OLD | NEW |
| (Empty) |
1 /* | |
2 ** 2001 September 15 | |
3 ** | |
4 ** The author disclaims copyright to this source code. In place of | |
5 ** a legal notice, here is a blessing: | |
6 ** | |
7 ** May you do good and not evil. | |
8 ** May you find forgiveness for yourself and forgive others. | |
9 ** May you share freely, never taking more than you give. | |
10 ** | |
11 ************************************************************************* | |
12 ** | |
13 ** Memory allocation functions used throughout sqlite. | |
14 */ | |
15 #include "sqliteInt.h" | |
16 #include <stdarg.h> | |
17 | |
18 /* | |
19 ** Attempt to release up to n bytes of non-essential memory currently | |
20 ** held by SQLite. An example of non-essential memory is memory used to | |
21 ** cache database pages that are not currently in use. | |
22 */ | |
23 int sqlite3_release_memory(int n){ | |
24 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT | |
25 return sqlite3PcacheReleaseMemory(n); | |
26 #else | |
27 /* IMPLEMENTATION-OF: R-34391-24921 The sqlite3_release_memory() routine | |
28 ** is a no-op returning zero if SQLite is not compiled with | |
29 ** SQLITE_ENABLE_MEMORY_MANAGEMENT. */ | |
30 UNUSED_PARAMETER(n); | |
31 return 0; | |
32 #endif | |
33 } | |
34 | |
35 /* | |
36 ** An instance of the following object records the location of | |
37 ** each unused scratch buffer. | |
38 */ | |
39 typedef struct ScratchFreeslot { | |
40 struct ScratchFreeslot *pNext; /* Next unused scratch buffer */ | |
41 } ScratchFreeslot; | |
42 | |
43 /* | |
44 ** State information local to the memory allocation subsystem. | |
45 */ | |
46 static SQLITE_WSD struct Mem0Global { | |
47 sqlite3_mutex *mutex; /* Mutex to serialize access */ | |
48 | |
49 /* | |
50 ** The alarm callback and its arguments. The mem0.mutex lock will | |
51 ** be held while the callback is running. Recursive calls into | |
52 ** the memory subsystem are allowed, but no new callbacks will be | |
53 ** issued. | |
54 */ | |
55 sqlite3_int64 alarmThreshold; | |
56 void (*alarmCallback)(void*, sqlite3_int64,int); | |
57 void *alarmArg; | |
58 | |
59 /* | |
60 ** Pointers to the end of sqlite3GlobalConfig.pScratch memory | |
61 ** (so that a range test can be used to determine if an allocation | |
62 ** being freed came from pScratch) and a pointer to the list of | |
63 ** unused scratch allocations. | |
64 */ | |
65 void *pScratchEnd; | |
66 ScratchFreeslot *pScratchFree; | |
67 u32 nScratchFree; | |
68 | |
69 /* | |
70 ** True if heap is nearly "full" where "full" is defined by the | |
71 ** sqlite3_soft_heap_limit() setting. | |
72 */ | |
73 int nearlyFull; | |
74 } mem0 = { 0, 0, 0, 0, 0, 0, 0, 0 }; | |
75 | |
76 #define mem0 GLOBAL(struct Mem0Global, mem0) | |
77 | |
78 /* | |
79 ** This routine runs when the memory allocator sees that the | |
80 ** total memory allocation is about to exceed the soft heap | |
81 ** limit. | |
82 */ | |
83 static void softHeapLimitEnforcer( | |
84 void *NotUsed, | |
85 sqlite3_int64 NotUsed2, | |
86 int allocSize | |
87 ){ | |
88 UNUSED_PARAMETER2(NotUsed, NotUsed2); | |
89 sqlite3_release_memory(allocSize); | |
90 } | |
91 | |
92 /* | |
93 ** Change the alarm callback | |
94 */ | |
95 static int sqlite3MemoryAlarm( | |
96 void(*xCallback)(void *pArg, sqlite3_int64 used,int N), | |
97 void *pArg, | |
98 sqlite3_int64 iThreshold | |
99 ){ | |
100 int nUsed; | |
101 sqlite3_mutex_enter(mem0.mutex); | |
102 mem0.alarmCallback = xCallback; | |
103 mem0.alarmArg = pArg; | |
104 mem0.alarmThreshold = iThreshold; | |
105 nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED); | |
