. | |
4944 ** | |
4945 ** | |
4946 ** Each instance of this macro generates two objects: | |
4947 ** | |
4948 ** * A constant sqlite3_io_methods object call METHOD that has locking | |
4949 ** methods CLOSE, LOCK, UNLOCK, CKRESLOCK. | |
4950 ** | |
4951 ** * An I/O method finder function called FINDER that returns a pointer | |
4952 ** to the METHOD object in the previous bullet. | |
4953 */ | |
4954 #define IOMETHODS(FINDER, METHOD, VERSION, CLOSE, LOCK, UNLOCK, CKLOCK, SHMMAP)
\ | |
4955 static const sqlite3_io_methods METHOD = { \ | |
4956 VERSION, /* iVersion */ \ | |
4957 CLOSE, /* xClose */ \ | |
4958 unixRead, /* xRead */ \ | |
4959 unixWrite, /* xWrite */ \ | |
4960 unixTruncate, /* xTruncate */ \ | |
4961 unixSync, /* xSync */ \ | |
4962 unixFileSize, /* xFileSize */ \ | |
4963 LOCK, /* xLock */ \ | |
4964 UNLOCK, /* xUnlock */ \ | |
4965 CKLOCK, /* xCheckReservedLock */ \ | |
4966 unixFileControl, /* xFileControl */ \ | |
4967 unixSectorSize, /* xSectorSize */ \ | |
4968 unixDeviceCharacteristics, /* xDeviceCapabilities */ \ | |
4969 SHMMAP, /* xShmMap */ \ | |
4970 unixShmLock, /* xShmLock */ \ | |
4971 unixShmBarrier, /* xShmBarrier */ \ | |
4972 unixShmUnmap, /* xShmUnmap */ \ | |
4973 unixFetch, /* xFetch */ \ | |
4974 unixUnfetch, /* xUnfetch */ \ | |
4975 }; \ | |
4976 static const sqlite3_io_methods *FINDER##Impl(const char *z, unixFile *p){ \ | |
4977 UNUSED_PARAMETER(z); UNUSED_PARAMETER(p); \ | |
4978 return &METHOD; \ | |
4979 } \ | |
4980 static const sqlite3_io_methods *(*const FINDER)(const char*,unixFile *p) \ | |
4981 = FINDER##Impl; | |
4982 | |
4983 /* | |
4984 ** Here are all of the sqlite3_io_methods objects for each of the | |
4985 ** locking strategies. Functions that return pointers to these methods | |
4986 ** are also created. | |
4987 */ | |
4988 IOMETHODS( | |
4989 posixIoFinder, /* Finder function name */ | |
4990 posixIoMethods, /* sqlite3_io_methods object name */ | |
4991 3, /* shared memory and mmap are enabled */ | |
4992 unixClose, /* xClose method */ | |
4993 unixLock, /* xLock method */ | |
4994 unixUnlock, /* xUnlock method */ | |
4995 unixCheckReservedLock, /* xCheckReservedLock method */ | |
4996 unixShmMap /* xShmMap method */ | |
4997 ) | |
4998 IOMETHODS( | |
4999 nolockIoFinder, /* Finder function name */ | |
5000 nolockIoMethods, /* sqlite3_io_methods object name */ | |
5001 3, /* shared memory is disabled */ | |
5002 nolockClose, /* xClose method */ | |
5003 nolockLock, /* xLock method */ | |
5004 nolockUnlock, /* xUnlock method */ | |
5005 nolockCheckReservedLock, /* xCheckReservedLock method */ | |
5006 0 /* xShmMap method */ | |
5007 ) | |
5008 IOMETHODS( | |
5009 dotlockIoFinder, /* Finder function name */ | |
5010 dotlockIoMethods, /* sqlite3_io_methods object name */ | |
5011 1, /* shared memory is disabled */ | |
5012 dotlockClose, /* xClose method */ | |
5013 dotlockLock, /* xLock method */ | |
5014 dotlockUnlock, /* xUnlock method */ | |
5015 dotlockCheckReservedLock, /* xCheckReservedLock method */ | |
5016 0 /* xShmMap method */ | |
5017 ) | |
5018 | |
5019 #if SQLITE_ENABLE_LOCKING_STYLE && !OS_VXWORKS | |
5020 IOMETHODS( | |
5021 flockIoFinder, /* Finder function name */ | |
5022 flockIoMethods, /* sqlite3_io_methods object name */ | |
5023 1, /* shared memory is disabled */ | |
5024 flockClose, /* xClose method */ | |
5025 flockLock, /* xLock method */ | |
5026 flockUnlock, /* xUnlock method */ | |
5027 flockCheckReservedLock, /* xCheckReservedLock method */ | |
5028 0 /* xShmMap method */ | |
5029 ) | |
5030 #endif | |
5031 | |
5032 #if OS_VXWORKS | |
5033 IOMETHODS( | |
5034 semIoFinder, /* Finder function name */ | |
5035 semIoMethods, /* sqlite3_io_methods object name */ | |
5036 1, /* shared memory is disabled */ | |
5037 semClose, /* xClose method */ | |
5038 semLock, /* xLock method */ | |
5039 semUnlock, /* xUnlock method */ | |
5040 semCheckReservedLock, /* xCheckReservedLock method */ | |
5041 0 /* xShmMap method */ | |
5042 ) | |
5043 #endif | |
5044 | |
5045 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE | |
5046 IOMETHODS( | |
5047 afpIoFinder, /* Finder function name */ | |
5048 afpIoMethods, /* sqlite3_io_methods object name */ | |
5049 1, /* shared memory is disabled */ | |
5050 afpClose, /* xClose method */ | |
5051 afpLock, /* xLock method */ | |
5052 afpUnlock, /* xUnlock method */ | |
5053 afpCheckReservedLock, /* xCheckReservedLock method */ | |
5054 0 /* xShmMap method */ | |
5055 ) | |
5056 #endif | |
5057 | |
5058 /* | |
5059 ** The proxy locking method is a "super-method" in the sense that it | |
5060 ** opens secondary file descriptors for the conch and lock files and | |
5061 ** it uses proxy, dot-file, AFP, and flock() locking methods on those | |
5062 ** secondary files. For this reason, the division that implements | |
5063 ** proxy locking is located much further down in the file. But we need | |
5064 ** to go ahead and define the sqlite3_io_methods and finder function | |
5065 ** for proxy locking here. So we forward declare the I/O methods. | |
5066 */ | |
5067 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE | |
5068 static int proxyClose(sqlite3_file*); | |
5069 static int proxyLock(sqlite3_file*, int); | |
5070 static int proxyUnlock(sqlite3_file*, int); | |
5071 static int proxyCheckReservedLock(sqlite3_file*, int*); | |
5072 IOMETHODS( | |
5073 proxyIoFinder, /* Finder function name */ | |
5074 proxyIoMethods, /* sqlite3_io_methods object name */ | |
5075 1, /* shared memory is disabled */ | |
5076 proxyClose, /* xClose method */ | |
5077 proxyLock, /* xLock method */ | |
5078 proxyUnlock, /* xUnlock method */ | |
5079 proxyCheckReservedLock, /* xCheckReservedLock method */ | |
5080 0 /* xShmMap method */ | |
5081 ) | |
5082 #endif | |
5083 | |
5084 /* nfs lockd on OSX 10.3+ doesn't clear write locks when a read lock is set */ | |
5085 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE | |
5086 IOMETHODS( | |
5087 nfsIoFinder, /* Finder function name */ | |
5088 nfsIoMethods, /* sqlite3_io_methods object name */ | |
5089 1, /* shared memory is disabled */ | |
5090 unixClose, /* xClose method */ | |
5091 unixLock, /* xLock method */ | |
5092 nfsUnlock, /* xUnlock method */ | |
5093 unixCheckReservedLock, /* xCheckReservedLock method */ | |
5094 0 /* xShmMap method */ | |
5095 ) | |
5096 #endif | |
5097 | |
5098 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE | |
5099 /* | |
5100 ** This "finder" function attempts to determine the best locking strategy | |
5101 ** for the database file "filePath". It then returns the sqlite3_io_methods | |
5102 ** object that implements that strategy. | |
5103 ** | |
5104 ** This is for MacOSX only. | |
5105 */ | |
5106 static const sqlite3_io_methods *autolockIoFinderImpl( | |
5107 const char *filePath, /* name of the database file */ | |
5108 unixFile *pNew /* open file object for the database file */ | |
5109 ){ | |
5110 static const struct Mapping { | |
5111 const char *zFilesystem; /* Filesystem type name */ | |
5112 const sqlite3_io_methods *pMethods; /* Appropriate locking method */ | |
5113 } aMap[] = { | |
5114 { "hfs", &posixIoMethods }, | |
5115 { "ufs", &posixIoMethods }, | |
5116 { "afpfs", &afpIoMethods }, | |
5117 { "smbfs", &afpIoMethods }, | |
5118 { "webdav", &nolockIoMethods }, | |
5119 { 0, 0 } | |
5120 }; | |
5121 int i; | |
5122 struct statfs fsInfo; | |
5123 struct flock lockInfo; | |
5124 | |
5125 if( !filePath ){ | |
5126 /* If filePath==NULL that means we are dealing with a transient file | |
5127 ** that does not need to be locked. */ | |
5128 return &nolockIoMethods; | |
5129 } | |
5130 if( statfs(filePath, &fsInfo) != -1 ){ | |
5131 if( fsInfo.f_flags & MNT_RDONLY ){ | |
5132 return &nolockIoMethods; | |
5133 } | |
5134 for(i=0; aMap[i].zFilesystem; i++){ | |
5135 if( strcmp(fsInfo.f_fstypename, aMap[i].zFilesystem)==0 ){ | |
5136 return aMap[i].pMethods; | |
5137 } | |
5138 } | |
5139 } | |
5140 | |
5141 /* Default case. Handles, amongst others, "nfs". | |
5142 ** Test byte-range lock using fcntl(). If the call succeeds, | |
5143 ** assume that the file-system supports POSIX style locks. | |
5144 */ | |
5145 lockInfo.l_len = 1; | |
5146 lockInfo.l_start = 0; | |
5147 lockInfo.l_whence = SEEK_SET; | |
5148 lockInfo.l_type = F_RDLCK; | |
5149 if( osFcntl(pNew->h, F_GETLK, &lockInfo)!=-1 ) { | |
5150 if( strcmp(fsInfo.f_fstypename, "nfs")==0 ){ | |
5151 return &nfsIoMethods; | |
5152 } else { | |
5153 return &posixIoMethods; | |
5154 } | |
5155 }else{ | |
5156 return &dotlockIoMethods; | |
5157 } | |
5158 } | |
5159 static const sqlite3_io_methods | |
5160 *(*const autolockIoFinder)(const char*,unixFile*) = autolockIoFinderImpl; | |
5161 | |
5162 #endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */ | |
5163 | |
5164 #if OS_VXWORKS && SQLITE_ENABLE_LOCKING_STYLE | |
5165 /* | |
5166 ** This "finder" function attempts to determine the best locking strategy | |
5167 ** for the database file "filePath". It then returns the sqlite3_io_methods | |
5168 ** object that implements that strategy. | |
5169 ** | |
5170 ** This is for VXWorks only. | |
5171 */ | |
5172 static const sqlite3_io_methods *autolockIoFinderImpl( | |
5173 const char *filePath, /* name of the database file */ | |
5174 unixFile *pNew /* the open file object */ | |
5175 ){ | |
5176 struct flock lockInfo; | |
5177 | |
5178 if( !filePath ){ | |
5179 /* If filePath==NULL that means we are dealing with a transient file | |
5180 ** that does not need to be locked. */ | |
5181 return &nolockIoMethods; | |
5182 } | |
5183 | |
5184 /* Test if fcntl() is supported and use POSIX style locks. | |
5185 ** Otherwise fall back to the named semaphore method. | |
5186 */ | |
5187 lockInfo.l_len = 1; | |
5188 lockInfo.l_start = 0; | |
5189 lockInfo.l_whence = SEEK_SET; | |
5190 lockInfo.l_type = F_RDLCK; | |
5191 if( osFcntl(pNew->h, F_GETLK, &lockInfo)!=-1 ) { | |
5192 return &posixIoMethods; | |
5193 }else{ | |
5194 return &semIoMethods; | |
5195 } | |
5196 } | |
5197 static const sqlite3_io_methods | |
5198 *(*const autolockIoFinder)(const char*,unixFile*) = autolockIoFinderImpl; | |
5199 | |
5200 #endif /* OS_VXWORKS && SQLITE_ENABLE_LOCKING_STYLE */ | |
5201 | |
5202 /* | |
5203 ** An abstract type for a pointer to an IO method finder function: | |
5204 */ | |
5205 typedef const sqlite3_io_methods *(*finder_type)(const char*,unixFile*); | |
5206 | |
5207 | |
5208 /**************************************************************************** | |
5209 **************************** sqlite3_vfs methods **************************** | |
5210 ** | |
5211 ** This division contains the implementation of methods on the | |
5212 ** sqlite3_vfs object. | |
5213 */ | |
5214 | |
5215 /* | |
5216 ** Initialize the contents of the unixFile structure pointed to by pId. | |
5217 */ | |
5218 static int fillInUnixFile( | |
5219 sqlite3_vfs *pVfs, /* Pointer to vfs object */ | |
5220 int h, /* Open file descriptor of file being opened */ | |
5221 sqlite3_file *pId, /* Write to the unixFile structure here */ | |
5222 const char *zFilename, /* Name of the file being opened */ | |
5223 int ctrlFlags /* Zero or more UNIXFILE_* values */ | |
5224 ){ | |
5225 const sqlite3_io_methods *pLockingStyle; | |
5226 unixFile *pNew = (unixFile *)pId; | |
5227 int rc = SQLITE_OK; | |
5228 | |
5229 assert( pNew->pInode==NULL ); | |
5230 | |
5231 /* Usually the path zFilename should not be a relative pathname. The | |
5232 ** exception is when opening the proxy "conch" file in builds that | |
5233 ** include the special Apple locking styles. | |
5234 */ | |
5235 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE | |
5236 assert( zFilename==0 || zFilename[0]=='/' | |
5237 || pVfs->pAppData==(void*)&autolockIoFinder ); | |
5238 #else | |
5239 assert( zFilename==0 || zFilename[0]=='/' ); | |
5240 #endif | |
5241 | |
5242 /* No locking occurs in temporary files */ | |
5243 assert( zFilename!=0 || (ctrlFlags & UNIXFILE_NOLOCK)!=0 ); | |
5244 | |
5245 OSTRACE(("OPEN %-3d %s\n", h, zFilename)); | |
5246 pNew->h = h; | |
5247 pNew->pVfs = pVfs; | |
5248 pNew->zPath = zFilename; | |
5249 pNew->ctrlFlags = (u8)ctrlFlags; | |
5250 #if SQLITE_MAX_MMAP_SIZE>0 | |
5251 pNew->mmapSizeMax = sqlite3GlobalConfig.szMmap; | |
5252 #endif | |
5253 if( sqlite3_uri_boolean(((ctrlFlags & UNIXFILE_URI) ? zFilename : 0), | |
5254 "psow", SQLITE_POWERSAFE_OVERWRITE) ){ | |
5255 pNew->ctrlFlags |= UNIXFILE_PSOW; | |
5256 } | |
5257 if( strcmp(pVfs->zName,"unix-excl")==0 ){ | |
5258 pNew->ctrlFlags |= UNIXFILE_EXCL; | |
5259 } | |
5260 | |
5261 #if OS_VXWORKS | |
5262 pNew->pId = vxworksFindFileId(zFilename); | |
5263 if( pNew->pId==0 ){ | |
5264 ctrlFlags |= UNIXFILE_NOLOCK; | |
5265 rc = SQLITE_NOMEM; | |
5266 } | |
5267 #endif | |
5268 | |
5269 if( ctrlFlags & UNIXFILE_NOLOCK ){ | |
