OLD | NEW |
| (Empty) |
1 /* | |
2 ** 2009 Oct 23 | |
3 ** | |
4 ** The author disclaims copyright to this source code. In place of | |
5 ** a legal notice, here is a blessing: | |
6 ** | |
7 ** May you do good and not evil. | |
8 ** May you find forgiveness for yourself and forgive others. | |
9 ** May you share freely, never taking more than you give. | |
10 ** | |
11 ****************************************************************************** | |
12 ** | |
13 ** This file is part of the SQLite FTS3 extension module. Specifically, | |
14 ** this file contains code to insert, update and delete rows from FTS3 | |
15 ** tables. It also contains code to merge FTS3 b-tree segments. Some | |
16 ** of the sub-routines used to merge segments are also used by the query | |
17 ** code in fts3.c. | |
18 */ | |
19 | |
20 #include "fts3Int.h" | |
21 #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) | |
22 | |
23 #include <string.h> | |
24 #include <assert.h> | |
25 #include <stdlib.h> | |
26 | |
27 | |
28 #define FTS_MAX_APPENDABLE_HEIGHT 16 | |
29 | |
30 /* | |
31 ** When full-text index nodes are loaded from disk, the buffer that they | |
32 ** are loaded into has the following number of bytes of padding at the end | |
33 ** of it. i.e. if a full-text index node is 900 bytes in size, then a buffer | |
34 ** of 920 bytes is allocated for it. | |
35 ** | |
36 ** This means that if we have a pointer into a buffer containing node data, | |
37 ** it is always safe to read up to two varints from it without risking an | |
38 ** overread, even if the node data is corrupted. | |
39 */ | |
40 #define FTS3_NODE_PADDING (FTS3_VARINT_MAX*2) | |
41 | |
42 /* | |
43 ** Under certain circumstances, b-tree nodes (doclists) can be loaded into | |
44 ** memory incrementally instead of all at once. This can be a big performance | |
45 ** win (reduced IO and CPU) if SQLite stops calling the virtual table xNext() | |
46 ** method before retrieving all query results (as may happen, for example, | |
47 ** if a query has a LIMIT clause). | |
48 ** | |
49 ** Incremental loading is used for b-tree nodes FTS3_NODE_CHUNK_THRESHOLD | |
50 ** bytes and larger. Nodes are loaded in chunks of FTS3_NODE_CHUNKSIZE bytes. | |
51 ** The code is written so that the hard lower-limit for each of these values | |
52 ** is 1. Clearly such small values would be inefficient, but can be useful | |
53 ** for testing purposes. | |
54 ** | |
55 ** If this module is built with SQLITE_TEST defined, these constants may | |
56 ** be overridden at runtime for testing purposes. File fts3_test.c contains | |
57 ** a Tcl interface to read and write the values. | |
58 */ | |
59 #ifdef SQLITE_TEST | |
60 int test_fts3_node_chunksize = (4*1024); | |
61 int test_fts3_node_chunk_threshold = (4*1024)*4; | |
62 # define FTS3_NODE_CHUNKSIZE test_fts3_node_chunksize | |
63 # define FTS3_NODE_CHUNK_THRESHOLD test_fts3_node_chunk_threshold | |
64 #else | |
65 # define FTS3_NODE_CHUNKSIZE (4*1024) | |
66 # define FTS3_NODE_CHUNK_THRESHOLD (FTS3_NODE_CHUNKSIZE*4) | |
67 #endif | |
68 | |
69 /* | |
70 ** The two values that may be meaningfully bound to the :1 parameter in | |
71 ** statements SQL_REPLACE_STAT and SQL_SELECT_STAT. | |
72 */ | |
73 #define FTS_STAT_DOCTOTAL 0 | |
74 #define FTS_STAT_INCRMERGEHINT 1 | |
75 #define FTS_STAT_AUTOINCRMERGE 2 | |
76 | |
77 /* | |
78 ** If FTS_LOG_MERGES is defined, call sqlite3_log() to report each automatic | |
79 ** and incremental merge operation that takes place. This is used for | |
80 ** debugging FTS only, it should not usually be turned on in production | |
81 ** systems. | |
82 */ | |
83 #ifdef FTS3_LOG_MERGES | |
84 static void fts3LogMerge(int nMerge, sqlite3_int64 iAbsLevel){ | |
85 sqlite3_log(SQLITE_OK, "%d-way merge from level %d", nMerge, (int)iAbsLevel); | |
86 } | |
87 #else | |
88 #define fts3LogMerge(x, y) | |
89 #endif | |
90 | |
91 | |
92 typedef struct PendingList PendingList; | |
93 typedef struct SegmentNode SegmentNode; | |
94 typedef struct SegmentWriter SegmentWriter; | |
95 | |
96 /* | |
97 ** An instance of the following data structure is used to build doclists | |
98 ** incrementally. See function fts3PendingListAppend() for details. | |
99 */ | |
100 struct PendingList { | |
101 int nData; | |
102 char *aData; | |
103 int nSpace; | |
104 sqlite3_int64 iLastDocid; | |
105 sqlite3_int64 iLastCol; | |
106 sqlite3_int64 iLastPos; | |
107 }; | |
108 | |
109 | |
110 /* | |
111 ** Each cursor has a (possibly empty) linked list of the following objects. | |
112 */ | |
113 struct Fts3DeferredToken { | |
114 Fts3PhraseToken *pToken; /* Pointer to corresponding expr token */ | |
115 int iCol; /* Column token must occur in */ | |
116 Fts3DeferredToken *pNext; /* Next in list of deferred tokens */ | |
117 PendingList *pList; /* Doclist is assembled here */ | |
118 }; | |
119 | |
120 /* | |
121 ** An instance of this structure is used to iterate through the terms on | |
122 ** a contiguous set of segment b-tree leaf nodes. Although the details of | |
123 ** this structure are only manipulated by code in this file, opaque handles | |
124 ** of type Fts3SegReader* are also used by code in fts3.c to iterate through | |
125 ** terms when querying the full-text index. See functions: | |
126 ** | |
127 ** sqlite3Fts3SegReaderNew() | |
128 ** sqlite3Fts3SegReaderFree() | |
129 ** sqlite3Fts3SegReaderIterate() | |
130 ** | |
131 ** Methods used to manipulate Fts3SegReader structures: | |
132 ** | |
133 ** fts3SegReaderNext() | |
134 ** fts3SegReaderFirstDocid() | |
135 ** fts3SegReaderNextDocid() | |
136 */ | |
137 struct Fts3SegReader { | |
138 int iIdx; /* Index within level, or 0x7FFFFFFF for PT */ | |
139 u8 bLookup; /* True for a lookup only */ | |
140 u8 rootOnly; /* True for a root-only reader */ | |
141 | |
142 sqlite3_int64 iStartBlock; /* Rowid of first leaf block to traverse */ | |
143 sqlite3_int64 iLeafEndBlock; /* Rowid of final leaf block to traverse */ | |
144 sqlite3_int64 iEndBlock; /* Rowid of final block in segment (or 0) */ | |
145 sqlite3_int64 iCurrentBlock; /* Current leaf block (or 0) */ | |
146 | |
147 char *aNode; /* Pointer to node data (or NULL) */ | |
148 int nNode; /* Size of buffer at aNode (or 0) */ | |
149 int nPopulate; /* If >0, bytes of buffer aNode[] loaded */ | |
150 sqlite3_blob *pBlob; /* If not NULL, blob handle to read node */ | |
151 | |
152 Fts3HashElem **ppNextElem; | |
153 | |
154 /* Variables set by fts3SegReaderNext(). These may be read directly | |
155 ** by the caller. They are valid from the time SegmentReaderNew() returns | |
156 ** until SegmentReaderNext() returns something other than SQLITE_OK | |
157 ** (i.e. SQLITE_DONE). | |
158 */ | |
159 int nTerm; /* Number of bytes in current term */ | |
160 char *zTerm; /* Pointer to current term */ | |
161 int nTermAlloc; /* Allocated size of zTerm buffer */ | |
162 char *aDoclist; /* Pointer to doclist of current entry */ | |
163 int nDoclist; /* Size of doclist in current entry */ | |
164 | |
165 /* The following variables are used by fts3SegReaderNextDocid() to iterate | |
166 ** through the current doclist (aDoclist/nDoclist). | |
167 */ | |
168 char *pOffsetList; | |
169 int nOffsetList; /* For descending pending seg-readers only */ | |
170 sqlite3_int64 iDocid; | |
171 }; | |
172 | |
173 #define fts3SegReaderIsPending(p) ((p)->ppNextElem!=0) | |
174 #define fts3SegReaderIsRootOnly(p) ((p)->rootOnly!=0) | |
175 | |
176 /* | |
177 ** An instance of this structure is used to create a segment b-tree in the | |
178 ** database. The internal details of this type are only accessed by the | |
179 ** following functions: | |
180 ** | |
181 ** fts3SegWriterAdd() | |
182 ** fts3SegWriterFlush() | |
183 ** fts3SegWriterFree() | |
184 */ | |
185 struct SegmentWriter { | |
186 SegmentNode *pTree; /* Pointer to interior tree structure */ | |
187 sqlite3_int64 iFirst; /* First slot in %_segments written */ | |
188 sqlite3_int64 iFree; /* Next free slot in %_segments */ | |
189 char *zTerm; /* Pointer to previous term buffer */ | |
190 int nTerm; /* Number of bytes in zTerm */ | |
191 int nMalloc; /* Size of malloc'd buffer at zMalloc */ | |
192 char *zMalloc; /* Malloc'd space (possibly) used for zTerm */ | |
193 int nSize; /* Size of allocation at aData */ | |
194 int nData; /* Bytes of data in aData */ | |
195 char *aData; /* Pointer to block from malloc() */ | |
196 i64 nLeafData; /* Number of bytes of leaf data written */ | |
197 }; | |
198 | |
199 /* | |
200 ** Type SegmentNode is used by the following three functions to create | |
201 ** the interior part of the segment b+-tree structures (everything except | |
202 ** the leaf nodes). These functions and type are only ever used by code | |
203 ** within the fts3SegWriterXXX() family of functions described above. | |
204 ** | |
205 ** fts3NodeAddTerm() | |
206 ** fts3NodeWrite() | |
207 ** fts3NodeFree() | |
208 ** | |
209 ** When a b+tree is written to the database (either as a result of a merge | |
210 ** or the pending-terms table being flushed), leaves are written into the | |
211 ** database file as soon as they are completely populated. The interior of | |
212 ** the tree is assembled in memory and written out only once all leaves have | |
213 ** been populated and stored. This is Ok, as the b+-tree fanout is usually | |
214 ** very large, meaning that the interior of the tree consumes relatively | |
215 ** little memory. | |
216 */ | |
217 struct SegmentNode { | |
218 SegmentNode *pParent; /* Parent node (or NULL for root node) */ | |
219 SegmentNode *pRight; /* Pointer to right-sibling */ | |
220 SegmentNode *pLeftmost; /* Pointer to left-most node of this depth */ | |
221 int nEntry; /* Number of terms written to node so far */ | |
222 char *zTerm; /* Pointer to previous term buffer */ | |
223 int nTerm; /* Number of bytes in zTerm */ | |
224 int nMalloc; /* Size of malloc'd buffer at zMalloc */ | |
225 char *zMalloc; /* Malloc'd space (possibly) used for zTerm */ | |
226 int nData; /* Bytes of valid data so far */ | |
227 char *aData; /* Node data */ | |
228 }; | |
229 | |
230 /* | |
231 ** Valid values for the second argument to fts3SqlStmt(). | |
232 */ | |
233 #define SQL_DELETE_CONTENT 0 | |
234 #define SQL_IS_EMPTY 1 | |
235 #define SQL_DELETE_ALL_CONTENT 2 | |
236 #define SQL_DELETE_ALL_SEGMENTS 3 | |
237 #define SQL_DELETE_ALL_SEGDIR 4 | |
238 #define SQL_DELETE_ALL_DOCSIZE 5 | |
239 #define SQL_DELETE_ALL_STAT 6 | |
240 #define SQL_SELECT_CONTENT_BY_ROWID 7 | |
241 #define SQL_NEXT_SEGMENT_INDEX 8 | |
242 #define SQL_INSERT_SEGMENTS 9 | |
243 #define SQL_NEXT_SEGMENTS_ID 10 | |
244 #define SQL_INSERT_SEGDIR 11 | |
245 #define SQL_SELECT_LEVEL 12 | |
246 #define SQL_SELECT_LEVEL_RANGE 13 | |
247 #define SQL_SELECT_LEVEL_COUNT 14 | |
248 #define SQL_SELECT_SEGDIR_MAX_LEVEL 15 | |
249 #define SQL_DELETE_SEGDIR_LEVEL 16 | |
250 #define SQL_DELETE_SEGMENTS_RANGE 17 | |
251 #define SQL_CONTENT_INSERT 18 | |
252 #define SQL_DELETE_DOCSIZE 19 | |
253 #define SQL_REPLACE_DOCSIZE 20 | |
254 #define SQL_SELECT_DOCSIZE 21 | |
255 #define SQL_SELECT_STAT 22 | |
256 #define SQL_REPLACE_STAT 23 | |
257 | |
258 #define SQL_SELECT_ALL_PREFIX_LEVEL 24 | |
259 #define SQL_DELETE_ALL_TERMS_SEGDIR 25 | |
260 #define SQL_DELETE_SEGDIR_RANGE 26 | |
261 #define SQL_SELECT_ALL_LANGID 27 | |
262 #define SQL_FIND_MERGE_LEVEL 28 | |
263 #define SQL_MAX_LEAF_NODE_ESTIMATE 29 | |
264 #define SQL_DELETE_SEGDIR_ENTRY 30 | |
265 #define SQL_SHIFT_SEGDIR_ENTRY 31 | |
266 #define SQL_SELECT_SEGDIR 32 | |
267 #define SQL_CHOMP_SEGDIR 33 | |
268 #define SQL_SEGMENT_IS_APPENDABLE 34 | |
269 #define SQL_SELECT_INDEXES 35 | |
270 #define SQL_SELECT_MXLEVEL 36 | |
271 | |
272 #define SQL_SELECT_LEVEL_RANGE2 37 | |
273 #define SQL_UPDATE_LEVEL_IDX 38 | |
274 #define SQL_UPDATE_LEVEL 39 | |
275 | |
276 /* | |
277 ** This function is used to obtain an SQLite prepared statement handle | |
278 ** for the statement identified by the second argument. If successful, | |
279 ** *pp is set to the requested statement handle and SQLITE_OK returned. | |
280 ** Otherwise, an SQLite error code is returned and *pp is set to 0. | |
281 ** | |
282 ** If argument apVal is not NULL, then it must point to an array with | |
283 ** at least as many entries as the requested statement has bound | |
284 ** parameters. The values are bound to the statements parameters before | |
285 ** returning. | |
286 */ | |
287 static int fts3SqlStmt( | |
288 Fts3Table *p, /* Virtual table handle */ | |
289 int eStmt, /* One of the SQL_XXX constants above */ | |
290 sqlite3_stmt **pp, /* OUT: Statement handle */ | |
291 sqlite3_value **apVal /* Values to bind to statement */ | |
292 ){ | |
293 const char *azSql[] = { | |
294 /* 0 */ "DELETE FROM %Q.'%q_content' WHERE rowid = ?", | |
295 /* 1 */ "SELECT NOT EXISTS(SELECT docid FROM %Q.'%q_content' WHERE rowid!=?)", | |
296 /* 2 */ "DELETE FROM %Q.'%q_content'", | |
297 /* 3 */ "DELETE FROM %Q.'%q_segments'", | |
298 /* 4 */ "DELETE FROM %Q.'%q_segdir'", | |
299 /* 5 */ "DELETE FROM %Q.'%q_docsize'", | |
300 /* 6 */ "DELETE FROM %Q.'%q_stat'", | |
301 /* 7 */ "SELECT %s WHERE rowid=?", | |
302 /* 8 */ "SELECT (SELECT max(idx) FROM %Q.'%q_segdir' WHERE level = ?) + 1", | |
303 /* 9 */ "REPLACE INTO %Q.'%q_segments'(blockid, block) VALUES(?, ?)", | |
304 /* 10 */ "SELECT coalesce((SELECT max(blockid) FROM %Q.'%q_segments') + 1, 1)", | |
