OLD | NEW |
| (Empty) |
1 /* | |
2 ** 2002 February 23 | |
3 ** | |
4 ** The author disclaims copyright to this source code. In place of | |
5 ** a legal notice, here is a blessing: | |
6 ** | |
7 ** May you do good and not evil. | |
8 ** May you find forgiveness for yourself and forgive others. | |
9 ** May you share freely, never taking more than you give. | |
10 ** | |
11 ************************************************************************* | |
12 ** This file contains the C-language implementations for many of the SQL | |
13 ** functions of SQLite. (Some function, and in particular the date and | |
14 ** time functions, are implemented separately.) | |
15 */ | |
16 #include "sqliteInt.h" | |
17 #include <stdlib.h> | |
18 #include <assert.h> | |
19 #include "vdbeInt.h" | |
20 | |
21 /* | |
22 ** Return the collating function associated with a function. | |
23 */ | |
24 static CollSeq *sqlite3GetFuncCollSeq(sqlite3_context *context){ | |
25 VdbeOp *pOp = &context->pVdbe->aOp[context->iOp-1]; | |
26 assert( pOp->opcode==OP_CollSeq ); | |
27 assert( pOp->p4type==P4_COLLSEQ ); | |
28 return pOp->p4.pColl; | |
29 } | |
30 | |
31 /* | |
32 ** Indicate that the accumulator load should be skipped on this | |
33 ** iteration of the aggregate loop. | |
34 */ | |
35 static void sqlite3SkipAccumulatorLoad(sqlite3_context *context){ | |
36 context->skipFlag = 1; | |
37 } | |
38 | |
39 /* | |
40 ** Implementation of the non-aggregate min() and max() functions | |
41 */ | |
42 static void minmaxFunc( | |
43 sqlite3_context *context, | |
44 int argc, | |
45 sqlite3_value **argv | |
46 ){ | |
47 int i; | |
48 int mask; /* 0 for min() or 0xffffffff for max() */ | |
49 int iBest; | |
50 CollSeq *pColl; | |
51 | |
52 assert( argc>1 ); | |
53 mask = sqlite3_user_data(context)==0 ? 0 : -1; | |
54 pColl = sqlite3GetFuncCollSeq(context); | |
55 assert( pColl ); | |
56 assert( mask==-1 || mask==0 ); | |
57 iBest = 0; | |
58 if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return; | |
59 for(i=1; i<argc; i++){ | |
60 if( sqlite3_value_type(argv[i])==SQLITE_NULL ) return; | |
61 if( (sqlite3MemCompare(argv[iBest], argv[i], pColl)^mask)>=0 ){ | |
62 testcase( mask==0 ); | |
63 iBest = i; | |
64 } | |
65 } | |
66 sqlite3_result_value(context, argv[iBest]); | |
67 } | |
68 | |
69 /* | |
70 ** Return the type of the argument. | |
71 */ | |
72 static void typeofFunc( | |
73 sqlite3_context *context, | |
74 int NotUsed, | |
75 sqlite3_value **argv | |
76 ){ | |
77 const char *z = 0; | |
78 UNUSED_PARAMETER(NotUsed); | |
79 switch( sqlite3_value_type(argv[0]) ){ | |
80 case SQLITE_INTEGER: z = "integer"; break; | |
81 case SQLITE_TEXT: z = "text"; break; | |
82 case SQLITE_FLOAT: z = "real"; break; | |
83 case SQLITE_BLOB: z = "blob"; break; | |
84 default: z = "null"; break; | |
85 } | |
86 sqlite3_result_text(context, z, -1, SQLITE_STATIC); | |
87 } | |
88 | |
89 | |
90 /* | |
91 ** Implementation of the length() function | |
92 */ | |
93 static void lengthFunc( | |
94 sqlite3_context *context, | |
95 int argc, | |
96 sqlite3_value **argv | |
97 ){ | |
98 int len; | |
99 | |
100 assert( argc==1 ); | |
101 UNUSED_PARAMETER(argc); | |
102 switch( sqlite3_value_type(argv[0]) ){ | |
103 case SQLITE_BLOB: | |
104 case SQLITE_INTEGER: | |
105 case SQLITE_FLOAT: { | |
106 sqlite3_result_int(context, sqlite3_value_bytes(argv[0])); | |
107 break; | |
108 } | |
109 case SQLITE_TEXT: { | |
110 const unsigned char *z = sqlite3_value_text(argv[0]); | |
111 if( z==0 ) return; | |
112 len = 0; | |
113 while( *z ){ | |
114 len++; | |
115 SQLITE_SKIP_UTF8(z); | |
116 } | |
117 sqlite3_result_int(context, len); | |
118 break; | |
119 } | |
120 default: { | |
121 sqlite3_result_null(context); | |
122 break; | |
123 } | |
124 } | |
125 } | |
126 | |
127 /* | |
128 ** Implementation of the abs() function. | |
129 ** | |
130 ** IMP: R-23979-26855 The abs(X) function returns the absolute value of | |
131 ** the numeric argument X. | |
132 */ | |
133 static void absFunc(sqlite3_context *context, int argc, sqlite3_value **argv){ | |
134 assert( argc==1 ); | |
135 UNUSED_PARAMETER(argc); | |
136 switch( sqlite3_value_type(argv[0]) ){ | |
137 case SQLITE_INTEGER: { | |
138 i64 iVal = sqlite3_value_int64(argv[0]); | |
139 if( iVal<0 ){ | |
140 if( iVal==SMALLEST_INT64 ){ | |
141 /* IMP: R-31676-45509 If X is the integer -9223372036854775808 | |
142 ** then abs(X) throws an integer overflow error since there is no | |
143 ** equivalent positive 64-bit two complement value. */ | |
144 sqlite3_result_error(context, "integer overflow", -1); | |
145 return; | |
146 } | |
147 iVal = -iVal; | |
148 } | |
149 sqlite3_result_int64(context, iVal); | |
150 break; | |
151 } | |
152 case SQLITE_NULL: { | |
153 /* IMP: R-37434-19929 Abs(X) returns NULL if X is NULL. */ | |
154 sqlite3_result_null(context); | |
155 break; | |
156 } | |
157 default: { | |
158 /* Because sqlite3_value_double() returns 0.0 if the argument is not | |
159 ** something that can be converted into a number, we have: | |
160 ** IMP: R-57326-31541 Abs(X) return 0.0 if X is a string or blob that | |
161 ** cannot be converted to a numeric value. | |
162 */ | |
163 double rVal = sqlite3_value_double(argv[0]); | |
164 if( rVal<0 ) rVal = -rVal; | |
165 sqlite3_result_double(context, rVal); | |
166 break; | |
167 } | |
168 } | |
169 } | |
170 | |
171 /* | |
172 ** Implementation of the instr() function. | |
173 ** | |
174 ** instr(haystack,needle) finds the first occurrence of needle | |
175 ** in haystack and returns the number of previous characters plus 1, | |
176 ** or 0 if needle does not occur within haystack. | |
177 ** | |
178 ** If both haystack and needle are BLOBs, then the result is one more than | |
179 ** the number of bytes in haystack prior to the first occurrence of needle, | |
180 ** or 0 if needle never occurs in haystack. | |
181 */ | |
182 static void instrFunc( | |
183 sqlite3_context *context, | |
184 int argc, | |
185 sqlite3_value **argv | |
186 ){ | |
187 const unsigned char *zHaystack; | |
188 const unsigned char *zNeedle; | |
189 int nHaystack; | |
190 int nNeedle; | |
191 int typeHaystack, typeNeedle; | |
192 int N = 1; | |
193 int isText; | |
194 | |
195 UNUSED_PARAMETER(argc); | |
196 typeHaystack = sqlite3_value_type(argv[0]); | |
197 typeNeedle = sqlite3_value_type(argv[1]); | |
198 if( typeHaystack==SQLITE_NULL || typeNeedle==SQLITE_NULL ) return; | |
199 nHaystack = sqlite3_value_bytes(argv[0]); | |
200 nNeedle = sqlite3_value_bytes(argv[1]); | |
201 if( typeHaystack==SQLITE_BLOB && typeNeedle==SQLITE_BLOB ){ | |
202 zHaystack = sqlite3_value_blob(argv[0]); | |
203 zNeedle = sqlite3_value_blob(argv[1]); | |
204 isText = 0; | |
205 }else{ | |
206 zHaystack = sqlite3_value_text(argv[0]); | |
207 zNeedle = sqlite3_value_text(argv[1]); | |
208 isText = 1; | |
209 } | |
210 while( nNeedle<=nHaystack && memcmp(zHaystack, zNeedle, nNeedle)!=0 ){ | |
211 N++; | |
212 do{ | |
213 nHaystack--; | |
214 zHaystack++; | |
215 }while( isText && (zHaystack[0]&0xc0)==0x80 ); | |
216 } | |
217 if( nNeedle>nHaystack ) N = 0; | |
218 sqlite3_result_int(context, N); | |
219 } | |
220 | |
221 /* | |
222 ** Implementation of the printf() function. | |
223 */ | |
224 static void printfFunc( | |
225 sqlite3_context *context, | |
226 int argc, | |
227 sqlite3_value **argv | |
228 ){ | |
229 PrintfArguments x; | |
230 StrAccum str; | |
231 const char *zFormat; | |
232 int n; | |
233 | |
234 if( argc>=1 && (zFormat = (const char*)sqlite3_value_text(argv[0]))!=0 ){ | |
235 x.nArg = argc-1; | |
236 x.nUsed = 0; | |
237 x.apArg = argv+1; | |
238 sqlite3StrAccumInit(&str, 0, 0, SQLITE_MAX_LENGTH); | |
239 str.db = sqlite3_context_db_handle(context); | |
240 sqlite3XPrintf(&str, SQLITE_PRINTF_SQLFUNC, zFormat, &x); | |
241 n = str.nChar; | |
242 sqlite3_result_text(context, sqlite3StrAccumFinish(&str), n, | |
243 SQLITE_DYNAMIC); | |
244 } | |
245 } | |
246 | |
247 /* | |
248 ** Implementation of the substr() function. | |
249 ** | |
250 ** substr(x,p1,p2) returns p2 characters of x[] beginning with p1. | |