5270 pLockingStyle = &nolockIoMethods; | |
5271 }else{ | |
5272 pLockingStyle = (**(finder_type*)pVfs->pAppData)(zFilename, pNew); | |
5273 #if SQLITE_ENABLE_LOCKING_STYLE | |
5274 /* Cache zFilename in the locking context (AFP and dotlock override) for | |
5275 ** proxyLock activation is possible (remote proxy is based on db name) | |
5276 ** zFilename remains valid until file is closed, to support */ | |
5277 pNew->lockingContext = (void*)zFilename; | |
5278 #endif | |
5279 } | |
5280 | |
5281 if( pLockingStyle == &posixIoMethods | |
5282 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE | |
5283 || pLockingStyle == &nfsIoMethods | |
5284 #endif | |
5285 ){ | |
5286 unixEnterMutex(); | |
5287 rc = findInodeInfo(pNew, &pNew->pInode); | |
5288 if( rc!=SQLITE_OK ){ | |
5289 /* If an error occurred in findInodeInfo(), close the file descriptor | |
5290 ** immediately, before releasing the mutex. findInodeInfo() may fail | |
5291 ** in two scenarios: | |
5292 ** | |
5293 ** (a) A call to fstat() failed. | |
5294 ** (b) A malloc failed. | |
5295 ** | |
5296 ** Scenario (b) may only occur if the process is holding no other | |
5297 ** file descriptors open on the same file. If there were other file | |
5298 ** descriptors on this file, then no malloc would be required by | |
5299 ** findInodeInfo(). If this is the case, it is quite safe to close | |
5300 ** handle h - as it is guaranteed that no posix locks will be released | |
5301 ** by doing so. | |
5302 ** | |
5303 ** If scenario (a) caused the error then things are not so safe. The | |
5304 ** implicit assumption here is that if fstat() fails, things are in | |
5305 ** such bad shape that dropping a lock or two doesn't matter much. | |
5306 */ | |
5307 robust_close(pNew, h, __LINE__); | |
5308 h = -1; | |
5309 } | |
5310 unixLeaveMutex(); | |
5311 } | |
5312 | |
5313 #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__) | |
5314 else if( pLockingStyle == &afpIoMethods ){ | |
5315 /* AFP locking uses the file path so it needs to be included in | |
5316 ** the afpLockingContext. | |
5317 */ | |
5318 afpLockingContext *pCtx; | |
5319 pNew->lockingContext = pCtx = sqlite3_malloc( sizeof(*pCtx) ); | |
5320 if( pCtx==0 ){ | |
5321 rc = SQLITE_NOMEM; | |
5322 }else{ | |
5323 /* NB: zFilename exists and remains valid until the file is closed | |
5324 ** according to requirement F11141. So we do not need to make a | |
5325 ** copy of the filename. */ | |
5326 pCtx->dbPath = zFilename; | |
5327 pCtx->reserved = 0; | |
5328 srandomdev(); | |
5329 unixEnterMutex(); | |
5330 rc = findInodeInfo(pNew, &pNew->pInode); | |
5331 if( rc!=SQLITE_OK ){ | |
5332 sqlite3_free(pNew->lockingContext); | |
5333 robust_close(pNew, h, __LINE__); | |
5334 h = -1; | |
5335 } | |
5336 unixLeaveMutex(); | |
5337 } | |
5338 } | |
5339 #endif | |
5340 | |
5341 else if( pLockingStyle == &dotlockIoMethods ){ | |
5342 /* Dotfile locking uses the file path so it needs to be included in | |
5343 ** the dotlockLockingContext | |
5344 */ | |
5345 char *zLockFile; | |
5346 int nFilename; | |
5347 assert( zFilename!=0 ); | |
5348 nFilename = (int)strlen(zFilename) + 6; | |
5349 zLockFile = (char *)sqlite3_malloc(nFilename); | |
5350 if( zLockFile==0 ){ | |
5351 rc = SQLITE_NOMEM; | |
5352 }else{ | |
5353 sqlite3_snprintf(nFilename, zLockFile, "%s" DOTLOCK_SUFFIX, zFilename); | |
5354 } | |
5355 pNew->lockingContext = zLockFile; | |
5356 } | |
5357 | |
5358 #if OS_VXWORKS | |
5359 else if( pLockingStyle == &semIoMethods ){ | |
5360 /* Named semaphore locking uses the file path so it needs to be | |
5361 ** included in the semLockingContext | |
5362 */ | |
5363 unixEnterMutex(); | |
5364 rc = findInodeInfo(pNew, &pNew->pInode); | |
5365 if( (rc==SQLITE_OK) && (pNew->pInode->pSem==NULL) ){ | |
5366 char *zSemName = pNew->pInode->aSemName; | |
5367 int n; | |
5368 sqlite3_snprintf(MAX_PATHNAME, zSemName, "/%s.sem", | |
5369 pNew->pId->zCanonicalName); | |
5370 for( n=1; zSemName[n]; n++ ) | |
5371 if( zSemName[n]=='/' ) zSemName[n] = '_'; | |
5372 pNew->pInode->pSem = sem_open(zSemName, O_CREAT, 0666, 1); | |
5373 if( pNew->pInode->pSem == SEM_FAILED ){ | |
5374 rc = SQLITE_NOMEM; | |
5375 pNew->pInode->aSemName[0] = '\0'; | |
5376 } | |
5377 } | |
5378 unixLeaveMutex(); | |
5379 } | |
5380 #endif | |
5381 | |
5382 pNew->lastErrno = 0; | |
5383 #if OS_VXWORKS | |
5384 if( rc!=SQLITE_OK ){ | |
5385 if( h>=0 ) robust_close(pNew, h, __LINE__); | |
5386 h = -1; | |
5387 osUnlink(zFilename); | |
5388 pNew->ctrlFlags |= UNIXFILE_DELETE; | |
5389 } | |
5390 #endif | |
5391 if( rc!=SQLITE_OK ){ | |
5392 if( h>=0 ) robust_close(pNew, h, __LINE__); | |
5393 }else{ | |
5394 pNew->pMethod = pLockingStyle; | |
5395 OpenCounter(+1); | |
5396 verifyDbFile(pNew); | |
5397 } | |
5398 return rc; | |
5399 } | |
5400 | |
5401 /* | |
5402 ** Return the name of a directory in which to put temporary files. | |
5403 ** If no suitable temporary file directory can be found, return NULL. | |
5404 */ | |
5405 static const char *unixTempFileDir(void){ | |
5406 static const char *azDirs[] = { | |
5407 0, | |
5408 0, | |
5409 0, | |
5410 "/var/tmp", | |
5411 "/usr/tmp", | |
5412 "/tmp", | |
5413 0 /* List terminator */ | |
5414 }; | |
5415 unsigned int i; | |
5416 struct stat buf; | |
5417 const char *zDir = 0; | |
5418 | |
5419 azDirs[0] = sqlite3_temp_directory; | |
5420 if( !azDirs[1] ) azDirs[1] = getenv("SQLITE_TMPDIR"); | |
5421 if( !azDirs[2] ) azDirs[2] = getenv("TMPDIR"); | |
5422 for(i=0; i<sizeof(azDirs)/sizeof(azDirs[0]); zDir=azDirs[i++]){ | |
5423 if( zDir==0 ) continue; | |
5424 if( osStat(zDir, &buf) ) continue; | |
5425 if( !S_ISDIR(buf.st_mode) ) continue; | |
5426 if( osAccess(zDir, 07) ) continue; | |
5427 break; | |
5428 } | |
5429 return zDir; | |
5430 } | |
5431 | |
5432 /* | |
5433 ** Create a temporary file name in zBuf. zBuf must be allocated | |
5434 ** by the calling process and must be big enough to hold at least | |
5435 ** pVfs->mxPathname bytes. | |
5436 */ | |
5437 static int unixGetTempname(int nBuf, char *zBuf){ | |
5438 static const unsigned char zChars[] = | |
5439 "abcdefghijklmnopqrstuvwxyz" | |
5440 "ABCDEFGHIJKLMNOPQRSTUVWXYZ" | |
5441 "0123456789"; | |
5442 unsigned int i, j; | |
5443 const char *zDir; | |
5444 | |
5445 /* It's odd to simulate an io-error here, but really this is just | |
5446 ** using the io-error infrastructure to test that SQLite handles this | |
5447 ** function failing. | |
5448 */ | |
5449 SimulateIOError( return SQLITE_IOERR ); | |
5450 | |
5451 zDir = unixTempFileDir(); | |
5452 if( zDir==0 ) zDir = "."; | |
5453 | |
5454 /* Check that the output buffer is large enough for the temporary file | |
5455 ** name. If it is not, return SQLITE_ERROR. | |
5456 */ | |
5457 if( (strlen(zDir) + strlen(SQLITE_TEMP_FILE_PREFIX) + 18) >= (size_t)nBuf ){ | |
5458 return SQLITE_ERROR; | |
5459 } | |
5460 | |
5461 do{ | |
5462 sqlite3_snprintf(nBuf-18, zBuf, "%s/"SQLITE_TEMP_FILE_PREFIX, zDir); | |
5463 j = (int)strlen(zBuf); | |
5464 sqlite3_randomness(15, &zBuf[j]); | |
5465 for(i=0; i<15; i++, j++){ | |
5466 zBuf[j] = (char)zChars[ ((unsigned char)zBuf[j])%(sizeof(zChars)-1) ]; | |
5467 } | |
5468 zBuf[j] = 0; | |
5469 zBuf[j+1] = 0; | |
5470 }while( osAccess(zBuf,0)==0 ); | |
5471 return SQLITE_OK; | |
5472 } | |
5473 | |
5474 #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__) | |
5475 /* | |
5476 ** Routine to transform a unixFile into a proxy-locking unixFile. | |
5477 ** Implementation in the proxy-lock division, but used by unixOpen() | |
5478 ** if SQLITE_PREFER_PROXY_LOCKING is defined. | |
5479 */ | |
5480 static int proxyTransformUnixFile(unixFile*, const char*); | |
5481 #endif | |
5482 | |
5483 /* | |
5484 ** Search for an unused file descriptor that was opened on the database | |
5485 ** file (not a journal or master-journal file) identified by pathname | |
5486 ** zPath with SQLITE_OPEN_XXX flags matching those passed as the second | |
5487 ** argument to this function. | |
5488 ** | |
5489 ** Such a file descriptor may exist if a database connection was closed | |
5490 ** but the associated file descriptor could not be closed because some | |
5491 ** other file descriptor open on the same file is holding a file-lock. | |
5492 ** Refer to comments in the unixClose() function and the lengthy comment | |
5493 ** describing "Posix Advisory Locking" at the start of this file for | |
5494 ** further details. Also, ticket #4018. | |
5495 ** | |
5496 ** If a suitable file descriptor is found, then it is returned. If no | |
5497 ** such file descriptor is located, -1 is returned. | |
5498 */ | |
5499 static UnixUnusedFd *findReusableFd(const char *zPath, int flags){ | |
5500 UnixUnusedFd *pUnused = 0; | |
5501 | |
5502 /* Do not search for an unused file descriptor on vxworks. Not because | |
5503 ** vxworks would not benefit from the change (it might, we're not sure), | |
5504 ** but because no way to test it is currently available. It is better | |
5505 ** not to risk breaking vxworks support for the sake of such an obscure | |
5506 ** feature. */ | |
5507 #if !OS_VXWORKS | |
5508 struct stat sStat; /* Results of stat() call */ | |
5509 | |
5510 /* A stat() call may fail for various reasons. If this happens, it is | |
5511 ** almost certain that an open() call on the same path will also fail. | |
5512 ** For this reason, if an error occurs in the stat() call here, it is | |
5513 ** ignored and -1 is returned. The caller will try to open a new file | |
5514 ** descriptor on the same path, fail, and return an error to SQLite. | |
5515 ** | |
5516 ** Even if a subsequent open() call does succeed, the consequences of | |
5517 ** not searching for a reusable file descriptor are not dire. */ | |
5518 if( 0==osStat(zPath, &sStat) ){ | |
5519 unixInodeInfo *pInode; | |
5520 | |
5521 unixEnterMutex(); | |
5522 pInode = inodeList; | |
5523 while( pInode && (pInode->fileId.dev!=sStat.st_dev | |
5524 || pInode->fileId.ino!=sStat.st_ino) ){ | |
5525 pInode = pInode->pNext; | |
5526 } | |
5527 if( pInode ){ | |
5528 UnixUnusedFd **pp; | |
5529 for(pp=&pInode->pUnused; *pp && (*pp)->flags!=flags; pp=&((*pp)->pNext)); | |
5530 pUnused = *pp; | |
5531 if( pUnused ){ | |
5532 *pp = pUnused->pNext; | |
5533 } | |
5534 } | |
5535 unixLeaveMutex(); | |
5536 } | |
5537 #endif /* if !OS_VXWORKS */ | |
5538 return pUnused; | |
5539 } | |
5540 | |
5541 /* | |
5542 ** This function is called by unixOpen() to determine the unix permissions | |
5543 ** to create new files with. If no error occurs, then SQLITE_OK is returned | |
5544 ** and a value suitable for passing as the third argument to open(2) is | |
5545 ** written to *pMode. If an IO error occurs, an SQLite error code is | |
5546 ** returned and the value of *pMode is not modified. | |
5547 ** | |
5548 ** In most cases, this routine sets *pMode to 0, which will become | |
5549 ** an indication to robust_open() to create the file using | |
5550 ** SQLITE_DEFAULT_FILE_PERMISSIONS adjusted by the umask. | |
5551 ** But if the file being opened is a WAL or regular journal file, then | |
5552 ** this function queries the file-system for the permissions on the | |
5553 ** corresponding database file and sets *pMode to this value. Whenever | |
5554 ** possible, WAL and journal files are created using the same permissions | |
5555 ** as the associated database file. | |
5556 ** | |
5557 ** If the SQLITE_ENABLE_8_3_NAMES option is enabled, then the | |
5558 ** original filename is unavailable. But 8_3_NAMES is only used for | |
5559 ** FAT filesystems and permissions do not matter there, so just use | |
5560 ** the default permissions. | |
5561 */ | |
5562 static int findCreateFileMode( | |
5563 const char *zPath, /* Path of file (possibly) being created */ | |
5564 int flags, /* Flags passed as 4th argument to xOpen() */ | |
5565 mode_t *pMode, /* OUT: Permissions to open file with */ | |
5566 uid_t *pUid, /* OUT: uid to set on the file */ | |
5567 gid_t *pGid /* OUT: gid to set on the file */ | |
5568 ){ | |
5569 int rc = SQLITE_OK; /* Return Code */ | |
5570 *pMode = 0; | |
5571 *pUid = 0; | |
5572 *pGid = 0; | |
5573 if( flags & (SQLITE_OPEN_WAL|SQLITE_OPEN_MAIN_JOURNAL) ){ | |
5574 char zDb[MAX_PATHNAME+1]; /* Database file path */ | |
5575 int nDb; /* Number of valid bytes in zDb */ | |
5576 struct stat sStat; /* Output of stat() on database file */ | |
5577 | |
5578 /* zPath is a path to a WAL or journal file. The following block derives | |
5579 ** the path to the associated database file from zPath. This block handles | |
5580 ** the following naming conventions: | |
5581 ** | |
5582 ** "<path to db>-journal" | |
5583 ** "<path to db>-wal" | |
5584 ** "<path to db>-journalNN" | |
5585 ** "<path to db>-walNN" | |
5586 ** | |
5587 ** where NN is a decimal number. The NN naming schemes are | |