305 /* 11 */ "REPLACE INTO %Q.'%q_segdir' VALUES(?,?,?,?,?,?)", | |
306 | |
307 /* Return segments in order from oldest to newest.*/ | |
308 /* 12 */ "SELECT idx, start_block, leaves_end_block, end_block, root " | |
309 "FROM %Q.'%q_segdir' WHERE level = ? ORDER BY idx ASC", | |
310 /* 13 */ "SELECT idx, start_block, leaves_end_block, end_block, root " | |
311 "FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ?" | |
312 "ORDER BY level DESC, idx ASC", | |
313 | |
314 /* 14 */ "SELECT count(*) FROM %Q.'%q_segdir' WHERE level = ?", | |
315 /* 15 */ "SELECT max(level) FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ?", | |
316 | |
317 /* 16 */ "DELETE FROM %Q.'%q_segdir' WHERE level = ?", | |
318 /* 17 */ "DELETE FROM %Q.'%q_segments' WHERE blockid BETWEEN ? AND ?", | |
319 /* 18 */ "INSERT INTO %Q.'%q_content' VALUES(%s)", | |
320 /* 19 */ "DELETE FROM %Q.'%q_docsize' WHERE docid = ?", | |
321 /* 20 */ "REPLACE INTO %Q.'%q_docsize' VALUES(?,?)", | |
322 /* 21 */ "SELECT size FROM %Q.'%q_docsize' WHERE docid=?", | |
323 /* 22 */ "SELECT value FROM %Q.'%q_stat' WHERE id=?", | |
324 /* 23 */ "REPLACE INTO %Q.'%q_stat' VALUES(?,?)", | |
325 /* 24 */ "", | |
326 /* 25 */ "", | |
327 | |
328 /* 26 */ "DELETE FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ?", | |
329 /* 27 */ "SELECT DISTINCT level / (1024 * ?) FROM %Q.'%q_segdir'", | |
330 | |
331 /* This statement is used to determine which level to read the input from | |
332 ** when performing an incremental merge. It returns the absolute level number | |
333 ** of the oldest level in the db that contains at least ? segments. Or, | |
334 ** if no level in the FTS index contains more than ? segments, the statement | |
335 ** returns zero rows. */ | |
336 /* 28 */ "SELECT level FROM %Q.'%q_segdir' GROUP BY level HAVING count(*)>=?" | |
337 " ORDER BY (level %% 1024) ASC LIMIT 1", | |
338 | |
339 /* Estimate the upper limit on the number of leaf nodes in a new segment | |
340 ** created by merging the oldest :2 segments from absolute level :1. See | |
341 ** function sqlite3Fts3Incrmerge() for details. */ | |
342 /* 29 */ "SELECT 2 * total(1 + leaves_end_block - start_block) " | |
343 " FROM %Q.'%q_segdir' WHERE level = ? AND idx < ?", | |
344 | |
345 /* SQL_DELETE_SEGDIR_ENTRY | |
346 ** Delete the %_segdir entry on absolute level :1 with index :2. */ | |
347 /* 30 */ "DELETE FROM %Q.'%q_segdir' WHERE level = ? AND idx = ?", | |
348 | |
349 /* SQL_SHIFT_SEGDIR_ENTRY | |
350 ** Modify the idx value for the segment with idx=:3 on absolute level :2 | |
351 ** to :1. */ | |
352 /* 31 */ "UPDATE %Q.'%q_segdir' SET idx = ? WHERE level=? AND idx=?", | |
353 | |
354 /* SQL_SELECT_SEGDIR | |
355 ** Read a single entry from the %_segdir table. The entry from absolute | |
356 ** level :1 with index value :2. */ | |
357 /* 32 */ "SELECT idx, start_block, leaves_end_block, end_block, root " | |
358 "FROM %Q.'%q_segdir' WHERE level = ? AND idx = ?", | |
359 | |
360 /* SQL_CHOMP_SEGDIR | |
361 ** Update the start_block (:1) and root (:2) fields of the %_segdir | |
362 ** entry located on absolute level :3 with index :4. */ | |
363 /* 33 */ "UPDATE %Q.'%q_segdir' SET start_block = ?, root = ?" | |
364 "WHERE level = ? AND idx = ?", | |
365 | |
366 /* SQL_SEGMENT_IS_APPENDABLE | |
367 ** Return a single row if the segment with end_block=? is appendable. Or | |
368 ** no rows otherwise. */ | |
369 /* 34 */ "SELECT 1 FROM %Q.'%q_segments' WHERE blockid=? AND block IS NULL", | |
370 | |
371 /* SQL_SELECT_INDEXES | |
372 ** Return the list of valid segment indexes for absolute level ? */ | |
373 /* 35 */ "SELECT idx FROM %Q.'%q_segdir' WHERE level=? ORDER BY 1 ASC", | |
374 | |
375 /* SQL_SELECT_MXLEVEL | |
376 ** Return the largest relative level in the FTS index or indexes. */ | |
377 /* 36 */ "SELECT max( level %% 1024 ) FROM %Q.'%q_segdir'", | |
378 | |
379 /* Return segments in order from oldest to newest.*/ | |
380 /* 37 */ "SELECT level, idx, end_block " | |
381 "FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ? " | |
382 "ORDER BY level DESC, idx ASC", | |
383 | |
384 /* Update statements used while promoting segments */ | |
385 /* 38 */ "UPDATE OR FAIL %Q.'%q_segdir' SET level=-1,idx=? " | |
386 "WHERE level=? AND idx=?", | |
387 /* 39 */ "UPDATE OR FAIL %Q.'%q_segdir' SET level=? WHERE level=-1" | |
388 | |
389 }; | |
390 int rc = SQLITE_OK; | |
391 sqlite3_stmt *pStmt; | |
392 | |
393 assert( SizeofArray(azSql)==SizeofArray(p->aStmt) ); | |
394 assert( eStmt<SizeofArray(azSql) && eStmt>=0 ); | |
395 | |
396 pStmt = p->aStmt[eStmt]; | |
397 if( !pStmt ){ | |
398 char *zSql; | |
399 if( eStmt==SQL_CONTENT_INSERT ){ | |
400 zSql = sqlite3_mprintf(azSql[eStmt], p->zDb, p->zName, p->zWriteExprlist); | |
401 }else if( eStmt==SQL_SELECT_CONTENT_BY_ROWID ){ | |
402 zSql = sqlite3_mprintf(azSql[eStmt], p->zReadExprlist); | |
403 }else{ | |
404 zSql = sqlite3_mprintf(azSql[eStmt], p->zDb, p->zName); | |
405 } | |
406 if( !zSql ){ | |
407 rc = SQLITE_NOMEM; | |
408 }else{ | |
409 rc = sqlite3_prepare_v2(p->db, zSql, -1, &pStmt, NULL); | |
410 sqlite3_free(zSql); | |
411 assert( rc==SQLITE_OK || pStmt==0 ); | |
412 p->aStmt[eStmt] = pStmt; | |
413 } | |
414 } | |
415 if( apVal ){ | |
416 int i; | |
417 int nParam = sqlite3_bind_parameter_count(pStmt); | |
418 for(i=0; rc==SQLITE_OK && i<nParam; i++){ | |
419 rc = sqlite3_bind_value(pStmt, i+1, apVal[i]); | |
420 } | |
421 } | |
422 *pp = pStmt; | |
423 return rc; | |
424 } | |
425 | |
426 | |
427 static int fts3SelectDocsize( | |
428 Fts3Table *pTab, /* FTS3 table handle */ | |
429 sqlite3_int64 iDocid, /* Docid to bind for SQL_SELECT_DOCSIZE */ | |
430 sqlite3_stmt **ppStmt /* OUT: Statement handle */ | |
431 ){ | |
432 sqlite3_stmt *pStmt = 0; /* Statement requested from fts3SqlStmt() */ | |
433 int rc; /* Return code */ | |
434 | |
435 rc = fts3SqlStmt(pTab, SQL_SELECT_DOCSIZE, &pStmt, 0); | |
436 if( rc==SQLITE_OK ){ | |
437 sqlite3_bind_int64(pStmt, 1, iDocid); | |
438 rc = sqlite3_step(pStmt); | |
439 if( rc!=SQLITE_ROW || sqlite3_column_type(pStmt, 0)!=SQLITE_BLOB ){ | |
440 rc = sqlite3_reset(pStmt); | |
441 if( rc==SQLITE_OK ) rc = FTS_CORRUPT_VTAB; | |
442 pStmt = 0; | |
443 }else{ | |
444 rc = SQLITE_OK; | |
445 } | |
446 } | |
447 | |
448 *ppStmt = pStmt; | |
449 return rc; | |
450 } | |
451 | |
452 int sqlite3Fts3SelectDoctotal( | |
453 Fts3Table *pTab, /* Fts3 table handle */ | |
454 sqlite3_stmt **ppStmt /* OUT: Statement handle */ | |
455 ){ | |
456 sqlite3_stmt *pStmt = 0; | |
457 int rc; | |
458 rc = fts3SqlStmt(pTab, SQL_SELECT_STAT, &pStmt, 0); | |
459 if( rc==SQLITE_OK ){ | |
460 sqlite3_bind_int(pStmt, 1, FTS_STAT_DOCTOTAL); | |
461 if( sqlite3_step(pStmt)!=SQLITE_ROW | |
462 || sqlite3_column_type(pStmt, 0)!=SQLITE_BLOB | |
463 ){ | |
464 rc = sqlite3_reset(pStmt); | |
465 if( rc==SQLITE_OK ) rc = FTS_CORRUPT_VTAB; | |
466 pStmt = 0; | |
467 } | |
468 } | |
469 *ppStmt = pStmt; | |
470 return rc; | |
471 } | |
472 | |
473 int sqlite3Fts3SelectDocsize( | |
474 Fts3Table *pTab, /* Fts3 table handle */ | |
475 sqlite3_int64 iDocid, /* Docid to read size data for */ | |
476 sqlite3_stmt **ppStmt /* OUT: Statement handle */ | |
477 ){ | |
478 return fts3SelectDocsize(pTab, iDocid, ppStmt); | |
479 } | |
480 | |
481 /* | |
482 ** Similar to fts3SqlStmt(). Except, after binding the parameters in | |
483 ** array apVal[] to the SQL statement identified by eStmt, the statement | |
484 ** is executed. | |
485 ** | |
486 ** Returns SQLITE_OK if the statement is successfully executed, or an | |
487 ** SQLite error code otherwise. | |
488 */ | |
489 static void fts3SqlExec( | |
490 int *pRC, /* Result code */ | |
491 Fts3Table *p, /* The FTS3 table */ | |
492 int eStmt, /* Index of statement to evaluate */ | |
493 sqlite3_value **apVal /* Parameters to bind */ | |
494 ){ | |
495 sqlite3_stmt *pStmt; | |
496 int rc; | |
497 if( *pRC ) return; | |
498 rc = fts3SqlStmt(p, eStmt, &pStmt, apVal); | |
499 if( rc==SQLITE_OK ){ | |
500 sqlite3_step(pStmt); | |
501 rc = sqlite3_reset(pStmt); | |
502 } | |
503 *pRC = rc; | |
504 } | |
505 | |
506 | |
507 /* | |
508 ** This function ensures that the caller has obtained an exclusive | |
509 ** shared-cache table-lock on the %_segdir table. This is required before | |
510 ** writing data to the fts3 table. If this lock is not acquired first, then | |
511 ** the caller may end up attempting to take this lock as part of committing | |
512 ** a transaction, causing SQLite to return SQLITE_LOCKED or | |
513 ** LOCKED_SHAREDCACHEto a COMMIT command. | |
514 ** | |
515 ** It is best to avoid this because if FTS3 returns any error when | |
516 ** committing a transaction, the whole transaction will be rolled back. | |
517 ** And this is not what users expect when they get SQLITE_LOCKED_SHAREDCACHE. | |
518 ** It can still happen if the user locks the underlying tables directly | |
519 ** instead of accessing them via FTS. | |
520 */ | |
521 static int fts3Writelock(Fts3Table *p){ | |
522 int rc = SQLITE_OK; | |
523 | |
524 if( p->nPendingData==0 ){ | |
525 sqlite3_stmt *pStmt; | |
526 rc = fts3SqlStmt(p, SQL_DELETE_SEGDIR_LEVEL, &pStmt, 0); | |
527 if( rc==SQLITE_OK ){ | |
528 sqlite3_bind_null(pStmt, 1); | |
529 sqlite3_step(pStmt); | |
530 rc = sqlite3_reset(pStmt); | |
531 } | |
532 } | |
533 | |
534 return rc; | |
535 } | |
536 | |
537 /* | |
538 ** FTS maintains a separate indexes for each language-id (a 32-bit integer). | |
539 ** Within each language id, a separate index is maintained to store the | |
540 ** document terms, and each configured prefix size (configured the FTS | |
541 ** "prefix=" option). And each index consists of multiple levels ("relative | |
542 ** levels"). | |
543 ** | |
544 ** All three of these values (the language id, the specific index and the | |
545 ** level within the index) are encoded in 64-bit integer values stored | |
546 ** in the %_segdir table on disk. This function is used to convert three | |
547 ** separate component values into the single 64-bit integer value that | |
548 ** can be used to query the %_segdir table. | |
549 ** | |
550 ** Specifically, each language-id/index combination is allocated 1024 | |
551 ** 64-bit integer level values ("absolute levels"). The main terms index | |
552 ** for language-id 0 is allocate values 0-1023. The first prefix index | |
553 ** (if any) for language-id 0 is allocated values 1024-2047. And so on. | |
554 ** Language 1 indexes are allocated immediately following language 0. | |
555 ** | |
556 ** So, for a system with nPrefix prefix indexes configured, the block of | |
557 ** absolute levels that corresponds to language-id iLangid and index | |
558 ** iIndex starts at absolute level ((iLangid * (nPrefix+1) + iIndex) * 1024). | |
559 */ | |
560 static sqlite3_int64 getAbsoluteLevel( | |
561 Fts3Table *p, /* FTS3 table handle */ | |
562 int iLangid, /* Language id */ | |
563 int iIndex, /* Index in p->aIndex[] */ | |
564 int iLevel /* Level of segments */ | |
565 ){ | |
566 sqlite3_int64 iBase; /* First absolute level for iLangid/iIndex */ | |
567 assert( iLangid>=0 ); | |
568 assert( p->nIndex>0 ); | |
569 assert( iIndex>=0 && iIndex<p->nIndex ); | |
570 | |
571 iBase = ((sqlite3_int64)iLangid * p->nIndex + iIndex) * FTS3_SEGDIR_MAXLEVEL; | |
572 return iBase + iLevel; | |
573 } | |
574 | |
575 /* | |
576 ** Set *ppStmt to a statement handle that may be used to iterate through | |
577 ** all rows in the %_segdir table, from oldest to newest. If successful, | |
578 ** return SQLITE_OK. If an error occurs while preparing the statement, | |
579 ** return an SQLite error code. | |
580 ** | |
581 ** There is only ever one instance of this SQL statement compiled for | |
582 ** each FTS3 table. | |
583 ** | |
584 ** The statement returns the following columns from the %_segdir table: | |
585 ** | |
586 ** 0: idx | |
587 ** 1: start_block | |
588 ** 2: leaves_end_block | |
589 ** 3: end_block | |
590 ** 4: root | |
591 */ | |
592 int sqlite3Fts3AllSegdirs( | |
593 Fts3Table *p, /* FTS3 table */ | |
594 int iLangid, /* Language being queried */ | |
595 int iIndex, /* Index for p->aIndex[] */ | |
596 int iLevel, /* Level to select (relative level) */ | |
597 sqlite3_stmt **ppStmt /* OUT: Compiled statement */ | |
598 ){ | |
599 int rc; | |
600 sqlite3_stmt *pStmt = 0; | |
601 | |
602 assert( iLevel==FTS3_SEGCURSOR_ALL || iLevel>=0 ); | |
603 assert( iLevel<FTS3_SEGDIR_MAXLEVEL ); | |
604 assert( iIndex>=0 && iIndex<p->nIndex ); | |
605 | |
606 if( iLevel<0 ){ | |
607 /* "SELECT * FROM %_segdir WHERE level BETWEEN ? AND ? ORDER BY ..." */ | |
608 rc = fts3SqlStmt(p, SQL_SELECT_LEVEL_RANGE, &pStmt, 0); | |
609 if( rc==SQLITE_OK ){ | |
610 sqlite3_bind_int64(pStmt, 1, getAbsoluteLevel(p, iLangid, iIndex, 0)); | |
611 sqlite3_bind_int64(pStmt, 2, | |
612 getAbsoluteLevel(p, iLangid, iIndex, FTS3_SEGDIR_MAXLEVEL-1) | |
613 ); | |
614 } | |
615 }else{ | |
616 /* "SELECT * FROM %_segdir WHERE level = ? ORDER BY ..." */ | |
617 rc = fts3SqlStmt(p, SQL_SELECT_LEVEL, &pStmt, 0); | |
618 if( rc==SQLITE_OK ){ | |
619 sqlite3_bind_int64(pStmt, 1, getAbsoluteLevel(p, iLangid, iIndex,iLevel)); | |
620 } | |
621 } | |
622 *ppStmt = pStmt; | |
623 return rc; | |
624 } | |
625 | |
626 | |
627 /* | |
628 ** Append a single varint to a PendingList buffer. SQLITE_OK is returned | |
629 ** if successful, or an SQLite error code otherwise. | |
630 ** | |