106 mem0.nearlyFull = (iThreshold>0 && iThreshold<=nUsed); | |
107 sqlite3_mutex_leave(mem0.mutex); | |
108 return SQLITE_OK; | |
109 } | |
110 | |
111 #ifndef SQLITE_OMIT_DEPRECATED | |
112 /* | |
113 ** Deprecated external interface. Internal/core SQLite code | |
114 ** should call sqlite3MemoryAlarm. | |
115 */ | |
116 int sqlite3_memory_alarm( | |
117 void(*xCallback)(void *pArg, sqlite3_int64 used,int N), | |
118 void *pArg, | |
119 sqlite3_int64 iThreshold | |
120 ){ | |
121 return sqlite3MemoryAlarm(xCallback, pArg, iThreshold); | |
122 } | |
123 #endif | |
124 | |
125 /* | |
126 ** Set the soft heap-size limit for the library. Passing a zero or | |
127 ** negative value indicates no limit. | |
128 */ | |
129 sqlite3_int64 sqlite3_soft_heap_limit64(sqlite3_int64 n){ | |
130 sqlite3_int64 priorLimit; | |
131 sqlite3_int64 excess; | |
132 #ifndef SQLITE_OMIT_AUTOINIT | |
133 int rc = sqlite3_initialize(); | |
134 if( rc ) return -1; | |
135 #endif | |
136 sqlite3_mutex_enter(mem0.mutex); | |
137 priorLimit = mem0.alarmThreshold; | |
138 sqlite3_mutex_leave(mem0.mutex); | |
139 if( n<0 ) return priorLimit; | |
140 if( n>0 ){ | |
141 sqlite3MemoryAlarm(softHeapLimitEnforcer, 0, n); | |
142 }else{ | |
143 sqlite3MemoryAlarm(0, 0, 0); | |
144 } | |
145 excess = sqlite3_memory_used() - n; | |
146 if( excess>0 ) sqlite3_release_memory((int)(excess & 0x7fffffff)); | |
147 return priorLimit; | |
148 } | |
149 void sqlite3_soft_heap_limit(int n){ | |
150 if( n<0 ) n = 0; | |
151 sqlite3_soft_heap_limit64(n); | |
152 } | |
153 | |
154 /* | |
155 ** Initialize the memory allocation subsystem. | |
156 */ | |
157 int sqlite3MallocInit(void){ | |
158 if( sqlite3GlobalConfig.m.xMalloc==0 ){ | |
159 sqlite3MemSetDefault(); | |
160 } | |
161 memset(&mem0, 0, sizeof(mem0)); | |
162 if( sqlite3GlobalConfig.bCoreMutex ){ | |
163 mem0.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM); | |
164 } | |
165 if( sqlite3GlobalConfig.pScratch && sqlite3GlobalConfig.szScratch>=100 | |
166 && sqlite3GlobalConfig.nScratch>0 ){ | |
167 int i, n, sz; | |
168 ScratchFreeslot *pSlot; | |
169 sz = ROUNDDOWN8(sqlite3GlobalConfig.szScratch); | |
170 sqlite3GlobalConfig.szScratch = sz; | |
171 pSlot = (ScratchFreeslot*)sqlite3GlobalConfig.pScratch; | |
172 n = sqlite3GlobalConfig.nScratch; | |
173 mem0.pScratchFree = pSlot; | |
174 mem0.nScratchFree = n; | |
175 for(i=0; i<n-1; i++){ | |
176 pSlot->pNext = (ScratchFreeslot*)(sz+(char*)pSlot); | |
177 pSlot = pSlot->pNext; | |
178 } | |
179 pSlot->pNext = 0; | |
180 mem0.pScratchEnd = (void*)&pSlot[1]; | |
181 }else{ | |
182 mem0.pScratchEnd = 0; | |
183 sqlite3GlobalConfig.pScratch = 0; | |
184 sqlite3GlobalConfig.szScratch = 0; | |
185 sqlite3GlobalConfig.nScratch = 0; | |
186 } | |
187 if( sqlite3GlobalConfig.pPage==0 || sqlite3GlobalConfig.szPage<512 | |
188 || sqlite3GlobalConfig.nPage<1 ){ | |
189 sqlite3GlobalConfig.pPage = 0; | |
190 sqlite3GlobalConfig.szPage = 0; | |
191 sqlite3GlobalConfig.nPage = 0; | |
192 } | |
193 return sqlite3GlobalConfig.m.xInit(sqlite3GlobalConfig.m.pAppData); | |
194 } | |
195 | |
196 /* | |
197 ** Return true if the heap is currently under memory pressure - in other | |
198 ** words if the amount of heap used is close to the limit set by | |
199 ** sqlite3_soft_heap_limit(). | |
200 */ | |
201 int sqlite3HeapNearlyFull(void){ | |
202 return mem0.nearlyFull; | |
203 } | |
204 | |
205 /* | |
206 ** Deinitialize the memory allocation subsystem. | |
207 */ | |
208 void sqlite3MallocEnd(void){ | |
209 if( sqlite3GlobalConfig.m.xShutdown ){ | |
210 sqlite3GlobalConfig.m.xShutdown(sqlite3GlobalConfig.m.pAppData); | |
211 } | |