251 ** p1 is 1-indexed. So substr(x,1,1) returns the first character | |
252 ** of x. If x is text, then we actually count UTF-8 characters. | |
253 ** If x is a blob, then we count bytes. | |
254 ** | |
255 ** If p1 is negative, then we begin abs(p1) from the end of x[]. | |
256 ** | |
257 ** If p2 is negative, return the p2 characters preceding p1. | |
258 */ | |
259 static void substrFunc( | |
260 sqlite3_context *context, | |
261 int argc, | |
262 sqlite3_value **argv | |
263 ){ | |
264 const unsigned char *z; | |
265 const unsigned char *z2; | |
266 int len; | |
267 int p0type; | |
268 i64 p1, p2; | |
269 int negP2 = 0; | |
270 | |
271 assert( argc==3 || argc==2 ); | |
272 if( sqlite3_value_type(argv[1])==SQLITE_NULL | |
273 || (argc==3 && sqlite3_value_type(argv[2])==SQLITE_NULL) | |
274 ){ | |
275 return; | |
276 } | |
277 p0type = sqlite3_value_type(argv[0]); | |
278 p1 = sqlite3_value_int(argv[1]); | |
279 if( p0type==SQLITE_BLOB ){ | |
280 len = sqlite3_value_bytes(argv[0]); | |
281 z = sqlite3_value_blob(argv[0]); | |
282 if( z==0 ) return; | |
283 assert( len==sqlite3_value_bytes(argv[0]) ); | |
284 }else{ | |
285 z = sqlite3_value_text(argv[0]); | |
286 if( z==0 ) return; | |
287 len = 0; | |
288 if( p1<0 ){ | |
289 for(z2=z; *z2; len++){ | |
290 SQLITE_SKIP_UTF8(z2); | |
291 } | |
292 } | |
293 } | |
294 if( argc==3 ){ | |
295 p2 = sqlite3_value_int(argv[2]); | |
296 if( p2<0 ){ | |
297 p2 = -p2; | |
298 negP2 = 1; | |
299 } | |
300 }else{ | |
301 p2 = sqlite3_context_db_handle(context)->aLimit[SQLITE_LIMIT_LENGTH]; | |
302 } | |
303 if( p1<0 ){ | |
304 p1 += len; | |
305 if( p1<0 ){ | |
306 p2 += p1; | |
307 if( p2<0 ) p2 = 0; | |
308 p1 = 0; | |
309 } | |
310 }else if( p1>0 ){ | |
311 p1--; | |
312 }else if( p2>0 ){ | |
313 p2--; | |
314 } | |
315 if( negP2 ){ | |
316 p1 -= p2; | |
317 if( p1<0 ){ | |
318 p2 += p1; | |
319 p1 = 0; | |
320 } | |
321 } | |
322 assert( p1>=0 && p2>=0 ); | |
323 if( p0type!=SQLITE_BLOB ){ | |
324 while( *z && p1 ){ | |
325 SQLITE_SKIP_UTF8(z); | |
326 p1--; | |
327 } | |
328 for(z2=z; *z2 && p2; p2--){ | |
329 SQLITE_SKIP_UTF8(z2); | |
330 } | |
331 sqlite3_result_text64(context, (char*)z, z2-z, SQLITE_TRANSIENT, | |
332 SQLITE_UTF8); | |
333 }else{ | |
334 if( p1+p2>len ){ | |
335 p2 = len-p1; | |
336 if( p2<0 ) p2 = 0; | |
337 } | |
338 sqlite3_result_blob64(context, (char*)&z[p1], (u64)p2, SQLITE_TRANSIENT); | |
339 } | |
340 } | |
341 | |
342 /* | |
343 ** Implementation of the round() function | |
344 */ | |
345 #ifndef SQLITE_OMIT_FLOATING_POINT | |
346 static void roundFunc(sqlite3_context *context, int argc, sqlite3_value **argv){ | |
347 int n = 0; | |
348 double r; | |
349 char *zBuf; | |
350 assert( argc==1 || argc==2 ); | |
351 if( argc==2 ){ | |
352 if( SQLITE_NULL==sqlite3_value_type(argv[1]) ) return; | |
353 n = sqlite3_value_int(argv[1]); | |
354 if( n>30 ) n = 30; | |
355 if( n<0 ) n = 0; | |
356 } | |
357 if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return; | |
358 r = sqlite3_value_double(argv[0]); | |
359 /* If Y==0 and X will fit in a 64-bit int, | |
360 ** handle the rounding directly, | |
361 ** otherwise use printf. | |
362 */ | |
363 if( n==0 && r>=0 && r<LARGEST_INT64-1 ){ | |
364 r = (double)((sqlite_int64)(r+0.5)); | |
365 }else if( n==0 && r<0 && (-r)<LARGEST_INT64-1 ){ | |
366 r = -(double)((sqlite_int64)((-r)+0.5)); | |
367 }else{ | |
368 zBuf = sqlite3_mprintf("%.*f",n,r); | |
369 if( zBuf==0 ){ | |
370 sqlite3_result_error_nomem(context); | |
371 return; | |
372 } | |
373 sqlite3AtoF(zBuf, &r, sqlite3Strlen30(zBuf), SQLITE_UTF8); | |
374 sqlite3_free(zBuf); | |
375 } | |
376 sqlite3_result_double(context, r); | |
377 } | |
378 #endif | |
379 | |
380 /* | |
381 ** Allocate nByte bytes of space using sqlite3_malloc(). If the | |
382 ** allocation fails, call sqlite3_result_error_nomem() to notify | |
383 ** the database handle that malloc() has failed and return NULL. | |
384 ** If nByte is larger than the maximum string or blob length, then | |
385 ** raise an SQLITE_TOOBIG exception and return NULL. | |
386 */ | |
387 static void *contextMalloc(sqlite3_context *context, i64 nByte){ | |
388 char *z; | |
389 sqlite3 *db = sqlite3_context_db_handle(context); | |
390 assert( nByte>0 ); | |
391 testcase( nByte==db->aLimit[SQLITE_LIMIT_LENGTH] ); | |
392 testcase( nByte==db->aLimit[SQLITE_LIMIT_LENGTH]+1 ); | |
393 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){ | |
394 sqlite3_result_error_toobig(context); | |
395 z = 0; | |
396 }else{ | |
397 z = sqlite3Malloc(nByte); | |
398 if( !z ){ | |
399 sqlite3_result_error_nomem(context); | |
400 } | |
401 } | |
402 return z; | |
403 } | |
404 | |
405 /* | |
406 ** Implementation of the upper() and lower() SQL functions. | |
407 */ | |
408 static void upperFunc(sqlite3_context *context, int argc, sqlite3_value **argv){ | |
409 char *z1; | |
410 const char *z2; | |
411 int i, n; | |
412 UNUSED_PARAMETER(argc); | |
413 z2 = (char*)sqlite3_value_text(argv[0]); | |
414 n = sqlite3_value_bytes(argv[0]); | |
415 /* Verify that the call to _bytes() does not invalidate the _text() pointer */ | |
416 assert( z2==(char*)sqlite3_value_text(argv[0]) ); | |
417 if( z2 ){ | |
418 z1 = contextMalloc(context, ((i64)n)+1); | |
419 if( z1 ){ | |
420 for(i=0; i<n; i++){ | |
421 z1[i] = (char)sqlite3Toupper(z2[i]); | |
422 } | |
423 sqlite3_result_text(context, z1, n, sqlite3_free); | |
424 } | |
425 } | |
426 } | |
427 static void lowerFunc(sqlite3_context *context, int argc, sqlite3_value **argv){ | |
428 char *z1; | |
429 const char *z2; | |
430 int i, n; | |
431 UNUSED_PARAMETER(argc); | |
432 z2 = (char*)sqlite3_value_text(argv[0]); | |
433 n = sqlite3_value_bytes(argv[0]); | |
434 /* Verify that the call to _bytes() does not invalidate the _text() pointer */ | |
435 assert( z2==(char*)sqlite3_value_text(argv[0]) ); | |
436 if( z2 ){ | |
437 z1 = contextMalloc(context, ((i64)n)+1); | |
438 if( z1 ){ | |
439 for(i=0; i<n; i++){ | |
440 z1[i] = sqlite3Tolower(z2[i]); | |
441 } | |
442 sqlite3_result_text(context, z1, n, sqlite3_free); | |
443 } | |
444 } | |
445 } | |
446 | |
447 /* | |
448 ** Some functions like COALESCE() and IFNULL() and UNLIKELY() are implemented | |
449 ** as VDBE code so that unused argument values do not have to be computed. | |
450 ** However, we still need some kind of function implementation for this | |
451 ** routines in the function table. The noopFunc macro provides this. | |
452 ** noopFunc will never be called so it doesn't matter what the implementation | |
453 ** is. We might as well use the "version()" function as a substitute. | |
454 */ | |
455 #define noopFunc versionFunc /* Substitute function - never called */ | |
456 | |
457 /* | |
458 ** Implementation of random(). Return a random integer. | |
459 */ | |
460 static void randomFunc( | |
461 sqlite3_context *context, | |
462 int NotUsed, | |
463 sqlite3_value **NotUsed2 | |
464 ){ | |
465 sqlite_int64 r; | |
466 UNUSED_PARAMETER2(NotUsed, NotUsed2); | |
467 sqlite3_randomness(sizeof(r), &r); | |
468 if( r<0 ){ | |
469 /* We need to prevent a random number of 0x8000000000000000 | |
470 ** (or -9223372036854775808) since when you do abs() of that | |
471 ** number of you get the same value back again. To do this | |
472 ** in a way that is testable, mask the sign bit off of negative | |
473 ** values, resulting in a positive value. Then take the | |
474 ** 2s complement of that positive value. The end result can | |
475 ** therefore be no less than -9223372036854775807. | |
476 */ | |
477 r = -(r & LARGEST_INT64); | |
478 } | |
479 sqlite3_result_int64(context, r); | |
480 } | |
481 | |
482 /* | |
483 ** Implementation of randomblob(N). Return a random blob | |
484 ** that is N bytes long. | |
485 */ | |
486 static void randomBlob( | |
487 sqlite3_context *context, | |
488 int argc, | |
489 sqlite3_value **argv | |
490 ){ | |
491 int n; | |
492 unsigned char *p; | |
493 assert( argc==1 ); | |
494 UNUSED_PARAMETER(argc); | |
495 n = sqlite3_value_int(argv[0]); | |
