OLD | NEW |
| (Empty) |
1 /* | |
2 ** 2005 November 29 | |
3 ** | |
4 ** The author disclaims copyright to this source code. In place of | |
5 ** a legal notice, here is a blessing: | |
6 ** | |
7 ** May you do good and not evil. | |
8 ** May you find forgiveness for yourself and forgive others. | |
9 ** May you share freely, never taking more than you give. | |
10 ** | |
11 ****************************************************************************** | |
12 ** | |
13 ** This file contains OS interface code that is common to all | |
14 ** architectures. | |
15 */ | |
16 #define _SQLITE_OS_C_ 1 | |
17 #include "sqliteInt.h" | |
18 #undef _SQLITE_OS_C_ | |
19 | |
20 /* | |
21 ** The default SQLite sqlite3_vfs implementations do not allocate | |
22 ** memory (actually, os_unix.c allocates a small amount of memory | |
23 ** from within OsOpen()), but some third-party implementations may. | |
24 ** So we test the effects of a malloc() failing and the sqlite3OsXXX() | |
25 ** function returning SQLITE_IOERR_NOMEM using the DO_OS_MALLOC_TEST macro. | |
26 ** | |
27 ** The following functions are instrumented for malloc() failure | |
28 ** testing: | |
29 ** | |
30 ** sqlite3OsRead() | |
31 ** sqlite3OsWrite() | |
32 ** sqlite3OsSync() | |
33 ** sqlite3OsFileSize() | |
34 ** sqlite3OsLock() | |
35 ** sqlite3OsCheckReservedLock() | |
36 ** sqlite3OsFileControl() | |
37 ** sqlite3OsShmMap() | |
38 ** sqlite3OsOpen() | |
39 ** sqlite3OsDelete() | |
40 ** sqlite3OsAccess() | |
41 ** sqlite3OsFullPathname() | |
42 ** | |
43 */ | |
44 #if defined(SQLITE_TEST) | |
45 int sqlite3_memdebug_vfs_oom_test = 1; | |
46 #define DO_OS_MALLOC_TEST(x) \ | |
47 if (sqlite3_memdebug_vfs_oom_test && (!x || !sqlite3IsMemJournal(x))) { \ | |
48 void *pTstAlloc = sqlite3Malloc(10); \ | |
49 if (!pTstAlloc) return SQLITE_IOERR_NOMEM; \ | |
50 sqlite3_free(pTstAlloc); \ | |
51 } | |
52 #else | |
53 #define DO_OS_MALLOC_TEST(x) | |
54 #endif | |
55 | |
56 /* | |
57 ** The following routines are convenience wrappers around methods | |
58 ** of the sqlite3_file object. This is mostly just syntactic sugar. All | |
59 ** of this would be completely automatic if SQLite were coded using | |
60 ** C++ instead of plain old C. | |
61 */ | |
62 int sqlite3OsClose(sqlite3_file *pId){ | |
63 int rc = SQLITE_OK; | |
64 if( pId->pMethods ){ | |
65 rc = pId->pMethods->xClose(pId); | |
66 pId->pMethods = 0; | |
67 } | |
68 return rc; | |
69 } | |
70 int sqlite3OsRead(sqlite3_file *id, void *pBuf, int amt, i64 offset){ | |
71 DO_OS_MALLOC_TEST(id); | |
72 return id->pMethods->xRead(id, pBuf, amt, offset); | |
73 } | |
74 int sqlite3OsWrite(sqlite3_file *id, const void *pBuf, int amt, i64 offset){ | |
75 DO_OS_MALLOC_TEST(id); | |
76 return id->pMethods->xWrite(id, pBuf, amt, offset); | |
77 } | |
78 int sqlite3OsTruncate(sqlite3_file *id, i64 size){ | |
79 return id->pMethods->xTruncate(id, size); | |
80 } | |
81 int sqlite3OsSync(sqlite3_file *id, int flags){ | |
82 DO_OS_MALLOC_TEST(id); | |
83 return id->pMethods->xSync(id, flags); | |
84 } | |
85 int sqlite3OsFileSize(sqlite3_file *id, i64 *pSize){ | |
86 DO_OS_MALLOC_TEST(id); | |
87 return id->pMethods->xFileSize(id, pSize); | |
88 } | |
89 int sqlite3OsLock(sqlite3_file *id, int lockType){ | |
90 DO_OS_MALLOC_TEST(id); | |
91 return id->pMethods->xLock(id, lockType); | |
92 } | |
93 int sqlite3OsUnlock(sqlite3_file *id, int lockType){ | |
94 return id->pMethods->xUnlock(id, lockType); | |
95 } | |
96 int sqlite3OsCheckReservedLock(sqlite3_file *id, int *pResOut){ | |