212 memset(&mem0, 0, sizeof(mem0)); | |
213 } | |
214 | |
215 /* | |
216 ** Return the amount of memory currently checked out. | |
217 */ | |
218 sqlite3_int64 sqlite3_memory_used(void){ | |
219 int n, mx; | |
220 sqlite3_int64 res; | |
221 sqlite3_status(SQLITE_STATUS_MEMORY_USED, &n, &mx, 0); | |
222 res = (sqlite3_int64)n; /* Work around bug in Borland C. Ticket #3216 */ | |
223 return res; | |
224 } | |
225 | |
226 /* | |
227 ** Return the maximum amount of memory that has ever been | |
228 ** checked out since either the beginning of this process | |
229 ** or since the most recent reset. | |
230 */ | |
231 sqlite3_int64 sqlite3_memory_highwater(int resetFlag){ | |
232 int n, mx; | |
233 sqlite3_int64 res; | |
234 sqlite3_status(SQLITE_STATUS_MEMORY_USED, &n, &mx, resetFlag); | |
235 res = (sqlite3_int64)mx; /* Work around bug in Borland C. Ticket #3216 */ | |
236 return res; | |
237 } | |
238 | |
239 /* | |
240 ** Trigger the alarm | |
241 */ | |
242 static void sqlite3MallocAlarm(int nByte){ | |
243 void (*xCallback)(void*,sqlite3_int64,int); | |
244 sqlite3_int64 nowUsed; | |
245 void *pArg; | |
246 if( mem0.alarmCallback==0 ) return; | |
247 xCallback = mem0.alarmCallback; | |
248 nowUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED); | |
249 pArg = mem0.alarmArg; | |
250 mem0.alarmCallback = 0; | |
251 sqlite3_mutex_leave(mem0.mutex); | |
252 xCallback(pArg, nowUsed, nByte); | |
253 sqlite3_mutex_enter(mem0.mutex); | |
254 mem0.alarmCallback = xCallback; | |
255 mem0.alarmArg = pArg; | |
256 } | |
257 | |
258 /* | |
259 ** Do a memory allocation with statistics and alarms. Assume the | |
260 ** lock is already held. | |
261 */ | |
262 static int mallocWithAlarm(int n, void **pp){ | |
263 int nFull; | |
264 void *p; | |
265 assert( sqlite3_mutex_held(mem0.mutex) ); | |
266 nFull = sqlite3GlobalConfig.m.xRoundup(n); | |
267 sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, n); | |
268 if( mem0.alarmCallback!=0 ){ | |
269 int nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED); | |
270 if( nUsed >= mem0.alarmThreshold - nFull ){ | |
271 mem0.nearlyFull = 1; | |
272 sqlite3MallocAlarm(nFull); | |
273 }else{ | |
274 mem0.nearlyFull = 0; | |
275 } | |
276 } | |
277 p = sqlite3GlobalConfig.m.xMalloc(nFull); | |
278 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT | |
279 if( p==0 && mem0.alarmCallback ){ | |
280 sqlite3MallocAlarm(nFull); | |
281 p = sqlite3GlobalConfig.m.xMalloc(nFull); | |
282 } | |
283 #endif | |
284 if( p ){ | |
285 nFull = sqlite3MallocSize(p); | |
286 sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, nFull); | |
287 sqlite3StatusAdd(SQLITE_STATUS_MALLOC_COUNT, 1); | |
288 } | |
289 *pp = p; | |
290 return nFull; | |
291 } | |
292 | |
293 /* | |
294 ** Allocate memory. This routine is like sqlite3_malloc() except that it | |
295 ** assumes the memory subsystem has already been initialized. | |
296 */ | |
297 void *sqlite3Malloc(u64 n){ | |
298 void *p; | |
299 if( n==0 || n>=0x7fffff00 ){ | |
300 /* A memory allocation of a number of bytes which is near the maximum | |
301 ** signed integer value might cause an integer overflow inside of the | |
302 ** xMalloc(). Hence we limit the maximum size to 0x7fffff00, giving | |
303 ** 255 bytes of overhead. SQLite itself will never use anything near | |
304 ** this amount. The only way to reach the limit is with sqlite3_malloc() */ | |
305 p = 0; | |
306 }else if( sqlite3GlobalConfig.bMemstat ){ | |
307 sqlite3_mutex_enter(mem0.mutex); | |
308 mallocWithAlarm((int)n, &p); | |
309 sqlite3_mutex_leave(mem0.mutex); | |
310 }else{ | |
311 p = sqlite3GlobalConfig.m.xMalloc((int)n); | |