5588 ** used by the test_multiplex.c module. | |
5589 */ | |
5590 nDb = sqlite3Strlen30(zPath) - 1; | |
5591 #ifdef SQLITE_ENABLE_8_3_NAMES | |
5592 while( nDb>0 && sqlite3Isalnum(zPath[nDb]) ) nDb--; | |
5593 if( nDb==0 || zPath[nDb]!='-' ) return SQLITE_OK; | |
5594 #else | |
5595 while( zPath[nDb]!='-' ){ | |
5596 assert( nDb>0 ); | |
5597 assert( zPath[nDb]!='\n' ); | |
5598 nDb--; | |
5599 } | |
5600 #endif | |
5601 memcpy(zDb, zPath, nDb); | |
5602 zDb[nDb] = '\0'; | |
5603 | |
5604 if( 0==osStat(zDb, &sStat) ){ | |
5605 *pMode = sStat.st_mode & 0777; | |
5606 *pUid = sStat.st_uid; | |
5607 *pGid = sStat.st_gid; | |
5608 }else{ | |
5609 rc = SQLITE_IOERR_FSTAT; | |
5610 } | |
5611 }else if( flags & SQLITE_OPEN_DELETEONCLOSE ){ | |
5612 *pMode = 0600; | |
5613 } | |
5614 return rc; | |
5615 } | |
5616 | |
5617 /* | |
5618 ** Open the file zPath. | |
5619 ** | |
5620 ** Previously, the SQLite OS layer used three functions in place of this | |
5621 ** one: | |
5622 ** | |
5623 ** sqlite3OsOpenReadWrite(); | |
5624 ** sqlite3OsOpenReadOnly(); | |
5625 ** sqlite3OsOpenExclusive(); | |
5626 ** | |
5627 ** These calls correspond to the following combinations of flags: | |
5628 ** | |
5629 ** ReadWrite() -> (READWRITE | CREATE) | |
5630 ** ReadOnly() -> (READONLY) | |
5631 ** OpenExclusive() -> (READWRITE | CREATE | EXCLUSIVE) | |
5632 ** | |
5633 ** The old OpenExclusive() accepted a boolean argument - "delFlag". If | |
5634 ** true, the file was configured to be automatically deleted when the | |
5635 ** file handle closed. To achieve the same effect using this new | |
5636 ** interface, add the DELETEONCLOSE flag to those specified above for | |
5637 ** OpenExclusive(). | |
5638 */ | |
5639 static int unixOpen( | |
5640 sqlite3_vfs *pVfs, /* The VFS for which this is the xOpen method */ | |
5641 const char *zPath, /* Pathname of file to be opened */ | |
5642 sqlite3_file *pFile, /* The file descriptor to be filled in */ | |
5643 int flags, /* Input flags to control the opening */ | |
5644 int *pOutFlags /* Output flags returned to SQLite core */ | |
5645 ){ | |
5646 unixFile *p = (unixFile *)pFile; | |
5647 int fd = -1; /* File descriptor returned by open() */ | |
5648 int openFlags = 0; /* Flags to pass to open() */ | |
5649 int eType = flags&0xFFFFFF00; /* Type of file to open */ | |
5650 int noLock; /* True to omit locking primitives */ | |
5651 int rc = SQLITE_OK; /* Function Return Code */ | |
5652 int ctrlFlags = 0; /* UNIXFILE_* flags */ | |
5653 | |
5654 int isExclusive = (flags & SQLITE_OPEN_EXCLUSIVE); | |
5655 int isDelete = (flags & SQLITE_OPEN_DELETEONCLOSE); | |
5656 int isCreate = (flags & SQLITE_OPEN_CREATE); | |
5657 int isReadonly = (flags & SQLITE_OPEN_READONLY); | |
5658 int isReadWrite = (flags & SQLITE_OPEN_READWRITE); | |
5659 #if SQLITE_ENABLE_LOCKING_STYLE | |
5660 int isAutoProxy = (flags & SQLITE_OPEN_AUTOPROXY); | |
5661 #endif | |
5662 #if defined(__APPLE__) || SQLITE_ENABLE_LOCKING_STYLE | |
5663 struct statfs fsInfo; | |
5664 #endif | |
5665 | |
5666 /* If creating a master or main-file journal, this function will open | |
5667 ** a file-descriptor on the directory too. The first time unixSync() | |
5668 ** is called the directory file descriptor will be fsync()ed and close()d. | |
5669 */ | |
5670 int syncDir = (isCreate && ( | |
5671 eType==SQLITE_OPEN_MASTER_JOURNAL | |
5672 || eType==SQLITE_OPEN_MAIN_JOURNAL | |
5673 || eType==SQLITE_OPEN_WAL | |
5674 )); | |
5675 | |
5676 /* If argument zPath is a NULL pointer, this function is required to open | |
5677 ** a temporary file. Use this buffer to store the file name in. | |
5678 */ | |
5679 char zTmpname[MAX_PATHNAME+2]; | |
5680 const char *zName = zPath; | |
5681 | |
5682 /* Check the following statements are true: | |
5683 ** | |
5684 ** (a) Exactly one of the READWRITE and READONLY flags must be set, and | |
5685 ** (b) if CREATE is set, then READWRITE must also be set, and | |
5686 ** (c) if EXCLUSIVE is set, then CREATE must also be set. | |
5687 ** (d) if DELETEONCLOSE is set, then CREATE must also be set. | |
5688 */ | |
5689 assert((isReadonly==0 || isReadWrite==0) && (isReadWrite || isReadonly)); | |
5690 assert(isCreate==0 || isReadWrite); | |
5691 assert(isExclusive==0 || isCreate); | |
5692 assert(isDelete==0 || isCreate); | |
5693 | |
5694 /* The main DB, main journal, WAL file and master journal are never | |
5695 ** automatically deleted. Nor are they ever temporary files. */ | |
5696 assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MAIN_DB ); | |
5697 assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MAIN_JOURNAL ); | |
5698 assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MASTER_JOURNAL ); | |
5699 assert( (!isDelete && zName) || eType!=SQLITE_OPEN_WAL ); | |
5700 | |
5701 /* Assert that the upper layer has set one of the "file-type" flags. */ | |
5702 assert( eType==SQLITE_OPEN_MAIN_DB || eType==SQLITE_OPEN_TEMP_DB | |
5703 || eType==SQLITE_OPEN_MAIN_JOURNAL || eType==SQLITE_OPEN_TEMP_JOURNAL | |
5704 || eType==SQLITE_OPEN_SUBJOURNAL || eType==SQLITE_OPEN_MASTER_JOURNAL | |
5705 || eType==SQLITE_OPEN_TRANSIENT_DB || eType==SQLITE_OPEN_WAL | |
5706 ); | |
5707 | |
5708 /* Detect a pid change and reset the PRNG. There is a race condition | |
5709 ** here such that two or more threads all trying to open databases at | |
5710 ** the same instant might all reset the PRNG. But multiple resets | |
5711 ** are harmless. | |
5712 */ | |
5713 if( randomnessPid!=getpid() ){ | |
5714 randomnessPid = getpid(); | |
5715 sqlite3_randomness(0,0); | |
5716 } | |
5717 | |
5718 memset(p, 0, sizeof(unixFile)); | |
5719 | |
5720 if( eType==SQLITE_OPEN_MAIN_DB ){ | |
5721 UnixUnusedFd *pUnused; | |
5722 pUnused = findReusableFd(zName, flags); | |
5723 if( pUnused ){ | |
5724 fd = pUnused->fd; | |
5725 }else{ | |
5726 pUnused = sqlite3_malloc(sizeof(*pUnused)); | |
5727 if( !pUnused ){ | |
5728 return SQLITE_NOMEM; | |
5729 } | |
5730 } | |
5731 p->pUnused = pUnused; | |
5732 | |
5733 /* Database filenames are double-zero terminated if they are not | |
5734 ** URIs with parameters. Hence, they can always be passed into | |
5735 ** sqlite3_uri_parameter(). */ | |
5736 assert( (flags & SQLITE_OPEN_URI) || zName[strlen(zName)+1]==0 ); | |
5737 | |
5738 }else if( !zName ){ | |
5739 /* If zName is NULL, the upper layer is requesting a temp file. */ | |
5740 assert(isDelete && !syncDir); | |
5741 rc = unixGetTempname(MAX_PATHNAME+2, zTmpname); | |
5742 if( rc!=SQLITE_OK ){ | |
5743 return rc; | |
5744 } | |
5745 zName = zTmpname; | |
5746 | |
5747 /* Generated temporary filenames are always double-zero terminated | |
5748 ** for use by sqlite3_uri_parameter(). */ | |
5749 assert( zName[strlen(zName)+1]==0 ); | |
5750 } | |
5751 | |
5752 /* Determine the value of the flags parameter passed to POSIX function | |
5753 ** open(). These must be calculated even if open() is not called, as | |
5754 ** they may be stored as part of the file handle and used by the | |
5755 ** 'conch file' locking functions later on. */ | |
5756 if( isReadonly ) openFlags |= O_RDONLY; | |
5757 if( isReadWrite ) openFlags |= O_RDWR; | |
5758 if( isCreate ) openFlags |= O_CREAT; | |
5759 if( isExclusive ) openFlags |= (O_EXCL|O_NOFOLLOW); | |
5760 openFlags |= (O_LARGEFILE|O_BINARY); | |
5761 | |
5762 if( fd<0 ){ | |
5763 mode_t openMode; /* Permissions to create file with */ | |
5764 uid_t uid; /* Userid for the file */ | |
5765 gid_t gid; /* Groupid for the file */ | |
5766 rc = findCreateFileMode(zName, flags, &openMode, &uid, &gid); | |
5767 if( rc!=SQLITE_OK ){ | |
5768 assert( !p->pUnused ); | |
5769 assert( eType==SQLITE_OPEN_WAL || eType==SQLITE_OPEN_MAIN_JOURNAL ); | |
5770 return rc; | |
5771 } | |
5772 fd = robust_open(zName, openFlags, openMode); | |
5773 OSTRACE(("OPENX %-3d %s 0%o\n", fd, zName, openFlags)); | |
5774 if( fd<0 && errno!=EISDIR && isReadWrite && !isExclusive ){ | |
5775 /* Failed to open the file for read/write access. Try read-only. */ | |
5776 flags &= ~(SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE); | |
5777 openFlags &= ~(O_RDWR|O_CREAT); | |
5778 flags |= SQLITE_OPEN_READONLY; | |
5779 openFlags |= O_RDONLY; | |
5780 isReadonly = 1; | |
5781 fd = robust_open(zName, openFlags, openMode); | |
5782 } | |
5783 if( fd<0 ){ | |
5784 rc = unixLogError(SQLITE_CANTOPEN_BKPT, "open", zName); | |
5785 goto open_finished; | |
5786 } | |
5787 | |
5788 /* If this process is running as root and if creating a new rollback | |
5789 ** journal or WAL file, set the ownership of the journal or WAL to be | |
5790 ** the same as the original database. | |
5791 */ | |
5792 if( flags & (SQLITE_OPEN_WAL|SQLITE_OPEN_MAIN_JOURNAL) ){ | |
5793 osFchown(fd, uid, gid); | |
5794 } | |
5795 } | |
5796 assert( fd>=0 ); | |
5797 if( pOutFlags ){ | |
5798 *pOutFlags = flags; | |
5799 } | |
5800 | |
5801 if( p->pUnused ){ | |
5802 p->pUnused->fd = fd; | |
5803 p->pUnused->flags = flags; | |
5804 } | |
5805 | |
5806 if( isDelete ){ | |
5807 #if OS_VXWORKS | |
5808 zPath = zName; | |
5809 #elif defined(SQLITE_UNLINK_AFTER_CLOSE) | |
5810 zPath = sqlite3_mprintf("%s", zName); | |
5811 if( zPath==0 ){ | |
5812 robust_close(p, fd, __LINE__); | |
5813 return SQLITE_NOMEM; | |
5814 } | |
5815 #else | |
5816 osUnlink(zName); | |
5817 #endif | |
5818 } | |
5819 #if SQLITE_ENABLE_LOCKING_STYLE | |
5820 else{ | |
5821 p->openFlags = openFlags; | |
5822 } | |
5823 #endif | |
5824 | |
5825 noLock = eType!=SQLITE_OPEN_MAIN_DB; | |
5826 | |
5827 | |
5828 #if defined(__APPLE__) || SQLITE_ENABLE_LOCKING_STYLE | |
5829 if( fstatfs(fd, &fsInfo) == -1 ){ | |
5830 ((unixFile*)pFile)->lastErrno = errno; | |
5831 robust_close(p, fd, __LINE__); | |
5832 return SQLITE_IOERR_ACCESS; | |
5833 } | |
5834 if (0 == strncmp("msdos", fsInfo.f_fstypename, 5)) { | |
5835 ((unixFile*)pFile)->fsFlags |= SQLITE_FSFLAGS_IS_MSDOS; | |
5836 } | |
5837 #endif | |
5838 | |
5839 /* Set up appropriate ctrlFlags */ | |
5840 if( isDelete ) ctrlFlags |= UNIXFILE_DELETE; | |
5841 if( isReadonly ) ctrlFlags |= UNIXFILE_RDONLY; | |
5842 if( noLock ) ctrlFlags |= UNIXFILE_NOLOCK; | |
5843 if( syncDir ) ctrlFlags |= UNIXFILE_DIRSYNC; | |
5844 if( flags & SQLITE_OPEN_URI ) ctrlFlags |= UNIXFILE_URI; | |
5845 | |
5846 #if SQLITE_ENABLE_LOCKING_STYLE | |
5847 #if SQLITE_PREFER_PROXY_LOCKING | |
5848 isAutoProxy = 1; | |
5849 #endif | |
5850 if( isAutoProxy && (zPath!=NULL) && (!noLock) && pVfs->xOpen ){ | |
5851 char *envforce = getenv("SQLITE_FORCE_PROXY_LOCKING"); | |
5852 int useProxy = 0; | |
5853 | |
5854 /* SQLITE_FORCE_PROXY_LOCKING==1 means force always use proxy, 0 means | |
5855 ** never use proxy, NULL means use proxy for non-local files only. */ | |
5856 if( envforce!=NULL ){ | |
5857 useProxy = atoi(envforce)>0; | |
5858 }else{ | |
5859 if( statfs(zPath, &fsInfo) == -1 ){ | |
5860 /* In theory, the close(fd) call is sub-optimal. If the file opened | |
5861 ** with fd is a database file, and there are other connections open | |
5862 ** on that file that are currently holding advisory locks on it, | |
5863 ** then the call to close() will cancel those locks. In practice, | |
5864 ** we're assuming that statfs() doesn't fail very often. At least | |
5865 ** not while other file descriptors opened by the same process on | |
5866 ** the same file are working. */ | |
5867 p->lastErrno = errno; | |
5868 robust_close(p, fd, __LINE__); | |
5869 rc = SQLITE_IOERR_ACCESS; | |
5870 goto open_finished; | |
5871 } | |
5872 useProxy = !(fsInfo.f_flags&MNT_LOCAL); | |
5873 } | |
5874 if( useProxy ){ | |
5875 rc = fillInUnixFile(pVfs, fd, pFile, zPath, ctrlFlags); | |
5876 if( rc==SQLITE_OK ){ | |
5877 rc = proxyTransformUnixFile((unixFile*)pFile, ":auto:"); | |
5878 if( rc!=SQLITE_OK ){ | |
5879 /* Use unixClose to clean up the resources added in fillInUnixFile | |
5880 ** and clear all the structure's references. Specifically, | |
5881 ** pFile->pMethods will be NULL so sqlite3OsClose will be a no-op | |
5882 */ | |
5883 unixClose(pFile); | |
5884 return rc; | |
5885 } | |
5886 } | |
5887 goto open_finished; | |
5888 } | |
5889 } | |
5890 #endif | |
5891 | |
5892 rc = fillInUnixFile(pVfs, fd, pFile, zPath, ctrlFlags); | |
5893 | |
5894 open_finished: | |
5895 if( rc!=SQLITE_OK ){ | |
5896 sqlite3_free(p->pUnused); | |
5897 } | |
5898 return rc; | |
5899 } | |
5900 | |
5901 | |
5902 /* | |
5903 ** Delete the file at zPath. If the dirSync argument is true, fsync() | |
5904 ** the directory after deleting the file. | |
5905 */ | |
5906 static int unixDelete( | |
5907 sqlite3_vfs *NotUsed, /* VFS containing this as the xDelete method */ | |
5908 const char *zPath, /* Name of file to be deleted */ | |
5909 int dirSync /* If true, fsync() directory after deleting file */ | |
5910 ){ | |
5911 int rc = SQLITE_OK; | |
