OLD | NEW |
| (Empty) |
1 /* | |
2 ** 2001 September 15 | |
3 ** | |
4 ** The author disclaims copyright to this source code. In place of | |
5 ** a legal notice, here is a blessing: | |
6 ** | |
7 ** May you do good and not evil. | |
8 ** May you find forgiveness for yourself and forgive others. | |
9 ** May you share freely, never taking more than you give. | |
10 ** | |
11 ************************************************************************* | |
12 ** This file contains C code routines that are called by the parser | |
13 ** to handle INSERT statements in SQLite. | |
14 */ | |
15 #include "sqliteInt.h" | |
16 | |
17 /* | |
18 ** Generate code that will | |
19 ** | |
20 ** (1) acquire a lock for table pTab then | |
21 ** (2) open pTab as cursor iCur. | |
22 ** | |
23 ** If pTab is a WITHOUT ROWID table, then it is the PRIMARY KEY index | |
24 ** for that table that is actually opened. | |
25 */ | |
26 void sqlite3OpenTable( | |
27 Parse *pParse, /* Generate code into this VDBE */ | |
28 int iCur, /* The cursor number of the table */ | |
29 int iDb, /* The database index in sqlite3.aDb[] */ | |
30 Table *pTab, /* The table to be opened */ | |
31 int opcode /* OP_OpenRead or OP_OpenWrite */ | |
32 ){ | |
33 Vdbe *v; | |
34 assert( !IsVirtual(pTab) ); | |
35 v = sqlite3GetVdbe(pParse); | |
36 assert( opcode==OP_OpenWrite || opcode==OP_OpenRead ); | |
37 sqlite3TableLock(pParse, iDb, pTab->tnum, | |
38 (opcode==OP_OpenWrite)?1:0, pTab->zName); | |
39 if( HasRowid(pTab) ){ | |
40 sqlite3VdbeAddOp4Int(v, opcode, iCur, pTab->tnum, iDb, pTab->nCol); | |
41 VdbeComment((v, "%s", pTab->zName)); | |
42 }else{ | |
43 Index *pPk = sqlite3PrimaryKeyIndex(pTab); | |
44 assert( pPk!=0 ); | |
45 assert( pPk->tnum=pTab->tnum ); | |
46 sqlite3VdbeAddOp3(v, opcode, iCur, pPk->tnum, iDb); | |
47 sqlite3VdbeSetP4KeyInfo(pParse, pPk); | |
48 VdbeComment((v, "%s", pTab->zName)); | |
49 } | |
50 } | |
51 | |
52 /* | |
53 ** Return a pointer to the column affinity string associated with index | |
54 ** pIdx. A column affinity string has one character for each column in | |
55 ** the table, according to the affinity of the column: | |
56 ** | |
57 ** Character Column affinity | |
58 ** ------------------------------ | |
59 ** 'A' NONE | |
60 ** 'B' TEXT | |
61 ** 'C' NUMERIC | |
62 ** 'D' INTEGER | |
63 ** 'F' REAL | |
64 ** | |
65 ** An extra 'D' is appended to the end of the string to cover the | |
66 ** rowid that appears as the last column in every index. | |
67 ** | |
68 ** Memory for the buffer containing the column index affinity string | |
69 ** is managed along with the rest of the Index structure. It will be | |
70 ** released when sqlite3DeleteIndex() is called. | |
71 */ | |
72 const char *sqlite3IndexAffinityStr(Vdbe *v, Index *pIdx){ | |
73 if( !pIdx->zColAff ){ | |
74 /* The first time a column affinity string for a particular index is | |
75 ** required, it is allocated and populated here. It is then stored as | |
76 ** a member of the Index structure for subsequent use. | |
77 ** | |
78 ** The column affinity string will eventually be deleted by | |
79 ** sqliteDeleteIndex() when the Index structure itself is cleaned | |
80 ** up. | |
81 */ | |
82 int n; | |
83 Table *pTab = pIdx->pTable; | |
84 sqlite3 *db = sqlite3VdbeDb(v); | |
85 pIdx->zColAff = (char *)sqlite3DbMallocRaw(0, pIdx->nColumn+1); | |
86 if( !pIdx->zColAff ){ | |
87 db->mallocFailed = 1; | |
88 return 0; | |
89 } | |
90 for(n=0; n<pIdx->nColumn; n++){ | |
91 i16 x = pIdx->aiColumn[n]; | |
92 pIdx->zColAff[n] = x<0 ? SQLITE_AFF_INTEGER : pTab->aCol[x].affinity; | |
93 } | |
94 pIdx->zColAff[n] = 0; | |
95 } | |
96 | |
97 return pIdx->zColAff; | |
98 } | |
99 | |
100 /* | |
101 ** Compute the affinity string for table pTab, if it has not already been | |
102 ** computed. As an optimization, omit trailing SQLITE_AFF_NONE affinities. | |
103 ** | |
104 ** If the affinity exists (if it is no entirely SQLITE_AFF_NONE values) and | |
105 ** if iReg>0 then code an OP_Affinity opcode that will set the affinities | |
106 ** for register iReg and following. Or if affinities exists and iReg==0, | |
107 ** then just set the P4 operand of the previous opcode (which should be | |
108 ** an OP_MakeRecord) to the affinity string. | |
109 ** | |
110 ** A column affinity string has one character per column: | |
111 ** | |
112 ** Character Column affinity | |
113 ** ------------------------------ | |
114 ** 'A' NONE | |
115 ** 'B' TEXT | |
116 ** 'C' NUMERIC | |
117 ** 'D' INTEGER | |
118 ** 'E' REAL | |
119 */ | |
120 void sqlite3TableAffinity(Vdbe *v, Table *pTab, int iReg){ | |
121 int i; | |
122 char *zColAff = pTab->zColAff; | |
123 if( zColAff==0 ){ | |
124 sqlite3 *db = sqlite3VdbeDb(v); | |
125 zColAff = (char *)sqlite3DbMallocRaw(0, pTab->nCol+1); | |
126 if( !zColAff ){ | |
127 db->mallocFailed = 1; | |
128 return; | |
129 } | |
130 | |
131 for(i=0; i<pTab->nCol; i++){ | |
132 zColAff[i] = pTab->aCol[i].affinity; | |
133 } | |
134 do{ | |
135 zColAff[i--] = 0; | |
136 }while( i>=0 && zColAff[i]==SQLITE_AFF_NONE ); | |
137 pTab->zColAff = zColAff; | |
138 } | |
139 i = sqlite3Strlen30(zColAff); | |
140 if( i ){ | |
141 if( iReg ){ | |
142 sqlite3VdbeAddOp4(v, OP_Affinity, iReg, i, 0, zColAff, i); | |
143 }else{ | |
144 sqlite3VdbeChangeP4(v, -1, zColAff, i); | |
145 } | |
146 } | |
147 } | |
148 | |
149 /* | |
150 ** Return non-zero if the table pTab in database iDb or any of its indices | |
151 ** have been opened at any point in the VDBE program. This is used to see if | |
152 ** a statement of the form "INSERT INTO <iDb, pTab> SELECT ..." can | |
153 ** run without using a temporary table for the results of the SELECT. | |
154 */ | |
155 static int readsTable(Parse *p, int iDb, Table *pTab){ | |
156 Vdbe *v = sqlite3GetVdbe(p); | |
157 int i; | |
158 int iEnd = sqlite3VdbeCurrentAddr(v); | |
159 #ifndef SQLITE_OMIT_VIRTUALTABLE | |
160 VTable *pVTab = IsVirtual(pTab) ? sqlite3GetVTable(p->db, pTab) : 0; | |
161 #endif | |
162 | |
163 for(i=1; i<iEnd; i++){ | |
164 VdbeOp *pOp = sqlite3VdbeGetOp(v, i); | |
165 assert( pOp!=0 ); | |
166 if( pOp->opcode==OP_OpenRead && pOp->p3==iDb ){ | |
167 Index *pIndex; | |
168 int tnum = pOp->p2; | |
169 if( tnum==pTab->tnum ){ | |
170 return 1; | |
171 } | |
172 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ | |
173 if( tnum==pIndex->tnum ){ | |
174 return 1; | |
175 } | |
176 } | |
177 } | |
178 #ifndef SQLITE_OMIT_VIRTUALTABLE | |
179 if( pOp->opcode==OP_VOpen && pOp->p4.pVtab==pVTab ){ | |
180 assert( pOp->p4.pVtab!=0 ); | |
181 assert( pOp->p4type==P4_VTAB ); | |
182 return 1; | |
183 } | |
184 #endif | |
185 } | |
186 return 0; | |
187 } | |
188 | |
189 #ifndef SQLITE_OMIT_AUTOINCREMENT | |
190 /* | |
191 ** Locate or create an AutoincInfo structure associated with table pTab | |
192 ** which is in database iDb. Return the register number for the register | |
193 ** that holds the maximum rowid. | |
194 ** | |
195 ** There is at most one AutoincInfo structure per table even if the | |
196 ** same table is autoincremented multiple times due to inserts within | |
197 ** triggers. A new AutoincInfo structure is created if this is the | |
198 ** first use of table pTab. On 2nd and subsequent uses, the original | |
199 ** AutoincInfo structure is used. | |
200 ** | |
201 ** Three memory locations are allocated: | |
202 ** | |
203 ** (1) Register to hold the name of the pTab table. | |
204 ** (2) Register to hold the maximum ROWID of pTab. | |
205 ** (3) Register to hold the rowid in sqlite_sequence of pTab | |
206 ** | |
207 ** The 2nd register is the one that is returned. That is all the | |
208 ** insert routine needs to know about. | |
209 */ | |
210 static int autoIncBegin( | |
211 Parse *pParse, /* Parsing context */ | |
212 int iDb, /* Index of the database holding pTab */ | |
213 Table *pTab /* The table we are writing to */ | |
214 ){ | |
215 int memId = 0; /* Register holding maximum rowid */ | |
216 if( pTab->tabFlags & TF_Autoincrement ){ | |
217 Parse *pToplevel = sqlite3ParseToplevel(pParse); | |
218 AutoincInfo *pInfo; | |
219 | |
220 pInfo = pToplevel->pAinc; | |
221 while( pInfo && pInfo->pTab!=pTab ){ pInfo = pInfo->pNext; } | |
222 if( pInfo==0 ){ | |
223 pInfo = sqlite3DbMallocRaw(pParse->db, sizeof(*pInfo)); | |
224 if( pInfo==0 ) return 0; | |
225 pInfo->pNext = pToplevel->pAinc; | |
226 pToplevel->pAinc = pInfo; | |
227 pInfo->pTab = pTab; | |
228 pInfo->iDb = iDb; | |
229 pToplevel->nMem++; /* Register to hold name of table */ | |
230 pInfo->regCtr = ++pToplevel->nMem; /* Max rowid register */ | |
231 pToplevel->nMem++; /* Rowid in sqlite_sequence */ | |
232 } | |
233 memId = pInfo->regCtr; | |
234 } | |
235 return memId; | |
236 } | |
237 | |
238 /* | |
239 ** This routine generates code that will initialize all of the | |
240 ** register used by the autoincrement tracker. | |
241 */ | |
242 void sqlite3AutoincrementBegin(Parse *pParse){ | |
243 AutoincInfo *p; /* Information about an AUTOINCREMENT */ | |
244 sqlite3 *db = pParse->db; /* The database connection */ | |
245 Db *pDb; /* Database only autoinc table */ | |
246 int memId; /* Register holding max rowid */ | |
247 int addr; /* A VDBE address */ | |
248 Vdbe *v = pParse->pVdbe; /* VDBE under construction */ | |
249 | |
250 /* This routine is never called during trigger-generation. It is | |
251 ** only called from the top-level */ | |
252 assert( pParse->pTriggerTab==0 ); | |
253 assert( pParse==sqlite3ParseToplevel(pParse) ); | |
254 | |
255 assert( v ); /* We failed long ago if this is not so */ | |
256 for(p = pParse->pAinc; p; p = p->pNext){ | |
257 pDb = &db->aDb[p->iDb]; | |
258 memId = p->regCtr; | |
259 assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) ); | |
260 sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenRead); | |
261 sqlite3VdbeAddOp3(v, OP_Null, 0, memId, memId+1); | |
262 addr = sqlite3VdbeCurrentAddr(v); | |
263 sqlite3VdbeAddOp4(v, OP_String8, 0, memId-1, 0, p->pTab->zName, 0); | |
264 sqlite3VdbeAddOp2(v, OP_Rewind, 0, addr+9); VdbeCoverage(v); | |
265 sqlite3VdbeAddOp3(v, OP_Column, 0, 0, memId); | |
266 sqlite3VdbeAddOp3(v, OP_Ne, memId-1, addr+7, memId); VdbeCoverage(v); | |
267 sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL); | |
268 sqlite3VdbeAddOp2(v, OP_Rowid, 0, memId+1); | |
269 sqlite3VdbeAddOp3(v, OP_Column, 0, 1, memId); | |
270 sqlite3VdbeAddOp2(v, OP_Goto, 0, addr+9); | |
271 sqlite3VdbeAddOp2(v, OP_Next, 0, addr+2); VdbeCoverage(v); | |
272 sqlite3VdbeAddOp2(v, OP_Integer, 0, memId); | |
273 sqlite3VdbeAddOp0(v, OP_Close); | |
274 } | |
275 } | |
276 | |
277 /* | |