496 if( n<1 ){ | |
497 n = 1; | |
498 } | |
499 p = contextMalloc(context, n); | |
500 if( p ){ | |
501 sqlite3_randomness(n, p); | |
502 sqlite3_result_blob(context, (char*)p, n, sqlite3_free); | |
503 } | |
504 } | |
505 | |
506 /* | |
507 ** Implementation of the last_insert_rowid() SQL function. The return | |
508 ** value is the same as the sqlite3_last_insert_rowid() API function. | |
509 */ | |
510 static void last_insert_rowid( | |
511 sqlite3_context *context, | |
512 int NotUsed, | |
513 sqlite3_value **NotUsed2 | |
514 ){ | |
515 sqlite3 *db = sqlite3_context_db_handle(context); | |
516 UNUSED_PARAMETER2(NotUsed, NotUsed2); | |
517 /* IMP: R-51513-12026 The last_insert_rowid() SQL function is a | |
518 ** wrapper around the sqlite3_last_insert_rowid() C/C++ interface | |
519 ** function. */ | |
520 sqlite3_result_int64(context, sqlite3_last_insert_rowid(db)); | |
521 } | |
522 | |
523 /* | |
524 ** Implementation of the changes() SQL function. | |
525 ** | |
526 ** IMP: R-62073-11209 The changes() SQL function is a wrapper | |
527 ** around the sqlite3_changes() C/C++ function and hence follows the same | |
528 ** rules for counting changes. | |
529 */ | |
530 static void changes( | |
531 sqlite3_context *context, | |
532 int NotUsed, | |
533 sqlite3_value **NotUsed2 | |
534 ){ | |
535 sqlite3 *db = sqlite3_context_db_handle(context); | |
536 UNUSED_PARAMETER2(NotUsed, NotUsed2); | |
537 sqlite3_result_int(context, sqlite3_changes(db)); | |
538 } | |
539 | |
540 /* | |
541 ** Implementation of the total_changes() SQL function. The return value is | |
542 ** the same as the sqlite3_total_changes() API function. | |
543 */ | |
544 static void total_changes( | |
545 sqlite3_context *context, | |
546 int NotUsed, | |
547 sqlite3_value **NotUsed2 | |
548 ){ | |
549 sqlite3 *db = sqlite3_context_db_handle(context); | |
550 UNUSED_PARAMETER2(NotUsed, NotUsed2); | |
551 /* IMP: R-52756-41993 This function is a wrapper around the | |
552 ** sqlite3_total_changes() C/C++ interface. */ | |
553 sqlite3_result_int(context, sqlite3_total_changes(db)); | |
554 } | |
555 | |
556 /* | |
557 ** A structure defining how to do GLOB-style comparisons. | |
558 */ | |
559 struct compareInfo { | |
560 u8 matchAll; | |
561 u8 matchOne; | |
562 u8 matchSet; | |
563 u8 noCase; | |
564 }; | |
565 | |
566 /* | |
567 ** For LIKE and GLOB matching on EBCDIC machines, assume that every | |
568 ** character is exactly one byte in size. Also, all characters are | |
569 ** able to participate in upper-case-to-lower-case mappings in EBCDIC | |
570 ** whereas only characters less than 0x80 do in ASCII. | |
571 */ | |
572 #if defined(SQLITE_EBCDIC) | |
573 # define sqlite3Utf8Read(A) (*((*A)++)) | |
574 # define GlobUpperToLower(A) A = sqlite3UpperToLower[A] | |
575 # define GlobUpperToLowerAscii(A) A = sqlite3UpperToLower[A] | |
576 #else | |
577 # define GlobUpperToLower(A) if( A<=0x7f ){ A = sqlite3UpperToLower[A]; } | |
578 # define GlobUpperToLowerAscii(A) A = sqlite3UpperToLower[A] | |
579 #endif | |
580 | |
581 static const struct compareInfo globInfo = { '*', '?', '[', 0 }; | |
582 /* The correct SQL-92 behavior is for the LIKE operator to ignore | |
583 ** case. Thus 'a' LIKE 'A' would be true. */ | |
584 static const struct compareInfo likeInfoNorm = { '%', '_', 0, 1 }; | |
585 /* If SQLITE_CASE_SENSITIVE_LIKE is defined, then the LIKE operator | |
586 ** is case sensitive causing 'a' LIKE 'A' to be false */ | |
587 static const struct compareInfo likeInfoAlt = { '%', '_', 0, 0 }; | |
588 | |
589 /* | |
590 ** Compare two UTF-8 strings for equality where the first string can | |
591 ** potentially be a "glob" or "like" expression. Return true (1) if they | |
592 ** are the same and false (0) if they are different. | |
593 ** | |
594 ** Globbing rules: | |
595 ** | |
596 ** '*' Matches any sequence of zero or more characters. | |
597 ** | |
598 ** '?' Matches exactly one character. | |
599 ** | |
600 ** [...] Matches one character from the enclosed list of | |
601 ** characters. | |
602 ** | |
603 ** [^...] Matches one character not in the enclosed list. | |
604 ** | |
605 ** With the [...] and [^...] matching, a ']' character can be included | |
606 ** in the list by making it the first character after '[' or '^'. A | |
607 ** range of characters can be specified using '-'. Example: | |
608 ** "[a-z]" matches any single lower-case letter. To match a '-', make | |
609 ** it the last character in the list. | |
610 ** | |
611 ** Like matching rules: | |
612 ** | |
613 ** '%' Matches any sequence of zero or more characters | |
614 ** | |
615 *** '_' Matches any one character | |
616 ** | |
617 ** Ec Where E is the "esc" character and c is any other | |
618 ** character, including '%', '_', and esc, match exactly c. | |
619 ** | |
620 ** The comments through this routine usually assume glob matching. | |
621 ** | |
622 ** This routine is usually quick, but can be N**2 in the worst case. | |
623 */ | |
624 static int patternCompare( | |
625 const u8 *zPattern, /* The glob pattern */ | |
626 const u8 *zString, /* The string to compare against the glob */ | |
627 const struct compareInfo *pInfo, /* Information about how to do the compare */ | |
628 u32 esc /* The escape character */ | |
629 ){ | |
630 u32 c, c2; /* Next pattern and input string chars */ | |
631 u32 matchOne = pInfo->matchOne; /* "?" or "_" */ | |
632 u32 matchAll = pInfo->matchAll; /* "*" or "%" */ | |
633 u32 matchOther; /* "[" or the escape character */ | |
634 u8 noCase = pInfo->noCase; /* True if uppercase==lowercase */ | |
635 const u8 *zEscaped = 0; /* One past the last escaped input char */ | |
636 | |
637 /* The GLOB operator does not have an ESCAPE clause. And LIKE does not | |
638 ** have the matchSet operator. So we either have to look for one or | |
639 ** the other, never both. Hence the single variable matchOther is used | |
640 ** to store the one we have to look for. | |
641 */ | |
642 matchOther = esc ? esc : pInfo->matchSet; | |
643 | |
644 while( (c = sqlite3Utf8Read(&zPattern))!=0 ){ | |
645 if( c==matchAll ){ /* Match "*" */ | |
646 /* Skip over multiple "*" characters in the pattern. If there | |
647 ** are also "?" characters, skip those as well, but consume a | |
648 ** single character of the input string for each "?" skipped */ | |
649 while( (c=sqlite3Utf8Read(&zPattern)) == matchAll | |
650 || c == matchOne ){ | |
651 if( c==matchOne && sqlite3Utf8Read(&zString)==0 ){ | |
652 return 0; | |
653 } | |
654 } | |
655 if( c==0 ){ | |
656 return 1; /* "*" at the end of the pattern matches */ | |
657 }else if( c==matchOther ){ | |
658 if( esc ){ | |
659 c = sqlite3Utf8Read(&zPattern); | |
660 if( c==0 ) return 0; | |
661 }else{ | |
662 /* "[...]" immediately follows the "*". We have to do a slow | |
663 ** recursive search in this case, but it is an unusual case. */ | |
664 assert( matchOther<0x80 ); /* '[' is a single-byte character */ | |
665 while( *zString | |
666 && patternCompare(&zPattern[-1],zString,pInfo,esc)==0 ){ | |
667 SQLITE_SKIP_UTF8(zString); | |
668 } | |
669 return *zString!=0; | |
670 } | |
671 } | |
672 | |
673 /* At this point variable c contains the first character of the | |
674 ** pattern string past the "*". Search in the input string for the | |
675 ** first matching character and recursively contine the match from | |
676 ** that point. | |
677 ** | |
678 ** For a case-insensitive search, set variable cx to be the same as | |
679 ** c but in the other case and search the input string for either | |
680 ** c or cx. | |
681 */ | |
682 if( c<=0x80 ){ | |
683 u32 cx; | |
684 if( noCase ){ | |
685 cx = sqlite3Toupper(c); | |
686 c = sqlite3Tolower(c); | |
687 }else{ | |
688 cx = c; | |
689 } | |
690 while( (c2 = *(zString++))!=0 ){ | |
691 if( c2!=c && c2!=cx ) continue; | |
692 if( patternCompare(zPattern,zString,pInfo,esc) ) return 1; | |
693 } | |
694 }else{ | |
695 while( (c2 = sqlite3Utf8Read(&zString))!=0 ){ | |
696 if( c2!=c ) continue; | |
697 if( patternCompare(zPattern,zString,pInfo,esc) ) return 1; | |