312 } | |
313 assert( EIGHT_BYTE_ALIGNMENT(p) ); /* IMP: R-11148-40995 */ | |
314 return p; | |
315 } | |
316 | |
317 /* | |
318 ** This version of the memory allocation is for use by the application. | |
319 ** First make sure the memory subsystem is initialized, then do the | |
320 ** allocation. | |
321 */ | |
322 void *sqlite3_malloc(int n){ | |
323 #ifndef SQLITE_OMIT_AUTOINIT | |
324 if( sqlite3_initialize() ) return 0; | |
325 #endif | |
326 return n<=0 ? 0 : sqlite3Malloc(n); | |
327 } | |
328 void *sqlite3_malloc64(sqlite3_uint64 n){ | |
329 #ifndef SQLITE_OMIT_AUTOINIT | |
330 if( sqlite3_initialize() ) return 0; | |
331 #endif | |
332 return sqlite3Malloc(n); | |
333 } | |
334 | |
335 /* | |
336 ** Each thread may only have a single outstanding allocation from | |
337 ** xScratchMalloc(). We verify this constraint in the single-threaded | |
338 ** case by setting scratchAllocOut to 1 when an allocation | |
339 ** is outstanding clearing it when the allocation is freed. | |
340 */ | |
341 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG) | |
342 static int scratchAllocOut = 0; | |
343 #endif | |
344 | |
345 | |
346 /* | |
347 ** Allocate memory that is to be used and released right away. | |
348 ** This routine is similar to alloca() in that it is not intended | |
349 ** for situations where the memory might be held long-term. This | |
350 ** routine is intended to get memory to old large transient data | |
351 ** structures that would not normally fit on the stack of an | |
352 ** embedded processor. | |
353 */ | |
354 void *sqlite3ScratchMalloc(int n){ | |
355 void *p; | |
356 assert( n>0 ); | |
357 | |
358 sqlite3_mutex_enter(mem0.mutex); | |
359 sqlite3StatusSet(SQLITE_STATUS_SCRATCH_SIZE, n); | |
360 if( mem0.nScratchFree && sqlite3GlobalConfig.szScratch>=n ){ | |
361 p = mem0.pScratchFree; | |
362 mem0.pScratchFree = mem0.pScratchFree->pNext; | |
363 mem0.nScratchFree--; | |
364 sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_USED, 1); | |
365 sqlite3_mutex_leave(mem0.mutex); | |
366 }else{ | |
367 sqlite3_mutex_leave(mem0.mutex); | |
368 p = sqlite3Malloc(n); | |
369 if( sqlite3GlobalConfig.bMemstat && p ){ | |
370 sqlite3_mutex_enter(mem0.mutex); | |
371 sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_OVERFLOW, sqlite3MallocSize(p)); | |
372 sqlite3_mutex_leave(mem0.mutex); | |
373 } | |
374 sqlite3MemdebugSetType(p, MEMTYPE_SCRATCH); | |
375 } | |
376 assert( sqlite3_mutex_notheld(mem0.mutex) ); | |
377 | |
378 | |
379 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG) | |
380 /* Verify that no more than two scratch allocations per thread | |
381 ** are outstanding at one time. (This is only checked in the | |
382 ** single-threaded case since checking in the multi-threaded case | |
383 ** would be much more complicated.) */ | |
384 assert( scratchAllocOut<=1 ); | |
385 if( p ) scratchAllocOut++; | |
386 #endif | |
387 | |
388 return p; | |
389 } | |
390 void sqlite3ScratchFree(void *p){ | |
391 if( p ){ | |
392 | |
393 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG) | |
394 /* Verify that no more than two scratch allocation per thread | |
395 ** is outstanding at one time. (This is only checked in the | |
396 ** single-threaded case since checking in the multi-threaded case | |
397 ** would be much more complicated.) */ | |
398 assert( scratchAllocOut>=1 && scratchAllocOut<=2 ); | |
399 scratchAllocOut--; | |
400 #endif | |
401 | |
402 if( p>=sqlite3GlobalConfig.pScratch && p<mem0.pScratchEnd ){ | |
403 /* Release memory from the SQLITE_CONFIG_SCRATCH allocation */ | |
404 ScratchFreeslot *pSlot; | |