278 ** Update the maximum rowid for an autoincrement calculation. | |
279 ** | |
280 ** This routine should be called when the top of the stack holds a | |
281 ** new rowid that is about to be inserted. If that new rowid is | |
282 ** larger than the maximum rowid in the memId memory cell, then the | |
283 ** memory cell is updated. The stack is unchanged. | |
284 */ | |
285 static void autoIncStep(Parse *pParse, int memId, int regRowid){ | |
286 if( memId>0 ){ | |
287 sqlite3VdbeAddOp2(pParse->pVdbe, OP_MemMax, memId, regRowid); | |
288 } | |
289 } | |
290 | |
291 /* | |
292 ** This routine generates the code needed to write autoincrement | |
293 ** maximum rowid values back into the sqlite_sequence register. | |
294 ** Every statement that might do an INSERT into an autoincrement | |
295 ** table (either directly or through triggers) needs to call this | |
296 ** routine just before the "exit" code. | |
297 */ | |
298 void sqlite3AutoincrementEnd(Parse *pParse){ | |
299 AutoincInfo *p; | |
300 Vdbe *v = pParse->pVdbe; | |
301 sqlite3 *db = pParse->db; | |
302 | |
303 assert( v ); | |
304 for(p = pParse->pAinc; p; p = p->pNext){ | |
305 Db *pDb = &db->aDb[p->iDb]; | |
306 int j1; | |
307 int iRec; | |
308 int memId = p->regCtr; | |
309 | |
310 iRec = sqlite3GetTempReg(pParse); | |
311 assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) ); | |
312 sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenWrite); | |
313 j1 = sqlite3VdbeAddOp1(v, OP_NotNull, memId+1); VdbeCoverage(v); | |
314 sqlite3VdbeAddOp2(v, OP_NewRowid, 0, memId+1); | |
315 sqlite3VdbeJumpHere(v, j1); | |
316 sqlite3VdbeAddOp3(v, OP_MakeRecord, memId-1, 2, iRec); | |
317 sqlite3VdbeAddOp3(v, OP_Insert, 0, iRec, memId+1); | |
318 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); | |
319 sqlite3VdbeAddOp0(v, OP_Close); | |
320 sqlite3ReleaseTempReg(pParse, iRec); | |
321 } | |
322 } | |
323 #else | |
324 /* | |
325 ** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines | |
326 ** above are all no-ops | |
327 */ | |
328 # define autoIncBegin(A,B,C) (0) | |
329 # define autoIncStep(A,B,C) | |
330 #endif /* SQLITE_OMIT_AUTOINCREMENT */ | |
331 | |
332 | |
333 /* Forward declaration */ | |
334 static int xferOptimization( | |
335 Parse *pParse, /* Parser context */ | |
336 Table *pDest, /* The table we are inserting into */ | |
337 Select *pSelect, /* A SELECT statement to use as the data source */ | |
338 int onError, /* How to handle constraint errors */ | |
339 int iDbDest /* The database of pDest */ | |
340 ); | |
341 | |
342 /* | |
343 ** This routine is called to handle SQL of the following forms: | |
344 ** | |
345 ** insert into TABLE (IDLIST) values(EXPRLIST) | |
346 ** insert into TABLE (IDLIST) select | |
347 ** | |
348 ** The IDLIST following the table name is always optional. If omitted, | |
349 ** then a list of all columns for the table is substituted. The IDLIST | |
350 ** appears in the pColumn parameter. pColumn is NULL if IDLIST is omitted. | |
351 ** | |
352 ** The pList parameter holds EXPRLIST in the first form of the INSERT | |
353 ** statement above, and pSelect is NULL. For the second form, pList is | |
354 ** NULL and pSelect is a pointer to the select statement used to generate | |
355 ** data for the insert. | |
356 ** | |
357 ** The code generated follows one of four templates. For a simple | |
358 ** insert with data coming from a VALUES clause, the code executes | |
359 ** once straight down through. Pseudo-code follows (we call this | |
360 ** the "1st template"): | |
361 ** | |
362 ** open write cursor to <table> and its indices | |
363 ** put VALUES clause expressions into registers | |
364 ** write the resulting record into <table> | |
365 ** cleanup | |
366 ** | |
367 ** The three remaining templates assume the statement is of the form | |
368 ** | |
369 ** INSERT INTO <table> SELECT ... | |
370 ** | |
371 ** If the SELECT clause is of the restricted form "SELECT * FROM <table2>" - | |
372 ** in other words if the SELECT pulls all columns from a single table | |
373 ** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and | |
374 ** if <table2> and <table1> are distinct tables but have identical | |
375 ** schemas, including all the same indices, then a special optimization | |
376 ** is invoked that copies raw records from <table2> over to <table1>. | |
377 ** See the xferOptimization() function for the implementation of this | |
378 ** template. This is the 2nd template. | |
379 ** | |
380 ** open a write cursor to <table> | |
381 ** open read cursor on <table2> | |
382 ** transfer all records in <table2> over to <table> | |
383 ** close cursors | |
384 ** foreach index on <table> | |
385 ** open a write cursor on the <table> index | |
386 ** open a read cursor on the corresponding <table2> index | |
387 ** transfer all records from the read to the write cursors | |
388 ** close cursors | |
389 ** end foreach | |
390 ** | |
391 ** The 3rd template is for when the second template does not apply | |
392 ** and the SELECT clause does not read from <table> at any time. | |
393 ** The generated code follows this template: | |
394 ** | |
395 ** X <- A | |
396 ** goto B | |
397 ** A: setup for the SELECT | |
398 ** loop over the rows in the SELECT | |
399 ** load values into registers R..R+n | |
400 ** yield X | |
401 ** end loop | |
402 ** cleanup after the SELECT | |
403 ** end-coroutine X | |
404 ** B: open write cursor to <table> and its indices | |
405 ** C: yield X, at EOF goto D | |
406 ** insert the select result into <table> from R..R+n | |
407 ** goto C | |
408 ** D: cleanup | |
409 ** | |
410 ** The 4th template is used if the insert statement takes its | |
411 ** values from a SELECT but the data is being inserted into a table | |
412 ** that is also read as part of the SELECT. In the third form, | |
413 ** we have to use an intermediate table to store the results of | |
414 ** the select. The template is like this: | |
415 ** | |
416 ** X <- A | |
417 ** goto B | |
418 ** A: setup for the SELECT | |
419 ** loop over the tables in the SELECT | |
420 ** load value into register R..R+n | |
421 ** yield X | |
422 ** end loop | |
423 ** cleanup after the SELECT | |
424 ** end co-routine R | |
425 ** B: open temp table | |
426 ** L: yield X, at EOF goto M | |
427 ** insert row from R..R+n into temp table | |
428 ** goto L | |
429 ** M: open write cursor to <table> and its indices | |
430 ** rewind temp table | |
431 ** C: loop over rows of intermediate table | |
432 ** transfer values form intermediate table into <table> | |
433 ** end loop | |
434 ** D: cleanup | |
435 */ | |
436 void sqlite3Insert( | |
437 Parse *pParse, /* Parser context */ | |
438 SrcList *pTabList, /* Name of table into which we are inserting */ | |
439 Select *pSelect, /* A SELECT statement to use as the data source */ | |
440 IdList *pColumn, /* Column names corresponding to IDLIST. */ | |
441 int onError /* How to handle constraint errors */ | |
442 ){ | |
443 sqlite3 *db; /* The main database structure */ | |
444 Table *pTab; /* The table to insert into. aka TABLE */ | |
445 char *zTab; /* Name of the table into which we are inserting */ | |
446 const char *zDb; /* Name of the database holding this table */ | |
447 int i, j, idx; /* Loop counters */ | |
448 Vdbe *v; /* Generate code into this virtual machine */ | |
449 Index *pIdx; /* For looping over indices of the table */ | |
450 int nColumn; /* Number of columns in the data */ | |
451 int nHidden = 0; /* Number of hidden columns if TABLE is virtual */ | |
452 int iDataCur = 0; /* VDBE cursor that is the main data repository */ | |
453 int iIdxCur = 0; /* First index cursor */ | |
454 int ipkColumn = -1; /* Column that is the INTEGER PRIMARY KEY */ | |
455 int endOfLoop; /* Label for the end of the insertion loop */ | |
456 int srcTab = 0; /* Data comes from this temporary cursor if >=0 */ | |
457 int addrInsTop = 0; /* Jump to label "D" */ | |
458 int addrCont = 0; /* Top of insert loop. Label "C" in templates 3 and 4 */ | |
459 SelectDest dest; /* Destination for SELECT on rhs of INSERT */ | |
460 int iDb; /* Index of database holding TABLE */ | |
461 Db *pDb; /* The database containing table being inserted into */ | |
462 u8 useTempTable = 0; /* Store SELECT results in intermediate table */ | |
463 u8 appendFlag = 0; /* True if the insert is likely to be an append */ | |
464 u8 withoutRowid; /* 0 for normal table. 1 for WITHOUT ROWID table */ | |
465 u8 bIdListInOrder = 1; /* True if IDLIST is in table order */ | |
466 ExprList *pList = 0; /* List of VALUES() to be inserted */ | |
467 | |
468 /* Register allocations */ | |
469 int regFromSelect = 0;/* Base register for data coming from SELECT */ | |
470 int regAutoinc = 0; /* Register holding the AUTOINCREMENT counter */ | |
471 int regRowCount = 0; /* Memory cell used for the row counter */ | |
472 int regIns; /* Block of regs holding rowid+data being inserted */ | |
473 int regRowid; /* registers holding insert rowid */ | |
474 int regData; /* register holding first column to insert */ | |
475 int *aRegIdx = 0; /* One register allocated to each index */ | |
476 | |
477 #ifndef SQLITE_OMIT_TRIGGER | |
478 int isView; /* True if attempting to insert into a view */ | |
479 Trigger *pTrigger; /* List of triggers on pTab, if required */ | |
480 int tmask; /* Mask of trigger times */ | |
481 #endif | |
482 | |
483 db = pParse->db; | |
484 memset(&dest, 0, sizeof(dest)); | |
485 if( pParse->nErr || db->mallocFailed ){ | |
486 goto insert_cleanup; | |
487 } | |
488 | |
489 /* If the Select object is really just a simple VALUES() list with a | |
490 ** single row values (the common case) then keep that one row of values | |
491 ** and go ahead and discard the Select object | |
492 */ | |
493 if( pSelect && (pSelect->selFlags & SF_Values)!=0 && pSelect->pPrior==0 ){ | |
494 pList = pSelect->pEList; | |
495 pSelect->pEList = 0; | |
496 sqlite3SelectDelete(db, pSelect); | |
497 pSelect = 0; | |
498 } | |
499 | |
500 /* Locate the table into which we will be inserting new information. | |
501 */ | |
502 assert( pTabList->nSrc==1 ); | |
503 zTab = pTabList->a[0].zName; | |
504 if( NEVER(zTab==0) ) goto insert_cleanup; | |
505 pTab = sqlite3SrcListLookup(pParse, pTabList); | |
506 if( pTab==0 ){ | |
507 goto insert_cleanup; | |
508 } | |
509 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); | |
510 assert( iDb<db->nDb ); | |
511 pDb = &db->aDb[iDb]; | |
512 zDb = pDb->zName; | |
513 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0, zDb) ){ | |
514 goto insert_cleanup; | |
515 } | |
516 withoutRowid = !HasRowid(pTab); | |
517 | |
518 /* Figure out if we have any triggers and if the table being | |