631 ** This function also serves to allocate the PendingList structure itself. | |
632 ** For example, to create a new PendingList structure containing two | |
633 ** varints: | |
634 ** | |
635 ** PendingList *p = 0; | |
636 ** fts3PendingListAppendVarint(&p, 1); | |
637 ** fts3PendingListAppendVarint(&p, 2); | |
638 */ | |
639 static int fts3PendingListAppendVarint( | |
640 PendingList **pp, /* IN/OUT: Pointer to PendingList struct */ | |
641 sqlite3_int64 i /* Value to append to data */ | |
642 ){ | |
643 PendingList *p = *pp; | |
644 | |
645 /* Allocate or grow the PendingList as required. */ | |
646 if( !p ){ | |
647 p = sqlite3_malloc(sizeof(*p) + 100); | |
648 if( !p ){ | |
649 return SQLITE_NOMEM; | |
650 } | |
651 p->nSpace = 100; | |
652 p->aData = (char *)&p[1]; | |
653 p->nData = 0; | |
654 } | |
655 else if( p->nData+FTS3_VARINT_MAX+1>p->nSpace ){ | |
656 int nNew = p->nSpace * 2; | |
657 p = sqlite3_realloc(p, sizeof(*p) + nNew); | |
658 if( !p ){ | |
659 sqlite3_free(*pp); | |
660 *pp = 0; | |
661 return SQLITE_NOMEM; | |
662 } | |
663 p->nSpace = nNew; | |
664 p->aData = (char *)&p[1]; | |
665 } | |
666 | |
667 /* Append the new serialized varint to the end of the list. */ | |
668 p->nData += sqlite3Fts3PutVarint(&p->aData[p->nData], i); | |
669 p->aData[p->nData] = '\0'; | |
670 *pp = p; | |
671 return SQLITE_OK; | |
672 } | |
673 | |
674 /* | |
675 ** Add a docid/column/position entry to a PendingList structure. Non-zero | |
676 ** is returned if the structure is sqlite3_realloced as part of adding | |
677 ** the entry. Otherwise, zero. | |
678 ** | |
679 ** If an OOM error occurs, *pRc is set to SQLITE_NOMEM before returning. | |
680 ** Zero is always returned in this case. Otherwise, if no OOM error occurs, | |
681 ** it is set to SQLITE_OK. | |
682 */ | |
683 static int fts3PendingListAppend( | |
684 PendingList **pp, /* IN/OUT: PendingList structure */ | |
685 sqlite3_int64 iDocid, /* Docid for entry to add */ | |
686 sqlite3_int64 iCol, /* Column for entry to add */ | |
687 sqlite3_int64 iPos, /* Position of term for entry to add */ | |
688 int *pRc /* OUT: Return code */ | |
689 ){ | |
690 PendingList *p = *pp; | |
691 int rc = SQLITE_OK; | |
692 | |
693 assert( !p || p->iLastDocid<=iDocid ); | |
694 | |
695 if( !p || p->iLastDocid!=iDocid ){ | |
696 sqlite3_int64 iDelta = iDocid - (p ? p->iLastDocid : 0); | |
697 if( p ){ | |
698 assert( p->nData<p->nSpace ); | |
699 assert( p->aData[p->nData]==0 ); | |
700 p->nData++; | |
701 } | |
702 if( SQLITE_OK!=(rc = fts3PendingListAppendVarint(&p, iDelta)) ){ | |
703 goto pendinglistappend_out; | |
704 } | |
705 p->iLastCol = -1; | |
706 p->iLastPos = 0; | |
707 p->iLastDocid = iDocid; | |
708 } | |
709 if( iCol>0 && p->iLastCol!=iCol ){ | |
710 if( SQLITE_OK!=(rc = fts3PendingListAppendVarint(&p, 1)) | |
711 || SQLITE_OK!=(rc = fts3PendingListAppendVarint(&p, iCol)) | |
712 ){ | |
713 goto pendinglistappend_out; | |
714 } | |
715 p->iLastCol = iCol; | |
716 p->iLastPos = 0; | |
717 } | |
718 if( iCol>=0 ){ | |
719 assert( iPos>p->iLastPos || (iPos==0 && p->iLastPos==0) ); | |
720 rc = fts3PendingListAppendVarint(&p, 2+iPos-p->iLastPos); | |
721 if( rc==SQLITE_OK ){ | |
722 p->iLastPos = iPos; | |
723 } | |
724 } | |
725 | |
726 pendinglistappend_out: | |
727 *pRc = rc; | |
728 if( p!=*pp ){ | |
729 *pp = p; | |
730 return 1; | |
731 } | |
732 return 0; | |
733 } | |
734 | |
735 /* | |
736 ** Free a PendingList object allocated by fts3PendingListAppend(). | |
737 */ | |
738 static void fts3PendingListDelete(PendingList *pList){ | |
739 sqlite3_free(pList); | |
740 } | |
741 | |
742 /* | |
743 ** Add an entry to one of the pending-terms hash tables. | |
744 */ | |
745 static int fts3PendingTermsAddOne( | |
746 Fts3Table *p, | |
747 int iCol, | |
748 int iPos, | |
749 Fts3Hash *pHash, /* Pending terms hash table to add entry to */ | |
750 const char *zToken, | |
751 int nToken | |
752 ){ | |
753 PendingList *pList; | |
754 int rc = SQLITE_OK; | |
755 | |
756 pList = (PendingList *)fts3HashFind(pHash, zToken, nToken); | |
757 if( pList ){ | |
758 p->nPendingData -= (pList->nData + nToken + sizeof(Fts3HashElem)); | |
759 } | |
760 if( fts3PendingListAppend(&pList, p->iPrevDocid, iCol, iPos, &rc) ){ | |
761 if( pList==fts3HashInsert(pHash, zToken, nToken, pList) ){ | |
762 /* Malloc failed while inserting the new entry. This can only | |
763 ** happen if there was no previous entry for this token. | |
764 */ | |
765 assert( 0==fts3HashFind(pHash, zToken, nToken) ); | |
766 sqlite3_free(pList); | |
767 rc = SQLITE_NOMEM; | |
768 } | |
769 } | |
770 if( rc==SQLITE_OK ){ | |
771 p->nPendingData += (pList->nData + nToken + sizeof(Fts3HashElem)); | |
772 } | |
773 return rc; | |
774 } | |
775 | |
776 /* | |
777 ** Tokenize the nul-terminated string zText and add all tokens to the | |
778 ** pending-terms hash-table. The docid used is that currently stored in | |
779 ** p->iPrevDocid, and the column is specified by argument iCol. | |
780 ** | |
781 ** If successful, SQLITE_OK is returned. Otherwise, an SQLite error code. | |
782 */ | |
783 static int fts3PendingTermsAdd( | |
784 Fts3Table *p, /* Table into which text will be inserted */ | |
785 int iLangid, /* Language id to use */ | |
786 const char *zText, /* Text of document to be inserted */ | |
787 int iCol, /* Column into which text is being inserted */ | |
788 u32 *pnWord /* IN/OUT: Incr. by number tokens inserted */ | |
789 ){ | |
790 int rc; | |
791 int iStart = 0; | |
792 int iEnd = 0; | |
793 int iPos = 0; | |
794 int nWord = 0; | |
795 | |
796 char const *zToken; | |
797 int nToken = 0; | |
798 | |
799 sqlite3_tokenizer *pTokenizer = p->pTokenizer; | |
800 sqlite3_tokenizer_module const *pModule = pTokenizer->pModule; | |
801 sqlite3_tokenizer_cursor *pCsr; | |
802 int (*xNext)(sqlite3_tokenizer_cursor *pCursor, | |
803 const char**,int*,int*,int*,int*); | |
804 | |
805 assert( pTokenizer && pModule ); | |
806 | |
807 /* If the user has inserted a NULL value, this function may be called with | |
808 ** zText==0. In this case, add zero token entries to the hash table and | |
809 ** return early. */ | |
810 if( zText==0 ){ | |
811 *pnWord = 0; | |
812 return SQLITE_OK; | |
813 } | |
814 | |
815 rc = sqlite3Fts3OpenTokenizer(pTokenizer, iLangid, zText, -1, &pCsr); | |
816 if( rc!=SQLITE_OK ){ | |
817 return rc; | |
818 } | |
819 | |
820 xNext = pModule->xNext; | |
821 while( SQLITE_OK==rc | |
822 && SQLITE_OK==(rc = xNext(pCsr, &zToken, &nToken, &iStart, &iEnd, &iPos)) | |
823 ){ | |
824 int i; | |
825 if( iPos>=nWord ) nWord = iPos+1; | |
826 | |
827 /* Positions cannot be negative; we use -1 as a terminator internally. | |
828 ** Tokens must have a non-zero length. | |
829 */ | |
830 if( iPos<0 || !zToken || nToken<=0 ){ | |
831 rc = SQLITE_ERROR; | |
832 break; | |
833 } | |
834 | |
835 /* Add the term to the terms index */ | |
836 rc = fts3PendingTermsAddOne( | |
837 p, iCol, iPos, &p->aIndex[0].hPending, zToken, nToken | |
838 ); | |
839 | |
840 /* Add the term to each of the prefix indexes that it is not too | |
841 ** short for. */ | |
842 for(i=1; rc==SQLITE_OK && i<p->nIndex; i++){ | |
843 struct Fts3Index *pIndex = &p->aIndex[i]; | |
844 if( nToken<pIndex->nPrefix ) continue; | |
845 rc = fts3PendingTermsAddOne( | |
846 p, iCol, iPos, &pIndex->hPending, zToken, pIndex->nPrefix | |
847 ); | |
848 } | |
849 } | |
850 | |
851 pModule->xClose(pCsr); | |
852 *pnWord += nWord; | |
853 return (rc==SQLITE_DONE ? SQLITE_OK : rc); | |
854 } | |
855 | |
856 /* | |
857 ** Calling this function indicates that subsequent calls to | |
858 ** fts3PendingTermsAdd() are to add term/position-list pairs for the | |
859 ** contents of the document with docid iDocid. | |
860 */ | |
861 static int fts3PendingTermsDocid( | |
862 Fts3Table *p, /* Full-text table handle */ | |
863 int iLangid, /* Language id of row being written */ | |
864 sqlite_int64 iDocid /* Docid of row being written */ | |
865 ){ | |
866 assert( iLangid>=0 ); | |
867 | |
868 /* TODO(shess) Explore whether partially flushing the buffer on | |
869 ** forced-flush would provide better performance. I suspect that if | |
870 ** we ordered the doclists by size and flushed the largest until the | |
871 ** buffer was half empty, that would let the less frequent terms | |
872 ** generate longer doclists. | |
873 */ | |
874 if( iDocid<=p->iPrevDocid | |
875 || p->iPrevLangid!=iLangid | |
876 || p->nPendingData>p->nMaxPendingData | |
877 ){ | |
878 int rc = sqlite3Fts3PendingTermsFlush(p); | |
879 if( rc!=SQLITE_OK ) return rc; | |
880 } | |
881 p->iPrevDocid = iDocid; | |
882 p->iPrevLangid = iLangid; | |
883 return SQLITE_OK; | |
884 } | |
885 | |
886 /* | |
887 ** Discard the contents of the pending-terms hash tables. | |
888 */ | |
889 void sqlite3Fts3PendingTermsClear(Fts3Table *p){ | |
890 int i; | |
891 for(i=0; i<p->nIndex; i++){ | |
892 Fts3HashElem *pElem; | |
893 Fts3Hash *pHash = &p->aIndex[i].hPending; | |
894 for(pElem=fts3HashFirst(pHash); pElem; pElem=fts3HashNext(pElem)){ | |
895 PendingList *pList = (PendingList *)fts3HashData(pElem); | |
896 fts3PendingListDelete(pList); | |
897 } | |
898 fts3HashClear(pHash); | |
899 } | |
900 p->nPendingData = 0; | |
901 } | |
902 | |
903 /* | |
904 ** This function is called by the xUpdate() method as part of an INSERT | |
905 ** operation. It adds entries for each term in the new record to the | |
906 ** pendingTerms hash table. | |
907 ** | |
908 ** Argument apVal is the same as the similarly named argument passed to | |
909 ** fts3InsertData(). Parameter iDocid is the docid of the new row. | |
910 */ | |
911 static int fts3InsertTerms( | |
912 Fts3Table *p, | |
913 int iLangid, | |
914 sqlite3_value **apVal, | |
915 u32 *aSz | |
916 ){ | |
917 int i; /* Iterator variable */ | |
918 for(i=2; i<p->nColumn+2; i++){ | |
919 int iCol = i-2; | |
920 if( p->abNotindexed[iCol]==0 ){ | |
921 const char *zText = (const char *)sqlite3_value_text(apVal[i]); | |
922 int rc = fts3PendingTermsAdd(p, iLangid, zText, iCol, &aSz[iCol]); | |
923 if( rc!=SQLITE_OK ){ | |
924 return rc; | |
925 } | |
926 aSz[p->nColumn] += sqlite3_value_bytes(apVal[i]); | |
927 } | |
928 } | |
929 return SQLITE_OK; | |
930 } | |
931 | |
932 /* | |
933 ** This function is called by the xUpdate() method for an INSERT operation. | |
934 ** The apVal parameter is passed a copy of the apVal argument passed by | |
935 ** SQLite to the xUpdate() method. i.e: | |
936 ** | |
937 ** apVal[0] Not used for INSERT. | |
938 ** apVal[1] rowid | |
939 ** apVal[2] Left-most user-defined column | |
940 ** ... | |
941 ** apVal[p->nColumn+1] Right-most user-defined column | |
942 ** apVal[p->nColumn+2] Hidden column with same name as table | |
943 ** apVal[p->nColumn+3] Hidden "docid" column (alias for rowid) | |
944 ** apVal[p->nColumn+4] Hidden languageid column | |
945 */ | |
946 static int fts3InsertData( | |
947 Fts3Table *p, /* Full-text table */ | |
948 sqlite3_value **apVal, /* Array of values to insert */ | |
949 sqlite3_int64 *piDocid /* OUT: Docid for row just inserted */ | |
950 ){ | |
951 int rc; /* Return code */ | |
952 sqlite3_stmt *pContentInsert; /* INSERT INTO %_content VALUES(...) */ | |
953 | |
954 if( p->zContentTbl ){ | |
955 sqlite3_value *pRowid = apVal[p->nColumn+3]; | |
956 if( sqlite3_value_type(pRowid)==SQLITE_NULL ){ | |
957 pRowid = apVal[1]; | |
958 } | |
959 if( sqlite3_value_type(pRowid)!=SQLITE_INTEGER ){ | |
960 return SQLITE_CONSTRAINT; | |
961 } | |
962 *piDocid = sqlite3_value_int64(pRowid); | |
963 return SQLITE_OK; | |
964 } | |
965 | |
966 /* Locate the statement handle used to insert data into the %_content | |
967 ** table. The SQL for this statement is: | |
968 ** | |
969 ** INSERT INTO %_content VALUES(?, ?, ?, ...) | |
970 ** | |
971 ** The statement features N '?' variables, where N is the number of user | |
972 ** defined columns in the FTS3 table, plus one for the docid field. | |
973 */ | |
974 rc = fts3SqlStmt(p, SQL_CONTENT_INSERT, &pContentInsert, &apVal[1]); | |
975 if( rc==SQLITE_OK && p->zLanguageid ){ | |
976 rc = sqlite3_bind_int( | |
977 pContentInsert, p->nColumn+2, | |
978 sqlite3_value_int(apVal[p->nColumn+4]) | |
979 ); | |
980 } | |
981 if( rc!=SQLITE_OK ) return rc; | |
982 | |
983 /* There is a quirk here. The users INSERT statement may have specified | |
984 ** a value for the "rowid" field, for the "docid" field, or for both. | |
985 ** Which is a problem, since "rowid" and "docid" are aliases for the | |
986 ** same value. For example: | |
987 ** | |
988 ** INSERT INTO fts3tbl(rowid, docid) VALUES(1, 2); | |
989 ** | |
990 ** In FTS3, this is an error. It is an error to specify non-NULL values | |
991 ** for both docid and some other rowid alias. | |
992 */ | |
993 if( SQLITE_NULL!=sqlite3_value_type(apVal[3+p->nColumn]) ){ | |
994 if( SQLITE_NULL==sqlite3_value_type(apVal[0]) | |
995 && SQLITE_NULL!=sqlite3_value_type(apVal[1]) | |
996 ){ | |
997 /* A rowid/docid conflict. */ | |
998 return SQLITE_ERROR; | |
999 } | |
1000 rc = sqlite3_bind_value(pContentInsert, 1, apVal[3+p->nColumn]); | |
1001 if( rc!=SQLITE_OK ) return rc; | |
1002 } | |
1003 | |
1004 /* Execute the statement to insert the record. Set *piDocid to the | |
1005 ** new docid value. | |
1006 */ | |
1007 sqlite3_step(pContentInsert); | |
1008 rc = sqlite3_reset(pContentInsert); | |
1009 | |
1010 *piDocid = sqlite3_last_insert_rowid(p->db); | |
1011 return rc; | |
1012 } | |