405 pSlot = (ScratchFreeslot*)p; | |
406 sqlite3_mutex_enter(mem0.mutex); | |
407 pSlot->pNext = mem0.pScratchFree; | |
408 mem0.pScratchFree = pSlot; | |
409 mem0.nScratchFree++; | |
410 assert( mem0.nScratchFree <= (u32)sqlite3GlobalConfig.nScratch ); | |
411 sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_USED, -1); | |
412 sqlite3_mutex_leave(mem0.mutex); | |
413 }else{ | |
414 /* Release memory back to the heap */ | |
415 assert( sqlite3MemdebugHasType(p, MEMTYPE_SCRATCH) ); | |
416 assert( sqlite3MemdebugNoType(p, ~MEMTYPE_SCRATCH) ); | |
417 sqlite3MemdebugSetType(p, MEMTYPE_HEAP); | |
418 if( sqlite3GlobalConfig.bMemstat ){ | |
419 int iSize = sqlite3MallocSize(p); | |
420 sqlite3_mutex_enter(mem0.mutex); | |
421 sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_OVERFLOW, -iSize); | |
422 sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, -iSize); | |
423 sqlite3StatusAdd(SQLITE_STATUS_MALLOC_COUNT, -1); | |
424 sqlite3GlobalConfig.m.xFree(p); | |
425 sqlite3_mutex_leave(mem0.mutex); | |
426 }else{ | |
427 sqlite3GlobalConfig.m.xFree(p); | |
428 } | |
429 } | |
430 } | |
431 } | |
432 | |
433 /* | |
434 ** TRUE if p is a lookaside memory allocation from db | |
435 */ | |
436 #ifndef SQLITE_OMIT_LOOKASIDE | |
437 static int isLookaside(sqlite3 *db, void *p){ | |
438 return p>=db->lookaside.pStart && p<db->lookaside.pEnd; | |
439 } | |
440 #else | |
441 #define isLookaside(A,B) 0 | |
442 #endif | |
443 | |
444 /* | |
445 ** Return the size of a memory allocation previously obtained from | |
446 ** sqlite3Malloc() or sqlite3_malloc(). | |
447 */ | |
448 int sqlite3MallocSize(void *p){ | |
449 assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); | |
450 return sqlite3GlobalConfig.m.xSize(p); | |
451 } | |
452 int sqlite3DbMallocSize(sqlite3 *db, void *p){ | |
453 if( db==0 ){ | |
454 assert( sqlite3MemdebugNoType(p, ~MEMTYPE_HEAP) ); | |
455 assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); | |
456 return sqlite3MallocSize(p); | |
457 }else{ | |
458 assert( sqlite3_mutex_held(db->mutex) ); | |
459 if( isLookaside(db, p) ){ | |
460 return db->lookaside.sz; | |
461 }else{ | |
462 assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); | |
463 assert( sqlite3MemdebugNoType(p, ~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); | |
464 return sqlite3GlobalConfig.m.xSize(p); | |
465 } | |
466 } | |
467 } | |
468 sqlite3_uint64 sqlite3_msize(void *p){ | |
469 assert( sqlite3MemdebugNoType(p, ~MEMTYPE_HEAP) ); | |
470 assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); | |
471 return (sqlite3_uint64)sqlite3GlobalConfig.m.xSize(p); | |
472 } | |
473 | |
474 /* | |
475 ** Free memory previously obtained from sqlite3Malloc(). | |
476 */ | |
477 void sqlite3_free(void *p){ | |
478 if( p==0 ) return; /* IMP: R-49053-54554 */ | |
479 assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); | |
480 assert( sqlite3MemdebugNoType(p, ~MEMTYPE_HEAP) ); | |
481 if( sqlite3GlobalConfig.bMemstat ){ | |
482 sqlite3_mutex_enter(mem0.mutex); | |
483 sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, -sqlite3MallocSize(p)); | |
484 sqlite3StatusAdd(SQLITE_STATUS_MALLOC_COUNT, -1); | |
485 sqlite3GlobalConfig.m.xFree(p); | |
486 sqlite3_mutex_leave(mem0.mutex); | |
487 }else{ | |
488 sqlite3GlobalConfig.m.xFree(p); | |
489 } | |
490 } | |
491 | |
492 /* | |
493 ** Add the size of memory allocation "p" to the count in | |
494 ** *db->pnBytesFreed. | |
495 */ | |
496 static SQLITE_NOINLINE void measureAllocationSize(sqlite3 *db, void *p){ | |
497 *db->pnBytesFreed += sqlite3DbMallocSize(db,p); | |
498 } | |
499 | |
500 /* | |