519 ** inserted into is a view | |
520 */ | |
521 #ifndef SQLITE_OMIT_TRIGGER | |
522 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0, &tmask); | |
523 isView = pTab->pSelect!=0; | |
524 #else | |
525 # define pTrigger 0 | |
526 # define tmask 0 | |
527 # define isView 0 | |
528 #endif | |
529 #ifdef SQLITE_OMIT_VIEW | |
530 # undef isView | |
531 # define isView 0 | |
532 #endif | |
533 assert( (pTrigger && tmask) || (pTrigger==0 && tmask==0) ); | |
534 | |
535 /* If pTab is really a view, make sure it has been initialized. | |
536 ** ViewGetColumnNames() is a no-op if pTab is not a view. | |
537 */ | |
538 if( sqlite3ViewGetColumnNames(pParse, pTab) ){ | |
539 goto insert_cleanup; | |
540 } | |
541 | |
542 /* Cannot insert into a read-only table. | |
543 */ | |
544 if( sqlite3IsReadOnly(pParse, pTab, tmask) ){ | |
545 goto insert_cleanup; | |
546 } | |
547 | |
548 /* Allocate a VDBE | |
549 */ | |
550 v = sqlite3GetVdbe(pParse); | |
551 if( v==0 ) goto insert_cleanup; | |
552 if( pParse->nested==0 ) sqlite3VdbeCountChanges(v); | |
553 sqlite3BeginWriteOperation(pParse, pSelect || pTrigger, iDb); | |
554 | |
555 #ifndef SQLITE_OMIT_XFER_OPT | |
556 /* If the statement is of the form | |
557 ** | |
558 ** INSERT INTO <table1> SELECT * FROM <table2>; | |
559 ** | |
560 ** Then special optimizations can be applied that make the transfer | |
561 ** very fast and which reduce fragmentation of indices. | |
562 ** | |
563 ** This is the 2nd template. | |
564 */ | |
565 if( pColumn==0 && xferOptimization(pParse, pTab, pSelect, onError, iDb) ){ | |
566 assert( !pTrigger ); | |
567 assert( pList==0 ); | |
568 goto insert_end; | |
569 } | |
570 #endif /* SQLITE_OMIT_XFER_OPT */ | |
571 | |
572 /* If this is an AUTOINCREMENT table, look up the sequence number in the | |
573 ** sqlite_sequence table and store it in memory cell regAutoinc. | |
574 */ | |
575 regAutoinc = autoIncBegin(pParse, iDb, pTab); | |
576 | |
577 /* Allocate registers for holding the rowid of the new row, | |
578 ** the content of the new row, and the assembled row record. | |
579 */ | |
580 regRowid = regIns = pParse->nMem+1; | |
581 pParse->nMem += pTab->nCol + 1; | |
582 if( IsVirtual(pTab) ){ | |
583 regRowid++; | |
584 pParse->nMem++; | |
585 } | |
586 regData = regRowid+1; | |
587 | |
588 /* If the INSERT statement included an IDLIST term, then make sure | |
589 ** all elements of the IDLIST really are columns of the table and | |
590 ** remember the column indices. | |
591 ** | |
592 ** If the table has an INTEGER PRIMARY KEY column and that column | |
593 ** is named in the IDLIST, then record in the ipkColumn variable | |
594 ** the index into IDLIST of the primary key column. ipkColumn is | |
595 ** the index of the primary key as it appears in IDLIST, not as | |
596 ** is appears in the original table. (The index of the INTEGER | |
597 ** PRIMARY KEY in the original table is pTab->iPKey.) | |
598 */ | |
599 if( pColumn ){ | |
600 for(i=0; i<pColumn->nId; i++){ | |
601 pColumn->a[i].idx = -1; | |
602 } | |
603 for(i=0; i<pColumn->nId; i++){ | |
604 for(j=0; j<pTab->nCol; j++){ | |
605 if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zName)==0 ){ | |
606 pColumn->a[i].idx = j; | |
607 if( i!=j ) bIdListInOrder = 0; | |
608 if( j==pTab->iPKey ){ | |
609 ipkColumn = i; assert( !withoutRowid ); | |
610 } | |
611 break; | |
612 } | |
613 } | |
614 if( j>=pTab->nCol ){ | |
615 if( sqlite3IsRowid(pColumn->a[i].zName) && !withoutRowid ){ | |
616 ipkColumn = i; | |
617 bIdListInOrder = 0; | |
618 }else{ | |
619 sqlite3ErrorMsg(pParse, "table %S has no column named %s", | |
620 pTabList, 0, pColumn->a[i].zName); | |
621 pParse->checkSchema = 1; | |
622 goto insert_cleanup; | |
623 } | |
624 } | |
625 } | |
626 } | |
627 | |
628 /* Figure out how many columns of data are supplied. If the data | |
629 ** is coming from a SELECT statement, then generate a co-routine that | |
630 ** produces a single row of the SELECT on each invocation. The | |
631 ** co-routine is the common header to the 3rd and 4th templates. | |
632 */ | |
633 if( pSelect ){ | |
634 /* Data is coming from a SELECT. Generate a co-routine to run the SELECT */ | |
635 int regYield; /* Register holding co-routine entry-point */ | |
636 int addrTop; /* Top of the co-routine */ | |
637 int rc; /* Result code */ | |
638 | |
639 regYield = ++pParse->nMem; | |
640 addrTop = sqlite3VdbeCurrentAddr(v) + 1; | |
641 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop); | |
642 sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield); | |
643 dest.iSdst = bIdListInOrder ? regData : 0; | |
644 dest.nSdst = pTab->nCol; | |
645 rc = sqlite3Select(pParse, pSelect, &dest); | |
646 regFromSelect = dest.iSdst; | |
647 assert( pParse->nErr==0 || rc ); | |
648 if( rc || db->mallocFailed ) goto insert_cleanup; | |
649 sqlite3VdbeAddOp1(v, OP_EndCoroutine, regYield); | |
650 sqlite3VdbeJumpHere(v, addrTop - 1); /* label B: */ | |
651 assert( pSelect->pEList ); | |
652 nColumn = pSelect->pEList->nExpr; | |
653 | |
654 /* Set useTempTable to TRUE if the result of the SELECT statement | |
655 ** should be written into a temporary table (template 4). Set to | |
656 ** FALSE if each output row of the SELECT can be written directly into | |
657 ** the destination table (template 3). | |
658 ** | |
659 ** A temp table must be used if the table being updated is also one | |
660 ** of the tables being read by the SELECT statement. Also use a | |
661 ** temp table in the case of row triggers. | |
662 */ | |
663 if( pTrigger || readsTable(pParse, iDb, pTab) ){ | |
664 useTempTable = 1; | |
665 } | |
666 | |
667 if( useTempTable ){ | |
668 /* Invoke the coroutine to extract information from the SELECT | |
669 ** and add it to a transient table srcTab. The code generated | |
670 ** here is from the 4th template: | |
671 ** | |
672 ** B: open temp table | |
673 ** L: yield X, goto M at EOF | |
674 ** insert row from R..R+n into temp table | |
675 ** goto L | |
676 ** M: ... | |
677 */ | |
678 int regRec; /* Register to hold packed record */ | |
679 int regTempRowid; /* Register to hold temp table ROWID */ | |
680 int addrL; /* Label "L" */ | |
681 | |
682 srcTab = pParse->nTab++; | |
683 regRec = sqlite3GetTempReg(pParse); | |
684 regTempRowid = sqlite3GetTempReg(pParse); | |
685 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, nColumn); | |
686 addrL = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); VdbeCoverage(v); | |
687 sqlite3VdbeAddOp3(v, OP_MakeRecord, regFromSelect, nColumn, regRec); | |
688 sqlite3VdbeAddOp2(v, OP_NewRowid, srcTab, regTempRowid); | |
689 sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regTempRowid); | |
690 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrL); | |
691 sqlite3VdbeJumpHere(v, addrL); | |
692 sqlite3ReleaseTempReg(pParse, regRec); | |
693 sqlite3ReleaseTempReg(pParse, regTempRowid); | |
694 } | |
695 }else{ | |
696 /* This is the case if the data for the INSERT is coming from a VALUES | |
697 ** clause | |
698 */ | |
699 NameContext sNC; | |
700 memset(&sNC, 0, sizeof(sNC)); | |
701 sNC.pParse = pParse; | |
702 srcTab = -1; | |
703 assert( useTempTable==0 ); | |
704 nColumn = pList ? pList->nExpr : 0; | |
705 for(i=0; i<nColumn; i++){ | |
706 if( sqlite3ResolveExprNames(&sNC, pList->a[i].pExpr) ){ | |
707 goto insert_cleanup; | |
708 } | |
709 } | |
710 } | |
711 | |
712 /* If there is no IDLIST term but the table has an integer primary | |
713 ** key, the set the ipkColumn variable to the integer primary key | |
714 ** column index in the original table definition. | |
715 */ | |
716 if( pColumn==0 && nColumn>0 ){ | |
717 ipkColumn = pTab->iPKey; | |
718 } | |
719 | |
720 /* Make sure the number of columns in the source data matches the number | |
721 ** of columns to be inserted into the table. | |
722 */ | |
723 if( IsVirtual(pTab) ){ | |
724 for(i=0; i<pTab->nCol; i++){ | |
725 nHidden += (IsHiddenColumn(&pTab->aCol[i]) ? 1 : 0); | |
726 } | |
727 } | |
728 if( pColumn==0 && nColumn && nColumn!=(pTab->nCol-nHidden) ){ | |
729 sqlite3ErrorMsg(pParse, | |
730 "table %S has %d columns but %d values were supplied", | |
731 pTabList, 0, pTab->nCol-nHidden, nColumn); | |
732 goto insert_cleanup; | |
733 } | |
734 if( pColumn!=0 && nColumn!=pColumn->nId ){ | |
735 sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId); | |
736 goto insert_cleanup; | |
737 } | |
738 | |
739 /* Initialize the count of rows to be inserted | |
740 */ | |
741 if( db->flags & SQLITE_CountRows ){ | |
742 regRowCount = ++pParse->nMem; | |
743 sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount); | |
744 } | |
745 | |
746 /* If this is not a view, open the table and and all indices */ | |
747 if( !isView ){ | |
748 int nIdx; | |
749 nIdx = sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenWrite, -1, 0, | |
750 &iDataCur, &iIdxCur); | |
751 aRegIdx = sqlite3DbMallocRaw(db, sizeof(int)*(nIdx+1)); | |
752 if( aRegIdx==0 ){ | |
753 goto insert_cleanup; | |
754 } | |
755 for(i=0; i<nIdx; i++){ | |
756 aRegIdx[i] = ++pParse->nMem; | |
757 } | |
758 } | |
759 | |
760 /* This is the top of the main insertion loop */ | |
761 if( useTempTable ){ | |
762 /* This block codes the top of loop only. The complete loop is the | |
763 ** following pseudocode (template 4): | |
764 ** | |
765 ** rewind temp table, if empty goto D | |
766 ** C: loop over rows of intermediate table | |
767 ** transfer values form intermediate table into <table> | |
768 ** end loop | |
769 ** D: ... | |
770 */ | |
771 addrInsTop = sqlite3VdbeAddOp1(v, OP_Rewind, srcTab); VdbeCoverage(v); | |
772 addrCont = sqlite3VdbeCurrentAddr(v); | |
773 }else if( pSelect ){ | |
774 /* This block codes the top of loop only. The complete loop is the | |
775 ** following pseudocode (template 3): | |
776 ** | |
777 ** C: yield X, at EOF goto D | |
778 ** insert the select result into <table> from R..R+n | |
779 ** goto C | |
780 ** D: ... | |
781 */ | |
782 addrInsTop = addrCont = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); | |
783 VdbeCoverage(v); | |
784 } | |
785 | |
786 /* Run the BEFORE and INSTEAD OF triggers, if there are any | |
787 */ | |
788 endOfLoop = sqlite3VdbeMakeLabel(v); | |
789 if( tmask & TRIGGER_BEFORE ){ | |
790 int regCols = sqlite3GetTempRange(pParse, pTab->nCol+1); | |
791 | |
792 /* build the NEW.* reference row. Note that if there is an INTEGER | |
793 ** PRIMARY KEY into which a NULL is being inserted, that NULL will be | |
794 ** translated into a unique ID for the row. But on a BEFORE trigger, | |
795 ** we do not know what the unique ID will be (because the insert has | |