1013 | |
1014 | |
1015 | |
1016 /* | |
1017 ** Remove all data from the FTS3 table. Clear the hash table containing | |
1018 ** pending terms. | |
1019 */ | |
1020 static int fts3DeleteAll(Fts3Table *p, int bContent){ | |
1021 int rc = SQLITE_OK; /* Return code */ | |
1022 | |
1023 /* Discard the contents of the pending-terms hash table. */ | |
1024 sqlite3Fts3PendingTermsClear(p); | |
1025 | |
1026 /* Delete everything from the shadow tables. Except, leave %_content as | |
1027 ** is if bContent is false. */ | |
1028 assert( p->zContentTbl==0 || bContent==0 ); | |
1029 if( bContent ) fts3SqlExec(&rc, p, SQL_DELETE_ALL_CONTENT, 0); | |
1030 fts3SqlExec(&rc, p, SQL_DELETE_ALL_SEGMENTS, 0); | |
1031 fts3SqlExec(&rc, p, SQL_DELETE_ALL_SEGDIR, 0); | |
1032 if( p->bHasDocsize ){ | |
1033 fts3SqlExec(&rc, p, SQL_DELETE_ALL_DOCSIZE, 0); | |
1034 } | |
1035 if( p->bHasStat ){ | |
1036 fts3SqlExec(&rc, p, SQL_DELETE_ALL_STAT, 0); | |
1037 } | |
1038 return rc; | |
1039 } | |
1040 | |
1041 /* | |
1042 ** | |
1043 */ | |
1044 static int langidFromSelect(Fts3Table *p, sqlite3_stmt *pSelect){ | |
1045 int iLangid = 0; | |
1046 if( p->zLanguageid ) iLangid = sqlite3_column_int(pSelect, p->nColumn+1); | |
1047 return iLangid; | |
1048 } | |
1049 | |
1050 /* | |
1051 ** The first element in the apVal[] array is assumed to contain the docid | |
1052 ** (an integer) of a row about to be deleted. Remove all terms from the | |
1053 ** full-text index. | |
1054 */ | |
1055 static void fts3DeleteTerms( | |
1056 int *pRC, /* Result code */ | |
1057 Fts3Table *p, /* The FTS table to delete from */ | |
1058 sqlite3_value *pRowid, /* The docid to be deleted */ | |
1059 u32 *aSz, /* Sizes of deleted document written here */ | |
1060 int *pbFound /* OUT: Set to true if row really does exist */ | |
1061 ){ | |
1062 int rc; | |
1063 sqlite3_stmt *pSelect; | |
1064 | |
1065 assert( *pbFound==0 ); | |
1066 if( *pRC ) return; | |
1067 rc = fts3SqlStmt(p, SQL_SELECT_CONTENT_BY_ROWID, &pSelect, &pRowid); | |
1068 if( rc==SQLITE_OK ){ | |
1069 if( SQLITE_ROW==sqlite3_step(pSelect) ){ | |
1070 int i; | |
1071 int iLangid = langidFromSelect(p, pSelect); | |
1072 rc = fts3PendingTermsDocid(p, iLangid, sqlite3_column_int64(pSelect, 0)); | |
1073 for(i=1; rc==SQLITE_OK && i<=p->nColumn; i++){ | |
1074 int iCol = i-1; | |
1075 if( p->abNotindexed[iCol]==0 ){ | |
1076 const char *zText = (const char *)sqlite3_column_text(pSelect, i); | |
1077 rc = fts3PendingTermsAdd(p, iLangid, zText, -1, &aSz[iCol]); | |
1078 aSz[p->nColumn] += sqlite3_column_bytes(pSelect, i); | |
1079 } | |
1080 } | |
1081 if( rc!=SQLITE_OK ){ | |
1082 sqlite3_reset(pSelect); | |
1083 *pRC = rc; | |
1084 return; | |
1085 } | |
1086 *pbFound = 1; | |
1087 } | |
1088 rc = sqlite3_reset(pSelect); | |
1089 }else{ | |
1090 sqlite3_reset(pSelect); | |
1091 } | |
1092 *pRC = rc; | |
1093 } | |
1094 | |
1095 /* | |
1096 ** Forward declaration to account for the circular dependency between | |
1097 ** functions fts3SegmentMerge() and fts3AllocateSegdirIdx(). | |
1098 */ | |
1099 static int fts3SegmentMerge(Fts3Table *, int, int, int); | |
1100 | |
1101 /* | |
1102 ** This function allocates a new level iLevel index in the segdir table. | |
1103 ** Usually, indexes are allocated within a level sequentially starting | |
1104 ** with 0, so the allocated index is one greater than the value returned | |
1105 ** by: | |
1106 ** | |
1107 ** SELECT max(idx) FROM %_segdir WHERE level = :iLevel | |
1108 ** | |
1109 ** However, if there are already FTS3_MERGE_COUNT indexes at the requested | |
1110 ** level, they are merged into a single level (iLevel+1) segment and the | |
1111 ** allocated index is 0. | |
1112 ** | |
1113 ** If successful, *piIdx is set to the allocated index slot and SQLITE_OK | |
1114 ** returned. Otherwise, an SQLite error code is returned. | |
1115 */ | |
1116 static int fts3AllocateSegdirIdx( | |
1117 Fts3Table *p, | |
1118 int iLangid, /* Language id */ | |
1119 int iIndex, /* Index for p->aIndex */ | |
1120 int iLevel, | |
1121 int *piIdx | |
1122 ){ | |
1123 int rc; /* Return Code */ | |
1124 sqlite3_stmt *pNextIdx; /* Query for next idx at level iLevel */ | |
1125 int iNext = 0; /* Result of query pNextIdx */ | |
1126 | |
1127 assert( iLangid>=0 ); | |
1128 assert( p->nIndex>=1 ); | |
1129 | |
1130 /* Set variable iNext to the next available segdir index at level iLevel. */ | |
1131 rc = fts3SqlStmt(p, SQL_NEXT_SEGMENT_INDEX, &pNextIdx, 0); | |
1132 if( rc==SQLITE_OK ){ | |
1133 sqlite3_bind_int64( | |
1134 pNextIdx, 1, getAbsoluteLevel(p, iLangid, iIndex, iLevel) | |
1135 ); | |
1136 if( SQLITE_ROW==sqlite3_step(pNextIdx) ){ | |
1137 iNext = sqlite3_column_int(pNextIdx, 0); | |
1138 } | |
1139 rc = sqlite3_reset(pNextIdx); | |
1140 } | |
1141 | |
1142 if( rc==SQLITE_OK ){ | |
1143 /* If iNext is FTS3_MERGE_COUNT, indicating that level iLevel is already | |
1144 ** full, merge all segments in level iLevel into a single iLevel+1 | |
1145 ** segment and allocate (newly freed) index 0 at level iLevel. Otherwise, | |
1146 ** if iNext is less than FTS3_MERGE_COUNT, allocate index iNext. | |
1147 */ | |
1148 if( iNext>=FTS3_MERGE_COUNT ){ | |
1149 fts3LogMerge(16, getAbsoluteLevel(p, iLangid, iIndex, iLevel)); | |
1150 rc = fts3SegmentMerge(p, iLangid, iIndex, iLevel); | |
1151 *piIdx = 0; | |
1152 }else{ | |
1153 *piIdx = iNext; | |
1154 } | |
1155 } | |
1156 | |
1157 return rc; | |
1158 } | |
1159 | |
1160 /* | |
1161 ** The %_segments table is declared as follows: | |
1162 ** | |
1163 ** CREATE TABLE %_segments(blockid INTEGER PRIMARY KEY, block BLOB) | |
1164 ** | |
1165 ** This function reads data from a single row of the %_segments table. The | |
1166 ** specific row is identified by the iBlockid parameter. If paBlob is not | |
1167 ** NULL, then a buffer is allocated using sqlite3_malloc() and populated | |
1168 ** with the contents of the blob stored in the "block" column of the | |
1169 ** identified table row is. Whether or not paBlob is NULL, *pnBlob is set | |
1170 ** to the size of the blob in bytes before returning. | |
1171 ** | |
1172 ** If an error occurs, or the table does not contain the specified row, | |
1173 ** an SQLite error code is returned. Otherwise, SQLITE_OK is returned. If | |
1174 ** paBlob is non-NULL, then it is the responsibility of the caller to | |
1175 ** eventually free the returned buffer. | |
1176 ** | |
1177 ** This function may leave an open sqlite3_blob* handle in the | |
1178 ** Fts3Table.pSegments variable. This handle is reused by subsequent calls | |
1179 ** to this function. The handle may be closed by calling the | |
1180 ** sqlite3Fts3SegmentsClose() function. Reusing a blob handle is a handy | |
1181 ** performance improvement, but the blob handle should always be closed | |
1182 ** before control is returned to the user (to prevent a lock being held | |
1183 ** on the database file for longer than necessary). Thus, any virtual table | |
1184 ** method (xFilter etc.) that may directly or indirectly call this function | |
1185 ** must call sqlite3Fts3SegmentsClose() before returning. | |
1186 */ | |
1187 int sqlite3Fts3ReadBlock( | |
1188 Fts3Table *p, /* FTS3 table handle */ | |
1189 sqlite3_int64 iBlockid, /* Access the row with blockid=$iBlockid */ | |
1190 char **paBlob, /* OUT: Blob data in malloc'd buffer */ | |
1191 int *pnBlob, /* OUT: Size of blob data */ | |
1192 int *pnLoad /* OUT: Bytes actually loaded */ | |
1193 ){ | |
1194 int rc; /* Return code */ | |
1195 | |
1196 /* pnBlob must be non-NULL. paBlob may be NULL or non-NULL. */ | |
1197 assert( pnBlob ); | |
1198 | |
1199 if( p->pSegments ){ | |
1200 rc = sqlite3_blob_reopen(p->pSegments, iBlockid); | |
1201 }else{ | |
1202 if( 0==p->zSegmentsTbl ){ | |
1203 p->zSegmentsTbl = sqlite3_mprintf("%s_segments", p->zName); | |
1204 if( 0==p->zSegmentsTbl ) return SQLITE_NOMEM; | |
1205 } | |
1206 rc = sqlite3_blob_open( | |
1207 p->db, p->zDb, p->zSegmentsTbl, "block", iBlockid, 0, &p->pSegments | |
1208 ); | |
1209 } | |
1210 | |
1211 if( rc==SQLITE_OK ){ | |
1212 int nByte = sqlite3_blob_bytes(p->pSegments); | |
1213 *pnBlob = nByte; | |
1214 if( paBlob ){ | |
1215 char *aByte = sqlite3_malloc(nByte + FTS3_NODE_PADDING); | |
1216 if( !aByte ){ | |
1217 rc = SQLITE_NOMEM; | |
1218 }else{ | |
1219 if( pnLoad && nByte>(FTS3_NODE_CHUNK_THRESHOLD) ){ | |
1220 nByte = FTS3_NODE_CHUNKSIZE; | |
1221 *pnLoad = nByte; | |
1222 } | |
1223 rc = sqlite3_blob_read(p->pSegments, aByte, nByte, 0); | |
1224 memset(&aByte[nByte], 0, FTS3_NODE_PADDING); | |
1225 if( rc!=SQLITE_OK ){ | |
1226 sqlite3_free(aByte); | |
1227 aByte = 0; | |
1228 } | |
1229 } | |
1230 *paBlob = aByte; | |
1231 } | |
1232 } | |
1233 | |
1234 return rc; | |
1235 } | |
1236 | |
1237 /* | |
1238 ** Close the blob handle at p->pSegments, if it is open. See comments above | |
1239 ** the sqlite3Fts3ReadBlock() function for details. | |
1240 */ | |
1241 void sqlite3Fts3SegmentsClose(Fts3Table *p){ | |
1242 sqlite3_blob_close(p->pSegments); | |
1243 p->pSegments = 0; | |
1244 } | |
1245 | |
1246 static int fts3SegReaderIncrRead(Fts3SegReader *pReader){ | |
1247 int nRead; /* Number of bytes to read */ | |
1248 int rc; /* Return code */ | |
1249 | |
1250 nRead = MIN(pReader->nNode - pReader->nPopulate, FTS3_NODE_CHUNKSIZE); | |
1251 rc = sqlite3_blob_read( | |
1252 pReader->pBlob, | |
1253 &pReader->aNode[pReader->nPopulate], | |
1254 nRead, | |
1255 pReader->nPopulate | |
1256 ); | |
1257 | |
1258 if( rc==SQLITE_OK ){ | |
1259 pReader->nPopulate += nRead; | |
1260 memset(&pReader->aNode[pReader->nPopulate], 0, FTS3_NODE_PADDING); | |
1261 if( pReader->nPopulate==pReader->nNode ){ | |
1262 sqlite3_blob_close(pReader->pBlob); | |
1263 pReader->pBlob = 0; | |
1264 pReader->nPopulate = 0; | |
1265 } | |
1266 } | |
1267 return rc; | |
1268 } | |
1269 | |
1270 static int fts3SegReaderRequire(Fts3SegReader *pReader, char *pFrom, int nByte){ | |
1271 int rc = SQLITE_OK; | |
1272 assert( !pReader->pBlob | |
1273 || (pFrom>=pReader->aNode && pFrom<&pReader->aNode[pReader->nNode]) | |
1274 ); | |
1275 while( pReader->pBlob && rc==SQLITE_OK | |
1276 && (pFrom - pReader->aNode + nByte)>pReader->nPopulate | |
1277 ){ | |
1278 rc = fts3SegReaderIncrRead(pReader); | |
1279 } | |
1280 return rc; | |
1281 } | |
1282 | |
1283 /* | |
1284 ** Set an Fts3SegReader cursor to point at EOF. | |
1285 */ | |
1286 static void fts3SegReaderSetEof(Fts3SegReader *pSeg){ | |
1287 if( !fts3SegReaderIsRootOnly(pSeg) ){ | |
1288 sqlite3_free(pSeg->aNode); | |
1289 sqlite3_blob_close(pSeg->pBlob); | |
1290 pSeg->pBlob = 0; | |
1291 } | |
1292 pSeg->aNode = 0; | |
1293 } | |
1294 | |
1295 /* | |
1296 ** Move the iterator passed as the first argument to the next term in the | |
1297 ** segment. If successful, SQLITE_OK is returned. If there is no next term, | |
1298 ** SQLITE_DONE. Otherwise, an SQLite error code. | |
1299 */ | |
1300 static int fts3SegReaderNext( | |
1301 Fts3Table *p, | |
1302 Fts3SegReader *pReader, | |
1303 int bIncr | |
1304 ){ | |
1305 int rc; /* Return code of various sub-routines */ | |
1306 char *pNext; /* Cursor variable */ | |
1307 int nPrefix; /* Number of bytes in term prefix */ | |
1308 int nSuffix; /* Number of bytes in term suffix */ | |
1309 | |
1310 if( !pReader->aDoclist ){ | |
1311 pNext = pReader->aNode; | |
1312 }else{ | |
1313 pNext = &pReader->aDoclist[pReader->nDoclist]; | |
1314 } | |
1315 | |
1316 if( !pNext || pNext>=&pReader->aNode[pReader->nNode] ){ | |
1317 | |
1318 if( fts3SegReaderIsPending(pReader) ){ | |
1319 Fts3HashElem *pElem = *(pReader->ppNextElem); | |
1320 if( pElem==0 ){ | |
1321 pReader->aNode = 0; | |
1322 }else{ | |
1323 PendingList *pList = (PendingList *)fts3HashData(pElem); | |
1324 pReader->zTerm = (char *)fts3HashKey(pElem); | |
1325 pReader->nTerm = fts3HashKeysize(pElem); | |
1326 pReader->nNode = pReader->nDoclist = pList->nData + 1; | |
1327 pReader->aNode = pReader->aDoclist = pList->aData; | |
1328 pReader->ppNextElem++; | |
1329 assert( pReader->aNode ); | |
1330 } | |
1331 return SQLITE_OK; | |
1332 } | |
1333 | |
1334 fts3SegReaderSetEof(pReader); | |
1335 | |
1336 /* If iCurrentBlock>=iLeafEndBlock, this is an EOF condition. All leaf | |
1337 ** blocks have already been traversed. */ | |
1338 assert( pReader->iCurrentBlock<=pReader->iLeafEndBlock ); | |
1339 if( pReader->iCurrentBlock>=pReader->iLeafEndBlock ){ | |
1340 return SQLITE_OK; | |
1341 } | |
1342 | |
1343 rc = sqlite3Fts3ReadBlock( | |
1344 p, ++pReader->iCurrentBlock, &pReader->aNode, &pReader->nNode, | |
1345 (bIncr ? &pReader->nPopulate : 0) | |
1346 ); | |
1347 if( rc!=SQLITE_OK ) return rc; | |
1348 assert( pReader->pBlob==0 ); | |
1349 if( bIncr && pReader->nPopulate<pReader->nNode ){ | |
1350 pReader->pBlob = p->pSegments; | |
1351 p->pSegments = 0; | |
1352 } | |
1353 pNext = pReader->aNode; | |
1354 } | |
1355 | |
1356 assert( !fts3SegReaderIsPending(pReader) ); | |
1357 | |
1358 rc = fts3SegReaderRequire(pReader, pNext, FTS3_VARINT_MAX*2); | |
1359 if( rc!=SQLITE_OK ) return rc; | |
1360 | |
1361 /* Because of the FTS3_NODE_PADDING bytes of padding, the following is | |
1362 ** safe (no risk of overread) even if the node data is corrupted. */ | |
1363 pNext += fts3GetVarint32(pNext, &nPrefix); | |
1364 pNext += fts3GetVarint32(pNext, &nSuffix); | |
1365 if( nPrefix<0 || nSuffix<=0 | |
1366 || &pNext[nSuffix]>&pReader->aNode[pReader->nNode] | |
