OLD | NEW |
| (Empty) |
1 /* | |
2 ** 2001 September 22 | |
3 ** | |
4 ** The author disclaims copyright to this source code. In place of | |
5 ** a legal notice, here is a blessing: | |
6 ** | |
7 ** May you do good and not evil. | |
8 ** May you find forgiveness for yourself and forgive others. | |
9 ** May you share freely, never taking more than you give. | |
10 ** | |
11 ************************************************************************* | |
12 ** This is the implementation of generic hash-tables | |
13 ** used in SQLite. | |
14 */ | |
15 #include "sqliteInt.h" | |
16 #include <assert.h> | |
17 | |
18 /* Turn bulk memory into a hash table object by initializing the | |
19 ** fields of the Hash structure. | |
20 ** | |
21 ** "pNew" is a pointer to the hash table that is to be initialized. | |
22 */ | |
23 void sqlite3HashInit(Hash *pNew){ | |
24 assert( pNew!=0 ); | |
25 pNew->first = 0; | |
26 pNew->count = 0; | |
27 pNew->htsize = 0; | |
28 pNew->ht = 0; | |
29 } | |
30 | |
31 /* Remove all entries from a hash table. Reclaim all memory. | |
32 ** Call this routine to delete a hash table or to reset a hash table | |
33 ** to the empty state. | |
34 */ | |
35 void sqlite3HashClear(Hash *pH){ | |
36 HashElem *elem; /* For looping over all elements of the table */ | |
37 | |
38 assert( pH!=0 ); | |
39 elem = pH->first; | |
40 pH->first = 0; | |
41 sqlite3_free(pH->ht); | |
42 pH->ht = 0; | |
43 pH->htsize = 0; | |
44 while( elem ){ | |
45 HashElem *next_elem = elem->next; | |
46 sqlite3_free(elem); | |
47 elem = next_elem; | |
48 } | |
49 pH->count = 0; | |
50 } | |
51 | |
52 /* | |
53 ** The hashing function. | |
54 */ | |
55 static unsigned int strHash(const char *z){ | |
56 unsigned int h = 0; | |
57 unsigned char c; | |
58 while( (c = (unsigned char)*z++)!=0 ){ | |
59 h = (h<<3) ^ h ^ sqlite3UpperToLower[c]; | |
60 } | |
61 return h; | |
62 } | |
63 | |
64 | |
65 /* Link pNew element into the hash table pH. If pEntry!=0 then also | |
66 ** insert pNew into the pEntry hash bucket. | |
67 */ | |
68 static void insertElement( | |
69 Hash *pH, /* The complete hash table */ | |
70 struct _ht *pEntry, /* The entry into which pNew is inserted */ | |
71 HashElem *pNew /* The element to be inserted */ | |
72 ){ | |
73 HashElem *pHead; /* First element already in pEntry */ | |
74 if( pEntry ){ | |
75 pHead = pEntry->count ? pEntry->chain : 0; | |
76 pEntry->count++; | |
77 pEntry->chain = pNew; | |
78 }else{ | |
79 pHead = 0; | |
80 } | |
81 if( pHead ){ | |
82 pNew->next = pHead; | |
83 pNew->prev = pHead->prev; | |
84 if( pHead->prev ){ pHead->prev->next = pNew; } | |
85 else { pH->first = pNew; } | |
86 pHead->prev = pNew; | |
87 }else{ | |
88 pNew->next = pH->first; | |
89 if( pH->first ){ pH->first->prev = pNew; } | |
90 pNew->prev = 0; | |
91 pH->first = pNew; | |
92 } | |
93 } | |
94 | |
95 | |
96 /* Resize the hash table so that it cantains "new_size" buckets. | |
97 ** | |
98 ** The hash table might fail to resize if sqlite3_malloc() fails or | |
99 ** if the new size is the same as the prior size. | |
100 ** Return TRUE if the resize occurs and false if not. | |
101 */ | |
102 static int rehash(Hash *pH, unsigned int new_size){ | |
103 struct _ht *new_ht; /* The new hash table */ | |
104 HashElem *elem, *next_elem; /* For looping over existing elements */ | |
105 | |
106 #if SQLITE_MALLOC_SOFT_LIMIT>0 | |
107 if( new_size*sizeof(struct _ht)>SQLITE_MALLOC_SOFT_LIMIT ){ | |
108 new_size = SQLITE_MALLOC_SOFT_LIMIT/sizeof(struct _ht); | |
109 } | |
110 if( new_size==pH->htsize ) return 0; | |
111 #endif | |
112 | |
113 /* The inability to allocates space for a larger hash table is | |
114 ** a performance hit but it is not a fatal error. So mark the | |
115 ** allocation as a benign. Use sqlite3Malloc()/memset(0) instead of | |
116 ** sqlite3MallocZero() to make the allocation, as sqlite3MallocZero() | |
117 ** only zeroes the requested number of bytes whereas this module will | |
118 ** use the actual amount of space allocated for the hash table (which | |
119 ** may be larger than the requested amount). | |
120 */ | |
121 sqlite3BeginBenignMalloc(); | |
122 new_ht = (struct _ht *)sqlite3Malloc( new_size*sizeof(struct _ht) ); | |
123 sqlite3EndBenignMalloc(); | |
124 | |
125 if( new_ht==0 ) return 0; | |
126 sqlite3_free(pH->ht); | |
127 pH->ht = new_ht; | |
128 pH->htsize = new_size = sqlite3MallocSize(new_ht)/sizeof(struct _ht); | |
129 memset(new_ht, 0, new_size*sizeof(struct _ht)); | |
130 for(elem=pH->first, pH->first=0; elem; elem = next_elem){ | |
131 unsigned int h = strHash(elem->pKey) % new_size; | |