796 ** not happened yet) so we substitute a rowid of -1 | |
797 */ | |
798 if( ipkColumn<0 ){ | |
799 sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols); | |
800 }else{ | |
801 int j1; | |
802 assert( !withoutRowid ); | |
803 if( useTempTable ){ | |
804 sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regCols); | |
805 }else{ | |
806 assert( pSelect==0 ); /* Otherwise useTempTable is true */ | |
807 sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regCols); | |
808 } | |
809 j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regCols); VdbeCoverage(v); | |
810 sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols); | |
811 sqlite3VdbeJumpHere(v, j1); | |
812 sqlite3VdbeAddOp1(v, OP_MustBeInt, regCols); VdbeCoverage(v); | |
813 } | |
814 | |
815 /* Cannot have triggers on a virtual table. If it were possible, | |
816 ** this block would have to account for hidden column. | |
817 */ | |
818 assert( !IsVirtual(pTab) ); | |
819 | |
820 /* Create the new column data | |
821 */ | |
822 for(i=0; i<pTab->nCol; i++){ | |
823 if( pColumn==0 ){ | |
824 j = i; | |
825 }else{ | |
826 for(j=0; j<pColumn->nId; j++){ | |
827 if( pColumn->a[j].idx==i ) break; | |
828 } | |
829 } | |
830 if( (!useTempTable && !pList) || (pColumn && j>=pColumn->nId) ){ | |
831 sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regCols+i+1); | |
832 }else if( useTempTable ){ | |
833 sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, regCols+i+1); | |
834 }else{ | |
835 assert( pSelect==0 ); /* Otherwise useTempTable is true */ | |
836 sqlite3ExprCodeAndCache(pParse, pList->a[j].pExpr, regCols+i+1); | |
837 } | |
838 } | |
839 | |
840 /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger, | |
841 ** do not attempt any conversions before assembling the record. | |
842 ** If this is a real table, attempt conversions as required by the | |
843 ** table column affinities. | |
844 */ | |
845 if( !isView ){ | |
846 sqlite3TableAffinity(v, pTab, regCols+1); | |
847 } | |
848 | |
849 /* Fire BEFORE or INSTEAD OF triggers */ | |
850 sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_BEFORE, | |
851 pTab, regCols-pTab->nCol-1, onError, endOfLoop); | |
852 | |
853 sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol+1); | |
854 } | |
855 | |
856 /* Compute the content of the next row to insert into a range of | |
857 ** registers beginning at regIns. | |
858 */ | |
859 if( !isView ){ | |
860 if( IsVirtual(pTab) ){ | |
861 /* The row that the VUpdate opcode will delete: none */ | |
862 sqlite3VdbeAddOp2(v, OP_Null, 0, regIns); | |
863 } | |
864 if( ipkColumn>=0 ){ | |
865 if( useTempTable ){ | |
866 sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regRowid); | |
867 }else if( pSelect ){ | |
868 sqlite3VdbeAddOp2(v, OP_Copy, regFromSelect+ipkColumn, regRowid); | |
869 }else{ | |
870 VdbeOp *pOp; | |
871 sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regRowid); | |
872 pOp = sqlite3VdbeGetOp(v, -1); | |
873 if( ALWAYS(pOp) && pOp->opcode==OP_Null && !IsVirtual(pTab) ){ | |
874 appendFlag = 1; | |
875 pOp->opcode = OP_NewRowid; | |
876 pOp->p1 = iDataCur; | |
877 pOp->p2 = regRowid; | |
878 pOp->p3 = regAutoinc; | |
879 } | |
880 } | |
881 /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid | |
882 ** to generate a unique primary key value. | |
883 */ | |
884 if( !appendFlag ){ | |
885 int j1; | |
886 if( !IsVirtual(pTab) ){ | |
887 j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid); VdbeCoverage(v); | |
888 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); | |
889 sqlite3VdbeJumpHere(v, j1); | |
890 }else{ | |
891 j1 = sqlite3VdbeCurrentAddr(v); | |
892 sqlite3VdbeAddOp2(v, OP_IsNull, regRowid, j1+2); VdbeCoverage(v); | |
893 } | |
894 sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid); VdbeCoverage(v); | |
895 } | |
896 }else if( IsVirtual(pTab) || withoutRowid ){ | |
897 sqlite3VdbeAddOp2(v, OP_Null, 0, regRowid); | |
898 }else{ | |
899 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc); | |
900 appendFlag = 1; | |
901 } | |
902 autoIncStep(pParse, regAutoinc, regRowid); | |
903 | |
904 /* Compute data for all columns of the new entry, beginning | |
905 ** with the first column. | |
906 */ | |
907 nHidden = 0; | |
908 for(i=0; i<pTab->nCol; i++){ | |
909 int iRegStore = regRowid+1+i; | |
910 if( i==pTab->iPKey ){ | |
911 /* The value of the INTEGER PRIMARY KEY column is always a NULL. | |
912 ** Whenever this column is read, the rowid will be substituted | |
913 ** in its place. Hence, fill this column with a NULL to avoid | |
914 ** taking up data space with information that will never be used. | |
915 ** As there may be shallow copies of this value, make it a soft-NULL */ | |
916 sqlite3VdbeAddOp1(v, OP_SoftNull, iRegStore); | |
917 continue; | |
918 } | |
919 if( pColumn==0 ){ | |
920 if( IsHiddenColumn(&pTab->aCol[i]) ){ | |
921 assert( IsVirtual(pTab) ); | |
922 j = -1; | |
923 nHidden++; | |
924 }else{ | |
925 j = i - nHidden; | |
926 } | |
927 }else{ | |
928 for(j=0; j<pColumn->nId; j++){ | |
929 if( pColumn->a[j].idx==i ) break; | |
930 } | |
931 } | |
932 if( j<0 || nColumn==0 || (pColumn && j>=pColumn->nId) ){ | |
933 sqlite3ExprCodeFactorable(pParse, pTab->aCol[i].pDflt, iRegStore); | |
934 }else if( useTempTable ){ | |
935 sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, iRegStore); | |
936 }else if( pSelect ){ | |
937 if( regFromSelect!=regData ){ | |
938 sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+j, iRegStore); | |
939 } | |
940 }else{ | |
941 sqlite3ExprCode(pParse, pList->a[j].pExpr, iRegStore); | |
942 } | |
943 } | |
944 | |
945 /* Generate code to check constraints and generate index keys and | |
946 ** do the insertion. | |
947 */ | |
948 #ifndef SQLITE_OMIT_VIRTUALTABLE | |
949 if( IsVirtual(pTab) ){ | |
950 const char *pVTab = (const char *)sqlite3GetVTable(db, pTab); | |
951 sqlite3VtabMakeWritable(pParse, pTab); | |
952 sqlite3VdbeAddOp4(v, OP_VUpdate, 1, pTab->nCol+2, regIns, pVTab, P4_VTAB); | |
953 sqlite3VdbeChangeP5(v, onError==OE_Default ? OE_Abort : onError); | |
954 sqlite3MayAbort(pParse); | |
955 }else | |
956 #endif | |
957 { | |
958 int isReplace; /* Set to true if constraints may cause a replace */ | |
959 sqlite3GenerateConstraintChecks(pParse, pTab, aRegIdx, iDataCur, iIdxCur, | |
960 regIns, 0, ipkColumn>=0, onError, endOfLoop, &isReplace | |
961 ); | |
962 sqlite3FkCheck(pParse, pTab, 0, regIns, 0, 0); | |
963 sqlite3CompleteInsertion(pParse, pTab, iDataCur, iIdxCur, | |
964 regIns, aRegIdx, 0, appendFlag, isReplace==0); | |
965 } | |
966 } | |
967 | |
968 /* Update the count of rows that are inserted | |
969 */ | |
970 if( (db->flags & SQLITE_CountRows)!=0 ){ | |
971 sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1); | |
972 } | |
973 | |
974 if( pTrigger ){ | |
975 /* Code AFTER triggers */ | |
976 sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_AFTER, | |
977 pTab, regData-2-pTab->nCol, onError, endOfLoop); | |
978 } | |
979 | |
980 /* The bottom of the main insertion loop, if the data source | |
981 ** is a SELECT statement. | |
982 */ | |
983 sqlite3VdbeResolveLabel(v, endOfLoop); | |
984 if( useTempTable ){ | |
985 sqlite3VdbeAddOp2(v, OP_Next, srcTab, addrCont); VdbeCoverage(v); | |
986 sqlite3VdbeJumpHere(v, addrInsTop); | |
987 sqlite3VdbeAddOp1(v, OP_Close, srcTab); | |
988 }else if( pSelect ){ | |
989 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrCont); | |
990 sqlite3VdbeJumpHere(v, addrInsTop); | |
991 } | |
992 | |
993 if( !IsVirtual(pTab) && !isView ){ | |
994 /* Close all tables opened */ | |
995 if( iDataCur<iIdxCur ) sqlite3VdbeAddOp1(v, OP_Close, iDataCur); | |
996 for(idx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, idx++){ | |
997 sqlite3VdbeAddOp1(v, OP_Close, idx+iIdxCur); | |
998 } | |
999 } | |
1000 | |
1001 insert_end: | |
1002 /* Update the sqlite_sequence table by storing the content of the | |
1003 ** maximum rowid counter values recorded while inserting into | |
1004 ** autoincrement tables. | |
1005 */ | |
1006 if( pParse->nested==0 && pParse->pTriggerTab==0 ){ | |
1007 sqlite3AutoincrementEnd(pParse); | |
1008 } | |
1009 | |
1010 /* | |
1011 ** Return the number of rows inserted. If this routine is | |
1012 ** generating code because of a call to sqlite3NestedParse(), do not | |
1013 ** invoke the callback function. | |
1014 */ | |
1015 if( (db->flags&SQLITE_CountRows) && !pParse->nested && !pParse->pTriggerTab ){ | |
1016 sqlite3VdbeAddOp2(v, OP_ResultRow, regRowCount, 1); | |
1017 sqlite3VdbeSetNumCols(v, 1); | |
1018 sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows inserted", SQLITE_STATIC); | |
1019 } | |
1020 | |
1021 insert_cleanup: | |
1022 sqlite3SrcListDelete(db, pTabList); | |
1023 sqlite3ExprListDelete(db, pList); | |
1024 sqlite3SelectDelete(db, pSelect); | |
1025 sqlite3IdListDelete(db, pColumn); | |
1026 sqlite3DbFree(db, aRegIdx); | |
1027 } | |
1028 | |
1029 /* Make sure "isView" and other macros defined above are undefined. Otherwise | |
1030 ** they may interfere with compilation of other functions in this file | |
1031 ** (or in another file, if this file becomes part of the amalgamation). */ | |
1032 #ifdef isView | |
1033 #undef isView | |
1034 #endif | |
1035 #ifdef pTrigger | |
1036 #undef pTrigger | |
1037 #endif | |
1038 #ifdef tmask | |
1039 #undef tmask | |
1040 #endif | |
1041 | |
1042 /* | |
1043 ** Generate code to do constraint checks prior to an INSERT or an UPDATE | |
1044 ** on table pTab. | |
1045 ** | |
1046 ** The regNewData parameter is the first register in a range that contains | |
1047 ** the data to be inserted or the data after the update. There will be | |
1048 ** pTab->nCol+1 registers in this range. The first register (the one | |
1049 ** that regNewData points to) will contain the new rowid, or NULL in the | |
1050 ** case of a WITHOUT ROWID table. The second register in the range will | |
1051 ** contain the content of the first table column. The third register will | |
1052 ** contain the content of the second table column. And so forth. | |
1053 ** | |
1054 ** The regOldData parameter is similar to regNewData except that it contains | |
1055 ** the data prior to an UPDATE rather than afterwards. regOldData is zero | |
1056 ** for an INSERT. This routine can distinguish between UPDATE and INSERT by | |
1057 ** checking regOldData for zero. | |
1058 ** | |
1059 ** For an UPDATE, the pkChng boolean is true if the true primary key (the | |
1060 ** rowid for a normal table or the PRIMARY KEY for a WITHOUT ROWID table) | |
1061 ** might be modified by the UPDATE. If pkChng is false, then the key of | |