1367 ){ | |
1368 return FTS_CORRUPT_VTAB; | |
1369 } | |
1370 | |
1371 if( nPrefix+nSuffix>pReader->nTermAlloc ){ | |
1372 int nNew = (nPrefix+nSuffix)*2; | |
1373 char *zNew = sqlite3_realloc(pReader->zTerm, nNew); | |
1374 if( !zNew ){ | |
1375 return SQLITE_NOMEM; | |
1376 } | |
1377 pReader->zTerm = zNew; | |
1378 pReader->nTermAlloc = nNew; | |
1379 } | |
1380 | |
1381 rc = fts3SegReaderRequire(pReader, pNext, nSuffix+FTS3_VARINT_MAX); | |
1382 if( rc!=SQLITE_OK ) return rc; | |
1383 | |
1384 memcpy(&pReader->zTerm[nPrefix], pNext, nSuffix); | |
1385 pReader->nTerm = nPrefix+nSuffix; | |
1386 pNext += nSuffix; | |
1387 pNext += fts3GetVarint32(pNext, &pReader->nDoclist); | |
1388 pReader->aDoclist = pNext; | |
1389 pReader->pOffsetList = 0; | |
1390 | |
1391 /* Check that the doclist does not appear to extend past the end of the | |
1392 ** b-tree node. And that the final byte of the doclist is 0x00. If either | |
1393 ** of these statements is untrue, then the data structure is corrupt. | |
1394 */ | |
1395 if( &pReader->aDoclist[pReader->nDoclist]>&pReader->aNode[pReader->nNode] | |
1396 || (pReader->nPopulate==0 && pReader->aDoclist[pReader->nDoclist-1]) | |
1397 ){ | |
1398 return FTS_CORRUPT_VTAB; | |
1399 } | |
1400 return SQLITE_OK; | |
1401 } | |
1402 | |
1403 /* | |
1404 ** Set the SegReader to point to the first docid in the doclist associated | |
1405 ** with the current term. | |
1406 */ | |
1407 static int fts3SegReaderFirstDocid(Fts3Table *pTab, Fts3SegReader *pReader){ | |
1408 int rc = SQLITE_OK; | |
1409 assert( pReader->aDoclist ); | |
1410 assert( !pReader->pOffsetList ); | |
1411 if( pTab->bDescIdx && fts3SegReaderIsPending(pReader) ){ | |
1412 u8 bEof = 0; | |
1413 pReader->iDocid = 0; | |
1414 pReader->nOffsetList = 0; | |
1415 sqlite3Fts3DoclistPrev(0, | |
1416 pReader->aDoclist, pReader->nDoclist, &pReader->pOffsetList, | |
1417 &pReader->iDocid, &pReader->nOffsetList, &bEof | |
1418 ); | |
1419 }else{ | |
1420 rc = fts3SegReaderRequire(pReader, pReader->aDoclist, FTS3_VARINT_MAX); | |
1421 if( rc==SQLITE_OK ){ | |
1422 int n = sqlite3Fts3GetVarint(pReader->aDoclist, &pReader->iDocid); | |
1423 pReader->pOffsetList = &pReader->aDoclist[n]; | |
1424 } | |
1425 } | |
1426 return rc; | |
1427 } | |
1428 | |
1429 /* | |
1430 ** Advance the SegReader to point to the next docid in the doclist | |
1431 ** associated with the current term. | |
1432 ** | |
1433 ** If arguments ppOffsetList and pnOffsetList are not NULL, then | |
1434 ** *ppOffsetList is set to point to the first column-offset list | |
1435 ** in the doclist entry (i.e. immediately past the docid varint). | |
1436 ** *pnOffsetList is set to the length of the set of column-offset | |
1437 ** lists, not including the nul-terminator byte. For example: | |
1438 */ | |
1439 static int fts3SegReaderNextDocid( | |
1440 Fts3Table *pTab, | |
1441 Fts3SegReader *pReader, /* Reader to advance to next docid */ | |
1442 char **ppOffsetList, /* OUT: Pointer to current position-list */ | |
1443 int *pnOffsetList /* OUT: Length of *ppOffsetList in bytes */ | |
1444 ){ | |
1445 int rc = SQLITE_OK; | |
1446 char *p = pReader->pOffsetList; | |
1447 char c = 0; | |
1448 | |
1449 assert( p ); | |
1450 | |
1451 if( pTab->bDescIdx && fts3SegReaderIsPending(pReader) ){ | |
1452 /* A pending-terms seg-reader for an FTS4 table that uses order=desc. | |
1453 ** Pending-terms doclists are always built up in ascending order, so | |
1454 ** we have to iterate through them backwards here. */ | |
1455 u8 bEof = 0; | |
1456 if( ppOffsetList ){ | |
1457 *ppOffsetList = pReader->pOffsetList; | |
1458 *pnOffsetList = pReader->nOffsetList - 1; | |
1459 } | |
1460 sqlite3Fts3DoclistPrev(0, | |
1461 pReader->aDoclist, pReader->nDoclist, &p, &pReader->iDocid, | |
1462 &pReader->nOffsetList, &bEof | |
1463 ); | |
1464 if( bEof ){ | |
1465 pReader->pOffsetList = 0; | |
1466 }else{ | |
1467 pReader->pOffsetList = p; | |
1468 } | |
1469 }else{ | |
1470 char *pEnd = &pReader->aDoclist[pReader->nDoclist]; | |
1471 | |
1472 /* Pointer p currently points at the first byte of an offset list. The | |
1473 ** following block advances it to point one byte past the end of | |
1474 ** the same offset list. */ | |
1475 while( 1 ){ | |
1476 | |
1477 /* The following line of code (and the "p++" below the while() loop) is | |
1478 ** normally all that is required to move pointer p to the desired | |
1479 ** position. The exception is if this node is being loaded from disk | |
1480 ** incrementally and pointer "p" now points to the first byte past | |
1481 ** the populated part of pReader->aNode[]. | |
1482 */ | |
1483 while( *p | c ) c = *p++ & 0x80; | |
1484 assert( *p==0 ); | |
1485 | |
1486 if( pReader->pBlob==0 || p<&pReader->aNode[pReader->nPopulate] ) break; | |
1487 rc = fts3SegReaderIncrRead(pReader); | |
1488 if( rc!=SQLITE_OK ) return rc; | |
1489 } | |
1490 p++; | |
1491 | |
1492 /* If required, populate the output variables with a pointer to and the | |
1493 ** size of the previous offset-list. | |
1494 */ | |
1495 if( ppOffsetList ){ | |
1496 *ppOffsetList = pReader->pOffsetList; | |
1497 *pnOffsetList = (int)(p - pReader->pOffsetList - 1); | |
1498 } | |
1499 | |
1500 /* List may have been edited in place by fts3EvalNearTrim() */ | |
1501 while( p<pEnd && *p==0 ) p++; | |
1502 | |
1503 /* If there are no more entries in the doclist, set pOffsetList to | |
1504 ** NULL. Otherwise, set Fts3SegReader.iDocid to the next docid and | |
1505 ** Fts3SegReader.pOffsetList to point to the next offset list before | |
1506 ** returning. | |
1507 */ | |
1508 if( p>=pEnd ){ | |
1509 pReader->pOffsetList = 0; | |
1510 }else{ | |
1511 rc = fts3SegReaderRequire(pReader, p, FTS3_VARINT_MAX); | |
1512 if( rc==SQLITE_OK ){ | |
1513 sqlite3_int64 iDelta; | |
1514 pReader->pOffsetList = p + sqlite3Fts3GetVarint(p, &iDelta); | |
1515 if( pTab->bDescIdx ){ | |
1516 pReader->iDocid -= iDelta; | |
1517 }else{ | |
1518 pReader->iDocid += iDelta; | |
1519 } | |
1520 } | |
1521 } | |
1522 } | |
1523 | |
1524 return SQLITE_OK; | |
1525 } | |
1526 | |
1527 | |
1528 int sqlite3Fts3MsrOvfl( | |
1529 Fts3Cursor *pCsr, | |
1530 Fts3MultiSegReader *pMsr, | |
1531 int *pnOvfl | |
1532 ){ | |
1533 Fts3Table *p = (Fts3Table*)pCsr->base.pVtab; | |
1534 int nOvfl = 0; | |
1535 int ii; | |
1536 int rc = SQLITE_OK; | |
1537 int pgsz = p->nPgsz; | |
1538 | |
1539 assert( p->bFts4 ); | |
1540 assert( pgsz>0 ); | |
1541 | |
1542 for(ii=0; rc==SQLITE_OK && ii<pMsr->nSegment; ii++){ | |
1543 Fts3SegReader *pReader = pMsr->apSegment[ii]; | |
1544 if( !fts3SegReaderIsPending(pReader) | |
1545 && !fts3SegReaderIsRootOnly(pReader) | |
1546 ){ | |
1547 sqlite3_int64 jj; | |
1548 for(jj=pReader->iStartBlock; jj<=pReader->iLeafEndBlock; jj++){ | |
1549 int nBlob; | |
1550 rc = sqlite3Fts3ReadBlock(p, jj, 0, &nBlob, 0); | |
1551 if( rc!=SQLITE_OK ) break; | |
1552 if( (nBlob+35)>pgsz ){ | |
1553 nOvfl += (nBlob + 34)/pgsz; | |
1554 } | |
1555 } | |
1556 } | |
1557 } | |
1558 *pnOvfl = nOvfl; | |
1559 return rc; | |
1560 } | |
1561 | |
1562 /* | |
1563 ** Free all allocations associated with the iterator passed as the | |
1564 ** second argument. | |
1565 */ | |
1566 void sqlite3Fts3SegReaderFree(Fts3SegReader *pReader){ | |
1567 if( pReader && !fts3SegReaderIsPending(pReader) ){ | |
1568 sqlite3_free(pReader->zTerm); | |
1569 if( !fts3SegReaderIsRootOnly(pReader) ){ | |
1570 sqlite3_free(pReader->aNode); | |
1571 sqlite3_blob_close(pReader->pBlob); | |
1572 } | |
1573 } | |
1574 sqlite3_free(pReader); | |
1575 } | |
1576 | |
1577 /* | |
1578 ** Allocate a new SegReader object. | |
1579 */ | |
1580 int sqlite3Fts3SegReaderNew( | |
1581 int iAge, /* Segment "age". */ | |
1582 int bLookup, /* True for a lookup only */ | |
1583 sqlite3_int64 iStartLeaf, /* First leaf to traverse */ | |
1584 sqlite3_int64 iEndLeaf, /* Final leaf to traverse */ | |
1585 sqlite3_int64 iEndBlock, /* Final block of segment */ | |
1586 const char *zRoot, /* Buffer containing root node */ | |
1587 int nRoot, /* Size of buffer containing root node */ | |
1588 Fts3SegReader **ppReader /* OUT: Allocated Fts3SegReader */ | |
1589 ){ | |
1590 Fts3SegReader *pReader; /* Newly allocated SegReader object */ | |
1591 int nExtra = 0; /* Bytes to allocate segment root node */ | |
1592 | |
1593 assert( iStartLeaf<=iEndLeaf ); | |
1594 if( iStartLeaf==0 ){ | |
1595 nExtra = nRoot + FTS3_NODE_PADDING; | |
1596 } | |
1597 | |
1598 pReader = (Fts3SegReader *)sqlite3_malloc(sizeof(Fts3SegReader) + nExtra); | |
1599 if( !pReader ){ | |
1600 return SQLITE_NOMEM; | |
1601 } | |
1602 memset(pReader, 0, sizeof(Fts3SegReader)); | |
1603 pReader->iIdx = iAge; | |
1604 pReader->bLookup = bLookup!=0; | |
1605 pReader->iStartBlock = iStartLeaf; | |
1606 pReader->iLeafEndBlock = iEndLeaf; | |
1607 pReader->iEndBlock = iEndBlock; | |
1608 | |
1609 if( nExtra ){ | |
1610 /* The entire segment is stored in the root node. */ | |
1611 pReader->aNode = (char *)&pReader[1]; | |
1612 pReader->rootOnly = 1; | |
1613 pReader->nNode = nRoot; | |
1614 memcpy(pReader->aNode, zRoot, nRoot); | |
1615 memset(&pReader->aNode[nRoot], 0, FTS3_NODE_PADDING); | |
1616 }else{ | |
1617 pReader->iCurrentBlock = iStartLeaf-1; | |
1618 } | |
1619 *ppReader = pReader; | |
1620 return SQLITE_OK; | |
1621 } | |
1622 | |
1623 /* | |
1624 ** This is a comparison function used as a qsort() callback when sorting | |
1625 ** an array of pending terms by term. This occurs as part of flushing | |
1626 ** the contents of the pending-terms hash table to the database. | |
1627 */ | |
1628 static int fts3CompareElemByTerm(const void *lhs, const void *rhs){ | |
1629 char *z1 = fts3HashKey(*(Fts3HashElem **)lhs); | |
1630 char *z2 = fts3HashKey(*(Fts3HashElem **)rhs); | |
1631 int n1 = fts3HashKeysize(*(Fts3HashElem **)lhs); | |
1632 int n2 = fts3HashKeysize(*(Fts3HashElem **)rhs); | |
1633 | |
1634 int n = (n1<n2 ? n1 : n2); | |
1635 int c = memcmp(z1, z2, n); | |
1636 if( c==0 ){ | |
1637 c = n1 - n2; | |
1638 } | |
1639 return c; | |
1640 } | |
1641 | |
1642 /* | |
1643 ** This function is used to allocate an Fts3SegReader that iterates through | |
1644 ** a subset of the terms stored in the Fts3Table.pendingTerms array. | |
1645 ** | |
1646 ** If the isPrefixIter parameter is zero, then the returned SegReader iterates | |
1647 ** through each term in the pending-terms table. Or, if isPrefixIter is | |
1648 ** non-zero, it iterates through each term and its prefixes. For example, if | |
1649 ** the pending terms hash table contains the terms "sqlite", "mysql" and | |
1650 ** "firebird", then the iterator visits the following 'terms' (in the order | |
1651 ** shown): | |
1652 ** | |
1653 ** f fi fir fire fireb firebi firebir firebird | |
1654 ** m my mys mysq mysql | |
1655 ** s sq sql sqli sqlit sqlite | |
1656 ** | |
1657 ** Whereas if isPrefixIter is zero, the terms visited are: | |
1658 ** | |
1659 ** firebird mysql sqlite | |
1660 */ | |
1661 int sqlite3Fts3SegReaderPending( | |
1662 Fts3Table *p, /* Virtual table handle */ | |
1663 int iIndex, /* Index for p->aIndex */ | |
1664 const char *zTerm, /* Term to search for */ | |
1665 int nTerm, /* Size of buffer zTerm */ | |
1666 int bPrefix, /* True for a prefix iterator */ | |
1667 Fts3SegReader **ppReader /* OUT: SegReader for pending-terms */ | |
1668 ){ | |
1669 Fts3SegReader *pReader = 0; /* Fts3SegReader object to return */ | |
1670 Fts3HashElem *pE; /* Iterator variable */ | |
1671 Fts3HashElem **aElem = 0; /* Array of term hash entries to scan */ | |
1672 int nElem = 0; /* Size of array at aElem */ | |
1673 int rc = SQLITE_OK; /* Return Code */ | |
1674 Fts3Hash *pHash; | |
1675 | |
1676 pHash = &p->aIndex[iIndex].hPending; | |
1677 if( bPrefix ){ | |
1678 int nAlloc = 0; /* Size of allocated array at aElem */ | |
1679 | |
1680 for(pE=fts3HashFirst(pHash); pE; pE=fts3HashNext(pE)){ | |
1681 char *zKey = (char *)fts3HashKey(pE); | |
1682 int nKey = fts3HashKeysize(pE); | |
1683 if( nTerm==0 || (nKey>=nTerm && 0==memcmp(zKey, zTerm, nTerm)) ){ | |
1684 if( nElem==nAlloc ){ | |
1685 Fts3HashElem **aElem2; | |
1686 nAlloc += 16; | |
1687 aElem2 = (Fts3HashElem **)sqlite3_realloc( | |
1688 aElem, nAlloc*sizeof(Fts3HashElem *) | |
1689 ); | |
1690 if( !aElem2 ){ | |
1691 rc = SQLITE_NOMEM; | |
1692 nElem = 0; | |
1693 break; | |
1694 } | |
1695 aElem = aElem2; | |
1696 } | |
1697 | |
1698 aElem[nElem++] = pE; | |
1699 } | |
1700 } | |
1701 | |
1702 /* If more than one term matches the prefix, sort the Fts3HashElem | |
1703 ** objects in term order using qsort(). This uses the same comparison | |
1704 ** callback as is used when flushing terms to disk. | |
1705 */ | |
1706 if( nElem>1 ){ | |
1707 qsort(aElem, nElem, sizeof(Fts3HashElem *), fts3CompareElemByTerm); | |
1708 } | |
1709 | |
1710 }else{ | |
1711 /* The query is a simple term lookup that matches at most one term in | |
1712 ** the index. All that is required is a straight hash-lookup. | |
1713 ** | |
1714 ** Because the stack address of pE may be accessed via the aElem pointer | |
1715 ** below, the "Fts3HashElem *pE" must be declared so that it is valid | |
1716 ** within this entire function, not just this "else{...}" block. | |
1717 */ | |
1718 pE = fts3HashFindElem(pHash, zTerm, nTerm); | |
1719 if( pE ){ | |
1720 aElem = &pE; | |
1721 nElem = 1; | |
1722 } | |
1723 } | |
1724 | |
1725 if( nElem>0 ){ | |
1726 int nByte = sizeof(Fts3SegReader) + (nElem+1)*sizeof(Fts3HashElem *); | |