698 } | |
699 } | |
700 return 0; | |
701 } | |
702 if( c==matchOther ){ | |
703 if( esc ){ | |
704 c = sqlite3Utf8Read(&zPattern); | |
705 if( c==0 ) return 0; | |
706 zEscaped = zPattern; | |
707 }else{ | |
708 u32 prior_c = 0; | |
709 int seen = 0; | |
710 int invert = 0; | |
711 c = sqlite3Utf8Read(&zString); | |
712 if( c==0 ) return 0; | |
713 c2 = sqlite3Utf8Read(&zPattern); | |
714 if( c2=='^' ){ | |
715 invert = 1; | |
716 c2 = sqlite3Utf8Read(&zPattern); | |
717 } | |
718 if( c2==']' ){ | |
719 if( c==']' ) seen = 1; | |
720 c2 = sqlite3Utf8Read(&zPattern); | |
721 } | |
722 while( c2 && c2!=']' ){ | |
723 if( c2=='-' && zPattern[0]!=']' && zPattern[0]!=0 && prior_c>0 ){ | |
724 c2 = sqlite3Utf8Read(&zPattern); | |
725 if( c>=prior_c && c<=c2 ) seen = 1; | |
726 prior_c = 0; | |
727 }else{ | |
728 if( c==c2 ){ | |
729 seen = 1; | |
730 } | |
731 prior_c = c2; | |
732 } | |
733 c2 = sqlite3Utf8Read(&zPattern); | |
734 } | |
735 if( c2==0 || (seen ^ invert)==0 ){ | |
736 return 0; | |
737 } | |
738 continue; | |
739 } | |
740 } | |
741 c2 = sqlite3Utf8Read(&zString); | |
742 if( c==c2 ) continue; | |
743 if( noCase && c<0x80 && c2<0x80 && sqlite3Tolower(c)==sqlite3Tolower(c2) ){ | |
744 continue; | |
745 } | |
746 if( c==matchOne && zPattern!=zEscaped && c2!=0 ) continue; | |
747 return 0; | |
748 } | |
749 return *zString==0; | |
750 } | |
751 | |
752 /* | |
753 ** The sqlite3_strglob() interface. | |
754 */ | |
755 int sqlite3_strglob(const char *zGlobPattern, const char *zString){ | |
756 return patternCompare((u8*)zGlobPattern, (u8*)zString, &globInfo, 0)==0; | |
757 } | |
758 | |
759 /* | |
760 ** Count the number of times that the LIKE operator (or GLOB which is | |
761 ** just a variation of LIKE) gets called. This is used for testing | |
762 ** only. | |
763 */ | |
764 #ifdef SQLITE_TEST | |
765 int sqlite3_like_count = 0; | |
766 #endif | |
767 | |
768 | |
769 /* | |
770 ** Implementation of the like() SQL function. This function implements | |
771 ** the build-in LIKE operator. The first argument to the function is the | |
772 ** pattern and the second argument is the string. So, the SQL statements: | |
773 ** | |
774 ** A LIKE B | |
775 ** | |
776 ** is implemented as like(B,A). | |
777 ** | |
778 ** This same function (with a different compareInfo structure) computes | |
779 ** the GLOB operator. | |
780 */ | |
781 static void likeFunc( | |
782 sqlite3_context *context, | |
783 int argc, | |
784 sqlite3_value **argv | |
785 ){ | |
786 const unsigned char *zA, *zB; | |
787 u32 escape = 0; | |
788 int nPat; | |
789 sqlite3 *db = sqlite3_context_db_handle(context); | |
790 | |
791 zB = sqlite3_value_text(argv[0]); | |
792 zA = sqlite3_value_text(argv[1]); | |
793 | |
794 /* Limit the length of the LIKE or GLOB pattern to avoid problems | |
795 ** of deep recursion and N*N behavior in patternCompare(). | |
796 */ | |
797 nPat = sqlite3_value_bytes(argv[0]); | |
798 testcase( nPat==db->aLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH] ); | |
799 testcase( nPat==db->aLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH]+1 ); | |
800 if( nPat > db->aLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH] ){ | |
801 sqlite3_result_error(context, "LIKE or GLOB pattern too complex", -1); | |
802 return; | |
803 } | |
804 assert( zB==sqlite3_value_text(argv[0]) ); /* Encoding did not change */ | |
805 | |
806 if( argc==3 ){ | |
807 /* The escape character string must consist of a single UTF-8 character. | |
808 ** Otherwise, return an error. | |
809 */ | |
810 const unsigned char *zEsc = sqlite3_value_text(argv[2]); | |
811 if( zEsc==0 ) return; | |
812 if( sqlite3Utf8CharLen((char*)zEsc, -1)!=1 ){ | |
813 sqlite3_result_error(context, | |
814 "ESCAPE expression must be a single character", -1); | |
815 return; | |
816 } | |
817 escape = sqlite3Utf8Read(&zEsc); | |
818 } | |
819 if( zA && zB ){ | |
820 struct compareInfo *pInfo = sqlite3_user_data(context); | |
821 #ifdef SQLITE_TEST | |
822 sqlite3_like_count++; | |
823 #endif | |
824 | |
825 sqlite3_result_int(context, patternCompare(zB, zA, pInfo, escape)); | |
826 } | |
827 } | |
828 | |
829 /* | |
830 ** Implementation of the NULLIF(x,y) function. The result is the first | |
831 ** argument if the arguments are different. The result is NULL if the | |
832 ** arguments are equal to each other. | |
833 */ | |
834 static void nullifFunc( | |
835 sqlite3_context *context, | |
836 int NotUsed, | |
837 sqlite3_value **argv | |
838 ){ | |
839 CollSeq *pColl = sqlite3GetFuncCollSeq(context); | |
840 UNUSED_PARAMETER(NotUsed); | |
841 if( sqlite3MemCompare(argv[0], argv[1], pColl)!=0 ){ | |
842 sqlite3_result_value(context, argv[0]); | |
843 } | |
844 } | |
845 | |
846 /* | |
847 ** Implementation of the sqlite_version() function. The result is the version | |
848 ** of the SQLite library that is running. | |
849 */ | |
850 static void versionFunc( | |
851 sqlite3_context *context, | |
852 int NotUsed, | |
853 sqlite3_value **NotUsed2 | |
854 ){ | |
855 UNUSED_PARAMETER2(NotUsed, NotUsed2); | |
856 /* IMP: R-48699-48617 This function is an SQL wrapper around the | |
857 ** sqlite3_libversion() C-interface. */ | |
858 sqlite3_result_text(context, sqlite3_libversion(), -1, SQLITE_STATIC); | |
859 } | |
860 | |
861 /* | |
862 ** Implementation of the sqlite_source_id() function. The result is a string | |
863 ** that identifies the particular version of the source code used to build | |
864 ** SQLite. | |
865 */ | |
866 static void sourceidFunc( | |
867 sqlite3_context *context, | |
868 int NotUsed, | |
869 sqlite3_value **NotUsed2 | |
870 ){ | |
871 UNUSED_PARAMETER2(NotUsed, NotUsed2); | |
872 /* IMP: R-24470-31136 This function is an SQL wrapper around the | |
873 ** sqlite3_sourceid() C interface. */ | |
874 sqlite3_result_text(context, sqlite3_sourceid(), -1, SQLITE_STATIC); | |
875 } | |
876 | |
877 /* | |
878 ** Implementation of the sqlite_log() function. This is a wrapper around | |
879 ** sqlite3_log(). The return value is NULL. The function exists purely for | |
880 ** its side-effects. | |
881 */ | |
882 static void errlogFunc( | |
883 sqlite3_context *context, | |
884 int argc, | |
885 sqlite3_value **argv | |
886 ){ | |
887 UNUSED_PARAMETER(argc); | |
888 UNUSED_PARAMETER(context); | |
889 sqlite3_log(sqlite3_value_int(argv[0]), "%s", sqlite3_value_text(argv[1])); | |
890 } | |
891 | |
892 /* | |
893 ** Implementation of the sqlite_compileoption_used() function. | |
894 ** The result is an integer that identifies if the compiler option | |
895 ** was used to build SQLite. | |
896 */ | |
897 #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS | |
898 static void compileoptionusedFunc( | |
899 sqlite3_context *context, | |
900 int argc, | |
901 sqlite3_value **argv | |
902 ){ | |
903 const char *zOptName; | |
904 assert( argc==1 ); | |
905 UNUSED_PARAMETER(argc); | |
906 /* IMP: R-39564-36305 The sqlite_compileoption_used() SQL | |
907 ** function is a wrapper around the sqlite3_compileoption_used() C/C++ | |
908 ** function. | |
909 */ | |
910 if( (zOptName = (const char*)sqlite3_value_text(argv[0]))!=0 ){ | |
911 sqlite3_result_int(context, sqlite3_compileoption_used(zOptName)); | |
912 } | |
913 } | |
914 #endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */ | |
915 | |
916 /* | |
917 ** Implementation of the sqlite_compileoption_get() function. | |
918 ** The result is a string that identifies the compiler options | |
919 ** used to build SQLite. | |
920 */ | |
921 #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS | |
922 static void compileoptiongetFunc( | |
923 sqlite3_context *context, | |
924 int argc, | |
925 sqlite3_value **argv | |
926 ){ | |
927 int n; | |
928 assert( argc==1 ); | |
929 UNUSED_PARAMETER(argc); | |
930 /* IMP: R-04922-24076 The sqlite_compileoption_get() SQL function | |
931 ** is a wrapper around the sqlite3_compileoption_get() C/C++ function. | |
932 */ | |
933 n = sqlite3_value_int(argv[0]); | |
934 sqlite3_result_text(context, sqlite3_compileoption_get(n), -1, SQLITE_STATIC); | |