1062 ** the iDataCur content table is guaranteed to be unchanged by the UPDATE. | |
1063 ** | |
1064 ** For an INSERT, the pkChng boolean indicates whether or not the rowid | |
1065 ** was explicitly specified as part of the INSERT statement. If pkChng | |
1066 ** is zero, it means that the either rowid is computed automatically or | |
1067 ** that the table is a WITHOUT ROWID table and has no rowid. On an INSERT, | |
1068 ** pkChng will only be true if the INSERT statement provides an integer | |
1069 ** value for either the rowid column or its INTEGER PRIMARY KEY alias. | |
1070 ** | |
1071 ** The code generated by this routine will store new index entries into | |
1072 ** registers identified by aRegIdx[]. No index entry is created for | |
1073 ** indices where aRegIdx[i]==0. The order of indices in aRegIdx[] is | |
1074 ** the same as the order of indices on the linked list of indices | |
1075 ** at pTab->pIndex. | |
1076 ** | |
1077 ** The caller must have already opened writeable cursors on the main | |
1078 ** table and all applicable indices (that is to say, all indices for which | |
1079 ** aRegIdx[] is not zero). iDataCur is the cursor for the main table when | |
1080 ** inserting or updating a rowid table, or the cursor for the PRIMARY KEY | |
1081 ** index when operating on a WITHOUT ROWID table. iIdxCur is the cursor | |
1082 ** for the first index in the pTab->pIndex list. Cursors for other indices | |
1083 ** are at iIdxCur+N for the N-th element of the pTab->pIndex list. | |
1084 ** | |
1085 ** This routine also generates code to check constraints. NOT NULL, | |
1086 ** CHECK, and UNIQUE constraints are all checked. If a constraint fails, | |
1087 ** then the appropriate action is performed. There are five possible | |
1088 ** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE. | |
1089 ** | |
1090 ** Constraint type Action What Happens | |
1091 ** --------------- ---------- ---------------------------------------- | |
1092 ** any ROLLBACK The current transaction is rolled back and | |
1093 ** sqlite3_step() returns immediately with a | |
1094 ** return code of SQLITE_CONSTRAINT. | |
1095 ** | |
1096 ** any ABORT Back out changes from the current command | |
1097 ** only (do not do a complete rollback) then | |
1098 ** cause sqlite3_step() to return immediately | |
1099 ** with SQLITE_CONSTRAINT. | |
1100 ** | |
1101 ** any FAIL Sqlite3_step() returns immediately with a | |
1102 ** return code of SQLITE_CONSTRAINT. The | |
1103 ** transaction is not rolled back and any | |
1104 ** changes to prior rows are retained. | |
1105 ** | |
1106 ** any IGNORE The attempt in insert or update the current | |
1107 ** row is skipped, without throwing an error. | |
1108 ** Processing continues with the next row. | |
1109 ** (There is an immediate jump to ignoreDest.) | |
1110 ** | |
1111 ** NOT NULL REPLACE The NULL value is replace by the default | |
1112 ** value for that column. If the default value | |
1113 ** is NULL, the action is the same as ABORT. | |
1114 ** | |
1115 ** UNIQUE REPLACE The other row that conflicts with the row | |
1116 ** being inserted is removed. | |
1117 ** | |
1118 ** CHECK REPLACE Illegal. The results in an exception. | |
1119 ** | |
1120 ** Which action to take is determined by the overrideError parameter. | |
1121 ** Or if overrideError==OE_Default, then the pParse->onError parameter | |
1122 ** is used. Or if pParse->onError==OE_Default then the onError value | |
1123 ** for the constraint is used. | |
1124 */ | |
1125 void sqlite3GenerateConstraintChecks( | |
1126 Parse *pParse, /* The parser context */ | |
1127 Table *pTab, /* The table being inserted or updated */ | |
1128 int *aRegIdx, /* Use register aRegIdx[i] for index i. 0 for unused */ | |
1129 int iDataCur, /* Canonical data cursor (main table or PK index) */ | |
1130 int iIdxCur, /* First index cursor */ | |
1131 int regNewData, /* First register in a range holding values to insert */ | |
1132 int regOldData, /* Previous content. 0 for INSERTs */ | |
1133 u8 pkChng, /* Non-zero if the rowid or PRIMARY KEY changed */ | |
1134 u8 overrideError, /* Override onError to this if not OE_Default */ | |
1135 int ignoreDest, /* Jump to this label on an OE_Ignore resolution */ | |
1136 int *pbMayReplace /* OUT: Set to true if constraint may cause a replace */ | |
1137 ){ | |
1138 Vdbe *v; /* VDBE under constrution */ | |
1139 Index *pIdx; /* Pointer to one of the indices */ | |
1140 Index *pPk = 0; /* The PRIMARY KEY index */ | |
1141 sqlite3 *db; /* Database connection */ | |
1142 int i; /* loop counter */ | |
1143 int ix; /* Index loop counter */ | |
1144 int nCol; /* Number of columns */ | |
1145 int onError; /* Conflict resolution strategy */ | |
1146 int j1; /* Address of jump instruction */ | |
1147 int seenReplace = 0; /* True if REPLACE is used to resolve INT PK conflict */ | |
1148 int nPkField; /* Number of fields in PRIMARY KEY. 1 for ROWID tables */ | |
1149 int ipkTop = 0; /* Top of the rowid change constraint check */ | |
1150 int ipkBottom = 0; /* Bottom of the rowid change constraint check */ | |
1151 u8 isUpdate; /* True if this is an UPDATE operation */ | |
1152 u8 bAffinityDone = 0; /* True if the OP_Affinity operation has been run */ | |
1153 int regRowid = -1; /* Register holding ROWID value */ | |
1154 | |
1155 isUpdate = regOldData!=0; | |
1156 db = pParse->db; | |
1157 v = sqlite3GetVdbe(pParse); | |
1158 assert( v!=0 ); | |
1159 assert( pTab->pSelect==0 ); /* This table is not a VIEW */ | |
1160 nCol = pTab->nCol; | |
1161 | |
1162 /* pPk is the PRIMARY KEY index for WITHOUT ROWID tables and NULL for | |
1163 ** normal rowid tables. nPkField is the number of key fields in the | |
1164 ** pPk index or 1 for a rowid table. In other words, nPkField is the | |
1165 ** number of fields in the true primary key of the table. */ | |
1166 if( HasRowid(pTab) ){ | |
1167 pPk = 0; | |
1168 nPkField = 1; | |
1169 }else{ | |
1170 pPk = sqlite3PrimaryKeyIndex(pTab); | |
1171 nPkField = pPk->nKeyCol; | |
1172 } | |
1173 | |
1174 /* Record that this module has started */ | |
1175 VdbeModuleComment((v, "BEGIN: GenCnstCks(%d,%d,%d,%d,%d)", | |
1176 iDataCur, iIdxCur, regNewData, regOldData, pkChng)); | |
1177 | |
1178 /* Test all NOT NULL constraints. | |
1179 */ | |
1180 for(i=0; i<nCol; i++){ | |
1181 if( i==pTab->iPKey ){ | |
1182 continue; | |
1183 } | |
1184 onError = pTab->aCol[i].notNull; | |
1185 if( onError==OE_None ) continue; | |
1186 if( overrideError!=OE_Default ){ | |
1187 onError = overrideError; | |
1188 }else if( onError==OE_Default ){ | |
1189 onError = OE_Abort; | |
1190 } | |
1191 if( onError==OE_Replace && pTab->aCol[i].pDflt==0 ){ | |
1192 onError = OE_Abort; | |
1193 } | |
1194 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail | |
1195 || onError==OE_Ignore || onError==OE_Replace ); | |
1196 switch( onError ){ | |
1197 case OE_Abort: | |
1198 sqlite3MayAbort(pParse); | |
1199 /* Fall through */ | |
1200 case OE_Rollback: | |
1201 case OE_Fail: { | |
1202 char *zMsg = sqlite3MPrintf(db, "%s.%s", pTab->zName, | |
1203 pTab->aCol[i].zName); | |
1204 sqlite3VdbeAddOp4(v, OP_HaltIfNull, SQLITE_CONSTRAINT_NOTNULL, onError, | |
1205 regNewData+1+i, zMsg, P4_DYNAMIC); | |
1206 sqlite3VdbeChangeP5(v, P5_ConstraintNotNull); | |
1207 VdbeCoverage(v); | |
1208 break; | |
1209 } | |
1210 case OE_Ignore: { | |
1211 sqlite3VdbeAddOp2(v, OP_IsNull, regNewData+1+i, ignoreDest); | |
1212 VdbeCoverage(v); | |
1213 break; | |
1214 } | |
1215 default: { | |
1216 assert( onError==OE_Replace ); | |
1217 j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regNewData+1+i); VdbeCoverage(v); | |
1218 sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regNewData+1+i); | |
1219 sqlite3VdbeJumpHere(v, j1); | |
1220 break; | |
1221 } | |
1222 } | |
1223 } | |
1224 | |
1225 /* Test all CHECK constraints | |
1226 */ | |
1227 #ifndef SQLITE_OMIT_CHECK | |
1228 if( pTab->pCheck && (db->flags & SQLITE_IgnoreChecks)==0 ){ | |
1229 ExprList *pCheck = pTab->pCheck; | |
1230 pParse->ckBase = regNewData+1; | |
1231 onError = overrideError!=OE_Default ? overrideError : OE_Abort; | |
1232 for(i=0; i<pCheck->nExpr; i++){ | |
1233 int allOk = sqlite3VdbeMakeLabel(v); | |
1234 sqlite3ExprIfTrue(pParse, pCheck->a[i].pExpr, allOk, SQLITE_JUMPIFNULL); | |
1235 if( onError==OE_Ignore ){ | |
1236 sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest); | |
1237 }else{ | |
1238 char *zName = pCheck->a[i].zName; | |
1239 if( zName==0 ) zName = pTab->zName; | |
1240 if( onError==OE_Replace ) onError = OE_Abort; /* IMP: R-15569-63625 */ | |
1241 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_CHECK, | |
1242 onError, zName, P4_TRANSIENT, | |
1243 P5_ConstraintCheck); | |
1244 } | |
1245 sqlite3VdbeResolveLabel(v, allOk); | |
1246 } | |
1247 } | |
1248 #endif /* !defined(SQLITE_OMIT_CHECK) */ | |
1249 | |
1250 /* If rowid is changing, make sure the new rowid does not previously | |
1251 ** exist in the table. | |
1252 */ | |
1253 if( pkChng && pPk==0 ){ | |
1254 int addrRowidOk = sqlite3VdbeMakeLabel(v); | |
1255 | |
1256 /* Figure out what action to take in case of a rowid collision */ | |
1257 onError = pTab->keyConf; | |
1258 if( overrideError!=OE_Default ){ | |
1259 onError = overrideError; | |
1260 }else if( onError==OE_Default ){ | |
1261 onError = OE_Abort; | |
1262 } | |
1263 | |
1264 if( isUpdate ){ | |
1265 /* pkChng!=0 does not mean that the rowid has change, only that | |
1266 ** it might have changed. Skip the conflict logic below if the rowid | |
1267 ** is unchanged. */ | |
1268 sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRowidOk, regOldData); | |
1269 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); | |
1270 VdbeCoverage(v); | |
1271 } | |
1272 | |
1273 /* If the response to a rowid conflict is REPLACE but the response | |
1274 ** to some other UNIQUE constraint is FAIL or IGNORE, then we need | |
1275 ** to defer the running of the rowid conflict checking until after | |
1276 ** the UNIQUE constraints have run. | |
1277 */ | |
1278 if( onError==OE_Replace && overrideError!=OE_Replace ){ | |
1279 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ | |
1280 if( pIdx->onError==OE_Ignore || pIdx->onError==OE_Fail ){ | |
1281 ipkTop = sqlite3VdbeAddOp0(v, OP_Goto); | |
1282 break; | |
1283 } | |
1284 } | |
1285 } | |
1286 | |
1287 /* Check to see if the new rowid already exists in the table. Skip | |
1288 ** the following conflict logic if it does not. */ | |
1289 sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRowidOk, regNewData); | |
1290 VdbeCoverage(v); | |
1291 | |
1292 /* Generate code that deals with a rowid collision */ | |