1727 pReader = (Fts3SegReader *)sqlite3_malloc(nByte); | |
1728 if( !pReader ){ | |
1729 rc = SQLITE_NOMEM; | |
1730 }else{ | |
1731 memset(pReader, 0, nByte); | |
1732 pReader->iIdx = 0x7FFFFFFF; | |
1733 pReader->ppNextElem = (Fts3HashElem **)&pReader[1]; | |
1734 memcpy(pReader->ppNextElem, aElem, nElem*sizeof(Fts3HashElem *)); | |
1735 } | |
1736 } | |
1737 | |
1738 if( bPrefix ){ | |
1739 sqlite3_free(aElem); | |
1740 } | |
1741 *ppReader = pReader; | |
1742 return rc; | |
1743 } | |
1744 | |
1745 /* | |
1746 ** Compare the entries pointed to by two Fts3SegReader structures. | |
1747 ** Comparison is as follows: | |
1748 ** | |
1749 ** 1) EOF is greater than not EOF. | |
1750 ** | |
1751 ** 2) The current terms (if any) are compared using memcmp(). If one | |
1752 ** term is a prefix of another, the longer term is considered the | |
1753 ** larger. | |
1754 ** | |
1755 ** 3) By segment age. An older segment is considered larger. | |
1756 */ | |
1757 static int fts3SegReaderCmp(Fts3SegReader *pLhs, Fts3SegReader *pRhs){ | |
1758 int rc; | |
1759 if( pLhs->aNode && pRhs->aNode ){ | |
1760 int rc2 = pLhs->nTerm - pRhs->nTerm; | |
1761 if( rc2<0 ){ | |
1762 rc = memcmp(pLhs->zTerm, pRhs->zTerm, pLhs->nTerm); | |
1763 }else{ | |
1764 rc = memcmp(pLhs->zTerm, pRhs->zTerm, pRhs->nTerm); | |
1765 } | |
1766 if( rc==0 ){ | |
1767 rc = rc2; | |
1768 } | |
1769 }else{ | |
1770 rc = (pLhs->aNode==0) - (pRhs->aNode==0); | |
1771 } | |
1772 if( rc==0 ){ | |
1773 rc = pRhs->iIdx - pLhs->iIdx; | |
1774 } | |
1775 assert( rc!=0 ); | |
1776 return rc; | |
1777 } | |
1778 | |
1779 /* | |
1780 ** A different comparison function for SegReader structures. In this | |
1781 ** version, it is assumed that each SegReader points to an entry in | |
1782 ** a doclist for identical terms. Comparison is made as follows: | |
1783 ** | |
1784 ** 1) EOF (end of doclist in this case) is greater than not EOF. | |
1785 ** | |
1786 ** 2) By current docid. | |
1787 ** | |
1788 ** 3) By segment age. An older segment is considered larger. | |
1789 */ | |
1790 static int fts3SegReaderDoclistCmp(Fts3SegReader *pLhs, Fts3SegReader *pRhs){ | |
1791 int rc = (pLhs->pOffsetList==0)-(pRhs->pOffsetList==0); | |
1792 if( rc==0 ){ | |
1793 if( pLhs->iDocid==pRhs->iDocid ){ | |
1794 rc = pRhs->iIdx - pLhs->iIdx; | |
1795 }else{ | |
1796 rc = (pLhs->iDocid > pRhs->iDocid) ? 1 : -1; | |
1797 } | |
1798 } | |
1799 assert( pLhs->aNode && pRhs->aNode ); | |
1800 return rc; | |
1801 } | |
1802 static int fts3SegReaderDoclistCmpRev(Fts3SegReader *pLhs, Fts3SegReader *pRhs){ | |
1803 int rc = (pLhs->pOffsetList==0)-(pRhs->pOffsetList==0); | |
1804 if( rc==0 ){ | |
1805 if( pLhs->iDocid==pRhs->iDocid ){ | |
1806 rc = pRhs->iIdx - pLhs->iIdx; | |
1807 }else{ | |
1808 rc = (pLhs->iDocid < pRhs->iDocid) ? 1 : -1; | |
1809 } | |
1810 } | |
1811 assert( pLhs->aNode && pRhs->aNode ); | |
1812 return rc; | |
1813 } | |
1814 | |
1815 /* | |
1816 ** Compare the term that the Fts3SegReader object passed as the first argument | |
1817 ** points to with the term specified by arguments zTerm and nTerm. | |
1818 ** | |
1819 ** If the pSeg iterator is already at EOF, return 0. Otherwise, return | |
1820 ** -ve if the pSeg term is less than zTerm/nTerm, 0 if the two terms are | |
1821 ** equal, or +ve if the pSeg term is greater than zTerm/nTerm. | |
1822 */ | |
1823 static int fts3SegReaderTermCmp( | |
1824 Fts3SegReader *pSeg, /* Segment reader object */ | |
1825 const char *zTerm, /* Term to compare to */ | |
1826 int nTerm /* Size of term zTerm in bytes */ | |
1827 ){ | |
1828 int res = 0; | |
1829 if( pSeg->aNode ){ | |
1830 if( pSeg->nTerm>nTerm ){ | |
1831 res = memcmp(pSeg->zTerm, zTerm, nTerm); | |
1832 }else{ | |
1833 res = memcmp(pSeg->zTerm, zTerm, pSeg->nTerm); | |
1834 } | |
1835 if( res==0 ){ | |
1836 res = pSeg->nTerm-nTerm; | |
1837 } | |
1838 } | |
1839 return res; | |
1840 } | |
1841 | |
1842 /* | |
1843 ** Argument apSegment is an array of nSegment elements. It is known that | |
1844 ** the final (nSegment-nSuspect) members are already in sorted order | |
1845 ** (according to the comparison function provided). This function shuffles | |
1846 ** the array around until all entries are in sorted order. | |
1847 */ | |
1848 static void fts3SegReaderSort( | |
1849 Fts3SegReader **apSegment, /* Array to sort entries of */ | |
1850 int nSegment, /* Size of apSegment array */ | |
1851 int nSuspect, /* Unsorted entry count */ | |
1852 int (*xCmp)(Fts3SegReader *, Fts3SegReader *) /* Comparison function */ | |
1853 ){ | |
1854 int i; /* Iterator variable */ | |
1855 | |
1856 assert( nSuspect<=nSegment ); | |
1857 | |
1858 if( nSuspect==nSegment ) nSuspect--; | |
1859 for(i=nSuspect-1; i>=0; i--){ | |
1860 int j; | |
1861 for(j=i; j<(nSegment-1); j++){ | |
1862 Fts3SegReader *pTmp; | |
1863 if( xCmp(apSegment[j], apSegment[j+1])<0 ) break; | |
1864 pTmp = apSegment[j+1]; | |
1865 apSegment[j+1] = apSegment[j]; | |
1866 apSegment[j] = pTmp; | |
1867 } | |
1868 } | |
1869 | |
1870 #ifndef NDEBUG | |
1871 /* Check that the list really is sorted now. */ | |
1872 for(i=0; i<(nSuspect-1); i++){ | |
1873 assert( xCmp(apSegment[i], apSegment[i+1])<0 ); | |
1874 } | |
1875 #endif | |
1876 } | |
1877 | |
1878 /* | |
1879 ** Insert a record into the %_segments table. | |
1880 */ | |
1881 static int fts3WriteSegment( | |
1882 Fts3Table *p, /* Virtual table handle */ | |
1883 sqlite3_int64 iBlock, /* Block id for new block */ | |
1884 char *z, /* Pointer to buffer containing block data */ | |
1885 int n /* Size of buffer z in bytes */ | |
1886 ){ | |
1887 sqlite3_stmt *pStmt; | |
1888 int rc = fts3SqlStmt(p, SQL_INSERT_SEGMENTS, &pStmt, 0); | |
1889 if( rc==SQLITE_OK ){ | |
1890 sqlite3_bind_int64(pStmt, 1, iBlock); | |
1891 sqlite3_bind_blob(pStmt, 2, z, n, SQLITE_STATIC); | |
1892 sqlite3_step(pStmt); | |
1893 rc = sqlite3_reset(pStmt); | |
1894 } | |
1895 return rc; | |
1896 } | |
1897 | |
1898 /* | |
1899 ** Find the largest relative level number in the table. If successful, set | |
1900 ** *pnMax to this value and return SQLITE_OK. Otherwise, if an error occurs, | |
1901 ** set *pnMax to zero and return an SQLite error code. | |
1902 */ | |
1903 int sqlite3Fts3MaxLevel(Fts3Table *p, int *pnMax){ | |
1904 int rc; | |
1905 int mxLevel = 0; | |
1906 sqlite3_stmt *pStmt = 0; | |
1907 | |
1908 rc = fts3SqlStmt(p, SQL_SELECT_MXLEVEL, &pStmt, 0); | |
1909 if( rc==SQLITE_OK ){ | |
1910 if( SQLITE_ROW==sqlite3_step(pStmt) ){ | |
1911 mxLevel = sqlite3_column_int(pStmt, 0); | |
1912 } | |
1913 rc = sqlite3_reset(pStmt); | |
1914 } | |
1915 *pnMax = mxLevel; | |
1916 return rc; | |
1917 } | |
1918 | |
1919 /* | |
1920 ** Insert a record into the %_segdir table. | |
1921 */ | |
1922 static int fts3WriteSegdir( | |
1923 Fts3Table *p, /* Virtual table handle */ | |
1924 sqlite3_int64 iLevel, /* Value for "level" field (absolute level) */ | |
1925 int iIdx, /* Value for "idx" field */ | |
1926 sqlite3_int64 iStartBlock, /* Value for "start_block" field */ | |
1927 sqlite3_int64 iLeafEndBlock, /* Value for "leaves_end_block" field */ | |
1928 sqlite3_int64 iEndBlock, /* Value for "end_block" field */ | |
1929 sqlite3_int64 nLeafData, /* Bytes of leaf data in segment */ | |
1930 char *zRoot, /* Blob value for "root" field */ | |
1931 int nRoot /* Number of bytes in buffer zRoot */ | |
1932 ){ | |
1933 sqlite3_stmt *pStmt; | |
1934 int rc = fts3SqlStmt(p, SQL_INSERT_SEGDIR, &pStmt, 0); | |
1935 if( rc==SQLITE_OK ){ | |
1936 sqlite3_bind_int64(pStmt, 1, iLevel); | |
1937 sqlite3_bind_int(pStmt, 2, iIdx); | |
1938 sqlite3_bind_int64(pStmt, 3, iStartBlock); | |
1939 sqlite3_bind_int64(pStmt, 4, iLeafEndBlock); | |
1940 if( nLeafData==0 ){ | |
1941 sqlite3_bind_int64(pStmt, 5, iEndBlock); | |
1942 }else{ | |
1943 char *zEnd = sqlite3_mprintf("%lld %lld", iEndBlock, nLeafData); | |
1944 if( !zEnd ) return SQLITE_NOMEM; | |
1945 sqlite3_bind_text(pStmt, 5, zEnd, -1, sqlite3_free); | |
1946 } | |
1947 sqlite3_bind_blob(pStmt, 6, zRoot, nRoot, SQLITE_STATIC); | |
1948 sqlite3_step(pStmt); | |
1949 rc = sqlite3_reset(pStmt); | |
1950 } | |
1951 return rc; | |
1952 } | |
1953 | |
1954 /* | |
1955 ** Return the size of the common prefix (if any) shared by zPrev and | |
1956 ** zNext, in bytes. For example, | |
1957 ** | |
1958 ** fts3PrefixCompress("abc", 3, "abcdef", 6) // returns 3 | |
1959 ** fts3PrefixCompress("abX", 3, "abcdef", 6) // returns 2 | |
1960 ** fts3PrefixCompress("abX", 3, "Xbcdef", 6) // returns 0 | |
1961 */ | |
1962 static int fts3PrefixCompress( | |
1963 const char *zPrev, /* Buffer containing previous term */ | |
1964 int nPrev, /* Size of buffer zPrev in bytes */ | |
1965 const char *zNext, /* Buffer containing next term */ | |
1966 int nNext /* Size of buffer zNext in bytes */ | |
1967 ){ | |
1968 int n; | |
1969 UNUSED_PARAMETER(nNext); | |
1970 for(n=0; n<nPrev && zPrev[n]==zNext[n]; n++); | |
1971 return n; | |
1972 } | |
1973 | |
1974 /* | |
1975 ** Add term zTerm to the SegmentNode. It is guaranteed that zTerm is larger | |
1976 ** (according to memcmp) than the previous term. | |
1977 */ | |
1978 static int fts3NodeAddTerm( | |
1979 Fts3Table *p, /* Virtual table handle */ | |
1980 SegmentNode **ppTree, /* IN/OUT: SegmentNode handle */ | |
1981 int isCopyTerm, /* True if zTerm/nTerm is transient */ | |
1982 const char *zTerm, /* Pointer to buffer containing term */ | |
1983 int nTerm /* Size of term in bytes */ | |
1984 ){ | |
1985 SegmentNode *pTree = *ppTree; | |
1986 int rc; | |
1987 SegmentNode *pNew; | |
1988 | |
1989 /* First try to append the term to the current node. Return early if | |
1990 ** this is possible. | |
1991 */ | |
1992 if( pTree ){ | |
1993 int nData = pTree->nData; /* Current size of node in bytes */ | |
1994 int nReq = nData; /* Required space after adding zTerm */ | |
1995 int nPrefix; /* Number of bytes of prefix compression */ | |
1996 int nSuffix; /* Suffix length */ | |
1997 | |
1998 nPrefix = fts3PrefixCompress(pTree->zTerm, pTree->nTerm, zTerm, nTerm); | |
1999 nSuffix = nTerm-nPrefix; | |
2000 | |
2001 nReq += sqlite3Fts3VarintLen(nPrefix)+sqlite3Fts3VarintLen(nSuffix)+nSuffix; | |
2002 if( nReq<=p->nNodeSize || !pTree->zTerm ){ | |
2003 | |
2004 if( nReq>p->nNodeSize ){ | |
2005 /* An unusual case: this is the first term to be added to the node | |
2006 ** and the static node buffer (p->nNodeSize bytes) is not large | |
2007 ** enough. Use a separately malloced buffer instead This wastes | |
2008 ** p->nNodeSize bytes, but since this scenario only comes about when | |
2009 ** the database contain two terms that share a prefix of almost 2KB, | |
2010 ** this is not expected to be a serious problem. | |
2011 */ | |
2012 assert( pTree->aData==(char *)&pTree[1] ); | |
2013 pTree->aData = (char *)sqlite3_malloc(nReq); | |
2014 if( !pTree->aData ){ | |
2015 return SQLITE_NOMEM; | |
2016 } | |
2017 } | |
2018 | |
2019 if( pTree->zTerm ){ | |
2020 /* There is no prefix-length field for first term in a node */ | |
2021 nData += sqlite3Fts3PutVarint(&pTree->aData[nData], nPrefix); | |
2022 } | |
2023 | |
2024 nData += sqlite3Fts3PutVarint(&pTree->aData[nData], nSuffix); | |
2025 memcpy(&pTree->aData[nData], &zTerm[nPrefix], nSuffix); | |
2026 pTree->nData = nData + nSuffix; | |
2027 pTree->nEntry++; | |
2028 | |
2029 if( isCopyTerm ){ | |
2030 if( pTree->nMalloc<nTerm ){ | |
2031 char *zNew = sqlite3_realloc(pTree->zMalloc, nTerm*2); | |
2032 if( !zNew ){ | |
2033 return SQLITE_NOMEM; | |
2034 } | |
2035 pTree->nMalloc = nTerm*2; | |
2036 pTree->zMalloc = zNew; | |
2037 } | |
2038 pTree->zTerm = pTree->zMalloc; | |
2039 memcpy(pTree->zTerm, zTerm, nTerm); | |
2040 pTree->nTerm = nTerm; | |
2041 }else{ | |
2042 pTree->zTerm = (char *)zTerm; | |
2043 pTree->nTerm = nTerm; | |
2044 } | |
2045 return SQLITE_OK; | |
2046 } | |
2047 } | |
2048 | |
2049 /* If control flows to here, it was not possible to append zTerm to the | |
2050 ** current node. Create a new node (a right-sibling of the current node). | |
2051 ** If this is the first node in the tree, the term is added to it. | |
2052 ** | |
2053 ** Otherwise, the term is not added to the new node, it is left empty for | |
2054 ** now. Instead, the term is inserted into the parent of pTree. If pTree | |
2055 ** has no parent, one is created here. | |
2056 */ | |
2057 pNew = (SegmentNode *)sqlite3_malloc(sizeof(SegmentNode) + p->nNodeSize); | |
2058 if( !pNew ){ | |
2059 return SQLITE_NOMEM; | |
2060 } | |
2061 memset(pNew, 0, sizeof(SegmentNode)); | |
2062 pNew->nData = 1 + FTS3_VARINT_MAX; | |
2063 pNew->aData = (char *)&pNew[1]; | |
2064 | |
2065 if( pTree ){ | |
2066 SegmentNode *pParent = pTree->pParent; | |
2067 rc = fts3NodeAddTerm(p, &pParent, isCopyTerm, zTerm, nTerm); | |
2068 if( pTree->pParent==0 ){ | |
2069 pTree->pParent = pParent; | |
2070 } | |
2071 pTree->pRight = pNew; | |
2072 pNew->pLeftmost = pTree->pLeftmost; | |
2073 pNew->pParent = pParent; | |
2074 pNew->zMalloc = pTree->zMalloc; | |
2075 pNew->nMalloc = pTree->nMalloc; | |
2076 pTree->zMalloc = 0; | |
2077 }else{ | |
2078 pNew->pLeftmost = pNew; | |
2079 rc = fts3NodeAddTerm(p, &pNew, isCopyTerm, zTerm, nTerm); | |
2080 } | |
2081 | |
2082 *ppTree = pNew; | |
2083 return rc; | |
2084 } | |
2085 | |
2086 /* | |
2087 ** Helper function for fts3NodeWrite(). | |
2088 */ | |
2089 static int fts3TreeFinishNode( | |
2090 SegmentNode *pTree, | |