935 } | |
936 #endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */ | |
937 | |
938 /* Array for converting from half-bytes (nybbles) into ASCII hex | |
939 ** digits. */ | |
940 static const char hexdigits[] = { | |
941 '0', '1', '2', '3', '4', '5', '6', '7', | |
942 '8', '9', 'A', 'B', 'C', 'D', 'E', 'F' | |
943 }; | |
944 | |
945 /* | |
946 ** Implementation of the QUOTE() function. This function takes a single | |
947 ** argument. If the argument is numeric, the return value is the same as | |
948 ** the argument. If the argument is NULL, the return value is the string | |
949 ** "NULL". Otherwise, the argument is enclosed in single quotes with | |
950 ** single-quote escapes. | |
951 */ | |
952 static void quoteFunc(sqlite3_context *context, int argc, sqlite3_value **argv){ | |
953 assert( argc==1 ); | |
954 UNUSED_PARAMETER(argc); | |
955 switch( sqlite3_value_type(argv[0]) ){ | |
956 case SQLITE_FLOAT: { | |
957 double r1, r2; | |
958 char zBuf[50]; | |
959 r1 = sqlite3_value_double(argv[0]); | |
960 sqlite3_snprintf(sizeof(zBuf), zBuf, "%!.15g", r1); | |
961 sqlite3AtoF(zBuf, &r2, 20, SQLITE_UTF8); | |
962 if( r1!=r2 ){ | |
963 sqlite3_snprintf(sizeof(zBuf), zBuf, "%!.20e", r1); | |
964 } | |
965 sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT); | |
966 break; | |
967 } | |
968 case SQLITE_INTEGER: { | |
969 sqlite3_result_value(context, argv[0]); | |
970 break; | |
971 } | |
972 case SQLITE_BLOB: { | |
973 char *zText = 0; | |
974 char const *zBlob = sqlite3_value_blob(argv[0]); | |
975 int nBlob = sqlite3_value_bytes(argv[0]); | |
976 assert( zBlob==sqlite3_value_blob(argv[0]) ); /* No encoding change */ | |
977 zText = (char *)contextMalloc(context, (2*(i64)nBlob)+4); | |
978 if( zText ){ | |
979 int i; | |
980 for(i=0; i<nBlob; i++){ | |
981 zText[(i*2)+2] = hexdigits[(zBlob[i]>>4)&0x0F]; | |
982 zText[(i*2)+3] = hexdigits[(zBlob[i])&0x0F]; | |
983 } | |
984 zText[(nBlob*2)+2] = '\''; | |
985 zText[(nBlob*2)+3] = '\0'; | |
986 zText[0] = 'X'; | |
987 zText[1] = '\''; | |
988 sqlite3_result_text(context, zText, -1, SQLITE_TRANSIENT); | |
989 sqlite3_free(zText); | |
990 } | |
991 break; | |
992 } | |
993 case SQLITE_TEXT: { | |
994 int i,j; | |
995 u64 n; | |
996 const unsigned char *zArg = sqlite3_value_text(argv[0]); | |
997 char *z; | |
998 | |
999 if( zArg==0 ) return; | |
1000 for(i=0, n=0; zArg[i]; i++){ if( zArg[i]=='\'' ) n++; } | |
1001 z = contextMalloc(context, ((i64)i)+((i64)n)+3); | |
1002 if( z ){ | |
1003 z[0] = '\''; | |
1004 for(i=0, j=1; zArg[i]; i++){ | |
1005 z[j++] = zArg[i]; | |
1006 if( zArg[i]=='\'' ){ | |
1007 z[j++] = '\''; | |
1008 } | |
1009 } | |
1010 z[j++] = '\''; | |
1011 z[j] = 0; | |
1012 sqlite3_result_text(context, z, j, sqlite3_free); | |
1013 } | |
1014 break; | |
1015 } | |
1016 default: { | |
1017 assert( sqlite3_value_type(argv[0])==SQLITE_NULL ); | |
1018 sqlite3_result_text(context, "NULL", 4, SQLITE_STATIC); | |
1019 break; | |
1020 } | |
1021 } | |
1022 } | |
1023 | |
1024 /* | |
1025 ** The unicode() function. Return the integer unicode code-point value | |
1026 ** for the first character of the input string. | |
1027 */ | |
1028 static void unicodeFunc( | |
1029 sqlite3_context *context, | |
1030 int argc, | |
1031 sqlite3_value **argv | |
1032 ){ | |
1033 const unsigned char *z = sqlite3_value_text(argv[0]); | |
1034 (void)argc; | |
1035 if( z && z[0] ) sqlite3_result_int(context, sqlite3Utf8Read(&z)); | |
1036 } | |
1037 | |
1038 /* | |
1039 ** The char() function takes zero or more arguments, each of which is | |
1040 ** an integer. It constructs a string where each character of the string | |
1041 ** is the unicode character for the corresponding integer argument. | |
1042 */ | |
1043 static void charFunc( | |
1044 sqlite3_context *context, | |
1045 int argc, | |
1046 sqlite3_value **argv | |
1047 ){ | |
1048 unsigned char *z, *zOut; | |
1049 int i; | |
1050 zOut = z = sqlite3_malloc( argc*4+1 ); | |
1051 if( z==0 ){ | |
1052 sqlite3_result_error_nomem(context); | |
1053 return; | |
1054 } | |
1055 for(i=0; i<argc; i++){ | |
1056 sqlite3_int64 x; | |
1057 unsigned c; | |
1058 x = sqlite3_value_int64(argv[i]); | |
1059 if( x<0 || x>0x10ffff ) x = 0xfffd; | |
1060 c = (unsigned)(x & 0x1fffff); | |
1061 if( c<0x00080 ){ | |
1062 *zOut++ = (u8)(c&0xFF); | |
1063 }else if( c<0x00800 ){ | |
1064 *zOut++ = 0xC0 + (u8)((c>>6)&0x1F); | |
1065 *zOut++ = 0x80 + (u8)(c & 0x3F); | |
1066 }else if( c<0x10000 ){ | |
1067 *zOut++ = 0xE0 + (u8)((c>>12)&0x0F); | |
1068 *zOut++ = 0x80 + (u8)((c>>6) & 0x3F); | |
1069 *zOut++ = 0x80 + (u8)(c & 0x3F); | |
1070 }else{ | |
1071 *zOut++ = 0xF0 + (u8)((c>>18) & 0x07); | |
1072 *zOut++ = 0x80 + (u8)((c>>12) & 0x3F); | |
1073 *zOut++ = 0x80 + (u8)((c>>6) & 0x3F); | |
1074 *zOut++ = 0x80 + (u8)(c & 0x3F); | |
1075 } \ | |
1076 } | |
1077 sqlite3_result_text64(context, (char*)z, zOut-z, sqlite3_free, SQLITE_UTF8); | |
1078 } | |
1079 | |
1080 /* | |
1081 ** The hex() function. Interpret the argument as a blob. Return | |
1082 ** a hexadecimal rendering as text. | |
1083 */ | |
1084 static void hexFunc( | |
1085 sqlite3_context *context, | |
1086 int argc, | |
1087 sqlite3_value **argv | |
1088 ){ | |
1089 int i, n; | |
1090 const unsigned char *pBlob; | |
1091 char *zHex, *z; | |
1092 assert( argc==1 ); | |
1093 UNUSED_PARAMETER(argc); | |
1094 pBlob = sqlite3_value_blob(argv[0]); | |
1095 n = sqlite3_value_bytes(argv[0]); | |
1096 assert( pBlob==sqlite3_value_blob(argv[0]) ); /* No encoding change */ | |
1097 z = zHex = contextMalloc(context, ((i64)n)*2 + 1); | |
1098 if( zHex ){ | |
1099 for(i=0; i<n; i++, pBlob++){ | |
1100 unsigned char c = *pBlob; | |
1101 *(z++) = hexdigits[(c>>4)&0xf]; | |
1102 *(z++) = hexdigits[c&0xf]; | |
1103 } | |
1104 *z = 0; | |
1105 sqlite3_result_text(context, zHex, n*2, sqlite3_free); | |
1106 } | |
1107 } | |
1108 | |
1109 /* | |
1110 ** The zeroblob(N) function returns a zero-filled blob of size N bytes. | |
1111 */ | |
1112 static void zeroblobFunc( | |
1113 sqlite3_context *context, | |
1114 int argc, | |
1115 sqlite3_value **argv | |
1116 ){ | |
1117 i64 n; | |
1118 sqlite3 *db = sqlite3_context_db_handle(context); | |
1119 assert( argc==1 ); | |
1120 UNUSED_PARAMETER(argc); | |
1121 n = sqlite3_value_int64(argv[0]); | |
1122 testcase( n==db->aLimit[SQLITE_LIMIT_LENGTH] ); | |
1123 testcase( n==db->aLimit[SQLITE_LIMIT_LENGTH]+1 ); | |
1124 if( n>db->aLimit[SQLITE_LIMIT_LENGTH] ){ | |
1125 sqlite3_result_error_toobig(context); | |
1126 }else{ | |
1127 sqlite3_result_zeroblob(context, (int)n); /* IMP: R-00293-64994 */ | |
1128 } | |
1129 } | |
1130 | |
1131 /* | |
1132 ** The replace() function. Three arguments are all strings: call | |
1133 ** them A, B, and C. The result is also a string which is derived | |
1134 ** from A by replacing every occurrence of B with C. The match | |
1135 ** must be exact. Collating sequences are not used. | |
1136 */ | |
1137 static void replaceFunc( | |
1138 sqlite3_context *context, | |
1139 int argc, | |
1140 sqlite3_value **argv | |
1141 ){ | |
1142 const unsigned char *zStr; /* The input string A */ | |
1143 const unsigned char *zPattern; /* The pattern string B */ | |
1144 const unsigned char *zRep; /* The replacement string C */ | |
1145 unsigned char *zOut; /* The output */ | |
1146 int nStr; /* Size of zStr */ | |
1147 int nPattern; /* Size of zPattern */ | |
1148 int nRep; /* Size of zRep */ | |
1149 i64 nOut; /* Maximum size of zOut */ | |
1150 int loopLimit; /* Last zStr[] that might match zPattern[] */ | |
1151 int i, j; /* Loop counters */ | |
1152 | |
1153 assert( argc==3 ); | |
1154 UNUSED_PARAMETER(argc); | |
1155 zStr = sqlite3_value_text(argv[0]); | |
1156 if( zStr==0 ) return; | |
1157 nStr = sqlite3_value_bytes(argv[0]); | |
1158 assert( zStr==sqlite3_value_text(argv[0]) ); /* No encoding change */ | |
1159 zPattern = sqlite3_value_text(argv[1]); | |
1160 if( zPattern==0 ){ | |
1161 assert( sqlite3_value_type(argv[1])==SQLITE_NULL | |