5912 UNUSED_PARAMETER(NotUsed); | |
5913 SimulateIOError(return SQLITE_IOERR_DELETE); | |
5914 if( osUnlink(zPath)==(-1) ){ | |
5915 if( errno==ENOENT | |
5916 #if OS_VXWORKS | |
5917 || osAccess(zPath,0)!=0 | |
5918 #endif | |
5919 ){ | |
5920 rc = SQLITE_IOERR_DELETE_NOENT; | |
5921 }else{ | |
5922 rc = unixLogError(SQLITE_IOERR_DELETE, "unlink", zPath); | |
5923 } | |
5924 return rc; | |
5925 } | |
5926 #ifndef SQLITE_DISABLE_DIRSYNC | |
5927 if( (dirSync & 1)!=0 ){ | |
5928 int fd; | |
5929 rc = osOpenDirectory(zPath, &fd); | |
5930 if( rc==SQLITE_OK ){ | |
5931 #if OS_VXWORKS | |
5932 if( fsync(fd)==-1 ) | |
5933 #else | |
5934 if( fsync(fd) ) | |
5935 #endif | |
5936 { | |
5937 rc = unixLogError(SQLITE_IOERR_DIR_FSYNC, "fsync", zPath); | |
5938 } | |
5939 robust_close(0, fd, __LINE__); | |
5940 }else if( rc==SQLITE_CANTOPEN ){ | |
5941 rc = SQLITE_OK; | |
5942 } | |
5943 } | |
5944 #endif | |
5945 return rc; | |
5946 } | |
5947 | |
5948 /* | |
5949 ** Test the existence of or access permissions of file zPath. The | |
5950 ** test performed depends on the value of flags: | |
5951 ** | |
5952 ** SQLITE_ACCESS_EXISTS: Return 1 if the file exists | |
5953 ** SQLITE_ACCESS_READWRITE: Return 1 if the file is read and writable. | |
5954 ** SQLITE_ACCESS_READONLY: Return 1 if the file is readable. | |
5955 ** | |
5956 ** Otherwise return 0. | |
5957 */ | |
5958 static int unixAccess( | |
5959 sqlite3_vfs *NotUsed, /* The VFS containing this xAccess method */ | |
5960 const char *zPath, /* Path of the file to examine */ | |
5961 int flags, /* What do we want to learn about the zPath file? */ | |
5962 int *pResOut /* Write result boolean here */ | |
5963 ){ | |
5964 int amode = 0; | |
5965 UNUSED_PARAMETER(NotUsed); | |
5966 SimulateIOError( return SQLITE_IOERR_ACCESS; ); | |
5967 switch( flags ){ | |
5968 case SQLITE_ACCESS_EXISTS: | |
5969 amode = F_OK; | |
5970 break; | |
5971 case SQLITE_ACCESS_READWRITE: | |
5972 amode = W_OK|R_OK; | |
5973 break; | |
5974 case SQLITE_ACCESS_READ: | |
5975 amode = R_OK; | |
5976 break; | |
5977 | |
5978 default: | |
5979 assert(!"Invalid flags argument"); | |
5980 } | |
5981 *pResOut = (osAccess(zPath, amode)==0); | |
5982 if( flags==SQLITE_ACCESS_EXISTS && *pResOut ){ | |
5983 struct stat buf; | |
5984 if( 0==osStat(zPath, &buf) && buf.st_size==0 ){ | |
5985 *pResOut = 0; | |
5986 } | |
5987 } | |
5988 return SQLITE_OK; | |
5989 } | |
5990 | |
5991 | |
5992 /* | |
5993 ** Turn a relative pathname into a full pathname. The relative path | |
5994 ** is stored as a nul-terminated string in the buffer pointed to by | |
5995 ** zPath. | |
5996 ** | |
5997 ** zOut points to a buffer of at least sqlite3_vfs.mxPathname bytes | |
5998 ** (in this case, MAX_PATHNAME bytes). The full-path is written to | |
5999 ** this buffer before returning. | |
6000 */ | |
6001 static int unixFullPathname( | |
6002 sqlite3_vfs *pVfs, /* Pointer to vfs object */ | |
6003 const char *zPath, /* Possibly relative input path */ | |
6004 int nOut, /* Size of output buffer in bytes */ | |
6005 char *zOut /* Output buffer */ | |
6006 ){ | |
6007 | |
6008 /* It's odd to simulate an io-error here, but really this is just | |
6009 ** using the io-error infrastructure to test that SQLite handles this | |
6010 ** function failing. This function could fail if, for example, the | |
6011 ** current working directory has been unlinked. | |
6012 */ | |
6013 SimulateIOError( return SQLITE_ERROR ); | |
6014 | |
6015 assert( pVfs->mxPathname==MAX_PATHNAME ); | |
6016 UNUSED_PARAMETER(pVfs); | |
6017 | |
6018 zOut[nOut-1] = '\0'; | |
6019 if( zPath[0]=='/' ){ | |
6020 sqlite3_snprintf(nOut, zOut, "%s", zPath); | |
6021 }else{ | |
6022 int nCwd; | |
6023 if( osGetcwd(zOut, nOut-1)==0 ){ | |
6024 return unixLogError(SQLITE_CANTOPEN_BKPT, "getcwd", zPath); | |
6025 } | |
6026 nCwd = (int)strlen(zOut); | |
6027 sqlite3_snprintf(nOut-nCwd, &zOut[nCwd], "/%s", zPath); | |
6028 } | |
6029 return SQLITE_OK; | |
6030 } | |
6031 | |
6032 | |
6033 #ifndef SQLITE_OMIT_LOAD_EXTENSION | |
6034 /* | |
6035 ** Interfaces for opening a shared library, finding entry points | |
6036 ** within the shared library, and closing the shared library. | |
6037 */ | |
6038 #include <dlfcn.h> | |
6039 static void *unixDlOpen(sqlite3_vfs *NotUsed, const char *zFilename){ | |
6040 UNUSED_PARAMETER(NotUsed); | |
6041 return dlopen(zFilename, RTLD_NOW | RTLD_GLOBAL); | |
6042 } | |
6043 | |
6044 /* | |
6045 ** SQLite calls this function immediately after a call to unixDlSym() or | |
6046 ** unixDlOpen() fails (returns a null pointer). If a more detailed error | |
6047 ** message is available, it is written to zBufOut. If no error message | |
6048 ** is available, zBufOut is left unmodified and SQLite uses a default | |
6049 ** error message. | |
6050 */ | |
6051 static void unixDlError(sqlite3_vfs *NotUsed, int nBuf, char *zBufOut){ | |
6052 const char *zErr; | |
6053 UNUSED_PARAMETER(NotUsed); | |
6054 unixEnterMutex(); | |
6055 zErr = dlerror(); | |
6056 if( zErr ){ | |
6057 sqlite3_snprintf(nBuf, zBufOut, "%s", zErr); | |
6058 } | |
6059 unixLeaveMutex(); | |
6060 } | |
6061 static void (*unixDlSym(sqlite3_vfs *NotUsed, void *p, const char*zSym))(void){ | |
6062 /* | |
6063 ** GCC with -pedantic-errors says that C90 does not allow a void* to be | |
6064 ** cast into a pointer to a function. And yet the library dlsym() routine | |
6065 ** returns a void* which is really a pointer to a function. So how do we | |
6066 ** use dlsym() with -pedantic-errors? | |
6067 ** | |
6068 ** Variable x below is defined to be a pointer to a function taking | |
6069 ** parameters void* and const char* and returning a pointer to a function. | |
6070 ** We initialize x by assigning it a pointer to the dlsym() function. | |
6071 ** (That assignment requires a cast.) Then we call the function that | |
6072 ** x points to. | |
6073 ** | |
6074 ** This work-around is unlikely to work correctly on any system where | |
6075 ** you really cannot cast a function pointer into void*. But then, on the | |
6076 ** other hand, dlsym() will not work on such a system either, so we have | |
6077 ** not really lost anything. | |
6078 */ | |
6079 void (*(*x)(void*,const char*))(void); | |
6080 UNUSED_PARAMETER(NotUsed); | |
6081 x = (void(*(*)(void*,const char*))(void))dlsym; | |
6082 return (*x)(p, zSym); | |
6083 } | |
6084 static void unixDlClose(sqlite3_vfs *NotUsed, void *pHandle){ | |
6085 UNUSED_PARAMETER(NotUsed); | |
6086 dlclose(pHandle); | |
6087 } | |
6088 #else /* if SQLITE_OMIT_LOAD_EXTENSION is defined: */ | |
6089 #define unixDlOpen 0 | |
6090 #define unixDlError 0 | |
6091 #define unixDlSym 0 | |
6092 #define unixDlClose 0 | |
6093 #endif | |
6094 | |
6095 /* | |
6096 ** Write nBuf bytes of random data to the supplied buffer zBuf. | |
6097 */ | |
6098 static int unixRandomness(sqlite3_vfs *NotUsed, int nBuf, char *zBuf){ | |
6099 UNUSED_PARAMETER(NotUsed); | |
6100 assert((size_t)nBuf>=(sizeof(time_t)+sizeof(int))); | |
6101 | |
6102 /* We have to initialize zBuf to prevent valgrind from reporting | |
6103 ** errors. The reports issued by valgrind are incorrect - we would | |
6104 ** prefer that the randomness be increased by making use of the | |
6105 ** uninitialized space in zBuf - but valgrind errors tend to worry | |
6106 ** some users. Rather than argue, it seems easier just to initialize | |
6107 ** the whole array and silence valgrind, even if that means less randomness | |
6108 ** in the random seed. | |
6109 ** | |
6110 ** When testing, initializing zBuf[] to zero is all we do. That means | |
6111 ** that we always use the same random number sequence. This makes the | |
6112 ** tests repeatable. | |
6113 */ | |
6114 memset(zBuf, 0, nBuf); | |
6115 randomnessPid = getpid(); | |
6116 #if !defined(SQLITE_TEST) | |
6117 { | |
6118 int fd, got; | |
6119 fd = robust_open("/dev/urandom", O_RDONLY, 0); | |
6120 if( fd<0 ){ | |
6121 time_t t; | |
6122 time(&t); | |
6123 memcpy(zBuf, &t, sizeof(t)); | |
6124 memcpy(&zBuf[sizeof(t)], &randomnessPid, sizeof(randomnessPid)); | |
6125 assert( sizeof(t)+sizeof(randomnessPid)<=(size_t)nBuf ); | |
6126 nBuf = sizeof(t) + sizeof(randomnessPid); | |
6127 }else{ | |
6128 do{ got = osRead(fd, zBuf, nBuf); }while( got<0 && errno==EINTR ); | |
6129 robust_close(0, fd, __LINE__); | |
6130 } | |
6131 } | |
6132 #endif | |
6133 return nBuf; | |
6134 } | |
6135 | |
6136 | |
6137 /* | |
6138 ** Sleep for a little while. Return the amount of time slept. | |
6139 ** The argument is the number of microseconds we want to sleep. | |
6140 ** The return value is the number of microseconds of sleep actually | |
6141 ** requested from the underlying operating system, a number which | |
6142 ** might be greater than or equal to the argument, but not less | |
6143 ** than the argument. | |
6144 */ | |
6145 static int unixSleep(sqlite3_vfs *NotUsed, int microseconds){ | |
6146 #if OS_VXWORKS | |
6147 struct timespec sp; | |
6148 | |
6149 sp.tv_sec = microseconds / 1000000; | |
6150 sp.tv_nsec = (microseconds % 1000000) * 1000; | |
6151 nanosleep(&sp, NULL); | |
6152 UNUSED_PARAMETER(NotUsed); | |
6153 return microseconds; | |
6154 #elif defined(HAVE_USLEEP) && HAVE_USLEEP | |
6155 usleep(microseconds); | |
6156 UNUSED_PARAMETER(NotUsed); | |
6157 return microseconds; | |
6158 #else | |
6159 int seconds = (microseconds+999999)/1000000; | |
6160 sleep(seconds); | |
6161 UNUSED_PARAMETER(NotUsed); | |
6162 return seconds*1000000; | |
6163 #endif | |
6164 } | |
6165 | |
6166 /* | |
6167 ** The following variable, if set to a non-zero value, is interpreted as | |
6168 ** the number of seconds since 1970 and is used to set the result of | |
6169 ** sqlite3OsCurrentTime() during testing. | |
6170 */ | |
6171 #ifdef SQLITE_TEST | |
6172 int sqlite3_current_time = 0; /* Fake system time in seconds since 1970. */ | |
6173 #endif | |
6174 | |
6175 /* | |
6176 ** Find the current time (in Universal Coordinated Time). Write into *piNow | |
6177 ** the current time and date as a Julian Day number times 86_400_000. In | |
6178 ** other words, write into *piNow the number of milliseconds since the Julian | |
6179 ** epoch of noon in Greenwich on November 24, 4714 B.C according to the | |
6180 ** proleptic Gregorian calendar. | |
6181 ** | |
6182 ** On success, return SQLITE_OK. Return SQLITE_ERROR if the time and date | |
6183 ** cannot be found. | |
6184 */ | |
6185 static int unixCurrentTimeInt64(sqlite3_vfs *NotUsed, sqlite3_int64 *piNow){ | |
6186 static const sqlite3_int64 unixEpoch = 24405875*(sqlite3_int64)8640000; | |
6187 int rc = SQLITE_OK; | |
6188 #if defined(NO_GETTOD) | |
6189 time_t t; | |
6190 time(&t); | |
6191 *piNow = ((sqlite3_int64)t)*1000 + unixEpoch; | |
6192 #elif OS_VXWORKS | |
6193 struct timespec sNow; | |
6194 clock_gettime(CLOCK_REALTIME, &sNow); | |
6195 *piNow = unixEpoch + 1000*(sqlite3_int64)sNow.tv_sec + sNow.tv_nsec/1000000; | |
6196 #else | |
6197 struct timeval sNow; | |
6198 if( gettimeofday(&sNow, 0)==0 ){ | |
6199 *piNow = unixEpoch + 1000*(sqlite3_int64)sNow.tv_sec + sNow.tv_usec/1000; | |
6200 }else{ | |
6201 rc = SQLITE_ERROR; | |
6202 } | |
6203 #endif | |
6204 | |
6205 #ifdef SQLITE_TEST | |
6206 if( sqlite3_current_time ){ | |
6207 *piNow = 1000*(sqlite3_int64)sqlite3_current_time + unixEpoch; | |
6208 } | |
6209 #endif | |
6210 UNUSED_PARAMETER(NotUsed); | |
6211 return rc; | |
6212 } | |
6213 | |
6214 /* | |
6215 ** Find the current time (in Universal Coordinated Time). Write the | |
6216 ** current time and date as a Julian Day number into *prNow and | |
6217 ** return 0. Return 1 if the time and date cannot be found. | |
6218 */ | |
6219 static int unixCurrentTime(sqlite3_vfs *NotUsed, double *prNow){ | |
6220 sqlite3_int64 i = 0; | |
6221 int rc; | |
6222 UNUSED_PARAMETER(NotUsed); | |
6223 rc = unixCurrentTimeInt64(0, &i); | |
6224 *prNow = i/86400000.0; | |
6225 return rc; | |
6226 } | |
6227 | |
6228 /* | |
6229 ** We added the xGetLastError() method with the intention of providing | |
6230 ** better low-level error messages when operating-system problems come up | |
6231 ** during SQLite operation. But so far, none of that has been implemented | |
6232 ** in the core. So this routine is never called. For now, it is merely | |
6233 ** a place-holder. | |
6234 */ | |
6235 static int unixGetLastError(sqlite3_vfs *NotUsed, int NotUsed2, char *NotUsed3){ | |
6236 UNUSED_PARAMETER(NotUsed); | |
6237 UNUSED_PARAMETER(NotUsed2); | |
6238 UNUSED_PARAMETER(NotUsed3); | |
6239 return 0; | |
6240 } | |
6241 | |
6242 | |
6243 /* | |
6244 ************************ End of sqlite3_vfs methods *************************** | |
6245 ******************************************************************************/ | |
6246 | |
6247 /****************************************************************************** | |