97 DO_OS_MALLOC_TEST(id); | |
98 return id->pMethods->xCheckReservedLock(id, pResOut); | |
99 } | |
100 | |
101 /* | |
102 ** Use sqlite3OsFileControl() when we are doing something that might fail | |
103 ** and we need to know about the failures. Use sqlite3OsFileControlHint() | |
104 ** when simply tossing information over the wall to the VFS and we do not | |
105 ** really care if the VFS receives and understands the information since it | |
106 ** is only a hint and can be safely ignored. The sqlite3OsFileControlHint() | |
107 ** routine has no return value since the return value would be meaningless. | |
108 */ | |
109 int sqlite3OsFileControl(sqlite3_file *id, int op, void *pArg){ | |
110 #ifdef SQLITE_TEST | |
111 if( op!=SQLITE_FCNTL_COMMIT_PHASETWO ){ | |
112 /* Faults are not injected into COMMIT_PHASETWO because, assuming SQLite | |
113 ** is using a regular VFS, it is called after the corresponding | |
114 ** transaction has been committed. Injecting a fault at this point | |
115 ** confuses the test scripts - the COMMIT comand returns SQLITE_NOMEM | |
116 ** but the transaction is committed anyway. | |
117 ** | |
118 ** The core must call OsFileControl() though, not OsFileControlHint(), | |
119 ** as if a custom VFS (e.g. zipvfs) returns an error here, it probably | |
120 ** means the commit really has failed and an error should be returned | |
121 ** to the user. */ | |
122 DO_OS_MALLOC_TEST(id); | |
123 } | |
124 #endif | |
125 return id->pMethods->xFileControl(id, op, pArg); | |
126 } | |
127 void sqlite3OsFileControlHint(sqlite3_file *id, int op, void *pArg){ | |
128 (void)id->pMethods->xFileControl(id, op, pArg); | |
129 } | |
130 | |
131 int sqlite3OsSectorSize(sqlite3_file *id){ | |
132 int (*xSectorSize)(sqlite3_file*) = id->pMethods->xSectorSize; | |
133 return (xSectorSize ? xSectorSize(id) : SQLITE_DEFAULT_SECTOR_SIZE); | |
134 } | |
135 int sqlite3OsDeviceCharacteristics(sqlite3_file *id){ | |
136 return id->pMethods->xDeviceCharacteristics(id); | |
137 } | |
138 int sqlite3OsShmLock(sqlite3_file *id, int offset, int n, int flags){ | |
139 return id->pMethods->xShmLock(id, offset, n, flags); | |
140 } | |
141 void sqlite3OsShmBarrier(sqlite3_file *id){ | |
142 id->pMethods->xShmBarrier(id); | |
143 } | |
144 int sqlite3OsShmUnmap(sqlite3_file *id, int deleteFlag){ | |
145 return id->pMethods->xShmUnmap(id, deleteFlag); | |
146 } | |
147 int sqlite3OsShmMap( | |
148 sqlite3_file *id, /* Database file handle */ | |
149 int iPage, | |
150 int pgsz, | |
151 int bExtend, /* True to extend file if necessary */ | |
152 void volatile **pp /* OUT: Pointer to mapping */ | |
153 ){ | |
154 DO_OS_MALLOC_TEST(id); | |
155 return id->pMethods->xShmMap(id, iPage, pgsz, bExtend, pp); | |
156 } | |
157 | |
158 #if SQLITE_MAX_MMAP_SIZE>0 | |
159 /* The real implementation of xFetch and xUnfetch */ | |
160 int sqlite3OsFetch(sqlite3_file *id, i64 iOff, int iAmt, void **pp){ | |
161 DO_OS_MALLOC_TEST(id); | |
162 return id->pMethods->xFetch(id, iOff, iAmt, pp); | |
163 } | |
164 int sqlite3OsUnfetch(sqlite3_file *id, i64 iOff, void *p){ | |
165 return id->pMethods->xUnfetch(id, iOff, p); | |
166 } | |
167 #else | |
168 /* No-op stubs to use when memory-mapped I/O is disabled */ | |
169 int sqlite3OsFetch(sqlite3_file *id, i64 iOff, int iAmt, void **pp){ | |
170 *pp = 0; | |
171 return SQLITE_OK; | |
172 } | |
173 int sqlite3OsUnfetch(sqlite3_file *id, i64 iOff, void *p){ | |
174 return SQLITE_OK; | |
175 } | |
176 #endif | |
177 | |
178 /* | |