1162 || sqlite3_context_db_handle(context)->mallocFailed ); | |
1163 return; | |
1164 } | |
1165 if( zPattern[0]==0 ){ | |
1166 assert( sqlite3_value_type(argv[1])!=SQLITE_NULL ); | |
1167 sqlite3_result_value(context, argv[0]); | |
1168 return; | |
1169 } | |
1170 nPattern = sqlite3_value_bytes(argv[1]); | |
1171 assert( zPattern==sqlite3_value_text(argv[1]) ); /* No encoding change */ | |
1172 zRep = sqlite3_value_text(argv[2]); | |
1173 if( zRep==0 ) return; | |
1174 nRep = sqlite3_value_bytes(argv[2]); | |
1175 assert( zRep==sqlite3_value_text(argv[2]) ); | |
1176 nOut = nStr + 1; | |
1177 assert( nOut<SQLITE_MAX_LENGTH ); | |
1178 zOut = contextMalloc(context, (i64)nOut); | |
1179 if( zOut==0 ){ | |
1180 return; | |
1181 } | |
1182 loopLimit = nStr - nPattern; | |
1183 for(i=j=0; i<=loopLimit; i++){ | |
1184 if( zStr[i]!=zPattern[0] || memcmp(&zStr[i], zPattern, nPattern) ){ | |
1185 zOut[j++] = zStr[i]; | |
1186 }else{ | |
1187 u8 *zOld; | |
1188 sqlite3 *db = sqlite3_context_db_handle(context); | |
1189 nOut += nRep - nPattern; | |
1190 testcase( nOut-1==db->aLimit[SQLITE_LIMIT_LENGTH] ); | |
1191 testcase( nOut-2==db->aLimit[SQLITE_LIMIT_LENGTH] ); | |
1192 if( nOut-1>db->aLimit[SQLITE_LIMIT_LENGTH] ){ | |
1193 sqlite3_result_error_toobig(context); | |
1194 sqlite3_free(zOut); | |
1195 return; | |
1196 } | |
1197 zOld = zOut; | |
1198 zOut = sqlite3_realloc(zOut, (int)nOut); | |
1199 if( zOut==0 ){ | |
1200 sqlite3_result_error_nomem(context); | |
1201 sqlite3_free(zOld); | |
1202 return; | |
1203 } | |
1204 memcpy(&zOut[j], zRep, nRep); | |
1205 j += nRep; | |
1206 i += nPattern-1; | |
1207 } | |
1208 } | |
1209 assert( j+nStr-i+1==nOut ); | |
1210 memcpy(&zOut[j], &zStr[i], nStr-i); | |
1211 j += nStr - i; | |
1212 assert( j<=nOut ); | |
1213 zOut[j] = 0; | |
1214 sqlite3_result_text(context, (char*)zOut, j, sqlite3_free); | |
1215 } | |
1216 | |
1217 /* | |
1218 ** Implementation of the TRIM(), LTRIM(), and RTRIM() functions. | |
1219 ** The userdata is 0x1 for left trim, 0x2 for right trim, 0x3 for both. | |
1220 */ | |
1221 static void trimFunc( | |
1222 sqlite3_context *context, | |
1223 int argc, | |
1224 sqlite3_value **argv | |
1225 ){ | |
1226 const unsigned char *zIn; /* Input string */ | |
1227 const unsigned char *zCharSet; /* Set of characters to trim */ | |
1228 int nIn; /* Number of bytes in input */ | |
1229 int flags; /* 1: trimleft 2: trimright 3: trim */ | |
1230 int i; /* Loop counter */ | |
1231 unsigned char *aLen = 0; /* Length of each character in zCharSet */ | |
1232 unsigned char **azChar = 0; /* Individual characters in zCharSet */ | |
1233 int nChar; /* Number of characters in zCharSet */ | |
1234 | |
1235 if( sqlite3_value_type(argv[0])==SQLITE_NULL ){ | |
1236 return; | |
1237 } | |
1238 zIn = sqlite3_value_text(argv[0]); | |
1239 if( zIn==0 ) return; | |
1240 nIn = sqlite3_value_bytes(argv[0]); | |
1241 assert( zIn==sqlite3_value_text(argv[0]) ); | |
1242 if( argc==1 ){ | |
1243 static const unsigned char lenOne[] = { 1 }; | |
1244 static unsigned char * const azOne[] = { (u8*)" " }; | |
1245 nChar = 1; | |
1246 aLen = (u8*)lenOne; | |
1247 azChar = (unsigned char **)azOne; | |
1248 zCharSet = 0; | |
1249 }else if( (zCharSet = sqlite3_value_text(argv[1]))==0 ){ | |
1250 return; | |
1251 }else{ | |
1252 const unsigned char *z; | |
1253 for(z=zCharSet, nChar=0; *z; nChar++){ | |
1254 SQLITE_SKIP_UTF8(z); | |
1255 } | |
1256 if( nChar>0 ){ | |
1257 azChar = contextMalloc(context, ((i64)nChar)*(sizeof(char*)+1)); | |
1258 if( azChar==0 ){ | |
1259 return; | |
1260 } | |
1261 aLen = (unsigned char*)&azChar[nChar]; | |
1262 for(z=zCharSet, nChar=0; *z; nChar++){ | |
1263 azChar[nChar] = (unsigned char *)z; | |
1264 SQLITE_SKIP_UTF8(z); | |
1265 aLen[nChar] = (u8)(z - azChar[nChar]); | |
1266 } | |
1267 } | |
1268 } | |
1269 if( nChar>0 ){ | |
1270 flags = SQLITE_PTR_TO_INT(sqlite3_user_data(context)); | |
1271 if( flags & 1 ){ | |
1272 while( nIn>0 ){ | |
1273 int len = 0; | |
1274 for(i=0; i<nChar; i++){ | |
1275 len = aLen[i]; | |
1276 if( len<=nIn && memcmp(zIn, azChar[i], len)==0 ) break; | |
1277 } | |
1278 if( i>=nChar ) break; | |
1279 zIn += len; | |
1280 nIn -= len; | |
1281 } | |
1282 } | |
1283 if( flags & 2 ){ | |
1284 while( nIn>0 ){ | |
1285 int len = 0; | |
1286 for(i=0; i<nChar; i++){ | |
1287 len = aLen[i]; | |
1288 if( len<=nIn && memcmp(&zIn[nIn-len],azChar[i],len)==0 ) break; | |
1289 } | |
1290 if( i>=nChar ) break; | |
1291 nIn -= len; | |
1292 } | |
1293 } | |
1294 if( zCharSet ){ | |
1295 sqlite3_free(azChar); | |
1296 } | |
1297 } | |
1298 sqlite3_result_text(context, (char*)zIn, nIn, SQLITE_TRANSIENT); | |
1299 } | |
1300 | |
1301 | |
1302 /* IMP: R-25361-16150 This function is omitted from SQLite by default. It | |
1303 ** is only available if the SQLITE_SOUNDEX compile-time option is used | |
1304 ** when SQLite is built. | |
1305 */ | |
1306 #ifdef SQLITE_SOUNDEX | |
1307 /* | |
1308 ** Compute the soundex encoding of a word. | |
1309 ** | |
1310 ** IMP: R-59782-00072 The soundex(X) function returns a string that is the | |
1311 ** soundex encoding of the string X. | |
1312 */ | |
1313 static void soundexFunc( | |
1314 sqlite3_context *context, | |
1315 int argc, | |
1316 sqlite3_value **argv | |
1317 ){ | |
1318 char zResult[8]; | |
1319 const u8 *zIn; | |
1320 int i, j; | |
1321 static const unsigned char iCode[] = { | |
1322 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | |
1323 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | |
1324 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | |
1325 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | |
1326 0, 0, 1, 2, 3, 0, 1, 2, 0, 0, 2, 2, 4, 5, 5, 0, | |
1327 1, 2, 6, 2, 3, 0, 1, 0, 2, 0, 2, 0, 0, 0, 0, 0, | |
1328 0, 0, 1, 2, 3, 0, 1, 2, 0, 0, 2, 2, 4, 5, 5, 0, | |
1329 1, 2, 6, 2, 3, 0, 1, 0, 2, 0, 2, 0, 0, 0, 0, 0, | |
1330 }; | |
1331 assert( argc==1 ); | |
1332 zIn = (u8*)sqlite3_value_text(argv[0]); | |
1333 if( zIn==0 ) zIn = (u8*)""; | |
1334 for(i=0; zIn[i] && !sqlite3Isalpha(zIn[i]); i++){} | |
1335 if( zIn[i] ){ | |
1336 u8 prevcode = iCode[zIn[i]&0x7f]; | |
1337 zResult[0] = sqlite3Toupper(zIn[i]); | |
1338 for(j=1; j<4 && zIn[i]; i++){ | |
1339 int code = iCode[zIn[i]&0x7f]; | |
1340 if( code>0 ){ | |
1341 if( code!=prevcode ){ | |
1342 prevcode = code; | |
1343 zResult[j++] = code + '0'; | |
1344 } | |
1345 }else{ | |
1346 prevcode = 0; | |
1347 } | |
1348 } | |
1349 while( j<4 ){ | |
1350 zResult[j++] = '0'; | |
1351 } | |
1352 zResult[j] = 0; | |
1353 sqlite3_result_text(context, zResult, 4, SQLITE_TRANSIENT); | |
1354 }else{ | |
1355 /* IMP: R-64894-50321 The string "?000" is returned if the argument | |
1356 ** is NULL or contains no ASCII alphabetic characters. */ | |
1357 sqlite3_result_text(context, "?000", 4, SQLITE_STATIC); | |
1358 } | |
1359 } | |
1360 #endif /* SQLITE_SOUNDEX */ | |
1361 | |
1362 #ifndef SQLITE_OMIT_LOAD_EXTENSION | |
1363 /* | |
1364 ** A function that loads a shared-library extension then returns NULL. | |
1365 */ | |
1366 static void loadExt(sqlite3_context *context, int argc, sqlite3_value **argv){ | |
1367 const char *zFile = (const char *)sqlite3_value_text(argv[0]); | |
1368 const char *zProc; | |
1369 sqlite3 *db = sqlite3_context_db_handle(context); | |
1370 char *zErrMsg = 0; | |
1371 | |
1372 if( argc==2 ){ | |
1373 zProc = (const char *)sqlite3_value_text(argv[1]); | |
1374 }else{ | |
1375 zProc = 0; | |
1376 } | |
1377 if( zFile && sqlite3_load_extension(db, zFile, zProc, &zErrMsg) ){ | |
1378 sqlite3_result_error(context, zErrMsg, -1); | |
1379 sqlite3_free(zErrMsg); | |
1380 } | |
1381 } | |
1382 #endif | |
1383 | |
1384 | |
1385 /* | |
1386 ** An instance of the following structure holds the context of a | |
1387 ** sum() or avg() aggregate computation. | |
1388 */ | |
1389 typedef struct SumCtx SumCtx; | |
1390 struct SumCtx { | |
1391 double rSum; /* Floating point sum */ | |
1392 i64 iSum; /* Integer sum */ | |
1393 i64 cnt; /* Number of elements summed */ | |
1394 u8 overflow; /* True if integer overflow seen */ | |