132 next_elem = elem->next; | |
133 insertElement(pH, &new_ht[h], elem); | |
134 } | |
135 return 1; | |
136 } | |
137 | |
138 /* This function (for internal use only) locates an element in an | |
139 ** hash table that matches the given key. The hash for this key is | |
140 ** also computed and returned in the *pH parameter. | |
141 */ | |
142 static HashElem *findElementWithHash( | |
143 const Hash *pH, /* The pH to be searched */ | |
144 const char *pKey, /* The key we are searching for */ | |
145 unsigned int *pHash /* Write the hash value here */ | |
146 ){ | |
147 HashElem *elem; /* Used to loop thru the element list */ | |
148 int count; /* Number of elements left to test */ | |
149 unsigned int h; /* The computed hash */ | |
150 | |
151 if( pH->ht ){ | |
152 struct _ht *pEntry; | |
153 h = strHash(pKey) % pH->htsize; | |
154 pEntry = &pH->ht[h]; | |
155 elem = pEntry->chain; | |
156 count = pEntry->count; | |
157 }else{ | |
158 h = 0; | |
159 elem = pH->first; | |
160 count = pH->count; | |
161 } | |
162 *pHash = h; | |
163 while( count-- ){ | |
164 assert( elem!=0 ); | |
165 if( sqlite3StrICmp(elem->pKey,pKey)==0 ){ | |
166 return elem; | |
167 } | |
168 elem = elem->next; | |
169 } | |
170 return 0; | |
171 } | |
172 | |
173 /* Remove a single entry from the hash table given a pointer to that | |
174 ** element and a hash on the element's key. | |
175 */ | |
176 static void removeElementGivenHash( | |
177 Hash *pH, /* The pH containing "elem" */ | |
178 HashElem* elem, /* The element to be removed from the pH */ | |
179 unsigned int h /* Hash value for the element */ | |
180 ){ | |
181 struct _ht *pEntry; | |
182 if( elem->prev ){ | |
183 elem->prev->next = elem->next; | |
184 }else{ | |
185 pH->first = elem->next; | |
186 } | |
187 if( elem->next ){ | |
188 elem->next->prev = elem->prev; | |
189 } | |
190 if( pH->ht ){ | |
191 pEntry = &pH->ht[h]; | |
192 if( pEntry->chain==elem ){ | |
193 pEntry->chain = elem->next; | |
194 } | |
195 pEntry->count--; | |
196 assert( pEntry->count>=0 ); | |
197 } | |
198 sqlite3_free( elem ); | |
199 pH->count--; | |
200 if( pH->count==0 ){ | |
201 assert( pH->first==0 ); | |
202 assert( pH->count==0 ); | |
203 sqlite3HashClear(pH); | |
204 } | |
205 } | |
206 | |
207 /* Attempt to locate an element of the hash table pH with a key | |
208 ** that matches pKey. Return the data for this element if it is | |
209 ** found, or NULL if there is no match. | |
210 */ | |
211 void *sqlite3HashFind(const Hash *pH, const char *pKey){ | |
212 HashElem *elem; /* The element that matches key */ | |
213 unsigned int h; /* A hash on key */ | |
214 | |
215 assert( pH!=0 ); | |
216 assert( pKey!=0 ); | |
217 elem = findElementWithHash(pH, pKey, &h); | |
218 return elem ? elem->data : 0; | |
219 } | |
220 | |
221 /* Insert an element into the hash table pH. The key is pKey | |
222 ** and the data is "data". | |
223 ** | |
224 ** If no element exists with a matching key, then a new | |
225 ** element is created and NULL is returned. | |
226 ** | |
227 ** If another element already exists with the same key, then the | |
228 ** new data replaces the old data and the old data is returned. | |
229 ** The key is not copied in this instance. If a malloc fails, then | |
230 ** the new data is returned and the hash table is unchanged. | |
231 ** | |
232 ** If the "data" parameter to this function is NULL, then the | |
233 ** element corresponding to "key" is removed from the hash table. | |
234 */ | |
235 void *sqlite3HashInsert(Hash *pH, const char *pKey, void *data){ | |
236 unsigned int h; /* the hash of the key modulo hash table size */ | |
237 HashElem *elem; /* Used to loop thru the element list */ | |
238 HashElem *new_elem; /* New element added to the pH */ | |
239 | |
240 assert( pH!=0 ); | |
241 assert( pKey!=0 ); | |
242 elem = findElementWithHash(pH,pKey,&h); | |
243 if( elem ){ | |
244 void *old_data = elem->data; | |
245 if( data==0 ){ | |
246 removeElementGivenHash(pH,elem,h); | |
247 }else{ | |
248 elem->data = data; | |
249 elem->pKey = pKey; | |
250 } | |
251 return old_data; | |
252 } | |
253 if( data==0 ) return 0; | |
254 new_elem = (HashElem*)sqlite3Malloc( sizeof(HashElem) ); | |
255 if( new_elem==0 ) return data; | |
256 new_elem->pKey = pKey; | |
257 new_elem->data = data; | |
258 pH->count++; | |
259 if( pH->count>=10 && pH->count > 2*pH->htsize ){ | |
260 if( rehash(pH, pH->count*2) ){ | |
261 assert( pH->htsize>0 ); | |
262 h = strHash(pKey) % pH->htsize; | |
263 } | |
264 } | |
265 insertElement(pH, pH->ht ? &pH->ht[h] : 0, new_elem); | |
266 return 0; | |
267 } | |
OLD | NEW |