6248 ************************** Begin Proxy Locking ******************************** | |
6249 ** | |
6250 ** Proxy locking is a "uber-locking-method" in this sense: It uses the | |
6251 ** other locking methods on secondary lock files. Proxy locking is a | |
6252 ** meta-layer over top of the primitive locking implemented above. For | |
6253 ** this reason, the division that implements of proxy locking is deferred | |
6254 ** until late in the file (here) after all of the other I/O methods have | |
6255 ** been defined - so that the primitive locking methods are available | |
6256 ** as services to help with the implementation of proxy locking. | |
6257 ** | |
6258 **** | |
6259 ** | |
6260 ** The default locking schemes in SQLite use byte-range locks on the | |
6261 ** database file to coordinate safe, concurrent access by multiple readers | |
6262 ** and writers [http://sqlite.org/lockingv3.html]. The five file locking | |
6263 ** states (UNLOCKED, PENDING, SHARED, RESERVED, EXCLUSIVE) are implemented | |
6264 ** as POSIX read & write locks over fixed set of locations (via fsctl), | |
6265 ** on AFP and SMB only exclusive byte-range locks are available via fsctl | |
6266 ** with _IOWR('z', 23, struct ByteRangeLockPB2) to track the same 5 states. | |
6267 ** To simulate a F_RDLCK on the shared range, on AFP a randomly selected | |
6268 ** address in the shared range is taken for a SHARED lock, the entire | |
6269 ** shared range is taken for an EXCLUSIVE lock): | |
6270 ** | |
6271 ** PENDING_BYTE 0x40000000 | |
6272 ** RESERVED_BYTE 0x40000001 | |
6273 ** SHARED_RANGE 0x40000002 -> 0x40000200 | |
6274 ** | |
6275 ** This works well on the local file system, but shows a nearly 100x | |
6276 ** slowdown in read performance on AFP because the AFP client disables | |
6277 ** the read cache when byte-range locks are present. Enabling the read | |
6278 ** cache exposes a cache coherency problem that is present on all OS X | |
6279 ** supported network file systems. NFS and AFP both observe the | |
6280 ** close-to-open semantics for ensuring cache coherency | |
6281 ** [http://nfs.sourceforge.net/#faq_a8], which does not effectively | |
6282 ** address the requirements for concurrent database access by multiple | |
6283 ** readers and writers | |
6284 ** [http://www.nabble.com/SQLite-on-NFS-cache-coherency-td15655701.html]. | |
6285 ** | |
6286 ** To address the performance and cache coherency issues, proxy file locking | |
6287 ** changes the way database access is controlled by limiting access to a | |
6288 ** single host at a time and moving file locks off of the database file | |
6289 ** and onto a proxy file on the local file system. | |
6290 ** | |
6291 ** | |
6292 ** Using proxy locks | |
6293 ** ----------------- | |
6294 ** | |
6295 ** C APIs | |
6296 ** | |
6297 ** sqlite3_file_control(db, dbname, SQLITE_SET_LOCKPROXYFILE, | |
6298 ** <proxy_path> | ":auto:"); | |
6299 ** sqlite3_file_control(db, dbname, SQLITE_GET_LOCKPROXYFILE, &<proxy_path>); | |
6300 ** | |
6301 ** | |
6302 ** SQL pragmas | |
6303 ** | |
6304 ** PRAGMA [database.]lock_proxy_file=<proxy_path> | :auto: | |
6305 ** PRAGMA [database.]lock_proxy_file | |
6306 ** | |
6307 ** Specifying ":auto:" means that if there is a conch file with a matching | |
6308 ** host ID in it, the proxy path in the conch file will be used, otherwise | |
6309 ** a proxy path based on the user's temp dir | |
6310 ** (via confstr(_CS_DARWIN_USER_TEMP_DIR,...)) will be used and the | |
6311 ** actual proxy file name is generated from the name and path of the | |
6312 ** database file. For example: | |
6313 ** | |
6314 ** For database path "/Users/me/foo.db" | |
6315 ** The lock path will be "<tmpdir>/sqliteplocks/_Users_me_foo.db:auto:") | |
6316 ** | |
6317 ** Once a lock proxy is configured for a database connection, it can not | |
6318 ** be removed, however it may be switched to a different proxy path via | |
6319 ** the above APIs (assuming the conch file is not being held by another | |
6320 ** connection or process). | |
6321 ** | |
6322 ** | |
6323 ** How proxy locking works | |
6324 ** ----------------------- | |
6325 ** | |
6326 ** Proxy file locking relies primarily on two new supporting files: | |
6327 ** | |
6328 ** * conch file to limit access to the database file to a single host | |
6329 ** at a time | |
6330 ** | |
6331 ** * proxy file to act as a proxy for the advisory locks normally | |
6332 ** taken on the database | |
6333 ** | |
6334 ** The conch file - to use a proxy file, sqlite must first "hold the conch" | |
6335 ** by taking an sqlite-style shared lock on the conch file, reading the | |
6336 ** contents and comparing the host's unique host ID (see below) and lock | |
6337 ** proxy path against the values stored in the conch. The conch file is | |
6338 ** stored in the same directory as the database file and the file name | |
6339 ** is patterned after the database file name as ".<databasename>-conch". | |
6340 ** If the conch file does not exist, or its contents do not match the | |
6341 ** host ID and/or proxy path, then the lock is escalated to an exclusive | |
6342 ** lock and the conch file contents is updated with the host ID and proxy | |
6343 ** path and the lock is downgraded to a shared lock again. If the conch | |
6344 ** is held by another process (with a shared lock), the exclusive lock | |
6345 ** will fail and SQLITE_BUSY is returned. | |
6346 ** | |
6347 ** The proxy file - a single-byte file used for all advisory file locks | |
6348 ** normally taken on the database file. This allows for safe sharing | |
6349 ** of the database file for multiple readers and writers on the same | |
6350 ** host (the conch ensures that they all use the same local lock file). | |
6351 ** | |
6352 ** Requesting the lock proxy does not immediately take the conch, it is | |
6353 ** only taken when the first request to lock database file is made. | |
6354 ** This matches the semantics of the traditional locking behavior, where | |
6355 ** opening a connection to a database file does not take a lock on it. | |
6356 ** The shared lock and an open file descriptor are maintained until | |
6357 ** the connection to the database is closed. | |
6358 ** | |
6359 ** The proxy file and the lock file are never deleted so they only need | |
6360 ** to be created the first time they are used. | |
6361 ** | |
6362 ** Configuration options | |
6363 ** --------------------- | |
6364 ** | |
6365 ** SQLITE_PREFER_PROXY_LOCKING | |
6366 ** | |
6367 ** Database files accessed on non-local file systems are | |
6368 ** automatically configured for proxy locking, lock files are | |
6369 ** named automatically using the same logic as | |
6370 ** PRAGMA lock_proxy_file=":auto:" | |
6371 ** | |
6372 ** SQLITE_PROXY_DEBUG | |
6373 ** | |
6374 ** Enables the logging of error messages during host id file | |
6375 ** retrieval and creation | |
6376 ** | |
6377 ** LOCKPROXYDIR | |
6378 ** | |
6379 ** Overrides the default directory used for lock proxy files that | |
6380 ** are named automatically via the ":auto:" setting | |
6381 ** | |
6382 ** SQLITE_DEFAULT_PROXYDIR_PERMISSIONS | |
6383 ** | |
6384 ** Permissions to use when creating a directory for storing the | |
6385 ** lock proxy files, only used when LOCKPROXYDIR is not set. | |
6386 ** | |
6387 ** | |
6388 ** As mentioned above, when compiled with SQLITE_PREFER_PROXY_LOCKING, | |
6389 ** setting the environment variable SQLITE_FORCE_PROXY_LOCKING to 1 will | |
6390 ** force proxy locking to be used for every database file opened, and 0 | |
6391 ** will force automatic proxy locking to be disabled for all database | |
6392 ** files (explicitly calling the SQLITE_SET_LOCKPROXYFILE pragma or | |
6393 ** sqlite_file_control API is not affected by SQLITE_FORCE_PROXY_LOCKING). | |
6394 */ | |
6395 | |
6396 /* | |
6397 ** Proxy locking is only available on MacOSX | |
6398 */ | |
6399 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE | |
6400 | |
6401 /* | |
6402 ** The proxyLockingContext has the path and file structures for the remote | |
6403 ** and local proxy files in it | |
6404 */ | |
6405 typedef struct proxyLockingContext proxyLockingContext; | |
6406 struct proxyLockingContext { | |
6407 unixFile *conchFile; /* Open conch file */ | |
6408 char *conchFilePath; /* Name of the conch file */ | |
6409 unixFile *lockProxy; /* Open proxy lock file */ | |
6410 char *lockProxyPath; /* Name of the proxy lock file */ | |
6411 char *dbPath; /* Name of the open file */ | |
6412 int conchHeld; /* 1 if the conch is held, -1 if lockless */ | |
6413 void *oldLockingContext; /* Original lockingcontext to restore on close */ | |
6414 sqlite3_io_methods const *pOldMethod; /* Original I/O methods for close */ | |
6415 }; | |
6416 | |
6417 /* | |
6418 ** The proxy lock file path for the database at dbPath is written into lPath, | |
6419 ** which must point to valid, writable memory large enough for a maxLen length | |
6420 ** file path. | |
6421 */ | |
6422 static int proxyGetLockPath(const char *dbPath, char *lPath, size_t maxLen){ | |
6423 int len; | |
6424 int dbLen; | |
6425 int i; | |
6426 | |
6427 #ifdef LOCKPROXYDIR | |
6428 len = strlcpy(lPath, LOCKPROXYDIR, maxLen); | |
6429 #else | |
6430 # ifdef _CS_DARWIN_USER_TEMP_DIR | |
6431 { | |
6432 if( !confstr(_CS_DARWIN_USER_TEMP_DIR, lPath, maxLen) ){ | |
6433 OSTRACE(("GETLOCKPATH failed %s errno=%d pid=%d\n", | |
6434 lPath, errno, getpid())); | |
6435 return SQLITE_IOERR_LOCK; | |
6436 } | |
6437 len = strlcat(lPath, "sqliteplocks", maxLen); | |
6438 } | |
6439 # else | |
6440 len = strlcpy(lPath, "/tmp/", maxLen); | |
6441 # endif | |
6442 #endif | |
6443 | |
6444 if( lPath[len-1]!='/' ){ | |
6445 len = strlcat(lPath, "/", maxLen); | |
6446 } | |
6447 | |
6448 /* transform the db path to a unique cache name */ | |
6449 dbLen = (int)strlen(dbPath); | |
6450 for( i=0; i<dbLen && (i+len+7)<(int)maxLen; i++){ | |
6451 char c = dbPath[i]; | |
6452 lPath[i+len] = (c=='/')?'_':c; | |
6453 } | |
6454 lPath[i+len]='\0'; | |
6455 strlcat(lPath, ":auto:", maxLen); | |
6456 OSTRACE(("GETLOCKPATH proxy lock path=%s pid=%d\n", lPath, getpid())); | |
6457 return SQLITE_OK; | |
6458 } | |
6459 | |
6460 /* | |
6461 ** Creates the lock file and any missing directories in lockPath | |
6462 */ | |
6463 static int proxyCreateLockPath(const char *lockPath){ | |
6464 int i, len; | |
6465 char buf[MAXPATHLEN]; | |
6466 int start = 0; | |
6467 | |
6468 assert(lockPath!=NULL); | |
6469 /* try to create all the intermediate directories */ | |
6470 len = (int)strlen(lockPath); | |
6471 buf[0] = lockPath[0]; | |
6472 for( i=1; i<len; i++ ){ | |
6473 if( lockPath[i] == '/' && (i - start > 0) ){ | |
6474 /* only mkdir if leaf dir != "." or "/" or ".." */ | |
6475 if( i-start>2 || (i-start==1 && buf[start] != '.' && buf[start] != '/') | |
6476 || (i-start==2 && buf[start] != '.' && buf[start+1] != '.') ){ | |
6477 buf[i]='\0'; | |
6478 if( osMkdir(buf, SQLITE_DEFAULT_PROXYDIR_PERMISSIONS) ){ | |
6479 int err=errno; | |
6480 if( err!=EEXIST ) { | |
6481 OSTRACE(("CREATELOCKPATH FAILED creating %s, " | |
6482 "'%s' proxy lock path=%s pid=%d\n", | |
6483 buf, strerror(err), lockPath, getpid())); | |
6484 return err; | |
6485 } | |
6486 } | |
6487 } | |
6488 start=i+1; | |
6489 } | |
6490 buf[i] = lockPath[i]; | |
6491 } | |
6492 OSTRACE(("CREATELOCKPATH proxy lock path=%s pid=%d\n", lockPath, getpid())); | |
6493 return 0; | |
6494 } | |
6495 | |
6496 /* | |
6497 ** Create a new VFS file descriptor (stored in memory obtained from | |
6498 ** sqlite3_malloc) and open the file named "path" in the file descriptor. | |
6499 ** | |
6500 ** The caller is responsible not only for closing the file descriptor | |
6501 ** but also for freeing the memory associated with the file descriptor. | |
6502 */ | |
6503 static int proxyCreateUnixFile( | |
6504 const char *path, /* path for the new unixFile */ | |
6505 unixFile **ppFile, /* unixFile created and returned by ref */ | |
6506 int islockfile /* if non zero missing dirs will be created */ | |
6507 ) { | |
6508 int fd = -1; | |
6509 unixFile *pNew; | |
6510 int rc = SQLITE_OK; | |
6511 int openFlags = O_RDWR | O_CREAT; | |
6512 sqlite3_vfs dummyVfs; | |
6513 int terrno = 0; | |
6514 UnixUnusedFd *pUnused = NULL; | |
6515 | |
6516 /* 1. first try to open/create the file | |
6517 ** 2. if that fails, and this is a lock file (not-conch), try creating | |
6518 ** the parent directories and then try again. | |
6519 ** 3. if that fails, try to open the file read-only | |
6520 ** otherwise return BUSY (if lock file) or CANTOPEN for the conch file | |
6521 */ | |
6522 pUnused = findReusableFd(path, openFlags); | |
6523 if( pUnused ){ | |
6524 fd = pUnused->fd; | |
6525 }else{ | |