1395 u8 approx; /* True if non-integer value was input to the sum */ | |
1396 }; | |
1397 | |
1398 /* | |
1399 ** Routines used to compute the sum, average, and total. | |
1400 ** | |
1401 ** The SUM() function follows the (broken) SQL standard which means | |
1402 ** that it returns NULL if it sums over no inputs. TOTAL returns | |
1403 ** 0.0 in that case. In addition, TOTAL always returns a float where | |
1404 ** SUM might return an integer if it never encounters a floating point | |
1405 ** value. TOTAL never fails, but SUM might through an exception if | |
1406 ** it overflows an integer. | |
1407 */ | |
1408 static void sumStep(sqlite3_context *context, int argc, sqlite3_value **argv){ | |
1409 SumCtx *p; | |
1410 int type; | |
1411 assert( argc==1 ); | |
1412 UNUSED_PARAMETER(argc); | |
1413 p = sqlite3_aggregate_context(context, sizeof(*p)); | |
1414 type = sqlite3_value_numeric_type(argv[0]); | |
1415 if( p && type!=SQLITE_NULL ){ | |
1416 p->cnt++; | |
1417 if( type==SQLITE_INTEGER ){ | |
1418 i64 v = sqlite3_value_int64(argv[0]); | |
1419 p->rSum += v; | |
1420 if( (p->approx|p->overflow)==0 && sqlite3AddInt64(&p->iSum, v) ){ | |
1421 p->overflow = 1; | |
1422 } | |
1423 }else{ | |
1424 p->rSum += sqlite3_value_double(argv[0]); | |
1425 p->approx = 1; | |
1426 } | |
1427 } | |
1428 } | |
1429 static void sumFinalize(sqlite3_context *context){ | |
1430 SumCtx *p; | |
1431 p = sqlite3_aggregate_context(context, 0); | |
1432 if( p && p->cnt>0 ){ | |
1433 if( p->overflow ){ | |
1434 sqlite3_result_error(context,"integer overflow",-1); | |
1435 }else if( p->approx ){ | |
1436 sqlite3_result_double(context, p->rSum); | |
1437 }else{ | |
1438 sqlite3_result_int64(context, p->iSum); | |
1439 } | |
1440 } | |
1441 } | |
1442 static void avgFinalize(sqlite3_context *context){ | |
1443 SumCtx *p; | |
1444 p = sqlite3_aggregate_context(context, 0); | |
1445 if( p && p->cnt>0 ){ | |
1446 sqlite3_result_double(context, p->rSum/(double)p->cnt); | |
1447 } | |
1448 } | |
1449 static void totalFinalize(sqlite3_context *context){ | |
1450 SumCtx *p; | |
1451 p = sqlite3_aggregate_context(context, 0); | |
1452 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ | |
1453 sqlite3_result_double(context, p ? p->rSum : (double)0); | |
1454 } | |
1455 | |
1456 /* | |
1457 ** The following structure keeps track of state information for the | |
1458 ** count() aggregate function. | |
1459 */ | |
1460 typedef struct CountCtx CountCtx; | |
1461 struct CountCtx { | |
1462 i64 n; | |
1463 }; | |
1464 | |
1465 /* | |
1466 ** Routines to implement the count() aggregate function. | |
1467 */ | |
1468 static void countStep(sqlite3_context *context, int argc, sqlite3_value **argv){ | |
1469 CountCtx *p; | |
1470 p = sqlite3_aggregate_context(context, sizeof(*p)); | |
1471 if( (argc==0 || SQLITE_NULL!=sqlite3_value_type(argv[0])) && p ){ | |
1472 p->n++; | |
1473 } | |
1474 | |
1475 #ifndef SQLITE_OMIT_DEPRECATED | |
1476 /* The sqlite3_aggregate_count() function is deprecated. But just to make | |
1477 ** sure it still operates correctly, verify that its count agrees with our | |
1478 ** internal count when using count(*) and when the total count can be | |
1479 ** expressed as a 32-bit integer. */ | |
1480 assert( argc==1 || p==0 || p->n>0x7fffffff | |
1481 || p->n==sqlite3_aggregate_count(context) ); | |
1482 #endif | |
1483 } | |
1484 static void countFinalize(sqlite3_context *context){ | |
1485 CountCtx *p; | |
1486 p = sqlite3_aggregate_context(context, 0); | |
1487 sqlite3_result_int64(context, p ? p->n : 0); | |
1488 } | |
1489 | |
1490 /* | |
1491 ** Routines to implement min() and max() aggregate functions. | |
1492 */ | |
1493 static void minmaxStep( | |
1494 sqlite3_context *context, | |
1495 int NotUsed, | |
1496 sqlite3_value **argv | |
1497 ){ | |
1498 Mem *pArg = (Mem *)argv[0]; | |
1499 Mem *pBest; | |
1500 UNUSED_PARAMETER(NotUsed); | |
1501 | |
1502 pBest = (Mem *)sqlite3_aggregate_context(context, sizeof(*pBest)); | |
1503 if( !pBest ) return; | |
1504 | |
1505 if( sqlite3_value_type(argv[0])==SQLITE_NULL ){ | |
1506 if( pBest->flags ) sqlite3SkipAccumulatorLoad(context); | |
1507 }else if( pBest->flags ){ | |
1508 int max; | |
1509 int cmp; | |
1510 CollSeq *pColl = sqlite3GetFuncCollSeq(context); | |
1511 /* This step function is used for both the min() and max() aggregates, | |
1512 ** the only difference between the two being that the sense of the | |
1513 ** comparison is inverted. For the max() aggregate, the | |
1514 ** sqlite3_user_data() function returns (void *)-1. For min() it | |
1515 ** returns (void *)db, where db is the sqlite3* database pointer. | |
1516 ** Therefore the next statement sets variable 'max' to 1 for the max() | |
1517 ** aggregate, or 0 for min(). | |
1518 */ | |
1519 max = sqlite3_user_data(context)!=0; | |
1520 cmp = sqlite3MemCompare(pBest, pArg, pColl); | |
1521 if( (max && cmp<0) || (!max && cmp>0) ){ | |
1522 sqlite3VdbeMemCopy(pBest, pArg); | |
1523 }else{ | |
1524 sqlite3SkipAccumulatorLoad(context); | |
1525 } | |
1526 }else{ | |
1527 pBest->db = sqlite3_context_db_handle(context); | |
1528 sqlite3VdbeMemCopy(pBest, pArg); | |
1529 } | |
1530 } | |
1531 static void minMaxFinalize(sqlite3_context *context){ | |
1532 sqlite3_value *pRes; | |
1533 pRes = (sqlite3_value *)sqlite3_aggregate_context(context, 0); | |
1534 if( pRes ){ | |
1535 if( pRes->flags ){ | |
1536 sqlite3_result_value(context, pRes); | |
1537 } | |
1538 sqlite3VdbeMemRelease(pRes); | |
1539 } | |
1540 } | |
1541 | |
1542 /* | |
1543 ** group_concat(EXPR, ?SEPARATOR?) | |
1544 */ | |
1545 static void groupConcatStep( | |
1546 sqlite3_context *context, | |
1547 int argc, | |
1548 sqlite3_value **argv | |
1549 ){ | |
1550 const char *zVal; | |
1551 StrAccum *pAccum; | |
1552 const char *zSep; | |
1553 int nVal, nSep; | |
1554 assert( argc==1 || argc==2 ); | |
1555 if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return; | |
1556 pAccum = (StrAccum*)sqlite3_aggregate_context(context, sizeof(*pAccum)); | |
1557 | |
1558 if( pAccum ){ | |
1559 sqlite3 *db = sqlite3_context_db_handle(context); | |
1560 int firstTerm = pAccum->useMalloc==0; | |
1561 pAccum->useMalloc = 2; | |
1562 pAccum->mxAlloc = db->aLimit[SQLITE_LIMIT_LENGTH]; | |
1563 if( !firstTerm ){ | |
1564 if( argc==2 ){ | |
1565 zSep = (char*)sqlite3_value_text(argv[1]); | |
1566 nSep = sqlite3_value_bytes(argv[1]); | |
1567 }else{ | |
1568 zSep = ","; | |
1569 nSep = 1; | |
1570 } | |
1571 if( nSep ) sqlite3StrAccumAppend(pAccum, zSep, nSep); | |
1572 } | |
1573 zVal = (char*)sqlite3_value_text(argv[0]); | |
1574 nVal = sqlite3_value_bytes(argv[0]); | |
1575 if( zVal ) sqlite3StrAccumAppend(pAccum, zVal, nVal); | |
1576 } | |
1577 } | |
1578 static void groupConcatFinalize(sqlite3_context *context){ | |
1579 StrAccum *pAccum; | |
1580 pAccum = sqlite3_aggregate_context(context, 0); | |
1581 if( pAccum ){ | |
1582 if( pAccum->accError==STRACCUM_TOOBIG ){ | |
1583 sqlite3_result_error_toobig(context); | |
1584 }else if( pAccum->accError==STRACCUM_NOMEM ){ | |
1585 sqlite3_result_error_nomem(context); | |
1586 }else{ | |
1587 sqlite3_result_text(context, sqlite3StrAccumFinish(pAccum), -1, | |
1588 sqlite3_free); | |
1589 } | |
1590 } | |
1591 } | |
1592 | |
1593 /* | |
1594 ** This routine does per-connection function registration. Most | |
1595 ** of the built-in functions above are part of the global function set. | |
1596 ** This routine only deals with those that are not global. | |
1597 */ | |
1598 void sqlite3RegisterBuiltinFunctions(sqlite3 *db){ | |
1599 int rc = sqlite3_overload_function(db, "MATCH", 2); | |
1600 assert( rc==SQLITE_NOMEM || rc==SQLITE_OK ); | |
1601 if( rc==SQLITE_NOMEM ){ | |
1602 db->mallocFailed = 1; | |
1603 } | |
1604 } | |
1605 | |
1606 /* | |
1607 ** Set the LIKEOPT flag on the 2-argument function with the given name. | |
1608 */ | |
1609 static void setLikeOptFlag(sqlite3 *db, const char *zName, u8 flagVal){ | |
1610 FuncDef *pDef; | |
1611 pDef = sqlite3FindFunction(db, zName, sqlite3Strlen30(zName), | |