1293 switch( onError ){ | |
1294 default: { | |
1295 onError = OE_Abort; | |
1296 /* Fall thru into the next case */ | |
1297 } | |
1298 case OE_Rollback: | |
1299 case OE_Abort: | |
1300 case OE_Fail: { | |
1301 sqlite3RowidConstraint(pParse, onError, pTab); | |
1302 break; | |
1303 } | |
1304 case OE_Replace: { | |
1305 /* If there are DELETE triggers on this table and the | |
1306 ** recursive-triggers flag is set, call GenerateRowDelete() to | |
1307 ** remove the conflicting row from the table. This will fire | |
1308 ** the triggers and remove both the table and index b-tree entries. | |
1309 ** | |
1310 ** Otherwise, if there are no triggers or the recursive-triggers | |
1311 ** flag is not set, but the table has one or more indexes, call | |
1312 ** GenerateRowIndexDelete(). This removes the index b-tree entries | |
1313 ** only. The table b-tree entry will be replaced by the new entry | |
1314 ** when it is inserted. | |
1315 ** | |
1316 ** If either GenerateRowDelete() or GenerateRowIndexDelete() is called, | |
1317 ** also invoke MultiWrite() to indicate that this VDBE may require | |
1318 ** statement rollback (if the statement is aborted after the delete | |
1319 ** takes place). Earlier versions called sqlite3MultiWrite() regardless, | |
1320 ** but being more selective here allows statements like: | |
1321 ** | |
1322 ** REPLACE INTO t(rowid) VALUES($newrowid) | |
1323 ** | |
1324 ** to run without a statement journal if there are no indexes on the | |
1325 ** table. | |
1326 */ | |
1327 Trigger *pTrigger = 0; | |
1328 if( db->flags&SQLITE_RecTriggers ){ | |
1329 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0); | |
1330 } | |
1331 if( pTrigger || sqlite3FkRequired(pParse, pTab, 0, 0) ){ | |
1332 sqlite3MultiWrite(pParse); | |
1333 sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur, | |
1334 regNewData, 1, 0, OE_Replace, 1); | |
1335 }else if( pTab->pIndex ){ | |
1336 sqlite3MultiWrite(pParse); | |
1337 sqlite3GenerateRowIndexDelete(pParse, pTab, iDataCur, iIdxCur, 0); | |
1338 } | |
1339 seenReplace = 1; | |
1340 break; | |
1341 } | |
1342 case OE_Ignore: { | |
1343 /*assert( seenReplace==0 );*/ | |
1344 sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest); | |
1345 break; | |
1346 } | |
1347 } | |
1348 sqlite3VdbeResolveLabel(v, addrRowidOk); | |
1349 if( ipkTop ){ | |
1350 ipkBottom = sqlite3VdbeAddOp0(v, OP_Goto); | |
1351 sqlite3VdbeJumpHere(v, ipkTop); | |
1352 } | |
1353 } | |
1354 | |
1355 /* Test all UNIQUE constraints by creating entries for each UNIQUE | |
1356 ** index and making sure that duplicate entries do not already exist. | |
1357 ** Compute the revised record entries for indices as we go. | |
1358 ** | |
1359 ** This loop also handles the case of the PRIMARY KEY index for a | |
1360 ** WITHOUT ROWID table. | |
1361 */ | |
1362 for(ix=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, ix++){ | |
1363 int regIdx; /* Range of registers hold conent for pIdx */ | |
1364 int regR; /* Range of registers holding conflicting PK */ | |
1365 int iThisCur; /* Cursor for this UNIQUE index */ | |
1366 int addrUniqueOk; /* Jump here if the UNIQUE constraint is satisfied */ | |
1367 | |
1368 if( aRegIdx[ix]==0 ) continue; /* Skip indices that do not change */ | |
1369 if( bAffinityDone==0 ){ | |
1370 sqlite3TableAffinity(v, pTab, regNewData+1); | |
1371 bAffinityDone = 1; | |
1372 } | |
1373 iThisCur = iIdxCur+ix; | |
1374 addrUniqueOk = sqlite3VdbeMakeLabel(v); | |
1375 | |
1376 /* Skip partial indices for which the WHERE clause is not true */ | |
1377 if( pIdx->pPartIdxWhere ){ | |
1378 sqlite3VdbeAddOp2(v, OP_Null, 0, aRegIdx[ix]); | |
1379 pParse->ckBase = regNewData+1; | |
1380 sqlite3ExprIfFalse(pParse, pIdx->pPartIdxWhere, addrUniqueOk, | |
1381 SQLITE_JUMPIFNULL); | |
1382 pParse->ckBase = 0; | |
1383 } | |
1384 | |
1385 /* Create a record for this index entry as it should appear after | |
1386 ** the insert or update. Store that record in the aRegIdx[ix] register | |
1387 */ | |
1388 regIdx = sqlite3GetTempRange(pParse, pIdx->nColumn); | |
1389 for(i=0; i<pIdx->nColumn; i++){ | |
1390 int iField = pIdx->aiColumn[i]; | |
1391 int x; | |
1392 if( iField<0 || iField==pTab->iPKey ){ | |
1393 if( regRowid==regIdx+i ) continue; /* ROWID already in regIdx+i */ | |
1394 x = regNewData; | |
1395 regRowid = pIdx->pPartIdxWhere ? -1 : regIdx+i; | |
1396 }else{ | |
1397 x = iField + regNewData + 1; | |
1398 } | |
1399 sqlite3VdbeAddOp2(v, OP_SCopy, x, regIdx+i); | |
1400 VdbeComment((v, "%s", iField<0 ? "rowid" : pTab->aCol[iField].zName)); | |
1401 } | |
1402 sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn, aRegIdx[ix]); | |
1403 VdbeComment((v, "for %s", pIdx->zName)); | |
1404 sqlite3ExprCacheAffinityChange(pParse, regIdx, pIdx->nColumn); | |
1405 | |
1406 /* In an UPDATE operation, if this index is the PRIMARY KEY index | |
1407 ** of a WITHOUT ROWID table and there has been no change the | |
1408 ** primary key, then no collision is possible. The collision detection | |
1409 ** logic below can all be skipped. */ | |
1410 if( isUpdate && pPk==pIdx && pkChng==0 ){ | |
1411 sqlite3VdbeResolveLabel(v, addrUniqueOk); | |
1412 continue; | |
1413 } | |
1414 | |
1415 /* Find out what action to take in case there is a uniqueness conflict */ | |
1416 onError = pIdx->onError; | |
1417 if( onError==OE_None ){ | |
1418 sqlite3ReleaseTempRange(pParse, regIdx, pIdx->nColumn); | |
1419 sqlite3VdbeResolveLabel(v, addrUniqueOk); | |
1420 continue; /* pIdx is not a UNIQUE index */ | |
1421 } | |
1422 if( overrideError!=OE_Default ){ | |
1423 onError = overrideError; | |
1424 }else if( onError==OE_Default ){ | |
1425 onError = OE_Abort; | |
1426 } | |
1427 | |
1428 /* Check to see if the new index entry will be unique */ | |
1429 sqlite3VdbeAddOp4Int(v, OP_NoConflict, iThisCur, addrUniqueOk, | |
1430 regIdx, pIdx->nKeyCol); VdbeCoverage(v); | |
1431 | |
1432 /* Generate code to handle collisions */ | |
1433 regR = (pIdx==pPk) ? regIdx : sqlite3GetTempRange(pParse, nPkField); | |
1434 if( isUpdate || onError==OE_Replace ){ | |
1435 if( HasRowid(pTab) ){ | |
1436 sqlite3VdbeAddOp2(v, OP_IdxRowid, iThisCur, regR); | |
1437 /* Conflict only if the rowid of the existing index entry | |
1438 ** is different from old-rowid */ | |
1439 if( isUpdate ){ | |
1440 sqlite3VdbeAddOp3(v, OP_Eq, regR, addrUniqueOk, regOldData); | |
1441 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); | |
1442 VdbeCoverage(v); | |
1443 } | |
1444 }else{ | |
1445 int x; | |
1446 /* Extract the PRIMARY KEY from the end of the index entry and | |
1447 ** store it in registers regR..regR+nPk-1 */ | |
1448 if( pIdx!=pPk ){ | |
1449 for(i=0; i<pPk->nKeyCol; i++){ | |
1450 x = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[i]); | |
1451 sqlite3VdbeAddOp3(v, OP_Column, iThisCur, x, regR+i); | |
1452 VdbeComment((v, "%s.%s", pTab->zName, | |
1453 pTab->aCol[pPk->aiColumn[i]].zName)); | |
1454 } | |
1455 } | |
1456 if( isUpdate ){ | |
1457 /* If currently processing the PRIMARY KEY of a WITHOUT ROWID | |
1458 ** table, only conflict if the new PRIMARY KEY values are actually | |
1459 ** different from the old. | |
1460 ** | |
1461 ** For a UNIQUE index, only conflict if the PRIMARY KEY values | |
1462 ** of the matched index row are different from the original PRIMARY | |
1463 ** KEY values of this row before the update. */ | |
1464 int addrJump = sqlite3VdbeCurrentAddr(v)+pPk->nKeyCol; | |
1465 int op = OP_Ne; | |
1466 int regCmp = (IsPrimaryKeyIndex(pIdx) ? regIdx : regR); | |
1467 | |
1468 for(i=0; i<pPk->nKeyCol; i++){ | |
1469 char *p4 = (char*)sqlite3LocateCollSeq(pParse, pPk->azColl[i]); | |
1470 x = pPk->aiColumn[i]; | |
1471 if( i==(pPk->nKeyCol-1) ){ | |
1472 addrJump = addrUniqueOk; | |
1473 op = OP_Eq; | |
1474 } | |
1475 sqlite3VdbeAddOp4(v, op, | |
1476 regOldData+1+x, addrJump, regCmp+i, p4, P4_COLLSEQ | |
1477 ); | |
1478 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); | |
1479 VdbeCoverageIf(v, op==OP_Eq); | |
1480 VdbeCoverageIf(v, op==OP_Ne); | |
1481 } | |
1482 } | |
1483 } | |
1484 } | |
1485 | |
1486 /* Generate code that executes if the new index entry is not unique */ | |
1487 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail | |
1488 || onError==OE_Ignore || onError==OE_Replace ); | |
1489 switch( onError ){ | |
1490 case OE_Rollback: | |
1491 case OE_Abort: | |
1492 case OE_Fail: { | |
1493 sqlite3UniqueConstraint(pParse, onError, pIdx); | |
1494 break; | |
1495 } | |
1496 case OE_Ignore: { | |
1497 sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest); | |
1498 break; | |
1499 } | |
1500 default: { | |
1501 Trigger *pTrigger = 0; | |
1502 assert( onError==OE_Replace ); | |
1503 sqlite3MultiWrite(pParse); | |
1504 if( db->flags&SQLITE_RecTriggers ){ | |
1505 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0); | |
1506 } | |
1507 sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur, | |
1508 regR, nPkField, 0, OE_Replace, pIdx==pPk); | |
1509 seenReplace = 1; | |
1510 break; | |
1511 } | |
1512 } | |
1513 sqlite3VdbeResolveLabel(v, addrUniqueOk); | |
1514 sqlite3ReleaseTempRange(pParse, regIdx, pIdx->nColumn); | |
1515 if( regR!=regIdx ) sqlite3ReleaseTempRange(pParse, regR, nPkField); | |
1516 } | |
1517 if( ipkTop ){ | |
1518 sqlite3VdbeAddOp2(v, OP_Goto, 0, ipkTop+1); | |
1519 sqlite3VdbeJumpHere(v, ipkBottom); | |
1520 } | |
1521 | |
1522 *pbMayReplace = seenReplace; | |
1523 VdbeModuleComment((v, "END: GenCnstCks(%d)", seenReplace)); | |
1524 } | |
1525 | |
1526 /* | |
1527 ** This routine generates code to finish the INSERT or UPDATE operation | |
1528 ** that was started by a prior call to sqlite3GenerateConstraintChecks. | |
1529 ** A consecutive range of registers starting at regNewData contains the | |
1530 ** rowid and the content to be inserted. | |
1531 ** | |
1532 ** The arguments to this routine should be the same as the first six | |
1533 ** arguments to sqlite3GenerateConstraintChecks. | |
1534 */ | |
1535 void sqlite3CompleteInsertion( | |
1536 Parse *pParse, /* The parser context */ | |
1537 Table *pTab, /* the table into which we are inserting */ | |
1538 int iDataCur, /* Cursor of the canonical data source */ | |
1539 int iIdxCur, /* First index cursor */ | |
1540 int regNewData, /* Range of content */ | |
1541 int *aRegIdx, /* Register used by each index. 0 for unused indices */ | |
1542 int isUpdate, /* True for UPDATE, False for INSERT */ | |
1543 int appendBias, /* True if this is likely to be an append */ | |
1544 int useSeekResult /* True to set the USESEEKRESULT flag on OP_[Idx]Insert */ | |
1545 ){ | |
1546 Vdbe *v; /* Prepared statements under construction */ | |