6526 pUnused = sqlite3_malloc(sizeof(*pUnused)); | |
6527 if( !pUnused ){ | |
6528 return SQLITE_NOMEM; | |
6529 } | |
6530 } | |
6531 if( fd<0 ){ | |
6532 fd = robust_open(path, openFlags, 0); | |
6533 terrno = errno; | |
6534 if( fd<0 && errno==ENOENT && islockfile ){ | |
6535 if( proxyCreateLockPath(path) == SQLITE_OK ){ | |
6536 fd = robust_open(path, openFlags, 0); | |
6537 } | |
6538 } | |
6539 } | |
6540 if( fd<0 ){ | |
6541 openFlags = O_RDONLY; | |
6542 fd = robust_open(path, openFlags, 0); | |
6543 terrno = errno; | |
6544 } | |
6545 if( fd<0 ){ | |
6546 if( islockfile ){ | |
6547 return SQLITE_BUSY; | |
6548 } | |
6549 switch (terrno) { | |
6550 case EACCES: | |
6551 return SQLITE_PERM; | |
6552 case EIO: | |
6553 return SQLITE_IOERR_LOCK; /* even though it is the conch */ | |
6554 default: | |
6555 return SQLITE_CANTOPEN_BKPT; | |
6556 } | |
6557 } | |
6558 | |
6559 pNew = (unixFile *)sqlite3_malloc(sizeof(*pNew)); | |
6560 if( pNew==NULL ){ | |
6561 rc = SQLITE_NOMEM; | |
6562 goto end_create_proxy; | |
6563 } | |
6564 memset(pNew, 0, sizeof(unixFile)); | |
6565 pNew->openFlags = openFlags; | |
6566 memset(&dummyVfs, 0, sizeof(dummyVfs)); | |
6567 dummyVfs.pAppData = (void*)&autolockIoFinder; | |
6568 dummyVfs.zName = "dummy"; | |
6569 pUnused->fd = fd; | |
6570 pUnused->flags = openFlags; | |
6571 pNew->pUnused = pUnused; | |
6572 | |
6573 rc = fillInUnixFile(&dummyVfs, fd, (sqlite3_file*)pNew, path, 0); | |
6574 if( rc==SQLITE_OK ){ | |
6575 *ppFile = pNew; | |
6576 return SQLITE_OK; | |
6577 } | |
6578 end_create_proxy: | |
6579 robust_close(pNew, fd, __LINE__); | |
6580 sqlite3_free(pNew); | |
6581 sqlite3_free(pUnused); | |
6582 return rc; | |
6583 } | |
6584 | |
6585 #ifdef SQLITE_TEST | |
6586 /* simulate multiple hosts by creating unique hostid file paths */ | |
6587 int sqlite3_hostid_num = 0; | |
6588 #endif | |
6589 | |
6590 #define PROXY_HOSTIDLEN 16 /* conch file host id length */ | |
6591 | |
6592 /* Not always defined in the headers as it ought to be */ | |
6593 extern int gethostuuid(uuid_t id, const struct timespec *wait); | |
6594 | |
6595 /* get the host ID via gethostuuid(), pHostID must point to PROXY_HOSTIDLEN | |
6596 ** bytes of writable memory. | |
6597 */ | |
6598 static int proxyGetHostID(unsigned char *pHostID, int *pError){ | |
6599 assert(PROXY_HOSTIDLEN == sizeof(uuid_t)); | |
6600 memset(pHostID, 0, PROXY_HOSTIDLEN); | |
6601 #if defined(__MAX_OS_X_VERSION_MIN_REQUIRED)\ | |
6602 && __MAC_OS_X_VERSION_MIN_REQUIRED<1050 | |
6603 { | |
6604 static const struct timespec timeout = {1, 0}; /* 1 sec timeout */ | |
6605 if( gethostuuid(pHostID, &timeout) ){ | |
6606 int err = errno; | |
6607 if( pError ){ | |
6608 *pError = err; | |
6609 } | |
6610 return SQLITE_IOERR; | |
6611 } | |
6612 } | |
6613 #else | |
6614 UNUSED_PARAMETER(pError); | |
6615 #endif | |
6616 #ifdef SQLITE_TEST | |
6617 /* simulate multiple hosts by creating unique hostid file paths */ | |
6618 if( sqlite3_hostid_num != 0){ | |
6619 pHostID[0] = (char)(pHostID[0] + (char)(sqlite3_hostid_num & 0xFF)); | |
6620 } | |
6621 #endif | |
6622 | |
6623 return SQLITE_OK; | |
6624 } | |
6625 | |
6626 /* The conch file contains the header, host id and lock file path | |
6627 */ | |
6628 #define PROXY_CONCHVERSION 2 /* 1-byte header, 16-byte host id, path */ | |
6629 #define PROXY_HEADERLEN 1 /* conch file header length */ | |
6630 #define PROXY_PATHINDEX (PROXY_HEADERLEN+PROXY_HOSTIDLEN) | |
6631 #define PROXY_MAXCONCHLEN (PROXY_HEADERLEN+PROXY_HOSTIDLEN+MAXPATHLEN) | |
6632 | |
6633 /* | |
6634 ** Takes an open conch file, copies the contents to a new path and then moves | |
6635 ** it back. The newly created file's file descriptor is assigned to the | |
6636 ** conch file structure and finally the original conch file descriptor is | |
6637 ** closed. Returns zero if successful. | |
6638 */ | |
6639 static int proxyBreakConchLock(unixFile *pFile, uuid_t myHostID){ | |
6640 proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext; | |
6641 unixFile *conchFile = pCtx->conchFile; | |
6642 char tPath[MAXPATHLEN]; | |
6643 char buf[PROXY_MAXCONCHLEN]; | |
6644 char *cPath = pCtx->conchFilePath; | |
6645 size_t readLen = 0; | |
6646 size_t pathLen = 0; | |
6647 char errmsg[64] = ""; | |
6648 int fd = -1; | |
6649 int rc = -1; | |
6650 UNUSED_PARAMETER(myHostID); | |
6651 | |
6652 /* create a new path by replace the trailing '-conch' with '-break' */ | |
6653 pathLen = strlcpy(tPath, cPath, MAXPATHLEN); | |
6654 if( pathLen>MAXPATHLEN || pathLen<6 || | |
6655 (strlcpy(&tPath[pathLen-5], "break", 6) != 5) ){ | |
6656 sqlite3_snprintf(sizeof(errmsg),errmsg,"path error (len %d)",(int)pathLen); | |
6657 goto end_breaklock; | |
6658 } | |
6659 /* read the conch content */ | |
6660 readLen = osPread(conchFile->h, buf, PROXY_MAXCONCHLEN, 0); | |
6661 if( readLen<PROXY_PATHINDEX ){ | |
6662 sqlite3_snprintf(sizeof(errmsg),errmsg,"read error (len %d)",(int)readLen); | |
6663 goto end_breaklock; | |
6664 } | |
6665 /* write it out to the temporary break file */ | |
6666 fd = robust_open(tPath, (O_RDWR|O_CREAT|O_EXCL), 0); | |
6667 if( fd<0 ){ | |
6668 sqlite3_snprintf(sizeof(errmsg), errmsg, "create failed (%d)", errno); | |
6669 goto end_breaklock; | |
6670 } | |
6671 if( osPwrite(fd, buf, readLen, 0) != (ssize_t)readLen ){ | |
6672 sqlite3_snprintf(sizeof(errmsg), errmsg, "write failed (%d)", errno); | |
6673 goto end_breaklock; | |
6674 } | |
6675 if( rename(tPath, cPath) ){ | |
6676 sqlite3_snprintf(sizeof(errmsg), errmsg, "rename failed (%d)", errno); | |
6677 goto end_breaklock; | |
6678 } | |
6679 rc = 0; | |
6680 fprintf(stderr, "broke stale lock on %s\n", cPath); | |
6681 robust_close(pFile, conchFile->h, __LINE__); | |
6682 conchFile->h = fd; | |
6683 conchFile->openFlags = O_RDWR | O_CREAT; | |
6684 | |
6685 end_breaklock: | |
6686 if( rc ){ | |
6687 if( fd>=0 ){ | |
6688 osUnlink(tPath); | |
6689 robust_close(pFile, fd, __LINE__); | |
6690 } | |
6691 fprintf(stderr, "failed to break stale lock on %s, %s\n", cPath, errmsg); | |
6692 } | |
6693 return rc; | |
6694 } | |
6695 | |
6696 /* Take the requested lock on the conch file and break a stale lock if the | |
6697 ** host id matches. | |
6698 */ | |
6699 static int proxyConchLock(unixFile *pFile, uuid_t myHostID, int lockType){ | |
6700 proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext; | |
6701 unixFile *conchFile = pCtx->conchFile; | |
6702 int rc = SQLITE_OK; | |
6703 int nTries = 0; | |
6704 struct timespec conchModTime; | |
6705 | |
6706 memset(&conchModTime, 0, sizeof(conchModTime)); | |
6707 do { | |
6708 rc = conchFile->pMethod->xLock((sqlite3_file*)conchFile, lockType); | |
6709 nTries ++; | |
6710 if( rc==SQLITE_BUSY ){ | |
6711 /* If the lock failed (busy): | |
6712 * 1st try: get the mod time of the conch, wait 0.5s and try again. | |
6713 * 2nd try: fail if the mod time changed or host id is different, wait | |
6714 * 10 sec and try again | |
6715 * 3rd try: break the lock unless the mod time has changed. | |
6716 */ | |
6717 struct stat buf; | |
6718 if( osFstat(conchFile->h, &buf) ){ | |
6719 pFile->lastErrno = errno; | |
6720 return SQLITE_IOERR_LOCK; | |
6721 } | |
6722 | |
6723 if( nTries==1 ){ | |
6724 conchModTime = buf.st_mtimespec; | |
6725 usleep(500000); /* wait 0.5 sec and try the lock again*/ | |
6726 continue; | |
6727 } | |
6728 | |
6729 assert( nTries>1 ); | |
6730 if( conchModTime.tv_sec != buf.st_mtimespec.tv_sec || | |
6731 conchModTime.tv_nsec != buf.st_mtimespec.tv_nsec ){ | |
6732 return SQLITE_BUSY; | |
6733 } | |
6734 | |
6735 if( nTries==2 ){ | |
6736 char tBuf[PROXY_MAXCONCHLEN]; | |
6737 int len = osPread(conchFile->h, tBuf, PROXY_MAXCONCHLEN, 0); | |
6738 if( len<0 ){ | |
6739 pFile->lastErrno = errno; | |
6740 return SQLITE_IOERR_LOCK; | |
6741 } | |
6742 if( len>PROXY_PATHINDEX && tBuf[0]==(char)PROXY_CONCHVERSION){ | |
6743 /* don't break the lock if the host id doesn't match */ | |
6744 if( 0!=memcmp(&tBuf[PROXY_HEADERLEN], myHostID, PROXY_HOSTIDLEN) ){ | |
6745 return SQLITE_BUSY; | |
6746 } | |
6747 }else{ | |
6748 /* don't break the lock on short read or a version mismatch */ | |
6749 return SQLITE_BUSY; | |
6750 } | |
6751 usleep(10000000); /* wait 10 sec and try the lock again */ | |
6752 continue; | |
6753 } | |
6754 | |
6755 assert( nTries==3 ); | |
6756 if( 0==proxyBreakConchLock(pFile, myHostID) ){ | |
6757 rc = SQLITE_OK; | |
6758 if( lockType==EXCLUSIVE_LOCK ){ | |
6759 rc = conchFile->pMethod->xLock((sqlite3_file*)conchFile, SHARED_LOCK);
| |
6760 } | |
6761 if( !rc ){ | |
6762 rc = conchFile->pMethod->xLock((sqlite3_file*)conchFile, lockType); | |
6763 } | |
6764 } | |
6765 } | |
6766 } while( rc==SQLITE_BUSY && nTries<3 ); | |
6767 | |
6768 return rc; | |
6769 } | |
6770 | |
6771 /* Takes the conch by taking a shared lock and read the contents conch, if | |
6772 ** lockPath is non-NULL, the host ID and lock file path must match. A NULL | |
6773 ** lockPath means that the lockPath in the conch file will be used if the | |
6774 ** host IDs match, or a new lock path will be generated automatically | |
6775 ** and written to the conch file. | |
6776 */ | |
6777 static int proxyTakeConch(unixFile *pFile){ | |
6778 proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext; | |
6779 | |
6780 if( pCtx->conchHeld!=0 ){ | |
6781 return SQLITE_OK; | |
6782 }else{ | |
6783 unixFile *conchFile = pCtx->conchFile; | |
6784 uuid_t myHostID; | |
6785 int pError = 0; | |
6786 char readBuf[PROXY_MAXCONCHLEN]; | |
6787 char lockPath[MAXPATHLEN]; | |
6788 char *tempLockPath = NULL; | |
6789 int rc = SQLITE_OK; | |
6790 int createConch = 0; | |
6791 int hostIdMatch = 0; | |
6792 int readLen = 0; | |
6793 int tryOldLockPath = 0; | |
6794 int forceNewLockPath = 0; | |
6795 | |
6796 OSTRACE(("TAKECONCH %d for %s pid=%d\n", conchFile->h, | |
6797 (pCtx->lockProxyPath ? pCtx->lockProxyPath : ":auto:"), getpid())); | |
6798 | |
6799 rc = proxyGetHostID(myHostID, &pError); | |
6800 if( (rc&0xff)==SQLITE_IOERR ){ | |
6801 pFile->lastErrno = pError; | |
6802 goto end_takeconch; | |
6803 } | |
6804 rc = proxyConchLock(pFile, myHostID, SHARED_LOCK); | |
6805 if( rc!=SQLITE_OK ){ | |
6806 goto end_takeconch; | |
6807 } | |
6808 /* read the existing conch file */ | |
6809 readLen = seekAndRead((unixFile*)conchFile, 0, readBuf, PROXY_MAXCONCHLEN); | |
6810 if( readLen<0 ){ | |
6811 /* I/O error: lastErrno set by seekAndRead */ | |
6812 pFile->lastErrno = conchFile->lastErrno; | |
6813 rc = SQLITE_IOERR_READ; | |
6814 goto end_takeconch; | |
6815 }else if( readLen<=(PROXY_HEADERLEN+PROXY_HOSTIDLEN) || | |
6816 readBuf[0]!=(char)PROXY_CONCHVERSION ){ | |
6817 /* a short read or version format mismatch means we need to create a new | |
6818 ** conch file. | |
6819 */ | |
6820 createConch = 1; | |
6821 } | |
6822 /* if the host id matches and the lock path already exists in the conch | |
6823 ** we'll try to use the path there, if we can't open that path, we'll | |
6824 ** retry with a new auto-generated path | |
6825 */ | |
6826 do { /* in case we need to try again for an :auto: named lock file */ | |
6827 | |
6828 if( !createConch && !forceNewLockPath ){ | |
6829 hostIdMatch = !memcmp(&readBuf[PROXY_HEADERLEN], myHostID, | |
6830 PROXY_HOSTIDLEN); | |
6831 /* if the conch has data compare the contents */ | |
6832 if( !pCtx->lockProxyPath ){ | |
6833 /* for auto-named local lock file, just check the host ID and we'll | |
6834 ** use the local lock file path that's already in there | |
6835 */ | |
6836 if( hostIdMatch ){ | |
6837 size_t pathLen = (readLen - PROXY_PATHINDEX); | |
6838 | |
6839 if( pathLen>=MAXPATHLEN ){ | |
6840 pathLen=MAXPATHLEN-1; | |
6841 } | |
6842 memcpy(lockPath, &readBuf[PROXY_PATHINDEX], pathLen); | |
6843 lockPath[pathLen] = 0; | |
6844 tempLockPath = lockPath; | |
6845 tryOldLockPath = 1; | |
6846 /* create a copy of the lock path if the conch is taken */ | |
6847 goto end_takeconch; | |
6848 } | |
6849 }else if( hostIdMatch | |
6850 && !strncmp(pCtx->lockProxyPath, &readBuf[PROXY_PATHINDEX], | |
6851 readLen-PROXY_PATHINDEX) | |
6852 ){ | |
6853 /* conch host and lock path match */ | |
6854 goto end_takeconch; | |
6855 } | |
6856 } | |
6857 | |
6858 /* if the conch isn't writable and doesn't match, we can't take it */ | |
6859 if( (conchFile->openFlags&O_RDWR) == 0 ){ | |
6860 rc = SQLITE_BUSY; | |
6861 goto end_takeconch; | |
6862 } | |
6863 | |
6864 /* either the conch didn't match or we need to create a new one */ | |
6865 if( !pCtx->lockProxyPath ){ | |
6866 proxyGetLockPath(pCtx->dbPath, lockPath, MAXPATHLEN); | |
6867 tempLockPath = lockPath; | |
6868 /* create a copy of the lock path _only_ if the conch is taken */ | |
6869 } | |
6870 | |
6871 /* update conch with host and path (this will fail if other process | |