2091 int iHeight, | |
2092 sqlite3_int64 iLeftChild | |
2093 ){ | |
2094 int nStart; | |
2095 assert( iHeight>=1 && iHeight<128 ); | |
2096 nStart = FTS3_VARINT_MAX - sqlite3Fts3VarintLen(iLeftChild); | |
2097 pTree->aData[nStart] = (char)iHeight; | |
2098 sqlite3Fts3PutVarint(&pTree->aData[nStart+1], iLeftChild); | |
2099 return nStart; | |
2100 } | |
2101 | |
2102 /* | |
2103 ** Write the buffer for the segment node pTree and all of its peers to the | |
2104 ** database. Then call this function recursively to write the parent of | |
2105 ** pTree and its peers to the database. | |
2106 ** | |
2107 ** Except, if pTree is a root node, do not write it to the database. Instead, | |
2108 ** set output variables *paRoot and *pnRoot to contain the root node. | |
2109 ** | |
2110 ** If successful, SQLITE_OK is returned and output variable *piLast is | |
2111 ** set to the largest blockid written to the database (or zero if no | |
2112 ** blocks were written to the db). Otherwise, an SQLite error code is | |
2113 ** returned. | |
2114 */ | |
2115 static int fts3NodeWrite( | |
2116 Fts3Table *p, /* Virtual table handle */ | |
2117 SegmentNode *pTree, /* SegmentNode handle */ | |
2118 int iHeight, /* Height of this node in tree */ | |
2119 sqlite3_int64 iLeaf, /* Block id of first leaf node */ | |
2120 sqlite3_int64 iFree, /* Block id of next free slot in %_segments */ | |
2121 sqlite3_int64 *piLast, /* OUT: Block id of last entry written */ | |
2122 char **paRoot, /* OUT: Data for root node */ | |
2123 int *pnRoot /* OUT: Size of root node in bytes */ | |
2124 ){ | |
2125 int rc = SQLITE_OK; | |
2126 | |
2127 if( !pTree->pParent ){ | |
2128 /* Root node of the tree. */ | |
2129 int nStart = fts3TreeFinishNode(pTree, iHeight, iLeaf); | |
2130 *piLast = iFree-1; | |
2131 *pnRoot = pTree->nData - nStart; | |
2132 *paRoot = &pTree->aData[nStart]; | |
2133 }else{ | |
2134 SegmentNode *pIter; | |
2135 sqlite3_int64 iNextFree = iFree; | |
2136 sqlite3_int64 iNextLeaf = iLeaf; | |
2137 for(pIter=pTree->pLeftmost; pIter && rc==SQLITE_OK; pIter=pIter->pRight){ | |
2138 int nStart = fts3TreeFinishNode(pIter, iHeight, iNextLeaf); | |
2139 int nWrite = pIter->nData - nStart; | |
2140 | |
2141 rc = fts3WriteSegment(p, iNextFree, &pIter->aData[nStart], nWrite); | |
2142 iNextFree++; | |
2143 iNextLeaf += (pIter->nEntry+1); | |
2144 } | |
2145 if( rc==SQLITE_OK ){ | |
2146 assert( iNextLeaf==iFree ); | |
2147 rc = fts3NodeWrite( | |
2148 p, pTree->pParent, iHeight+1, iFree, iNextFree, piLast, paRoot, pnRoot | |
2149 ); | |
2150 } | |
2151 } | |
2152 | |
2153 return rc; | |
2154 } | |
2155 | |
2156 /* | |
2157 ** Free all memory allocations associated with the tree pTree. | |
2158 */ | |
2159 static void fts3NodeFree(SegmentNode *pTree){ | |
2160 if( pTree ){ | |
2161 SegmentNode *p = pTree->pLeftmost; | |
2162 fts3NodeFree(p->pParent); | |
2163 while( p ){ | |
2164 SegmentNode *pRight = p->pRight; | |
2165 if( p->aData!=(char *)&p[1] ){ | |
2166 sqlite3_free(p->aData); | |
2167 } | |
2168 assert( pRight==0 || p->zMalloc==0 ); | |
2169 sqlite3_free(p->zMalloc); | |
2170 sqlite3_free(p); | |
2171 p = pRight; | |
2172 } | |
2173 } | |
2174 } | |
2175 | |
2176 /* | |
2177 ** Add a term to the segment being constructed by the SegmentWriter object | |
2178 ** *ppWriter. When adding the first term to a segment, *ppWriter should | |
2179 ** be passed NULL. This function will allocate a new SegmentWriter object | |
2180 ** and return it via the input/output variable *ppWriter in this case. | |
2181 ** | |
2182 ** If successful, SQLITE_OK is returned. Otherwise, an SQLite error code. | |
2183 */ | |
2184 static int fts3SegWriterAdd( | |
2185 Fts3Table *p, /* Virtual table handle */ | |
2186 SegmentWriter **ppWriter, /* IN/OUT: SegmentWriter handle */ | |
2187 int isCopyTerm, /* True if buffer zTerm must be copied */ | |
2188 const char *zTerm, /* Pointer to buffer containing term */ | |
2189 int nTerm, /* Size of term in bytes */ | |
2190 const char *aDoclist, /* Pointer to buffer containing doclist */ | |
2191 int nDoclist /* Size of doclist in bytes */ | |
2192 ){ | |
2193 int nPrefix; /* Size of term prefix in bytes */ | |
2194 int nSuffix; /* Size of term suffix in bytes */ | |
2195 int nReq; /* Number of bytes required on leaf page */ | |
2196 int nData; | |
2197 SegmentWriter *pWriter = *ppWriter; | |
2198 | |
2199 if( !pWriter ){ | |
2200 int rc; | |
2201 sqlite3_stmt *pStmt; | |
2202 | |
2203 /* Allocate the SegmentWriter structure */ | |
2204 pWriter = (SegmentWriter *)sqlite3_malloc(sizeof(SegmentWriter)); | |
2205 if( !pWriter ) return SQLITE_NOMEM; | |
2206 memset(pWriter, 0, sizeof(SegmentWriter)); | |
2207 *ppWriter = pWriter; | |
2208 | |
2209 /* Allocate a buffer in which to accumulate data */ | |
2210 pWriter->aData = (char *)sqlite3_malloc(p->nNodeSize); | |
2211 if( !pWriter->aData ) return SQLITE_NOMEM; | |
2212 pWriter->nSize = p->nNodeSize; | |
2213 | |
2214 /* Find the next free blockid in the %_segments table */ | |
2215 rc = fts3SqlStmt(p, SQL_NEXT_SEGMENTS_ID, &pStmt, 0); | |
2216 if( rc!=SQLITE_OK ) return rc; | |
2217 if( SQLITE_ROW==sqlite3_step(pStmt) ){ | |
2218 pWriter->iFree = sqlite3_column_int64(pStmt, 0); | |
2219 pWriter->iFirst = pWriter->iFree; | |
2220 } | |
2221 rc = sqlite3_reset(pStmt); | |
2222 if( rc!=SQLITE_OK ) return rc; | |
2223 } | |
2224 nData = pWriter->nData; | |
2225 | |
2226 nPrefix = fts3PrefixCompress(pWriter->zTerm, pWriter->nTerm, zTerm, nTerm); | |
2227 nSuffix = nTerm-nPrefix; | |
2228 | |
2229 /* Figure out how many bytes are required by this new entry */ | |
2230 nReq = sqlite3Fts3VarintLen(nPrefix) + /* varint containing prefix size */ | |
2231 sqlite3Fts3VarintLen(nSuffix) + /* varint containing suffix size */ | |
2232 nSuffix + /* Term suffix */ | |
2233 sqlite3Fts3VarintLen(nDoclist) + /* Size of doclist */ | |
2234 nDoclist; /* Doclist data */ | |
2235 | |
2236 if( nData>0 && nData+nReq>p->nNodeSize ){ | |
2237 int rc; | |
2238 | |
2239 /* The current leaf node is full. Write it out to the database. */ | |
2240 rc = fts3WriteSegment(p, pWriter->iFree++, pWriter->aData, nData); | |
2241 if( rc!=SQLITE_OK ) return rc; | |
2242 p->nLeafAdd++; | |
2243 | |
2244 /* Add the current term to the interior node tree. The term added to | |
2245 ** the interior tree must: | |
2246 ** | |
2247 ** a) be greater than the largest term on the leaf node just written | |
2248 ** to the database (still available in pWriter->zTerm), and | |
2249 ** | |
2250 ** b) be less than or equal to the term about to be added to the new | |
2251 ** leaf node (zTerm/nTerm). | |
2252 ** | |
2253 ** In other words, it must be the prefix of zTerm 1 byte longer than | |
2254 ** the common prefix (if any) of zTerm and pWriter->zTerm. | |
2255 */ | |
2256 assert( nPrefix<nTerm ); | |
2257 rc = fts3NodeAddTerm(p, &pWriter->pTree, isCopyTerm, zTerm, nPrefix+1); | |
2258 if( rc!=SQLITE_OK ) return rc; | |
2259 | |
2260 nData = 0; | |
2261 pWriter->nTerm = 0; | |
2262 | |
2263 nPrefix = 0; | |
2264 nSuffix = nTerm; | |
2265 nReq = 1 + /* varint containing prefix size */ | |
2266 sqlite3Fts3VarintLen(nTerm) + /* varint containing suffix size */ | |
2267 nTerm + /* Term suffix */ | |
2268 sqlite3Fts3VarintLen(nDoclist) + /* Size of doclist */ | |
2269 nDoclist; /* Doclist data */ | |
2270 } | |
2271 | |
2272 /* Increase the total number of bytes written to account for the new entry. */ | |
2273 pWriter->nLeafData += nReq; | |
2274 | |
2275 /* If the buffer currently allocated is too small for this entry, realloc | |
2276 ** the buffer to make it large enough. | |
2277 */ | |
2278 if( nReq>pWriter->nSize ){ | |
2279 char *aNew = sqlite3_realloc(pWriter->aData, nReq); | |
2280 if( !aNew ) return SQLITE_NOMEM; | |
2281 pWriter->aData = aNew; | |
2282 pWriter->nSize = nReq; | |
2283 } | |
2284 assert( nData+nReq<=pWriter->nSize ); | |
2285 | |
2286 /* Append the prefix-compressed term and doclist to the buffer. */ | |
2287 nData += sqlite3Fts3PutVarint(&pWriter->aData[nData], nPrefix); | |
2288 nData += sqlite3Fts3PutVarint(&pWriter->aData[nData], nSuffix); | |
2289 memcpy(&pWriter->aData[nData], &zTerm[nPrefix], nSuffix); | |
2290 nData += nSuffix; | |
2291 nData += sqlite3Fts3PutVarint(&pWriter->aData[nData], nDoclist); | |
2292 memcpy(&pWriter->aData[nData], aDoclist, nDoclist); | |
2293 pWriter->nData = nData + nDoclist; | |
2294 | |
2295 /* Save the current term so that it can be used to prefix-compress the next. | |
2296 ** If the isCopyTerm parameter is true, then the buffer pointed to by | |
2297 ** zTerm is transient, so take a copy of the term data. Otherwise, just | |
2298 ** store a copy of the pointer. | |
2299 */ | |
2300 if( isCopyTerm ){ | |
2301 if( nTerm>pWriter->nMalloc ){ | |
2302 char *zNew = sqlite3_realloc(pWriter->zMalloc, nTerm*2); | |
2303 if( !zNew ){ | |
2304 return SQLITE_NOMEM; | |
2305 } | |
2306 pWriter->nMalloc = nTerm*2; | |
2307 pWriter->zMalloc = zNew; | |
2308 pWriter->zTerm = zNew; | |
2309 } | |
2310 assert( pWriter->zTerm==pWriter->zMalloc ); | |
2311 memcpy(pWriter->zTerm, zTerm, nTerm); | |
2312 }else{ | |
2313 pWriter->zTerm = (char *)zTerm; | |
2314 } | |
2315 pWriter->nTerm = nTerm; | |
2316 | |
2317 return SQLITE_OK; | |
2318 } | |
2319 | |
2320 /* | |
2321 ** Flush all data associated with the SegmentWriter object pWriter to the | |
2322 ** database. This function must be called after all terms have been added | |
2323 ** to the segment using fts3SegWriterAdd(). If successful, SQLITE_OK is | |
2324 ** returned. Otherwise, an SQLite error code. | |
2325 */ | |
2326 static int fts3SegWriterFlush( | |
2327 Fts3Table *p, /* Virtual table handle */ | |
2328 SegmentWriter *pWriter, /* SegmentWriter to flush to the db */ | |
2329 sqlite3_int64 iLevel, /* Value for 'level' column of %_segdir */ | |
2330 int iIdx /* Value for 'idx' column of %_segdir */ | |
2331 ){ | |
2332 int rc; /* Return code */ | |
2333 if( pWriter->pTree ){ | |
2334 sqlite3_int64 iLast = 0; /* Largest block id written to database */ | |
2335 sqlite3_int64 iLastLeaf; /* Largest leaf block id written to db */ | |
2336 char *zRoot = NULL; /* Pointer to buffer containing root node */ | |
2337 int nRoot = 0; /* Size of buffer zRoot */ | |
2338 | |
2339 iLastLeaf = pWriter->iFree; | |
2340 rc = fts3WriteSegment(p, pWriter->iFree++, pWriter->aData, pWriter->nData); | |
2341 if( rc==SQLITE_OK ){ | |
2342 rc = fts3NodeWrite(p, pWriter->pTree, 1, | |
2343 pWriter->iFirst, pWriter->iFree, &iLast, &zRoot, &nRoot); | |
2344 } | |
2345 if( rc==SQLITE_OK ){ | |
2346 rc = fts3WriteSegdir(p, iLevel, iIdx, | |
2347 pWriter->iFirst, iLastLeaf, iLast, pWriter->nLeafData, zRoot, nRoot); | |
2348 } | |
2349 }else{ | |
2350 /* The entire tree fits on the root node. Write it to the segdir table. */ | |
2351 rc = fts3WriteSegdir(p, iLevel, iIdx, | |
2352 0, 0, 0, pWriter->nLeafData, pWriter->aData, pWriter->nData); | |
2353 } | |
2354 p->nLeafAdd++; | |
2355 return rc; | |
2356 } | |
2357 | |
2358 /* | |
2359 ** Release all memory held by the SegmentWriter object passed as the | |
2360 ** first argument. | |
2361 */ | |
2362 static void fts3SegWriterFree(SegmentWriter *pWriter){ | |
2363 if( pWriter ){ | |
2364 sqlite3_free(pWriter->aData); | |
2365 sqlite3_free(pWriter->zMalloc); | |
2366 fts3NodeFree(pWriter->pTree); | |
2367 sqlite3_free(pWriter); | |
2368 } | |
2369 } | |
2370 | |
2371 /* | |
2372 ** The first value in the apVal[] array is assumed to contain an integer. | |
2373 ** This function tests if there exist any documents with docid values that | |
2374 ** are different from that integer. i.e. if deleting the document with docid | |
2375 ** pRowid would mean the FTS3 table were empty. | |
2376 ** | |
2377 ** If successful, *pisEmpty is set to true if the table is empty except for | |
2378 ** document pRowid, or false otherwise, and SQLITE_OK is returned. If an | |
2379 ** error occurs, an SQLite error code is returned. | |
2380 */ | |
2381 static int fts3IsEmpty(Fts3Table *p, sqlite3_value *pRowid, int *pisEmpty){ | |
2382 sqlite3_stmt *pStmt; | |
2383 int rc; | |
2384 if( p->zContentTbl ){ | |
2385 /* If using the content=xxx option, assume the table is never empty */ | |
2386 *pisEmpty = 0; | |
2387 rc = SQLITE_OK; | |
2388 }else{ | |
2389 rc = fts3SqlStmt(p, SQL_IS_EMPTY, &pStmt, &pRowid); | |
2390 if( rc==SQLITE_OK ){ | |
2391 if( SQLITE_ROW==sqlite3_step(pStmt) ){ | |
2392 *pisEmpty = sqlite3_column_int(pStmt, 0); | |
2393 } | |
2394 rc = sqlite3_reset(pStmt); | |
2395 } | |
2396 } | |
2397 return rc; | |
2398 } | |
2399 | |
2400 /* | |
2401 ** Set *pnMax to the largest segment level in the database for the index | |
2402 ** iIndex. | |
2403 ** | |
2404 ** Segment levels are stored in the 'level' column of the %_segdir table. | |
2405 ** | |
2406 ** Return SQLITE_OK if successful, or an SQLite error code if not. | |
2407 */ | |
2408 static int fts3SegmentMaxLevel( | |
2409 Fts3Table *p, | |
2410 int iLangid, | |
2411 int iIndex, | |
2412 sqlite3_int64 *pnMax | |
2413 ){ | |
2414 sqlite3_stmt *pStmt; | |
2415 int rc; | |
2416 assert( iIndex>=0 && iIndex<p->nIndex ); | |
2417 | |
2418 /* Set pStmt to the compiled version of: | |
2419 ** | |
2420 ** SELECT max(level) FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ? | |
2421 ** | |
2422 ** (1024 is actually the value of macro FTS3_SEGDIR_PREFIXLEVEL_STR). | |
2423 */ | |
2424 rc = fts3SqlStmt(p, SQL_SELECT_SEGDIR_MAX_LEVEL, &pStmt, 0); | |