1547 Index *pIdx; /* An index being inserted or updated */ | |
1548 u8 pik_flags; /* flag values passed to the btree insert */ | |
1549 int regData; /* Content registers (after the rowid) */ | |
1550 int regRec; /* Register holding assembled record for the table */ | |
1551 int i; /* Loop counter */ | |
1552 u8 bAffinityDone = 0; /* True if OP_Affinity has been run already */ | |
1553 | |
1554 v = sqlite3GetVdbe(pParse); | |
1555 assert( v!=0 ); | |
1556 assert( pTab->pSelect==0 ); /* This table is not a VIEW */ | |
1557 for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ | |
1558 if( aRegIdx[i]==0 ) continue; | |
1559 bAffinityDone = 1; | |
1560 if( pIdx->pPartIdxWhere ){ | |
1561 sqlite3VdbeAddOp2(v, OP_IsNull, aRegIdx[i], sqlite3VdbeCurrentAddr(v)+2); | |
1562 VdbeCoverage(v); | |
1563 } | |
1564 sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdxCur+i, aRegIdx[i]); | |
1565 pik_flags = 0; | |
1566 if( useSeekResult ) pik_flags = OPFLAG_USESEEKRESULT; | |
1567 if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){ | |
1568 assert( pParse->nested==0 ); | |
1569 pik_flags |= OPFLAG_NCHANGE; | |
1570 } | |
1571 if( pik_flags ) sqlite3VdbeChangeP5(v, pik_flags); | |
1572 } | |
1573 if( !HasRowid(pTab) ) return; | |
1574 regData = regNewData + 1; | |
1575 regRec = sqlite3GetTempReg(pParse); | |
1576 sqlite3VdbeAddOp3(v, OP_MakeRecord, regData, pTab->nCol, regRec); | |
1577 if( !bAffinityDone ) sqlite3TableAffinity(v, pTab, 0); | |
1578 sqlite3ExprCacheAffinityChange(pParse, regData, pTab->nCol); | |
1579 if( pParse->nested ){ | |
1580 pik_flags = 0; | |
1581 }else{ | |
1582 pik_flags = OPFLAG_NCHANGE; | |
1583 pik_flags |= (isUpdate?OPFLAG_ISUPDATE:OPFLAG_LASTROWID); | |
1584 } | |
1585 if( appendBias ){ | |
1586 pik_flags |= OPFLAG_APPEND; | |
1587 } | |
1588 if( useSeekResult ){ | |
1589 pik_flags |= OPFLAG_USESEEKRESULT; | |
1590 } | |
1591 sqlite3VdbeAddOp3(v, OP_Insert, iDataCur, regRec, regNewData); | |
1592 if( !pParse->nested ){ | |
1593 sqlite3VdbeChangeP4(v, -1, pTab->zName, P4_TRANSIENT); | |
1594 } | |
1595 sqlite3VdbeChangeP5(v, pik_flags); | |
1596 } | |
1597 | |
1598 /* | |
1599 ** Allocate cursors for the pTab table and all its indices and generate | |
1600 ** code to open and initialized those cursors. | |
1601 ** | |
1602 ** The cursor for the object that contains the complete data (normally | |
1603 ** the table itself, but the PRIMARY KEY index in the case of a WITHOUT | |
1604 ** ROWID table) is returned in *piDataCur. The first index cursor is | |
1605 ** returned in *piIdxCur. The number of indices is returned. | |
1606 ** | |
1607 ** Use iBase as the first cursor (either the *piDataCur for rowid tables | |
1608 ** or the first index for WITHOUT ROWID tables) if it is non-negative. | |
1609 ** If iBase is negative, then allocate the next available cursor. | |
1610 ** | |
1611 ** For a rowid table, *piDataCur will be exactly one less than *piIdxCur. | |
1612 ** For a WITHOUT ROWID table, *piDataCur will be somewhere in the range | |
1613 ** of *piIdxCurs, depending on where the PRIMARY KEY index appears on the | |
1614 ** pTab->pIndex list. | |
1615 ** | |
1616 ** If pTab is a virtual table, then this routine is a no-op and the | |
1617 ** *piDataCur and *piIdxCur values are left uninitialized. | |
1618 */ | |
1619 int sqlite3OpenTableAndIndices( | |
1620 Parse *pParse, /* Parsing context */ | |
1621 Table *pTab, /* Table to be opened */ | |
1622 int op, /* OP_OpenRead or OP_OpenWrite */ | |
1623 int iBase, /* Use this for the table cursor, if there is one */ | |
1624 u8 *aToOpen, /* If not NULL: boolean for each table and index */ | |
1625 int *piDataCur, /* Write the database source cursor number here */ | |
1626 int *piIdxCur /* Write the first index cursor number here */ | |
1627 ){ | |
1628 int i; | |
1629 int iDb; | |
1630 int iDataCur; | |
1631 Index *pIdx; | |
1632 Vdbe *v; | |
1633 | |
1634 assert( op==OP_OpenRead || op==OP_OpenWrite ); | |
1635 if( IsVirtual(pTab) ){ | |
1636 /* This routine is a no-op for virtual tables. Leave the output | |
1637 ** variables *piDataCur and *piIdxCur uninitialized so that valgrind | |
1638 ** can detect if they are used by mistake in the caller. */ | |
1639 return 0; | |
1640 } | |
1641 iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); | |
1642 v = sqlite3GetVdbe(pParse); | |
1643 assert( v!=0 ); | |
1644 if( iBase<0 ) iBase = pParse->nTab; | |
1645 iDataCur = iBase++; | |
1646 if( piDataCur ) *piDataCur = iDataCur; | |
1647 if( HasRowid(pTab) && (aToOpen==0 || aToOpen[0]) ){ | |
1648 sqlite3OpenTable(pParse, iDataCur, iDb, pTab, op); | |
1649 }else{ | |
1650 sqlite3TableLock(pParse, iDb, pTab->tnum, op==OP_OpenWrite, pTab->zName); | |
1651 } | |
1652 if( piIdxCur ) *piIdxCur = iBase; | |
1653 for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ | |
1654 int iIdxCur = iBase++; | |
1655 assert( pIdx->pSchema==pTab->pSchema ); | |
1656 if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) && piDataCur ){ | |
1657 *piDataCur = iIdxCur; | |
1658 } | |
1659 if( aToOpen==0 || aToOpen[i+1] ){ | |
1660 sqlite3VdbeAddOp3(v, op, iIdxCur, pIdx->tnum, iDb); | |
1661 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); | |
1662 VdbeComment((v, "%s", pIdx->zName)); | |
1663 } | |
1664 } | |
1665 if( iBase>pParse->nTab ) pParse->nTab = iBase; | |
1666 return i; | |
1667 } | |
1668 | |
1669 | |
1670 #ifdef SQLITE_TEST | |
1671 /* | |
1672 ** The following global variable is incremented whenever the | |
1673 ** transfer optimization is used. This is used for testing | |
1674 ** purposes only - to make sure the transfer optimization really | |
1675 ** is happening when it is supposed to. | |
1676 */ | |
1677 int sqlite3_xferopt_count; | |
1678 #endif /* SQLITE_TEST */ | |
1679 | |
1680 | |
1681 #ifndef SQLITE_OMIT_XFER_OPT | |
1682 /* | |
1683 ** Check to collation names to see if they are compatible. | |
1684 */ | |
1685 static int xferCompatibleCollation(const char *z1, const char *z2){ | |
1686 if( z1==0 ){ | |
1687 return z2==0; | |
1688 } | |
1689 if( z2==0 ){ | |
1690 return 0; | |
1691 } | |
1692 return sqlite3StrICmp(z1, z2)==0; | |
1693 } | |
1694 | |
1695 | |
1696 /* | |
1697 ** Check to see if index pSrc is compatible as a source of data | |
1698 ** for index pDest in an insert transfer optimization. The rules | |
1699 ** for a compatible index: | |
1700 ** | |
1701 ** * The index is over the same set of columns | |
1702 ** * The same DESC and ASC markings occurs on all columns | |
1703 ** * The same onError processing (OE_Abort, OE_Ignore, etc) | |
1704 ** * The same collating sequence on each column | |
1705 ** * The index has the exact same WHERE clause | |
1706 */ | |
1707 static int xferCompatibleIndex(Index *pDest, Index *pSrc){ | |
1708 int i; | |
1709 assert( pDest && pSrc ); | |
1710 assert( pDest->pTable!=pSrc->pTable ); | |
1711 if( pDest->nKeyCol!=pSrc->nKeyCol ){ | |
1712 return 0; /* Different number of columns */ | |
1713 } | |
1714 if( pDest->onError!=pSrc->onError ){ | |
1715 return 0; /* Different conflict resolution strategies */ | |
1716 } | |
1717 for(i=0; i<pSrc->nKeyCol; i++){ | |
1718 if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){ | |
1719 return 0; /* Different columns indexed */ | |
1720 } | |
1721 if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){ | |
1722 return 0; /* Different sort orders */ | |
1723 } | |
1724 if( !xferCompatibleCollation(pSrc->azColl[i],pDest->azColl[i]) ){ | |
1725 return 0; /* Different collating sequences */ | |
1726 } | |
1727 } | |
1728 if( sqlite3ExprCompare(pSrc->pPartIdxWhere, pDest->pPartIdxWhere, -1) ){ | |
1729 return 0; /* Different WHERE clauses */ | |
1730 } | |
1731 | |
1732 /* If no test above fails then the indices must be compatible */ | |
1733 return 1; | |
1734 } | |
1735 | |
1736 /* | |
1737 ** Attempt the transfer optimization on INSERTs of the form | |
1738 ** | |
1739 ** INSERT INTO tab1 SELECT * FROM tab2; | |
1740 ** | |
1741 ** The xfer optimization transfers raw records from tab2 over to tab1. | |
1742 ** Columns are not decoded and reassembled, which greatly improves | |
1743 ** performance. Raw index records are transferred in the same way. | |
1744 ** | |
1745 ** The xfer optimization is only attempted if tab1 and tab2 are compatible. | |
1746 ** There are lots of rules for determining compatibility - see comments | |
1747 ** embedded in the code for details. | |
1748 ** | |
1749 ** This routine returns TRUE if the optimization is guaranteed to be used. | |
1750 ** Sometimes the xfer optimization will only work if the destination table | |
1751 ** is empty - a factor that can only be determined at run-time. In that | |
1752 ** case, this routine generates code for the xfer optimization but also | |
1753 ** does a test to see if the destination table is empty and jumps over the | |
1754 ** xfer optimization code if the test fails. In that case, this routine | |
1755 ** returns FALSE so that the caller will know to go ahead and generate | |
1756 ** an unoptimized transfer. This routine also returns FALSE if there | |
1757 ** is no chance that the xfer optimization can be applied. | |
1758 ** | |
1759 ** This optimization is particularly useful at making VACUUM run faster. | |
1760 */ | |
1761 static int xferOptimization( | |
1762 Parse *pParse, /* Parser context */ | |
1763 Table *pDest, /* The table we are inserting into */ | |
1764 Select *pSelect, /* A SELECT statement to use as the data source */ | |
1765 int onError, /* How to handle constraint errors */ | |
1766 int iDbDest /* The database of pDest */ | |
1767 ){ | |
1768 ExprList *pEList; /* The result set of the SELECT */ | |
1769 Table *pSrc; /* The table in the FROM clause of SELECT */ | |
1770 Index *pSrcIdx, *pDestIdx; /* Source and destination indices */ | |
1771 struct SrcList_item *pItem; /* An element of pSelect->pSrc */ | |
1772 int i; /* Loop counter */ | |
1773 int iDbSrc; /* The database of pSrc */ | |
1774 int iSrc, iDest; /* Cursors from source and destination */ | |
1775 int addr1, addr2; /* Loop addresses */ | |
1776 int emptyDestTest = 0; /* Address of test for empty pDest */ | |
1777 int emptySrcTest = 0; /* Address of test for empty pSrc */ | |
1778 Vdbe *v; /* The VDBE we are building */ | |
1779 int regAutoinc; /* Memory register used by AUTOINC */ | |
1780 int destHasUniqueIdx = 0; /* True if pDest has a UNIQUE index */ | |
1781 int regData, regRowid; /* Registers holding data and rowid */ | |
1782 | |
1783 if( pSelect==0 ){ | |
1784 return 0; /* Must be of the form INSERT INTO ... SELECT ... */ | |
1785 } | |
1786 if( pParse->pWith || pSelect->pWith ){ | |