6872 ** has a shared lock already), if the host id matches, use the big | |
6873 ** stick. | |
6874 */ | |
6875 futimes(conchFile->h, NULL); | |
6876 if( hostIdMatch && !createConch ){ | |
6877 if( conchFile->pInode && conchFile->pInode->nShared>1 ){ | |
6878 /* We are trying for an exclusive lock but another thread in this | |
6879 ** same process is still holding a shared lock. */ | |
6880 rc = SQLITE_BUSY; | |
6881 } else { | |
6882 rc = proxyConchLock(pFile, myHostID, EXCLUSIVE_LOCK); | |
6883 } | |
6884 }else{ | |
6885 rc = conchFile->pMethod->xLock((sqlite3_file*)conchFile, EXCLUSIVE_LOCK)
; | |
6886 } | |
6887 if( rc==SQLITE_OK ){ | |
6888 char writeBuffer[PROXY_MAXCONCHLEN]; | |
6889 int writeSize = 0; | |
6890 | |
6891 writeBuffer[0] = (char)PROXY_CONCHVERSION; | |
6892 memcpy(&writeBuffer[PROXY_HEADERLEN], myHostID, PROXY_HOSTIDLEN); | |
6893 if( pCtx->lockProxyPath!=NULL ){ | |
6894 strlcpy(&writeBuffer[PROXY_PATHINDEX], pCtx->lockProxyPath, MAXPATHLEN
); | |
6895 }else{ | |
6896 strlcpy(&writeBuffer[PROXY_PATHINDEX], tempLockPath, MAXPATHLEN); | |
6897 } | |
6898 writeSize = PROXY_PATHINDEX + strlen(&writeBuffer[PROXY_PATHINDEX]); | |
6899 robust_ftruncate(conchFile->h, writeSize); | |
6900 rc = unixWrite((sqlite3_file *)conchFile, writeBuffer, writeSize, 0); | |
6901 fsync(conchFile->h); | |
6902 /* If we created a new conch file (not just updated the contents of a | |
6903 ** valid conch file), try to match the permissions of the database | |
6904 */ | |
6905 if( rc==SQLITE_OK && createConch ){ | |
6906 struct stat buf; | |
6907 int err = osFstat(pFile->h, &buf); | |
6908 if( err==0 ){ | |
6909 mode_t cmode = buf.st_mode&(S_IRUSR|S_IWUSR | S_IRGRP|S_IWGRP | | |
6910 S_IROTH|S_IWOTH); | |
6911 /* try to match the database file R/W permissions, ignore failure */ | |
6912 #ifndef SQLITE_PROXY_DEBUG | |
6913 osFchmod(conchFile->h, cmode); | |
6914 #else | |
6915 do{ | |
6916 rc = osFchmod(conchFile->h, cmode); | |
6917 }while( rc==(-1) && errno==EINTR ); | |
6918 if( rc!=0 ){ | |
6919 int code = errno; | |
6920 fprintf(stderr, "fchmod %o FAILED with %d %s\n", | |
6921 cmode, code, strerror(code)); | |
6922 } else { | |
6923 fprintf(stderr, "fchmod %o SUCCEDED\n",cmode); | |
6924 } | |
6925 }else{ | |
6926 int code = errno; | |
6927 fprintf(stderr, "STAT FAILED[%d] with %d %s\n", | |
6928 err, code, strerror(code)); | |
6929 #endif | |
6930 } | |
6931 } | |
6932 } | |
6933 conchFile->pMethod->xUnlock((sqlite3_file*)conchFile, SHARED_LOCK); | |
6934 | |
6935 end_takeconch: | |
6936 OSTRACE(("TRANSPROXY: CLOSE %d\n", pFile->h)); | |
6937 if( rc==SQLITE_OK && pFile->openFlags ){ | |
6938 int fd; | |
6939 if( pFile->h>=0 ){ | |
6940 robust_close(pFile, pFile->h, __LINE__); | |
6941 } | |
6942 pFile->h = -1; | |
6943 fd = robust_open(pCtx->dbPath, pFile->openFlags, 0); | |
6944 OSTRACE(("TRANSPROXY: OPEN %d\n", fd)); | |
6945 if( fd>=0 ){ | |
6946 pFile->h = fd; | |
6947 }else{ | |
6948 rc=SQLITE_CANTOPEN_BKPT; /* SQLITE_BUSY? proxyTakeConch called | |
6949 during locking */ | |
6950 } | |
6951 } | |
6952 if( rc==SQLITE_OK && !pCtx->lockProxy ){ | |
6953 char *path = tempLockPath ? tempLockPath : pCtx->lockProxyPath; | |
6954 rc = proxyCreateUnixFile(path, &pCtx->lockProxy, 1); | |
6955 if( rc!=SQLITE_OK && rc!=SQLITE_NOMEM && tryOldLockPath ){ | |
6956 /* we couldn't create the proxy lock file with the old lock file path | |
6957 ** so try again via auto-naming | |
6958 */ | |
6959 forceNewLockPath = 1; | |
6960 tryOldLockPath = 0; | |
6961 continue; /* go back to the do {} while start point, try again */ | |
6962 } | |
6963 } | |
6964 if( rc==SQLITE_OK ){ | |
6965 /* Need to make a copy of path if we extracted the value | |
6966 ** from the conch file or the path was allocated on the stack | |
6967 */ | |
6968 if( tempLockPath ){ | |
6969 pCtx->lockProxyPath = sqlite3DbStrDup(0, tempLockPath); | |
6970 if( !pCtx->lockProxyPath ){ | |
6971 rc = SQLITE_NOMEM; | |
6972 } | |
6973 } | |
6974 } | |
6975 if( rc==SQLITE_OK ){ | |
6976 pCtx->conchHeld = 1; | |
6977 | |
6978 if( pCtx->lockProxy->pMethod == &afpIoMethods ){ | |
6979 afpLockingContext *afpCtx; | |
6980 afpCtx = (afpLockingContext *)pCtx->lockProxy->lockingContext; | |
6981 afpCtx->dbPath = pCtx->lockProxyPath; | |
6982 } | |
6983 } else { | |
6984 conchFile->pMethod->xUnlock((sqlite3_file*)conchFile, NO_LOCK); | |
6985 } | |
6986 OSTRACE(("TAKECONCH %d %s\n", conchFile->h, | |
6987 rc==SQLITE_OK?"ok":"failed")); | |
6988 return rc; | |
6989 } while (1); /* in case we need to retry the :auto: lock file - | |
6990 ** we should never get here except via the 'continue' call. */ | |
6991 } | |
6992 } | |
6993 | |
6994 /* | |
6995 ** If pFile holds a lock on a conch file, then release that lock. | |
6996 */ | |
6997 static int proxyReleaseConch(unixFile *pFile){ | |
6998 int rc = SQLITE_OK; /* Subroutine return code */ | |
6999 proxyLockingContext *pCtx; /* The locking context for the proxy lock */ | |
7000 unixFile *conchFile; /* Name of the conch file */ | |
7001 | |
7002 pCtx = (proxyLockingContext *)pFile->lockingContext; | |
7003 conchFile = pCtx->conchFile; | |
7004 OSTRACE(("RELEASECONCH %d for %s pid=%d\n", conchFile->h, | |
7005 (pCtx->lockProxyPath ? pCtx->lockProxyPath : ":auto:"), | |
7006 getpid())); | |
7007 if( pCtx->conchHeld>0 ){ | |
7008 rc = conchFile->pMethod->xUnlock((sqlite3_file*)conchFile, NO_LOCK); | |
7009 } | |
7010 pCtx->conchHeld = 0; | |
7011 OSTRACE(("RELEASECONCH %d %s\n", conchFile->h, | |
7012 (rc==SQLITE_OK ? "ok" : "failed"))); | |
7013 return rc; | |
7014 } | |
7015 | |
7016 /* | |
7017 ** Given the name of a database file, compute the name of its conch file. | |
7018 ** Store the conch filename in memory obtained from sqlite3_malloc(). | |
7019 ** Make *pConchPath point to the new name. Return SQLITE_OK on success | |
7020 ** or SQLITE_NOMEM if unable to obtain memory. | |
7021 ** | |
7022 ** The caller is responsible for ensuring that the allocated memory | |
7023 ** space is eventually freed. | |
7024 ** | |
7025 ** *pConchPath is set to NULL if a memory allocation error occurs. | |
7026 */ | |
7027 static int proxyCreateConchPathname(char *dbPath, char **pConchPath){ | |
7028 int i; /* Loop counter */ | |
7029 int len = (int)strlen(dbPath); /* Length of database filename - dbPath */ | |
7030 char *conchPath; /* buffer in which to construct conch name */ | |
7031 | |
7032 /* Allocate space for the conch filename and initialize the name to | |
7033 ** the name of the original database file. */ | |
7034 *pConchPath = conchPath = (char *)sqlite3_malloc(len + 8); | |
7035 if( conchPath==0 ){ | |
7036 return SQLITE_NOMEM; | |
7037 } | |
7038 memcpy(conchPath, dbPath, len+1); | |
7039 | |
7040 /* now insert a "." before the last / character */ | |
7041 for( i=(len-1); i>=0; i-- ){ | |
7042 if( conchPath[i]=='/' ){ | |
7043 i++; | |
7044 break; | |
7045 } | |
7046 } | |
7047 conchPath[i]='.'; | |
7048 while ( i<len ){ | |
7049 conchPath[i+1]=dbPath[i]; | |
7050 i++; | |
7051 } | |
7052 | |
7053 /* append the "-conch" suffix to the file */ | |
7054 memcpy(&conchPath[i+1], "-conch", 7); | |
7055 assert( (int)strlen(conchPath) == len+7 ); | |
7056 | |
7057 return SQLITE_OK; | |
7058 } | |
7059 | |
7060 | |
7061 /* Takes a fully configured proxy locking-style unix file and switches | |
7062 ** the local lock file path | |
7063 */ | |
7064 static int switchLockProxyPath(unixFile *pFile, const char *path) { | |
7065 proxyLockingContext *pCtx = (proxyLockingContext*)pFile->lockingContext; | |
7066 char *oldPath = pCtx->lockProxyPath; | |
7067 int rc = SQLITE_OK; | |
7068 | |
7069 if( pFile->eFileLock!=NO_LOCK ){ | |
7070 return SQLITE_BUSY; | |
7071 } | |
7072 | |
7073 /* nothing to do if the path is NULL, :auto: or matches the existing path */ | |
7074 if( !path || path[0]=='\0' || !strcmp(path, ":auto:") || | |
7075 (oldPath && !strncmp(oldPath, path, MAXPATHLEN)) ){ | |
7076 return SQLITE_OK; | |
7077 }else{ | |
7078 unixFile *lockProxy = pCtx->lockProxy; | |
7079 pCtx->lockProxy=NULL; | |
7080 pCtx->conchHeld = 0; | |
7081 if( lockProxy!=NULL ){ | |
7082 rc=lockProxy->pMethod->xClose((sqlite3_file *)lockProxy); | |
7083 if( rc ) return rc; | |
7084 sqlite3_free(lockProxy); | |
7085 } | |
7086 sqlite3_free(oldPath); | |
7087 pCtx->lockProxyPath = sqlite3DbStrDup(0, path); | |
7088 } | |
7089 | |
7090 return rc; | |
7091 } | |
7092 | |
7093 /* | |
7094 ** pFile is a file that has been opened by a prior xOpen call. dbPath | |
7095 ** is a string buffer at least MAXPATHLEN+1 characters in size. | |
7096 ** | |
7097 ** This routine find the filename associated with pFile and writes it | |
7098 ** int dbPath. | |
7099 */ | |
7100 static int proxyGetDbPathForUnixFile(unixFile *pFile, char *dbPath){ | |
7101 #if defined(__APPLE__) | |
7102 if( pFile->pMethod == &afpIoMethods ){ | |
7103 /* afp style keeps a reference to the db path in the filePath field | |
7104 ** of the struct */ | |
7105 assert( (int)strlen((char*)pFile->lockingContext)<=MAXPATHLEN ); | |
7106 strlcpy(dbPath, ((afpLockingContext *)pFile->lockingContext)->dbPath, MAXPAT
HLEN); | |
7107 } else | |
7108 #endif | |
7109 if( pFile->pMethod == &dotlockIoMethods ){ | |
7110 /* dot lock style uses the locking context to store the dot lock | |
7111 ** file path */ | |
7112 int len = strlen((char *)pFile->lockingContext) - strlen(DOTLOCK_SUFFIX); | |
7113 memcpy(dbPath, (char *)pFile->lockingContext, len + 1); | |
7114 }else{ | |
7115 /* all other styles use the locking context to store the db file path */ | |
7116 assert( strlen((char*)pFile->lockingContext)<=MAXPATHLEN ); | |
7117 strlcpy(dbPath, (char *)pFile->lockingContext, MAXPATHLEN); | |
7118 } | |
7119 return SQLITE_OK; | |
7120 } | |
7121 | |
7122 /* | |
7123 ** Takes an already filled in unix file and alters it so all file locking | |
7124 ** will be performed on the local proxy lock file. The following fields | |
7125 ** are preserved in the locking context so that they can be restored and | |
7126 ** the unix structure properly cleaned up at close time: | |
7127 ** ->lockingContext | |
7128 ** ->pMethod | |
7129 */ | |
7130 static int proxyTransformUnixFile(unixFile *pFile, const char *path) { | |
7131 proxyLockingContext *pCtx; | |
7132 char dbPath[MAXPATHLEN+1]; /* Name of the database file */ | |
7133 char *lockPath=NULL; | |
7134 int rc = SQLITE_OK; | |
7135 | |
7136 if( pFile->eFileLock!=NO_LOCK ){ | |
7137 return SQLITE_BUSY; | |
7138 } | |
7139 proxyGetDbPathForUnixFile(pFile, dbPath); | |
7140 if( !path || path[0]=='\0' || !strcmp(path, ":auto:") ){ | |
7141 lockPath=NULL; | |
7142 }else{ | |
7143 lockPath=(char *)path; | |
7144 } | |
7145 | |
7146 OSTRACE(("TRANSPROXY %d for %s pid=%d\n", pFile->h, | |
7147 (lockPath ? lockPath : ":auto:"), getpid())); | |
7148 | |
7149 pCtx = sqlite3_malloc( sizeof(*pCtx) ); | |
7150 if( pCtx==0 ){ | |
7151 return SQLITE_NOMEM; | |
7152 } | |
7153 memset(pCtx, 0, sizeof(*pCtx)); | |
7154 | |
7155 rc = proxyCreateConchPathname(dbPath, &pCtx->conchFilePath); | |
7156 if( rc==SQLITE_OK ){ | |
7157 rc = proxyCreateUnixFile(pCtx->conchFilePath, &pCtx->conchFile, 0); | |
7158 if( rc==SQLITE_CANTOPEN && ((pFile->openFlags&O_RDWR) == 0) ){ | |
7159 /* if (a) the open flags are not O_RDWR, (b) the conch isn't there, and | |
7160 ** (c) the file system is read-only, then enable no-locking access. | |
7161 ** Ugh, since O_RDONLY==0x0000 we test for !O_RDWR since unixOpen asserts | |
7162 ** that openFlags will have only one of O_RDONLY or O_RDWR. | |
7163 */ | |
7164 struct statfs fsInfo; | |
7165 struct stat conchInfo; | |
7166 int goLockless = 0; | |
7167 | |
7168 if( osStat(pCtx->conchFilePath, &conchInfo) == -1 ) { | |
7169 int err = errno; | |
7170 if( (err==ENOENT) && (statfs(dbPath, &fsInfo) != -1) ){ | |
7171 goLockless = (fsInfo.f_flags&MNT_RDONLY) == MNT_RDONLY; | |
7172 } | |
7173 } | |
7174 if( goLockless ){ | |
7175 pCtx->conchHeld = -1; /* read only FS/ lockless */ | |
7176 rc = SQLITE_OK; | |
7177 } | |
7178 } | |
7179 } | |
7180 if( rc==SQLITE_OK && lockPath ){ | |
7181 pCtx->lockProxyPath = sqlite3DbStrDup(0, lockPath); | |
7182 } | |
7183 | |
7184 if( rc==SQLITE_OK ){ | |
7185 pCtx->dbPath = sqlite3DbStrDup(0, dbPath); | |
7186 if( pCtx->dbPath==NULL ){ | |
7187 rc = SQLITE_NOMEM; | |
7188 } | |
7189 } | |
7190 if( rc==SQLITE_OK ){ | |
7191 /* all memory is allocated, proxys are created and assigned, | |
7192 ** switch the locking context and pMethod then return. | |
7193 */ | |
7194 pCtx->oldLockingContext = pFile->lockingContext; | |
7195 pFile->lockingContext = pCtx; | |
7196 pCtx->pOldMethod = pFile->pMethod; | |
7197 pFile->pMethod = &proxyIoMethods; | |
7198 }else{ | |
7199 if( pCtx->conchFile ){ | |
7200 pCtx->conchFile->pMethod->xClose((sqlite3_file *)pCtx->conchFile); | |
7201 sqlite3_free(pCtx->conchFile); | |
7202 } | |