501 ** Free memory that might be associated with a particular database | |
502 ** connection. | |
503 */ | |
504 void sqlite3DbFree(sqlite3 *db, void *p){ | |
505 assert( db==0 || sqlite3_mutex_held(db->mutex) ); | |
506 if( p==0 ) return; | |
507 if( db ){ | |
508 if( db->pnBytesFreed ){ | |
509 measureAllocationSize(db, p); | |
510 return; | |
511 } | |
512 if( isLookaside(db, p) ){ | |
513 LookasideSlot *pBuf = (LookasideSlot*)p; | |
514 #if SQLITE_DEBUG | |
515 /* Trash all content in the buffer being freed */ | |
516 memset(p, 0xaa, db->lookaside.sz); | |
517 #endif | |
518 pBuf->pNext = db->lookaside.pFree; | |
519 db->lookaside.pFree = pBuf; | |
520 db->lookaside.nOut--; | |
521 return; | |
522 } | |
523 } | |
524 assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); | |
525 assert( sqlite3MemdebugNoType(p, ~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); | |
526 assert( db!=0 || sqlite3MemdebugNoType(p, MEMTYPE_LOOKASIDE) ); | |
527 sqlite3MemdebugSetType(p, MEMTYPE_HEAP); | |
528 sqlite3_free(p); | |
529 } | |
530 | |
531 /* | |
532 ** Change the size of an existing memory allocation | |
533 */ | |
534 void *sqlite3Realloc(void *pOld, u64 nBytes){ | |
535 int nOld, nNew, nDiff; | |
536 void *pNew; | |
537 assert( sqlite3MemdebugHasType(pOld, MEMTYPE_HEAP) ); | |
538 assert( sqlite3MemdebugNoType(pOld, ~MEMTYPE_HEAP) ); | |
539 if( pOld==0 ){ | |
540 return sqlite3Malloc(nBytes); /* IMP: R-04300-56712 */ | |
541 } | |
542 if( nBytes==0 ){ | |
543 sqlite3_free(pOld); /* IMP: R-26507-47431 */ | |
544 return 0; | |
545 } | |
546 if( nBytes>=0x7fffff00 ){ | |
547 /* The 0x7ffff00 limit term is explained in comments on sqlite3Malloc() */ | |
548 return 0; | |
549 } | |
550 nOld = sqlite3MallocSize(pOld); | |
551 /* IMPLEMENTATION-OF: R-46199-30249 SQLite guarantees that the second | |
552 ** argument to xRealloc is always a value returned by a prior call to | |
553 ** xRoundup. */ | |
554 nNew = sqlite3GlobalConfig.m.xRoundup((int)nBytes); | |
555 if( nOld==nNew ){ | |
556 pNew = pOld; | |
557 }else if( sqlite3GlobalConfig.bMemstat ){ | |
558 sqlite3_mutex_enter(mem0.mutex); | |
559 sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, (int)nBytes); | |
560 nDiff = nNew - nOld; | |
561 if( sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED) >= | |
562 mem0.alarmThreshold-nDiff ){ | |
563 sqlite3MallocAlarm(nDiff); | |
564 } | |
565 pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); | |
566 if( pNew==0 && mem0.alarmCallback ){ | |
567 sqlite3MallocAlarm((int)nBytes); | |
568 pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); | |
569 } | |
570 if( pNew ){ | |
571 nNew = sqlite3MallocSize(pNew); | |
572 sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, nNew-nOld); | |
573 } | |
574 sqlite3_mutex_leave(mem0.mutex); | |
575 }else{ | |
576 pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); | |
577 } | |
578 assert( EIGHT_BYTE_ALIGNMENT(pNew) ); /* IMP: R-11148-40995 */ | |
579 return pNew; | |
580 } | |
581 | |
582 /* | |
583 ** The public interface to sqlite3Realloc. Make sure that the memory | |
584 ** subsystem is initialized prior to invoking sqliteRealloc. | |
585 */ | |
586 void *sqlite3_realloc(void *pOld, int n){ | |
587 #ifndef SQLITE_OMIT_AUTOINIT | |
588 if( sqlite3_initialize() ) return 0; | |
589 #endif | |
590 if( n<0 ) n = 0; /* IMP: R-26507-47431 */ | |
591 return sqlite3Realloc(pOld, n); | |
592 } | |
593 void *sqlite3_realloc64(void *pOld, sqlite3_uint64 n){ | |
594 #ifndef SQLITE_OMIT_AUTOINIT | |
595 if( sqlite3_initialize() ) return 0; | |
596 #endif | |
597 return sqlite3Realloc(pOld, n); | |
598 } | |