179 ** The next group of routines are convenience wrappers around the | |
180 ** VFS methods. | |
181 */ | |
182 int sqlite3OsOpen( | |
183 sqlite3_vfs *pVfs, | |
184 const char *zPath, | |
185 sqlite3_file *pFile, | |
186 int flags, | |
187 int *pFlagsOut | |
188 ){ | |
189 int rc; | |
190 DO_OS_MALLOC_TEST(0); | |
191 /* 0x87f7f is a mask of SQLITE_OPEN_ flags that are valid to be passed | |
192 ** down into the VFS layer. Some SQLITE_OPEN_ flags (for example, | |
193 ** SQLITE_OPEN_FULLMUTEX or SQLITE_OPEN_SHAREDCACHE) are blocked before | |
194 ** reaching the VFS. */ | |
195 rc = pVfs->xOpen(pVfs, zPath, pFile, flags & 0x87f7f, pFlagsOut); | |
196 assert( rc==SQLITE_OK || pFile->pMethods==0 ); | |
197 return rc; | |
198 } | |
199 int sqlite3OsDelete(sqlite3_vfs *pVfs, const char *zPath, int dirSync){ | |
200 DO_OS_MALLOC_TEST(0); | |
201 assert( dirSync==0 || dirSync==1 ); | |
202 return pVfs->xDelete(pVfs, zPath, dirSync); | |
203 } | |
204 int sqlite3OsAccess( | |
205 sqlite3_vfs *pVfs, | |
206 const char *zPath, | |
207 int flags, | |
208 int *pResOut | |
209 ){ | |
210 DO_OS_MALLOC_TEST(0); | |
211 return pVfs->xAccess(pVfs, zPath, flags, pResOut); | |
212 } | |
213 int sqlite3OsFullPathname( | |
214 sqlite3_vfs *pVfs, | |
215 const char *zPath, | |
216 int nPathOut, | |
217 char *zPathOut | |
218 ){ | |
219 DO_OS_MALLOC_TEST(0); | |
220 zPathOut[0] = 0; | |
221 return pVfs->xFullPathname(pVfs, zPath, nPathOut, zPathOut); | |
222 } | |
223 #ifndef SQLITE_OMIT_LOAD_EXTENSION | |
224 void *sqlite3OsDlOpen(sqlite3_vfs *pVfs, const char *zPath){ | |
225 return pVfs->xDlOpen(pVfs, zPath); | |
226 } | |
227 void sqlite3OsDlError(sqlite3_vfs *pVfs, int nByte, char *zBufOut){ | |
228 pVfs->xDlError(pVfs, nByte, zBufOut); | |
229 } | |
230 void (*sqlite3OsDlSym(sqlite3_vfs *pVfs, void *pHdle, const char *zSym))(void){ | |
231 return pVfs->xDlSym(pVfs, pHdle, zSym); | |
232 } | |
233 void sqlite3OsDlClose(sqlite3_vfs *pVfs, void *pHandle){ | |
234 pVfs->xDlClose(pVfs, pHandle); | |
235 } | |
236 #endif /* SQLITE_OMIT_LOAD_EXTENSION */ | |
237 int sqlite3OsRandomness(sqlite3_vfs *pVfs, int nByte, char *zBufOut){ | |
238 return pVfs->xRandomness(pVfs, nByte, zBufOut); | |
239 } | |
240 int sqlite3OsSleep(sqlite3_vfs *pVfs, int nMicro){ | |
241 return pVfs->xSleep(pVfs, nMicro); | |
242 } | |
243 int sqlite3OsCurrentTimeInt64(sqlite3_vfs *pVfs, sqlite3_int64 *pTimeOut){ | |
244 int rc; | |
245 /* IMPLEMENTATION-OF: R-49045-42493 SQLite will use the xCurrentTimeInt64() | |
246 ** method to get the current date and time if that method is available | |
247 ** (if iVersion is 2 or greater and the function pointer is not NULL) and | |
248 ** will fall back to xCurrentTime() if xCurrentTimeInt64() is | |
249 ** unavailable. | |
250 */ | |
251 if( pVfs->iVersion>=2 && pVfs->xCurrentTimeInt64 ){ | |
252 rc = pVfs->xCurrentTimeInt64(pVfs, pTimeOut); | |
253 }else{ | |
254 double r; | |
255 rc = pVfs->xCurrentTime(pVfs, &r); | |
256 *pTimeOut = (sqlite3_int64)(r*86400000.0); | |
257 } | |
258 return rc; | |
259 } | |
260 | |
261 int sqlite3OsOpenMalloc( | |
262 sqlite3_vfs *pVfs, | |
263 const char *zFile, | |
264 sqlite3_file **ppFile, | |
265 int flags, | |
266 int *pOutFlags | |
267 ){ | |
268 int rc = SQLITE_NOMEM; | |
269 sqlite3_file *pFile; | |
270 pFile = (sqlite3_file *)sqlite3MallocZero(pVfs->szOsFile); | |
271 if( pFile ){ | |
272 rc = sqlite3OsOpen(pVfs, zFile, pFile, flags, pOutFlags); | |
273 if( rc!=SQLITE_OK ){ | |
274 sqlite3_free(pFile); | |
275 }else{ | |
276 *ppFile = pFile; | |
277 } | |
278 } | |