7203 sqlite3DbFree(0, pCtx->lockProxyPath); | |
7204 sqlite3_free(pCtx->conchFilePath); | |
7205 sqlite3_free(pCtx); | |
7206 } | |
7207 OSTRACE(("TRANSPROXY %d %s\n", pFile->h, | |
7208 (rc==SQLITE_OK ? "ok" : "failed"))); | |
7209 return rc; | |
7210 } | |
7211 | |
7212 | |
7213 /* | |
7214 ** This routine handles sqlite3_file_control() calls that are specific | |
7215 ** to proxy locking. | |
7216 */ | |
7217 static int proxyFileControl(sqlite3_file *id, int op, void *pArg){ | |
7218 switch( op ){ | |
7219 case SQLITE_GET_LOCKPROXYFILE: { | |
7220 unixFile *pFile = (unixFile*)id; | |
7221 if( pFile->pMethod == &proxyIoMethods ){ | |
7222 proxyLockingContext *pCtx = (proxyLockingContext*)pFile->lockingContext; | |
7223 proxyTakeConch(pFile); | |
7224 if( pCtx->lockProxyPath ){ | |
7225 *(const char **)pArg = pCtx->lockProxyPath; | |
7226 }else{ | |
7227 *(const char **)pArg = ":auto: (not held)"; | |
7228 } | |
7229 } else { | |
7230 *(const char **)pArg = NULL; | |
7231 } | |
7232 return SQLITE_OK; | |
7233 } | |
7234 case SQLITE_SET_LOCKPROXYFILE: { | |
7235 unixFile *pFile = (unixFile*)id; | |
7236 int rc = SQLITE_OK; | |
7237 int isProxyStyle = (pFile->pMethod == &proxyIoMethods); | |
7238 if( pArg==NULL || (const char *)pArg==0 ){ | |
7239 if( isProxyStyle ){ | |
7240 /* turn off proxy locking - not supported */ | |
7241 rc = SQLITE_ERROR /*SQLITE_PROTOCOL? SQLITE_MISUSE?*/; | |
7242 }else{ | |
7243 /* turn off proxy locking - already off - NOOP */ | |
7244 rc = SQLITE_OK; | |
7245 } | |
7246 }else{ | |
7247 const char *proxyPath = (const char *)pArg; | |
7248 if( isProxyStyle ){ | |
7249 proxyLockingContext *pCtx = | |
7250 (proxyLockingContext*)pFile->lockingContext; | |
7251 if( !strcmp(pArg, ":auto:") | |
7252 || (pCtx->lockProxyPath && | |
7253 !strncmp(pCtx->lockProxyPath, proxyPath, MAXPATHLEN)) | |
7254 ){ | |
7255 rc = SQLITE_OK; | |
7256 }else{ | |
7257 rc = switchLockProxyPath(pFile, proxyPath); | |
7258 } | |
7259 }else{ | |
7260 /* turn on proxy file locking */ | |
7261 rc = proxyTransformUnixFile(pFile, proxyPath); | |
7262 } | |
7263 } | |
7264 return rc; | |
7265 } | |
7266 default: { | |
7267 assert( 0 ); /* The call assures that only valid opcodes are sent */ | |
7268 } | |
7269 } | |
7270 /*NOTREACHED*/ | |
7271 return SQLITE_ERROR; | |
7272 } | |
7273 | |
7274 /* | |
7275 ** Within this division (the proxying locking implementation) the procedures | |
7276 ** above this point are all utilities. The lock-related methods of the | |
7277 ** proxy-locking sqlite3_io_method object follow. | |
7278 */ | |
7279 | |
7280 | |
7281 /* | |
7282 ** This routine checks if there is a RESERVED lock held on the specified | |
7283 ** file by this or any other process. If such a lock is held, set *pResOut | |
7284 ** to a non-zero value otherwise *pResOut is set to zero. The return value | |
7285 ** is set to SQLITE_OK unless an I/O error occurs during lock checking. | |
7286 */ | |
7287 static int proxyCheckReservedLock(sqlite3_file *id, int *pResOut) { | |
7288 unixFile *pFile = (unixFile*)id; | |
7289 int rc = proxyTakeConch(pFile); | |
7290 if( rc==SQLITE_OK ){ | |
7291 proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext; | |
7292 if( pCtx->conchHeld>0 ){ | |
7293 unixFile *proxy = pCtx->lockProxy; | |
7294 return proxy->pMethod->xCheckReservedLock((sqlite3_file*)proxy, pResOut); | |
7295 }else{ /* conchHeld < 0 is lockless */ | |
7296 pResOut=0; | |
7297 } | |
7298 } | |
7299 return rc; | |
7300 } | |
7301 | |
7302 /* | |
7303 ** Lock the file with the lock specified by parameter eFileLock - one | |
7304 ** of the following: | |
7305 ** | |
7306 ** (1) SHARED_LOCK | |
7307 ** (2) RESERVED_LOCK | |
7308 ** (3) PENDING_LOCK | |
7309 ** (4) EXCLUSIVE_LOCK | |
7310 ** | |
7311 ** Sometimes when requesting one lock state, additional lock states | |
7312 ** are inserted in between. The locking might fail on one of the later | |
7313 ** transitions leaving the lock state different from what it started but | |
7314 ** still short of its goal. The following chart shows the allowed | |
7315 ** transitions and the inserted intermediate states: | |
7316 ** | |
7317 ** UNLOCKED -> SHARED | |
7318 ** SHARED -> RESERVED | |
7319 ** SHARED -> (PENDING) -> EXCLUSIVE | |
7320 ** RESERVED -> (PENDING) -> EXCLUSIVE | |
7321 ** PENDING -> EXCLUSIVE | |
7322 ** | |
7323 ** This routine will only increase a lock. Use the sqlite3OsUnlock() | |
7324 ** routine to lower a locking level. | |
7325 */ | |
7326 static int proxyLock(sqlite3_file *id, int eFileLock) { | |
7327 unixFile *pFile = (unixFile*)id; | |
7328 int rc = proxyTakeConch(pFile); | |
7329 if( rc==SQLITE_OK ){ | |
7330 proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext; | |
7331 if( pCtx->conchHeld>0 ){ | |
7332 unixFile *proxy = pCtx->lockProxy; | |
7333 rc = proxy->pMethod->xLock((sqlite3_file*)proxy, eFileLock); | |
7334 pFile->eFileLock = proxy->eFileLock; | |
7335 }else{ | |
7336 /* conchHeld < 0 is lockless */ | |
7337 } | |
7338 } | |
7339 return rc; | |
7340 } | |
7341 | |
7342 | |
7343 /* | |
7344 ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock | |
7345 ** must be either NO_LOCK or SHARED_LOCK. | |
7346 ** | |
7347 ** If the locking level of the file descriptor is already at or below | |
7348 ** the requested locking level, this routine is a no-op. | |
7349 */ | |
7350 static int proxyUnlock(sqlite3_file *id, int eFileLock) { | |
7351 unixFile *pFile = (unixFile*)id; | |
7352 int rc = proxyTakeConch(pFile); | |
7353 if( rc==SQLITE_OK ){ | |
7354 proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext; | |
7355 if( pCtx->conchHeld>0 ){ | |
7356 unixFile *proxy = pCtx->lockProxy; | |
7357 rc = proxy->pMethod->xUnlock((sqlite3_file*)proxy, eFileLock); | |
7358 pFile->eFileLock = proxy->eFileLock; | |
7359 }else{ | |
7360 /* conchHeld < 0 is lockless */ | |
7361 } | |
7362 } | |
7363 return rc; | |
7364 } | |
7365 | |
7366 /* | |
7367 ** Close a file that uses proxy locks. | |
7368 */ | |
7369 static int proxyClose(sqlite3_file *id) { | |
7370 if( id ){ | |
7371 unixFile *pFile = (unixFile*)id; | |
7372 proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext; | |
7373 unixFile *lockProxy = pCtx->lockProxy; | |
7374 unixFile *conchFile = pCtx->conchFile; | |
7375 int rc = SQLITE_OK; | |
7376 | |
7377 if( lockProxy ){ | |
7378 rc = lockProxy->pMethod->xUnlock((sqlite3_file*)lockProxy, NO_LOCK); | |
7379 if( rc ) return rc; | |
7380 rc = lockProxy->pMethod->xClose((sqlite3_file*)lockProxy); | |
7381 if( rc ) return rc; | |
7382 sqlite3_free(lockProxy); | |
7383 pCtx->lockProxy = 0; | |
7384 } | |
7385 if( conchFile ){ | |
7386 if( pCtx->conchHeld ){ | |
7387 rc = proxyReleaseConch(pFile); | |
7388 if( rc ) return rc; | |
7389 } | |
7390 rc = conchFile->pMethod->xClose((sqlite3_file*)conchFile); | |
7391 if( rc ) return rc; | |
7392 sqlite3_free(conchFile); | |
7393 } | |
7394 sqlite3DbFree(0, pCtx->lockProxyPath); | |
7395 sqlite3_free(pCtx->conchFilePath); | |
7396 sqlite3DbFree(0, pCtx->dbPath); | |
7397 /* restore the original locking context and pMethod then close it */ | |
7398 pFile->lockingContext = pCtx->oldLockingContext; | |
7399 pFile->pMethod = pCtx->pOldMethod; | |
7400 sqlite3_free(pCtx); | |
7401 return pFile->pMethod->xClose(id); | |
7402 } | |
7403 return SQLITE_OK; | |
7404 } | |
7405 | |
7406 | |
7407 | |
7408 #endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */ | |
7409 /* | |
7410 ** The proxy locking style is intended for use with AFP filesystems. | |
7411 ** And since AFP is only supported on MacOSX, the proxy locking is also | |
7412 ** restricted to MacOSX. | |
7413 ** | |
7414 ** | |
7415 ******************* End of the proxy lock implementation ********************** | |
7416 ******************************************************************************/ | |
7417 | |
7418 /* | |
7419 ** Initialize the operating system interface. | |
7420 ** | |
7421 ** This routine registers all VFS implementations for unix-like operating | |
7422 ** systems. This routine, and the sqlite3_os_end() routine that follows, | |
7423 ** should be the only routines in this file that are visible from other | |
7424 ** files. | |
7425 ** | |
7426 ** This routine is called once during SQLite initialization and by a | |
7427 ** single thread. The memory allocation and mutex subsystems have not | |
7428 ** necessarily been initialized when this routine is called, and so they | |
7429 ** should not be used. | |
7430 */ | |
7431 int sqlite3_os_init(void){ | |
7432 /* | |
7433 ** The following macro defines an initializer for an sqlite3_vfs object. | |
7434 ** The name of the VFS is NAME. The pAppData is a pointer to a pointer | |
7435 ** to the "finder" function. (pAppData is a pointer to a pointer because | |
7436 ** silly C90 rules prohibit a void* from being cast to a function pointer | |
7437 ** and so we have to go through the intermediate pointer to avoid problems | |
7438 ** when compiling with -pedantic-errors on GCC.) | |
7439 ** | |
7440 ** The FINDER parameter to this macro is the name of the pointer to the | |
7441 ** finder-function. The finder-function returns a pointer to the | |
7442 ** sqlite_io_methods object that implements the desired locking | |
7443 ** behaviors. See the division above that contains the IOMETHODS | |
7444 ** macro for addition information on finder-functions. | |
7445 ** | |
7446 ** Most finders simply return a pointer to a fixed sqlite3_io_methods | |
7447 ** object. But the "autolockIoFinder" available on MacOSX does a little | |
7448 ** more than that; it looks at the filesystem type that hosts the | |
7449 ** database file and tries to choose an locking method appropriate for | |
7450 ** that filesystem time. | |
7451 */ | |
7452 #define UNIXVFS(VFSNAME, FINDER) { \ | |
7453 3, /* iVersion */ \ | |
7454 sizeof(unixFile), /* szOsFile */ \ | |
7455 MAX_PATHNAME, /* mxPathname */ \ | |
7456 0, /* pNext */ \ | |
7457 VFSNAME, /* zName */ \ | |
7458 (void*)&FINDER, /* pAppData */ \ | |
7459 unixOpen, /* xOpen */ \ | |
7460 unixDelete, /* xDelete */ \ | |
7461 unixAccess, /* xAccess */ \ | |
7462 unixFullPathname, /* xFullPathname */ \ | |
7463 unixDlOpen, /* xDlOpen */ \ | |
7464 unixDlError, /* xDlError */ \ | |
7465 unixDlSym, /* xDlSym */ \ | |
7466 unixDlClose, /* xDlClose */ \ | |
7467 unixRandomness, /* xRandomness */ \ | |
7468 unixSleep, /* xSleep */ \ | |
7469 unixCurrentTime, /* xCurrentTime */ \ | |
7470 unixGetLastError, /* xGetLastError */ \ | |
7471 unixCurrentTimeInt64, /* xCurrentTimeInt64 */ \ | |
7472 unixSetSystemCall, /* xSetSystemCall */ \ | |
7473 unixGetSystemCall, /* xGetSystemCall */ \ | |
7474 unixNextSystemCall, /* xNextSystemCall */ \ | |
7475 } | |
7476 | |
7477 /* | |
7478 ** All default VFSes for unix are contained in the following array. | |
7479 ** | |
7480 ** Note that the sqlite3_vfs.pNext field of the VFS object is modified | |
7481 ** by the SQLite core when the VFS is registered. So the following | |
7482 ** array cannot be const. | |
7483 */ | |
7484 static sqlite3_vfs aVfs[] = { | |
7485 #if SQLITE_ENABLE_LOCKING_STYLE && (OS_VXWORKS || defined(__APPLE__)) | |
7486 UNIXVFS("unix", autolockIoFinder ), | |
7487 #else | |
7488 UNIXVFS("unix", posixIoFinder ), | |
7489 #endif | |
7490 UNIXVFS("unix-none", nolockIoFinder ), | |
7491 UNIXVFS("unix-dotfile", dotlockIoFinder ), | |
7492 UNIXVFS("unix-excl", posixIoFinder ), | |
7493 #if OS_VXWORKS | |
7494 UNIXVFS("unix-namedsem", semIoFinder ), | |
7495 #endif | |
7496 #if SQLITE_ENABLE_LOCKING_STYLE | |
7497 UNIXVFS("unix-posix", posixIoFinder ), | |
7498 #if !OS_VXWORKS | |
7499 UNIXVFS("unix-flock", flockIoFinder ), | |
7500 #endif | |
7501 #endif | |
7502 #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__) | |
7503 UNIXVFS("unix-afp", afpIoFinder ), | |
7504 UNIXVFS("unix-nfs", nfsIoFinder ), | |
7505 UNIXVFS("unix-proxy", proxyIoFinder ), | |
7506 #endif | |
7507 }; | |
7508 unsigned int i; /* Loop counter */ | |
7509 | |
7510 /* Double-check that the aSyscall[] array has been constructed | |
7511 ** correctly. See ticket [bb3a86e890c8e96ab] */ | |
7512 assert( ArraySize(aSyscall)==25 ); | |
7513 | |
7514 /* Register all VFSes defined in the aVfs[] array */ | |
7515 for(i=0; i<(sizeof(aVfs)/sizeof(sqlite3_vfs)); i++){ | |
7516 sqlite3_vfs_register(&aVfs[i], i==0); | |
7517 } | |
7518 return SQLITE_OK; | |
7519 } | |
7520 | |
7521 /* | |
7522 ** Shutdown the operating system interface. | |
7523 ** | |
7524 ** Some operating systems might need to do some cleanup in this routine, | |
7525 ** to release dynamically allocated objects. But not on unix. | |
7526 ** This routine is a no-op for unix. | |
7527 */ | |
7528 int sqlite3_os_end(void){ | |
7529 return SQLITE_OK; | |
7530 } | |
7531 | |
7532 #endif /* SQLITE_OS_UNIX */ | |
OLD | NEW |