599 | |
600 | |
601 /* | |
602 ** Allocate and zero memory. | |
603 */ | |
604 void *sqlite3MallocZero(u64 n){ | |
605 void *p = sqlite3Malloc(n); | |
606 if( p ){ | |
607 memset(p, 0, (size_t)n); | |
608 } | |
609 return p; | |
610 } | |
611 | |
612 /* | |
613 ** Allocate and zero memory. If the allocation fails, make | |
614 ** the mallocFailed flag in the connection pointer. | |
615 */ | |
616 void *sqlite3DbMallocZero(sqlite3 *db, u64 n){ | |
617 void *p = sqlite3DbMallocRaw(db, n); | |
618 if( p ){ | |
619 memset(p, 0, (size_t)n); | |
620 } | |
621 return p; | |
622 } | |
623 | |
624 /* | |
625 ** Allocate and zero memory. If the allocation fails, make | |
626 ** the mallocFailed flag in the connection pointer. | |
627 ** | |
628 ** If db!=0 and db->mallocFailed is true (indicating a prior malloc | |
629 ** failure on the same database connection) then always return 0. | |
630 ** Hence for a particular database connection, once malloc starts | |
631 ** failing, it fails consistently until mallocFailed is reset. | |
632 ** This is an important assumption. There are many places in the | |
633 ** code that do things like this: | |
634 ** | |
635 ** int *a = (int*)sqlite3DbMallocRaw(db, 100); | |
636 ** int *b = (int*)sqlite3DbMallocRaw(db, 200); | |
637 ** if( b ) a[10] = 9; | |
638 ** | |
639 ** In other words, if a subsequent malloc (ex: "b") worked, it is assumed | |
640 ** that all prior mallocs (ex: "a") worked too. | |
641 */ | |
642 void *sqlite3DbMallocRaw(sqlite3 *db, u64 n){ | |
643 void *p; | |
644 assert( db==0 || sqlite3_mutex_held(db->mutex) ); | |
645 assert( db==0 || db->pnBytesFreed==0 ); | |
646 #ifndef SQLITE_OMIT_LOOKASIDE | |
647 if( db ){ | |
648 LookasideSlot *pBuf; | |
649 if( db->mallocFailed ){ | |
650 return 0; | |
651 } | |
652 if( db->lookaside.bEnabled ){ | |
653 if( n>db->lookaside.sz ){ | |
654 db->lookaside.anStat[1]++; | |
655 }else if( (pBuf = db->lookaside.pFree)==0 ){ | |
656 db->lookaside.anStat[2]++; | |
657 }else{ | |
658 db->lookaside.pFree = pBuf->pNext; | |
659 db->lookaside.nOut++; | |
660 db->lookaside.anStat[0]++; | |
661 if( db->lookaside.nOut>db->lookaside.mxOut ){ | |
662 db->lookaside.mxOut = db->lookaside.nOut; | |
663 } | |
664 return (void*)pBuf; | |
665 } | |
666 } | |
667 } | |
668 #else | |
669 if( db && db->mallocFailed ){ | |
670 return 0; | |
671 } | |
672 #endif | |
673 p = sqlite3Malloc(n); | |
674 if( !p && db ){ | |
675 db->mallocFailed = 1; | |
676 } | |
677 sqlite3MemdebugSetType(p, | |
678 (db && db->lookaside.bEnabled) ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP); | |
679 return p; | |
680 } | |
681 | |
682 /* | |
683 ** Resize the block of memory pointed to by p to n bytes. If the | |
684 ** resize fails, set the mallocFailed flag in the connection object. | |
685 */ | |
686 void *sqlite3DbRealloc(sqlite3 *db, void *p, u64 n){ | |
687 void *pNew = 0; | |
688 assert( db!=0 ); | |
689 assert( sqlite3_mutex_held(db->mutex) ); | |
690 if( db->mallocFailed==0 ){ | |
691 if( p==0 ){ | |
692 return sqlite3DbMallocRaw(db, n); | |
693 } | |
694 if( isLookaside(db, p) ){ | |
695 if( n<=db->lookaside.sz ){ | |
696 return p; | |
697 } | |
698 pNew = sqlite3DbMallocRaw(db, n); | |
699 if( pNew ){ | |
700 memcpy(pNew, p, db->lookaside.sz); | |
701 sqlite3DbFree(db, p); | |
702 } | |
703 }else{ | |
704 assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); | |
705 assert( sqlite3MemdebugNoType(p, ~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); | |
706 sqlite3MemdebugSetType(p, MEMTYPE_HEAP); | |
707 pNew = sqlite3_realloc64(p, n); | |
708 if( !pNew ){ | |
709 db->mallocFailed = 1; | |