279 return rc; | |
280 } | |
281 int sqlite3OsCloseFree(sqlite3_file *pFile){ | |
282 int rc = SQLITE_OK; | |
283 assert( pFile ); | |
284 rc = sqlite3OsClose(pFile); | |
285 sqlite3_free(pFile); | |
286 return rc; | |
287 } | |
288 | |
289 /* | |
290 ** This function is a wrapper around the OS specific implementation of | |
291 ** sqlite3_os_init(). The purpose of the wrapper is to provide the | |
292 ** ability to simulate a malloc failure, so that the handling of an | |
293 ** error in sqlite3_os_init() by the upper layers can be tested. | |
294 */ | |
295 int sqlite3OsInit(void){ | |
296 void *p = sqlite3_malloc(10); | |
297 if( p==0 ) return SQLITE_NOMEM; | |
298 sqlite3_free(p); | |
299 return sqlite3_os_init(); | |
300 } | |
301 | |
302 /* | |
303 ** The list of all registered VFS implementations. | |
304 */ | |
305 static sqlite3_vfs * SQLITE_WSD vfsList = 0; | |
306 #define vfsList GLOBAL(sqlite3_vfs *, vfsList) | |
307 | |
308 /* | |
309 ** Locate a VFS by name. If no name is given, simply return the | |
310 ** first VFS on the list. | |
311 */ | |
312 sqlite3_vfs *sqlite3_vfs_find(const char *zVfs){ | |
313 sqlite3_vfs *pVfs = 0; | |
314 #if SQLITE_THREADSAFE | |
315 sqlite3_mutex *mutex; | |
316 #endif | |
317 #ifndef SQLITE_OMIT_AUTOINIT | |
318 int rc = sqlite3_initialize(); | |
319 if( rc ) return 0; | |
320 #endif | |
321 #if SQLITE_THREADSAFE | |
322 mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); | |
323 #endif | |
324 sqlite3_mutex_enter(mutex); | |
325 for(pVfs = vfsList; pVfs; pVfs=pVfs->pNext){ | |
326 if( zVfs==0 ) break; | |
327 if( strcmp(zVfs, pVfs->zName)==0 ) break; | |
328 } | |
329 sqlite3_mutex_leave(mutex); | |
330 return pVfs; | |
331 } | |
332 | |
333 /* | |
334 ** Unlink a VFS from the linked list | |
335 */ | |
336 static void vfsUnlink(sqlite3_vfs *pVfs){ | |
337 assert( sqlite3_mutex_held(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER)) ); | |
338 if( pVfs==0 ){ | |
339 /* No-op */ | |
340 }else if( vfsList==pVfs ){ | |
341 vfsList = pVfs->pNext; | |
342 }else if( vfsList ){ | |
343 sqlite3_vfs *p = vfsList; | |
344 while( p->pNext && p->pNext!=pVfs ){ | |
345 p = p->pNext; | |
346 } | |
347 if( p->pNext==pVfs ){ | |
348 p->pNext = pVfs->pNext; | |
349 } | |
350 } | |
351 } | |
352 | |
353 /* | |
354 ** Register a VFS with the system. It is harmless to register the same | |
355 ** VFS multiple times. The new VFS becomes the default if makeDflt is | |
356 ** true. | |
357 */ | |
358 int sqlite3_vfs_register(sqlite3_vfs *pVfs, int makeDflt){ | |
359 MUTEX_LOGIC(sqlite3_mutex *mutex;) | |
360 #ifndef SQLITE_OMIT_AUTOINIT | |
361 int rc = sqlite3_initialize(); | |
362 if( rc ) return rc; | |
363 #endif | |
364 MUTEX_LOGIC( mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); ) | |
365 sqlite3_mutex_enter(mutex); | |
366 vfsUnlink(pVfs); | |
367 if( makeDflt || vfsList==0 ){ | |
368 pVfs->pNext = vfsList; | |
369 vfsList = pVfs; | |
370 }else{ | |
371 pVfs->pNext = vfsList->pNext; | |
372 vfsList->pNext = pVfs; | |
373 } | |
374 assert(vfsList); | |
375 sqlite3_mutex_leave(mutex); | |
376 return SQLITE_OK; | |
377 } | |
378 | |
379 /* | |
380 ** Unregister a VFS so that it is no longer accessible. | |
381 */ | |
382 int sqlite3_vfs_unregister(sqlite3_vfs *pVfs){ | |
383 #if SQLITE_THREADSAFE | |
384 sqlite3_mutex *mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); | |
385 #endif | |
386 sqlite3_mutex_enter(mutex); | |
387 vfsUnlink(pVfs); | |
388 sqlite3_mutex_leave(mutex); | |
389 return SQLITE_OK; | |
390 } | |
OLD | NEW |