1787 /* Do not attempt to process this query if there are an WITH clauses | |
1788 ** attached to it. Proceeding may generate a false "no such table: xxx" | |
1789 ** error if pSelect reads from a CTE named "xxx". */ | |
1790 return 0; | |
1791 } | |
1792 if( sqlite3TriggerList(pParse, pDest) ){ | |
1793 return 0; /* tab1 must not have triggers */ | |
1794 } | |
1795 #ifndef SQLITE_OMIT_VIRTUALTABLE | |
1796 if( pDest->tabFlags & TF_Virtual ){ | |
1797 return 0; /* tab1 must not be a virtual table */ | |
1798 } | |
1799 #endif | |
1800 if( onError==OE_Default ){ | |
1801 if( pDest->iPKey>=0 ) onError = pDest->keyConf; | |
1802 if( onError==OE_Default ) onError = OE_Abort; | |
1803 } | |
1804 assert(pSelect->pSrc); /* allocated even if there is no FROM clause */ | |
1805 if( pSelect->pSrc->nSrc!=1 ){ | |
1806 return 0; /* FROM clause must have exactly one term */ | |
1807 } | |
1808 if( pSelect->pSrc->a[0].pSelect ){ | |
1809 return 0; /* FROM clause cannot contain a subquery */ | |
1810 } | |
1811 if( pSelect->pWhere ){ | |
1812 return 0; /* SELECT may not have a WHERE clause */ | |
1813 } | |
1814 if( pSelect->pOrderBy ){ | |
1815 return 0; /* SELECT may not have an ORDER BY clause */ | |
1816 } | |
1817 /* Do not need to test for a HAVING clause. If HAVING is present but | |
1818 ** there is no ORDER BY, we will get an error. */ | |
1819 if( pSelect->pGroupBy ){ | |
1820 return 0; /* SELECT may not have a GROUP BY clause */ | |
1821 } | |
1822 if( pSelect->pLimit ){ | |
1823 return 0; /* SELECT may not have a LIMIT clause */ | |
1824 } | |
1825 assert( pSelect->pOffset==0 ); /* Must be so if pLimit==0 */ | |
1826 if( pSelect->pPrior ){ | |
1827 return 0; /* SELECT may not be a compound query */ | |
1828 } | |
1829 if( pSelect->selFlags & SF_Distinct ){ | |
1830 return 0; /* SELECT may not be DISTINCT */ | |
1831 } | |
1832 pEList = pSelect->pEList; | |
1833 assert( pEList!=0 ); | |
1834 if( pEList->nExpr!=1 ){ | |
1835 return 0; /* The result set must have exactly one column */ | |
1836 } | |
1837 assert( pEList->a[0].pExpr ); | |
1838 if( pEList->a[0].pExpr->op!=TK_ALL ){ | |
1839 return 0; /* The result set must be the special operator "*" */ | |
1840 } | |
1841 | |
1842 /* At this point we have established that the statement is of the | |
1843 ** correct syntactic form to participate in this optimization. Now | |
1844 ** we have to check the semantics. | |
1845 */ | |
1846 pItem = pSelect->pSrc->a; | |
1847 pSrc = sqlite3LocateTableItem(pParse, 0, pItem); | |
1848 if( pSrc==0 ){ | |
1849 return 0; /* FROM clause does not contain a real table */ | |
1850 } | |
1851 if( pSrc==pDest ){ | |
1852 return 0; /* tab1 and tab2 may not be the same table */ | |
1853 } | |
1854 if( HasRowid(pDest)!=HasRowid(pSrc) ){ | |
1855 return 0; /* source and destination must both be WITHOUT ROWID or not */ | |
1856 } | |
1857 #ifndef SQLITE_OMIT_VIRTUALTABLE | |
1858 if( pSrc->tabFlags & TF_Virtual ){ | |
1859 return 0; /* tab2 must not be a virtual table */ | |
1860 } | |
1861 #endif | |
1862 if( pSrc->pSelect ){ | |
1863 return 0; /* tab2 may not be a view */ | |
1864 } | |
1865 if( pDest->nCol!=pSrc->nCol ){ | |
1866 return 0; /* Number of columns must be the same in tab1 and tab2 */ | |
1867 } | |
1868 if( pDest->iPKey!=pSrc->iPKey ){ | |
1869 return 0; /* Both tables must have the same INTEGER PRIMARY KEY */ | |
1870 } | |
1871 for(i=0; i<pDest->nCol; i++){ | |
1872 Column *pDestCol = &pDest->aCol[i]; | |
1873 Column *pSrcCol = &pSrc->aCol[i]; | |
1874 if( pDestCol->affinity!=pSrcCol->affinity ){ | |
1875 return 0; /* Affinity must be the same on all columns */ | |
1876 } | |
1877 if( !xferCompatibleCollation(pDestCol->zColl, pSrcCol->zColl) ){ | |
1878 return 0; /* Collating sequence must be the same on all columns */ | |
1879 } | |
1880 if( pDestCol->notNull && !pSrcCol->notNull ){ | |
1881 return 0; /* tab2 must be NOT NULL if tab1 is */ | |
1882 } | |
1883 /* Default values for second and subsequent columns need to match. */ | |
1884 if( i>0 | |
1885 && ((pDestCol->zDflt==0)!=(pSrcCol->zDflt==0) | |
1886 || (pDestCol->zDflt && strcmp(pDestCol->zDflt, pSrcCol->zDflt)!=0)) | |
1887 ){ | |
1888 return 0; /* Default values must be the same for all columns */ | |
1889 } | |
1890 } | |
1891 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ | |
1892 if( IsUniqueIndex(pDestIdx) ){ | |
1893 destHasUniqueIdx = 1; | |
1894 } | |
1895 for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){ | |
1896 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; | |
1897 } | |
1898 if( pSrcIdx==0 ){ | |
1899 return 0; /* pDestIdx has no corresponding index in pSrc */ | |
1900 } | |
1901 } | |
1902 #ifndef SQLITE_OMIT_CHECK | |
1903 if( pDest->pCheck && sqlite3ExprListCompare(pSrc->pCheck,pDest->pCheck,-1) ){ | |
1904 return 0; /* Tables have different CHECK constraints. Ticket #2252 */ | |
1905 } | |
1906 #endif | |
1907 #ifndef SQLITE_OMIT_FOREIGN_KEY | |
1908 /* Disallow the transfer optimization if the destination table constains | |
1909 ** any foreign key constraints. This is more restrictive than necessary. | |
1910 ** But the main beneficiary of the transfer optimization is the VACUUM | |
1911 ** command, and the VACUUM command disables foreign key constraints. So | |
1912 ** the extra complication to make this rule less restrictive is probably | |
1913 ** not worth the effort. Ticket [6284df89debdfa61db8073e062908af0c9b6118e] | |
1914 */ | |
1915 if( (pParse->db->flags & SQLITE_ForeignKeys)!=0 && pDest->pFKey!=0 ){ | |
1916 return 0; | |
1917 } | |
1918 #endif | |
1919 if( (pParse->db->flags & SQLITE_CountRows)!=0 ){ | |
1920 return 0; /* xfer opt does not play well with PRAGMA count_changes */ | |
1921 } | |
1922 | |
1923 /* If we get this far, it means that the xfer optimization is at | |
1924 ** least a possibility, though it might only work if the destination | |
1925 ** table (tab1) is initially empty. | |
1926 */ | |
1927 #ifdef SQLITE_TEST | |
1928 sqlite3_xferopt_count++; | |
1929 #endif | |
1930 iDbSrc = sqlite3SchemaToIndex(pParse->db, pSrc->pSchema); | |
1931 v = sqlite3GetVdbe(pParse); | |
1932 sqlite3CodeVerifySchema(pParse, iDbSrc); | |
1933 iSrc = pParse->nTab++; | |
1934 iDest = pParse->nTab++; | |
1935 regAutoinc = autoIncBegin(pParse, iDbDest, pDest); | |
1936 regData = sqlite3GetTempReg(pParse); | |
1937 regRowid = sqlite3GetTempReg(pParse); | |
1938 sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite); | |
1939 assert( HasRowid(pDest) || destHasUniqueIdx ); | |
1940 if( (pDest->iPKey<0 && pDest->pIndex!=0) /* (1) */ | |
1941 || destHasUniqueIdx /* (2) */ | |
1942 || (onError!=OE_Abort && onError!=OE_Rollback) /* (3) */ | |
1943 ){ | |
1944 /* In some circumstances, we are able to run the xfer optimization | |
1945 ** only if the destination table is initially empty. This code makes | |
1946 ** that determination. Conditions under which the destination must | |
1947 ** be empty: | |
1948 ** | |
1949 ** (1) There is no INTEGER PRIMARY KEY but there are indices. | |
1950 ** (If the destination is not initially empty, the rowid fields | |
1951 ** of index entries might need to change.) | |
1952 ** | |
1953 ** (2) The destination has a unique index. (The xfer optimization | |
1954 ** is unable to test uniqueness.) | |
1955 ** | |
1956 ** (3) onError is something other than OE_Abort and OE_Rollback. | |
1957 */ | |
1958 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iDest, 0); VdbeCoverage(v); | |
1959 emptyDestTest = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0); | |
1960 sqlite3VdbeJumpHere(v, addr1); | |
1961 } | |
1962 if( HasRowid(pSrc) ){ | |
1963 sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead); | |
1964 emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v); | |
1965 if( pDest->iPKey>=0 ){ | |
1966 addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); | |
1967 addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid); | |
1968 VdbeCoverage(v); | |
1969 sqlite3RowidConstraint(pParse, onError, pDest); | |
1970 sqlite3VdbeJumpHere(v, addr2); | |
1971 autoIncStep(pParse, regAutoinc, regRowid); | |
1972 }else if( pDest->pIndex==0 ){ | |
1973 addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid); | |
1974 }else{ | |
1975 addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); | |
1976 assert( (pDest->tabFlags & TF_Autoincrement)==0 ); | |
1977 } | |
1978 sqlite3VdbeAddOp2(v, OP_RowData, iSrc, regData); | |
1979 sqlite3VdbeAddOp3(v, OP_Insert, iDest, regData, regRowid); | |
1980 sqlite3VdbeChangeP5(v, OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND); | |
1981 sqlite3VdbeChangeP4(v, -1, pDest->zName, 0); | |
1982 sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1); VdbeCoverage(v); | |
1983 sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); | |
1984 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); | |
1985 }else{ | |
1986 sqlite3TableLock(pParse, iDbDest, pDest->tnum, 1, pDest->zName); | |
1987 sqlite3TableLock(pParse, iDbSrc, pSrc->tnum, 0, pSrc->zName); | |
1988 } | |
1989 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ | |
1990 for(pSrcIdx=pSrc->pIndex; ALWAYS(pSrcIdx); pSrcIdx=pSrcIdx->pNext){ | |
1991 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; | |
1992 } | |
1993 assert( pSrcIdx ); | |
1994 sqlite3VdbeAddOp3(v, OP_OpenRead, iSrc, pSrcIdx->tnum, iDbSrc); | |
1995 sqlite3VdbeSetP4KeyInfo(pParse, pSrcIdx); | |
1996 VdbeComment((v, "%s", pSrcIdx->zName)); | |
1997 sqlite3VdbeAddOp3(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest); | |
1998 sqlite3VdbeSetP4KeyInfo(pParse, pDestIdx); | |
1999 sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR); | |
2000 VdbeComment((v, "%s", pDestIdx->zName)); | |
2001 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v); | |
2002 sqlite3VdbeAddOp2(v, OP_RowKey, iSrc, regData); | |
2003 sqlite3VdbeAddOp3(v, OP_IdxInsert, iDest, regData, 1); | |
2004 sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1+1); VdbeCoverage(v); | |
2005 sqlite3VdbeJumpHere(v, addr1); | |
2006 sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); | |
2007 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); | |
2008 } | |
2009 if( emptySrcTest ) sqlite3VdbeJumpHere(v, emptySrcTest); | |
2010 sqlite3ReleaseTempReg(pParse, regRowid); | |
2011 sqlite3ReleaseTempReg(pParse, regData); | |
2012 if( emptyDestTest ){ | |
2013 sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_OK, 0); | |
2014 sqlite3VdbeJumpHere(v, emptyDestTest); | |
2015 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); | |
2016 return 0; | |
2017 }else{ | |
2018 return 1; | |
2019 } | |
2020 } | |
2021 #endif /* SQLITE_OMIT_XFER_OPT */ | |
OLD | NEW |