1612 2, SQLITE_UTF8, 0); | |
1613 if( ALWAYS(pDef) ){ | |
1614 pDef->funcFlags |= flagVal; | |
1615 } | |
1616 } | |
1617 | |
1618 /* | |
1619 ** Register the built-in LIKE and GLOB functions. The caseSensitive | |
1620 ** parameter determines whether or not the LIKE operator is case | |
1621 ** sensitive. GLOB is always case sensitive. | |
1622 */ | |
1623 void sqlite3RegisterLikeFunctions(sqlite3 *db, int caseSensitive){ | |
1624 struct compareInfo *pInfo; | |
1625 if( caseSensitive ){ | |
1626 pInfo = (struct compareInfo*)&likeInfoAlt; | |
1627 }else{ | |
1628 pInfo = (struct compareInfo*)&likeInfoNorm; | |
1629 } | |
1630 sqlite3CreateFunc(db, "like", 2, SQLITE_UTF8, pInfo, likeFunc, 0, 0, 0); | |
1631 sqlite3CreateFunc(db, "like", 3, SQLITE_UTF8, pInfo, likeFunc, 0, 0, 0); | |
1632 sqlite3CreateFunc(db, "glob", 2, SQLITE_UTF8, | |
1633 (struct compareInfo*)&globInfo, likeFunc, 0, 0, 0); | |
1634 setLikeOptFlag(db, "glob", SQLITE_FUNC_LIKE | SQLITE_FUNC_CASE); | |
1635 setLikeOptFlag(db, "like", | |
1636 caseSensitive ? (SQLITE_FUNC_LIKE | SQLITE_FUNC_CASE) : SQLITE_FUNC_LIKE); | |
1637 } | |
1638 | |
1639 /* | |
1640 ** pExpr points to an expression which implements a function. If | |
1641 ** it is appropriate to apply the LIKE optimization to that function | |
1642 ** then set aWc[0] through aWc[2] to the wildcard characters and | |
1643 ** return TRUE. If the function is not a LIKE-style function then | |
1644 ** return FALSE. | |
1645 */ | |
1646 int sqlite3IsLikeFunction(sqlite3 *db, Expr *pExpr, int *pIsNocase, char *aWc){ | |
1647 FuncDef *pDef; | |
1648 if( pExpr->op!=TK_FUNCTION | |
1649 || !pExpr->x.pList | |
1650 || pExpr->x.pList->nExpr!=2 | |
1651 ){ | |
1652 return 0; | |
1653 } | |
1654 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); | |
1655 pDef = sqlite3FindFunction(db, pExpr->u.zToken, | |
1656 sqlite3Strlen30(pExpr->u.zToken), | |
1657 2, SQLITE_UTF8, 0); | |
1658 if( NEVER(pDef==0) || (pDef->funcFlags & SQLITE_FUNC_LIKE)==0 ){ | |
1659 return 0; | |
1660 } | |
1661 | |
1662 /* The memcpy() statement assumes that the wildcard characters are | |
1663 ** the first three statements in the compareInfo structure. The | |
1664 ** asserts() that follow verify that assumption | |
1665 */ | |
1666 memcpy(aWc, pDef->pUserData, 3); | |
1667 assert( (char*)&likeInfoAlt == (char*)&likeInfoAlt.matchAll ); | |
1668 assert( &((char*)&likeInfoAlt)[1] == (char*)&likeInfoAlt.matchOne ); | |
1669 assert( &((char*)&likeInfoAlt)[2] == (char*)&likeInfoAlt.matchSet ); | |
1670 *pIsNocase = (pDef->funcFlags & SQLITE_FUNC_CASE)==0; | |
1671 return 1; | |
1672 } | |
1673 | |
1674 /* | |
1675 ** All of the FuncDef structures in the aBuiltinFunc[] array above | |
1676 ** to the global function hash table. This occurs at start-time (as | |
1677 ** a consequence of calling sqlite3_initialize()). | |
1678 ** | |
1679 ** After this routine runs | |
1680 */ | |
1681 void sqlite3RegisterGlobalFunctions(void){ | |
1682 /* | |
1683 ** The following array holds FuncDef structures for all of the functions | |
1684 ** defined in this file. | |
1685 ** | |
1686 ** The array cannot be constant since changes are made to the | |
1687 ** FuncDef.pHash elements at start-time. The elements of this array | |
1688 ** are read-only after initialization is complete. | |
1689 */ | |
1690 static SQLITE_WSD FuncDef aBuiltinFunc[] = { | |
1691 FUNCTION(ltrim, 1, 1, 0, trimFunc ), | |
1692 FUNCTION(ltrim, 2, 1, 0, trimFunc ), | |
1693 FUNCTION(rtrim, 1, 2, 0, trimFunc ), | |
1694 FUNCTION(rtrim, 2, 2, 0, trimFunc ), | |
1695 FUNCTION(trim, 1, 3, 0, trimFunc ), | |
1696 FUNCTION(trim, 2, 3, 0, trimFunc ), | |
1697 FUNCTION(min, -1, 0, 1, minmaxFunc ), | |
1698 FUNCTION(min, 0, 0, 1, 0 ), | |
1699 AGGREGATE2(min, 1, 0, 1, minmaxStep, minMaxFinalize, | |
1700 SQLITE_FUNC_MINMAX ), | |
1701 FUNCTION(max, -1, 1, 1, minmaxFunc ), | |
1702 FUNCTION(max, 0, 1, 1, 0 ), | |
1703 AGGREGATE2(max, 1, 1, 1, minmaxStep, minMaxFinalize, | |
1704 SQLITE_FUNC_MINMAX ), | |
1705 FUNCTION2(typeof, 1, 0, 0, typeofFunc, SQLITE_FUNC_TYPEOF), | |
1706 FUNCTION2(length, 1, 0, 0, lengthFunc, SQLITE_FUNC_LENGTH), | |
1707 FUNCTION(instr, 2, 0, 0, instrFunc ), | |
1708 FUNCTION(substr, 2, 0, 0, substrFunc ), | |
1709 FUNCTION(substr, 3, 0, 0, substrFunc ), | |
1710 FUNCTION(printf, -1, 0, 0, printfFunc ), | |
1711 FUNCTION(unicode, 1, 0, 0, unicodeFunc ), | |
1712 FUNCTION(char, -1, 0, 0, charFunc ), | |
1713 FUNCTION(abs, 1, 0, 0, absFunc ), | |
1714 #ifndef SQLITE_OMIT_FLOATING_POINT | |
1715 FUNCTION(round, 1, 0, 0, roundFunc ), | |
1716 FUNCTION(round, 2, 0, 0, roundFunc ), | |
1717 #endif | |
1718 FUNCTION(upper, 1, 0, 0, upperFunc ), | |
1719 FUNCTION(lower, 1, 0, 0, lowerFunc ), | |
1720 FUNCTION(coalesce, 1, 0, 0, 0 ), | |
1721 FUNCTION(coalesce, 0, 0, 0, 0 ), | |
1722 FUNCTION2(coalesce, -1, 0, 0, noopFunc, SQLITE_FUNC_COALESCE), | |
1723 FUNCTION(hex, 1, 0, 0, hexFunc ), | |
1724 FUNCTION2(ifnull, 2, 0, 0, noopFunc, SQLITE_FUNC_COALESCE), | |
1725 FUNCTION2(unlikely, 1, 0, 0, noopFunc, SQLITE_FUNC_UNLIKELY), | |
1726 FUNCTION2(likelihood, 2, 0, 0, noopFunc, SQLITE_FUNC_UNLIKELY), | |
1727 FUNCTION2(likely, 1, 0, 0, noopFunc, SQLITE_FUNC_UNLIKELY), | |
1728 VFUNCTION(random, 0, 0, 0, randomFunc ), | |
1729 VFUNCTION(randomblob, 1, 0, 0, randomBlob ), | |
1730 FUNCTION(nullif, 2, 0, 1, nullifFunc ), | |
1731 FUNCTION(sqlite_version, 0, 0, 0, versionFunc ), | |
1732 FUNCTION(sqlite_source_id, 0, 0, 0, sourceidFunc ), | |
1733 FUNCTION(sqlite_log, 2, 0, 0, errlogFunc ), | |
1734 #if SQLITE_USER_AUTHENTICATION | |
1735 FUNCTION(sqlite_crypt, 2, 0, 0, sqlite3CryptFunc ), | |
1736 #endif | |
1737 #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS | |
1738 FUNCTION(sqlite_compileoption_used,1, 0, 0, compileoptionusedFunc ), | |
1739 FUNCTION(sqlite_compileoption_get, 1, 0, 0, compileoptiongetFunc ), | |
1740 #endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */ | |
1741 FUNCTION(quote, 1, 0, 0, quoteFunc ), | |
1742 VFUNCTION(last_insert_rowid, 0, 0, 0, last_insert_rowid), | |
1743 VFUNCTION(changes, 0, 0, 0, changes ), | |
1744 VFUNCTION(total_changes, 0, 0, 0, total_changes ), | |
1745 FUNCTION(replace, 3, 0, 0, replaceFunc ), | |
1746 FUNCTION(zeroblob, 1, 0, 0, zeroblobFunc ), | |
1747 #ifdef SQLITE_SOUNDEX | |
1748 FUNCTION(soundex, 1, 0, 0, soundexFunc ), | |
1749 #endif | |
1750 #ifndef SQLITE_OMIT_LOAD_EXTENSION | |
1751 FUNCTION(load_extension, 1, 0, 0, loadExt ), | |
1752 FUNCTION(load_extension, 2, 0, 0, loadExt ), | |
1753 #endif | |
1754 AGGREGATE(sum, 1, 0, 0, sumStep, sumFinalize ), | |
1755 AGGREGATE(total, 1, 0, 0, sumStep, totalFinalize ), | |
1756 AGGREGATE(avg, 1, 0, 0, sumStep, avgFinalize ), | |
1757 AGGREGATE2(count, 0, 0, 0, countStep, countFinalize, | |
1758 SQLITE_FUNC_COUNT ), | |
1759 AGGREGATE(count, 1, 0, 0, countStep, countFinalize ), | |
1760 AGGREGATE(group_concat, 1, 0, 0, groupConcatStep, groupConcatFinalize), | |
1761 AGGREGATE(group_concat, 2, 0, 0, groupConcatStep, groupConcatFinalize), | |
1762 | |
1763 LIKEFUNC(glob, 2, &globInfo, SQLITE_FUNC_LIKE|SQLITE_FUNC_CASE), | |
1764 #ifdef SQLITE_CASE_SENSITIVE_LIKE | |
1765 LIKEFUNC(like, 2, &likeInfoAlt, SQLITE_FUNC_LIKE|SQLITE_FUNC_CASE), | |
1766 LIKEFUNC(like, 3, &likeInfoAlt, SQLITE_FUNC_LIKE|SQLITE_FUNC_CASE), | |
1767 #else | |
1768 LIKEFUNC(like, 2, &likeInfoNorm, SQLITE_FUNC_LIKE), | |
1769 LIKEFUNC(like, 3, &likeInfoNorm, SQLITE_FUNC_LIKE), | |
1770 #endif | |
1771 }; | |
1772 | |
1773 int i; | |
1774 FuncDefHash *pHash = &GLOBAL(FuncDefHash, sqlite3GlobalFunctions); | |
1775 FuncDef *aFunc = (FuncDef*)&GLOBAL(FuncDef, aBuiltinFunc); | |
1776 | |
1777 for(i=0; i<ArraySize(aBuiltinFunc); i++){ | |
1778 sqlite3FuncDefInsert(pHash, &aFunc[i]); | |
1779 } | |
1780 sqlite3RegisterDateTimeFunctions(); | |
1781 #ifndef SQLITE_OMIT_ALTERTABLE | |
1782 sqlite3AlterFunctions(); | |
1783 #endif | |
1784 #if defined(SQLITE_ENABLE_STAT3) || defined(SQLITE_ENABLE_STAT4) | |
1785 sqlite3AnalyzeFunctions(); | |
1786 #endif | |
1787 } | |
OLD | NEW |