710 } | |
711 sqlite3MemdebugSetType(pNew, | |
712 (db->lookaside.bEnabled ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP)); | |
713 } | |
714 } | |
715 return pNew; | |
716 } | |
717 | |
718 /* | |
719 ** Attempt to reallocate p. If the reallocation fails, then free p | |
720 ** and set the mallocFailed flag in the database connection. | |
721 */ | |
722 void *sqlite3DbReallocOrFree(sqlite3 *db, void *p, u64 n){ | |
723 void *pNew; | |
724 pNew = sqlite3DbRealloc(db, p, n); | |
725 if( !pNew ){ | |
726 sqlite3DbFree(db, p); | |
727 } | |
728 return pNew; | |
729 } | |
730 | |
731 /* | |
732 ** Make a copy of a string in memory obtained from sqliteMalloc(). These | |
733 ** functions call sqlite3MallocRaw() directly instead of sqliteMalloc(). This | |
734 ** is because when memory debugging is turned on, these two functions are | |
735 ** called via macros that record the current file and line number in the | |
736 ** ThreadData structure. | |
737 */ | |
738 char *sqlite3DbStrDup(sqlite3 *db, const char *z){ | |
739 char *zNew; | |
740 size_t n; | |
741 if( z==0 ){ | |
742 return 0; | |
743 } | |
744 n = sqlite3Strlen30(z) + 1; | |
745 assert( (n&0x7fffffff)==n ); | |
746 zNew = sqlite3DbMallocRaw(db, (int)n); | |
747 if( zNew ){ | |
748 memcpy(zNew, z, n); | |
749 } | |
750 return zNew; | |
751 } | |
752 char *sqlite3DbStrNDup(sqlite3 *db, const char *z, u64 n){ | |
753 char *zNew; | |
754 if( z==0 ){ | |
755 return 0; | |
756 } | |
757 assert( (n&0x7fffffff)==n ); | |
758 zNew = sqlite3DbMallocRaw(db, n+1); | |
759 if( zNew ){ | |
760 memcpy(zNew, z, (size_t)n); | |
761 zNew[n] = 0; | |
762 } | |
763 return zNew; | |
764 } | |
765 | |
766 /* | |
767 ** Create a string from the zFromat argument and the va_list that follows. | |
768 ** Store the string in memory obtained from sqliteMalloc() and make *pz | |
769 ** point to that string. | |
770 */ | |
771 void sqlite3SetString(char **pz, sqlite3 *db, const char *zFormat, ...){ | |
772 va_list ap; | |
773 char *z; | |
774 | |
775 va_start(ap, zFormat); | |
776 z = sqlite3VMPrintf(db, zFormat, ap); | |
777 va_end(ap); | |
778 sqlite3DbFree(db, *pz); | |
779 *pz = z; | |
780 } | |
781 | |
782 /* | |
783 ** Take actions at the end of an API call to indicate an OOM error | |
784 */ | |
785 static SQLITE_NOINLINE int apiOomError(sqlite3 *db){ | |
786 db->mallocFailed = 0; | |
787 sqlite3Error(db, SQLITE_NOMEM); | |
788 return SQLITE_NOMEM; | |
789 } | |
790 | |
791 /* | |
792 ** This function must be called before exiting any API function (i.e. | |
793 ** returning control to the user) that has called sqlite3_malloc or | |
794 ** sqlite3_realloc. | |
795 ** | |
796 ** The returned value is normally a copy of the second argument to this | |
797 ** function. However, if a malloc() failure has occurred since the previous | |
798 ** invocation SQLITE_NOMEM is returned instead. | |
799 ** | |
800 ** If the first argument, db, is not NULL and a malloc() error has occurred, | |
801 ** then the connection error-code (the value returned by sqlite3_errcode()) | |
802 ** is set to SQLITE_NOMEM. | |
803 */ | |
804 int sqlite3ApiExit(sqlite3* db, int rc){ | |
805 /* If the db handle is not NULL, then we must hold the connection handle | |
806 ** mutex here. Otherwise the read (and possible write) of db->mallocFailed | |
807 ** is unsafe, as is the call to sqlite3Error(). | |
808 */ | |
809 assert( !db || sqlite3_mutex_held(db->mutex) ); | |
810 if( db==0 ) return rc & 0xff; | |
811 if( db->mallocFailed || rc==SQLITE_IOERR_NOMEM ){ | |
812 return apiOomError(db); | |
813 } | |
814 return rc & db->errMask; | |
815 } | |
OLD | NEW |