2425 if( rc!=SQLITE_OK ) return rc; | |
2426 sqlite3_bind_int64(pStmt, 1, getAbsoluteLevel(p, iLangid, iIndex, 0)); | |
2427 sqlite3_bind_int64(pStmt, 2, | |
2428 getAbsoluteLevel(p, iLangid, iIndex, FTS3_SEGDIR_MAXLEVEL-1) | |
2429 ); | |
2430 if( SQLITE_ROW==sqlite3_step(pStmt) ){ | |
2431 *pnMax = sqlite3_column_int64(pStmt, 0); | |
2432 } | |
2433 return sqlite3_reset(pStmt); | |
2434 } | |
2435 | |
2436 /* | |
2437 ** iAbsLevel is an absolute level that may be assumed to exist within | |
2438 ** the database. This function checks if it is the largest level number | |
2439 ** within its index. Assuming no error occurs, *pbMax is set to 1 if | |
2440 ** iAbsLevel is indeed the largest level, or 0 otherwise, and SQLITE_OK | |
2441 ** is returned. If an error occurs, an error code is returned and the | |
2442 ** final value of *pbMax is undefined. | |
2443 */ | |
2444 static int fts3SegmentIsMaxLevel(Fts3Table *p, i64 iAbsLevel, int *pbMax){ | |
2445 | |
2446 /* Set pStmt to the compiled version of: | |
2447 ** | |
2448 ** SELECT max(level) FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ? | |
2449 ** | |
2450 ** (1024 is actually the value of macro FTS3_SEGDIR_PREFIXLEVEL_STR). | |
2451 */ | |
2452 sqlite3_stmt *pStmt; | |
2453 int rc = fts3SqlStmt(p, SQL_SELECT_SEGDIR_MAX_LEVEL, &pStmt, 0); | |
2454 if( rc!=SQLITE_OK ) return rc; | |
2455 sqlite3_bind_int64(pStmt, 1, iAbsLevel+1); | |
2456 sqlite3_bind_int64(pStmt, 2, | |
2457 ((iAbsLevel/FTS3_SEGDIR_MAXLEVEL)+1) * FTS3_SEGDIR_MAXLEVEL | |
2458 ); | |
2459 | |
2460 *pbMax = 0; | |
2461 if( SQLITE_ROW==sqlite3_step(pStmt) ){ | |
2462 *pbMax = sqlite3_column_type(pStmt, 0)==SQLITE_NULL; | |
2463 } | |
2464 return sqlite3_reset(pStmt); | |
2465 } | |
2466 | |
2467 /* | |
2468 ** Delete all entries in the %_segments table associated with the segment | |
2469 ** opened with seg-reader pSeg. This function does not affect the contents | |
2470 ** of the %_segdir table. | |
2471 */ | |
2472 static int fts3DeleteSegment( | |
2473 Fts3Table *p, /* FTS table handle */ | |
2474 Fts3SegReader *pSeg /* Segment to delete */ | |
2475 ){ | |
2476 int rc = SQLITE_OK; /* Return code */ | |
2477 if( pSeg->iStartBlock ){ | |
2478 sqlite3_stmt *pDelete; /* SQL statement to delete rows */ | |
2479 rc = fts3SqlStmt(p, SQL_DELETE_SEGMENTS_RANGE, &pDelete, 0); | |
2480 if( rc==SQLITE_OK ){ | |
2481 sqlite3_bind_int64(pDelete, 1, pSeg->iStartBlock); | |
2482 sqlite3_bind_int64(pDelete, 2, pSeg->iEndBlock); | |
2483 sqlite3_step(pDelete); | |
2484 rc = sqlite3_reset(pDelete); | |
2485 } | |
2486 } | |
2487 return rc; | |
2488 } | |
2489 | |
2490 /* | |
2491 ** This function is used after merging multiple segments into a single large | |
2492 ** segment to delete the old, now redundant, segment b-trees. Specifically, | |
2493 ** it: | |
2494 ** | |
2495 ** 1) Deletes all %_segments entries for the segments associated with | |
2496 ** each of the SegReader objects in the array passed as the third | |
2497 ** argument, and | |
2498 ** | |
2499 ** 2) deletes all %_segdir entries with level iLevel, or all %_segdir | |
2500 ** entries regardless of level if (iLevel<0). | |
2501 ** | |
2502 ** SQLITE_OK is returned if successful, otherwise an SQLite error code. | |
2503 */ | |
2504 static int fts3DeleteSegdir( | |
2505 Fts3Table *p, /* Virtual table handle */ | |
2506 int iLangid, /* Language id */ | |
2507 int iIndex, /* Index for p->aIndex */ | |
2508 int iLevel, /* Level of %_segdir entries to delete */ | |
2509 Fts3SegReader **apSegment, /* Array of SegReader objects */ | |
2510 int nReader /* Size of array apSegment */ | |
2511 ){ | |
2512 int rc = SQLITE_OK; /* Return Code */ | |
2513 int i; /* Iterator variable */ | |
2514 sqlite3_stmt *pDelete = 0; /* SQL statement to delete rows */ | |
2515 | |
2516 for(i=0; rc==SQLITE_OK && i<nReader; i++){ | |
2517 rc = fts3DeleteSegment(p, apSegment[i]); | |
2518 } | |
2519 if( rc!=SQLITE_OK ){ | |
2520 return rc; | |
2521 } | |
2522 | |
2523 assert( iLevel>=0 || iLevel==FTS3_SEGCURSOR_ALL ); | |
2524 if( iLevel==FTS3_SEGCURSOR_ALL ){ | |
2525 rc = fts3SqlStmt(p, SQL_DELETE_SEGDIR_RANGE, &pDelete, 0); | |
2526 if( rc==SQLITE_OK ){ | |
2527 sqlite3_bind_int64(pDelete, 1, getAbsoluteLevel(p, iLangid, iIndex, 0)); | |
2528 sqlite3_bind_int64(pDelete, 2, | |
2529 getAbsoluteLevel(p, iLangid, iIndex, FTS3_SEGDIR_MAXLEVEL-1) | |
2530 ); | |
2531 } | |
2532 }else{ | |
2533 rc = fts3SqlStmt(p, SQL_DELETE_SEGDIR_LEVEL, &pDelete, 0); | |
2534 if( rc==SQLITE_OK ){ | |
2535 sqlite3_bind_int64( | |
2536 pDelete, 1, getAbsoluteLevel(p, iLangid, iIndex, iLevel) | |
2537 ); | |
2538 } | |
2539 } | |
2540 | |
2541 if( rc==SQLITE_OK ){ | |
2542 sqlite3_step(pDelete); | |
2543 rc = sqlite3_reset(pDelete); | |
2544 } | |
2545 | |
2546 return rc; | |
2547 } | |
2548 | |
2549 /* | |
2550 ** When this function is called, buffer *ppList (size *pnList bytes) contains | |
2551 ** a position list that may (or may not) feature multiple columns. This | |
2552 ** function adjusts the pointer *ppList and the length *pnList so that they | |
2553 ** identify the subset of the position list that corresponds to column iCol. | |
2554 ** | |
2555 ** If there are no entries in the input position list for column iCol, then | |
2556 ** *pnList is set to zero before returning. | |
2557 ** | |
2558 ** If parameter bZero is non-zero, then any part of the input list following | |
2559 ** the end of the output list is zeroed before returning. | |
2560 */ | |
2561 static void fts3ColumnFilter( | |
2562 int iCol, /* Column to filter on */ | |
2563 int bZero, /* Zero out anything following *ppList */ | |
2564 char **ppList, /* IN/OUT: Pointer to position list */ | |
2565 int *pnList /* IN/OUT: Size of buffer *ppList in bytes */ | |
2566 ){ | |
2567 char *pList = *ppList; | |
2568 int nList = *pnList; | |
2569 char *pEnd = &pList[nList]; | |
2570 int iCurrent = 0; | |
2571 char *p = pList; | |
2572 | |
2573 assert( iCol>=0 ); | |
2574 while( 1 ){ | |
2575 char c = 0; | |
2576 while( p<pEnd && (c | *p)&0xFE ) c = *p++ & 0x80; | |
2577 | |
2578 if( iCol==iCurrent ){ | |
2579 nList = (int)(p - pList); | |
2580 break; | |
2581 } | |
2582 | |
2583 nList -= (int)(p - pList); | |
2584 pList = p; | |
2585 if( nList==0 ){ | |
2586 break; | |
2587 } | |
2588 p = &pList[1]; | |
2589 p += fts3GetVarint32(p, &iCurrent); | |
2590 } | |
2591 | |
2592 if( bZero && &pList[nList]!=pEnd ){ | |
2593 memset(&pList[nList], 0, pEnd - &pList[nList]); | |
2594 } | |
2595 *ppList = pList; | |
2596 *pnList = nList; | |
2597 } | |
2598 | |
2599 /* | |
2600 ** Cache data in the Fts3MultiSegReader.aBuffer[] buffer (overwriting any | |
2601 ** existing data). Grow the buffer if required. | |
2602 ** | |
2603 ** If successful, return SQLITE_OK. Otherwise, if an OOM error is encountered | |
2604 ** trying to resize the buffer, return SQLITE_NOMEM. | |
2605 */ | |
2606 static int fts3MsrBufferData( | |
2607 Fts3MultiSegReader *pMsr, /* Multi-segment-reader handle */ | |
2608 char *pList, | |
2609 int nList | |
2610 ){ | |
2611 if( nList>pMsr->nBuffer ){ | |
2612 char *pNew; | |
2613 pMsr->nBuffer = nList*2; | |
2614 pNew = (char *)sqlite3_realloc(pMsr->aBuffer, pMsr->nBuffer); | |
2615 if( !pNew ) return SQLITE_NOMEM; | |
2616 pMsr->aBuffer = pNew; | |
2617 } | |
2618 | |
2619 memcpy(pMsr->aBuffer, pList, nList); | |
2620 return SQLITE_OK; | |
2621 } | |
2622 | |
2623 int sqlite3Fts3MsrIncrNext( | |
2624 Fts3Table *p, /* Virtual table handle */ | |
2625 Fts3MultiSegReader *pMsr, /* Multi-segment-reader handle */ | |
2626 sqlite3_int64 *piDocid, /* OUT: Docid value */ | |
2627 char **paPoslist, /* OUT: Pointer to position list */ | |
2628 int *pnPoslist /* OUT: Size of position list in bytes */ | |
2629 ){ | |
2630 int nMerge = pMsr->nAdvance; | |
2631 Fts3SegReader **apSegment = pMsr->apSegment; | |
2632 int (*xCmp)(Fts3SegReader *, Fts3SegReader *) = ( | |
2633 p->bDescIdx ? fts3SegReaderDoclistCmpRev : fts3SegReaderDoclistCmp | |
2634 ); | |
2635 | |
2636 if( nMerge==0 ){ | |
2637 *paPoslist = 0; | |
2638 return SQLITE_OK; | |
2639 } | |
2640 | |
2641 while( 1 ){ | |
2642 Fts3SegReader *pSeg; | |
2643 pSeg = pMsr->apSegment[0]; | |
2644 | |
2645 if( pSeg->pOffsetList==0 ){ | |
2646 *paPoslist = 0; | |
2647 break; | |
2648 }else{ | |
2649 int rc; | |
2650 char *pList; | |
2651 int nList; | |
2652 int j; | |
2653 sqlite3_int64 iDocid = apSegment[0]->iDocid; | |
2654 | |
2655 rc = fts3SegReaderNextDocid(p, apSegment[0], &pList, &nList); | |
2656 j = 1; | |
2657 while( rc==SQLITE_OK | |
2658 && j<nMerge | |
2659 && apSegment[j]->pOffsetList | |
2660 && apSegment[j]->iDocid==iDocid | |
2661 ){ | |
2662 rc = fts3SegReaderNextDocid(p, apSegment[j], 0, 0); | |
2663 j++; | |
2664 } | |
2665 if( rc!=SQLITE_OK ) return rc; | |
2666 fts3SegReaderSort(pMsr->apSegment, nMerge, j, xCmp); | |
2667 | |
2668 if( nList>0 && fts3SegReaderIsPending(apSegment[0]) ){ | |
2669 rc = fts3MsrBufferData(pMsr, pList, nList+1); | |
2670 if( rc!=SQLITE_OK ) return rc; | |
2671 assert( (pMsr->aBuffer[nList] & 0xFE)==0x00 ); | |
2672 pList = pMsr->aBuffer; | |
2673 } | |
2674 | |
2675 if( pMsr->iColFilter>=0 ){ | |
2676 fts3ColumnFilter(pMsr->iColFilter, 1, &pList, &nList); | |
2677 } | |
2678 | |
2679 if( nList>0 ){ | |
2680 *paPoslist = pList; | |
2681 *piDocid = iDocid; | |
2682 *pnPoslist = nList; | |
2683 break; | |
2684 } | |
2685 } | |
2686 } | |
2687 | |
2688 return SQLITE_OK; | |
2689 } | |
2690 | |
2691 static int fts3SegReaderStart( | |
2692 Fts3Table *p, /* Virtual table handle */ | |
2693 Fts3MultiSegReader *pCsr, /* Cursor object */ | |
2694 const char *zTerm, /* Term searched for (or NULL) */ | |
2695 int nTerm /* Length of zTerm in bytes */ | |
2696 ){ | |
2697 int i; | |
2698 int nSeg = pCsr->nSegment; | |
2699 | |
2700 /* If the Fts3SegFilter defines a specific term (or term prefix) to search | |
2701 ** for, then advance each segment iterator until it points to a term of | |
2702 ** equal or greater value than the specified term. This prevents many | |
2703 ** unnecessary merge/sort operations for the case where single segment | |
2704 ** b-tree leaf nodes contain more than one term. | |
2705 */ | |
2706 for(i=0; pCsr->bRestart==0 && i<pCsr->nSegment; i++){ | |
2707 int res = 0; | |
2708 Fts3SegReader *pSeg = pCsr->apSegment[i]; | |
2709 do { | |
2710 int rc = fts3SegReaderNext(p, pSeg, 0); | |
2711 if( rc!=SQLITE_OK ) return rc; | |
2712 }while( zTerm && (res = fts3SegReaderTermCmp(pSeg, zTerm, nTerm))<0 ); | |
2713 | |
2714 if( pSeg->bLookup && res!=0 ){ | |
2715 fts3SegReaderSetEof(pSeg); | |
2716 } | |
2717 } | |
2718 fts3SegReaderSort(pCsr->apSegment, nSeg, nSeg, fts3SegReaderCmp); | |
2719 | |
2720 return SQLITE_OK; | |
2721 } | |
2722 | |
2723 int sqlite3Fts3SegReaderStart( | |
2724 Fts3Table *p, /* Virtual table handle */ | |
2725 Fts3MultiSegReader *pCsr, /* Cursor object */ | |
2726 Fts3SegFilter *pFilter /* Restrictions on range of iteration */ | |
2727 ){ | |
2728 pCsr->pFilter = pFilter; | |
2729 return fts3SegReaderStart(p, pCsr, pFilter->zTerm, pFilter->nTerm); | |
2730 } | |
2731 | |
2732 int sqlite3Fts3MsrIncrStart( | |
2733 Fts3Table *p, /* Virtual table handle */ | |
2734 Fts3MultiSegReader *pCsr, /* Cursor object */ | |
2735 int iCol, /* Column to match on. */ | |
2736 const char *zTerm, /* Term to iterate through a doclist for */ | |
2737 int nTerm /* Number of bytes in zTerm */ | |
2738 ){ | |
2739 int i; | |
2740 int rc; | |
2741 int nSegment = pCsr->nSegment; | |
2742 int (*xCmp)(Fts3SegReader *, Fts3SegReader *) = ( | |
2743 p->bDescIdx ? fts3SegReaderDoclistCmpRev : fts3SegReaderDoclistCmp | |
2744 ); | |
2745 | |
2746 assert( pCsr->pFilter==0 ); | |
2747 assert( zTerm && nTerm>0 ); | |
2748 | |
2749 /* Advance each segment iterator until it points to the term zTerm/nTerm. */ | |
2750 rc = fts3SegReaderStart(p, pCsr, zTerm, nTerm); | |
2751 if( rc!=SQLITE_OK ) return rc; | |
2752 | |
2753 /* Determine how many of the segments actually point to zTerm/nTerm. */ | |
2754 for(i=0; i<nSegment; i++){ | |
2755 Fts3SegReader *pSeg = pCsr->apSegment[i]; | |
2756 if( !pSeg->aNode || fts3SegReaderTermCmp(pSeg, zTerm, nTerm) ){ | |
2757 break; | |
2758 } | |
2759 } | |
2760 pCsr->nAdvance = i; | |
2761 | |
2762 /* Advance each of the segments to point to the first docid. */ | |
2763 for(i=0; i<pCsr->nAdvance; i++){ | |
2764 rc = fts3SegReaderFirstDocid(p, pCsr->apSegment[i]); | |
2765 if( rc!=SQLITE_OK ) return rc; | |
2766 } | |
2767 fts3SegReaderSort(pCsr->apSegment, i, i, xCmp); | |
2768 | |
2769 assert( iCol<0 || iCol<p->nColumn ); | |
2770 pCsr->iColFilter = iCol; | |
2771 | |
2772 return SQLITE_OK; | |
2773 } | |
2774 | |
2775 /* | |
2776 ** This function is called on a MultiSegReader that has been started using | |
2777 ** sqlite3Fts3MsrIncrStart(). One or more calls to MsrIncrNext() may also | |
2778 ** have been made. Calling this function puts the MultiSegReader in such | |
2779 ** a state that if the next two calls are: | |
2780 ** | |
2781 ** sqlite3Fts3SegReaderStart() | |
2782 ** sqlite3Fts3SegReaderStep() | |
2783 ** | |
2784 ** then the entire doclist for the term is available in | |
2785 ** MultiSegReader.aDoclist/nDoclist. | |
2786 */ | |
2787 int sqlite3Fts3MsrIncrRestart(Fts3MultiSegReader *pCsr){ | |
2788 int i; /* Used to iterate through segment-readers */ | |
2789 | |
2790 assert( pCsr->zTerm==0 ); | |
2791 assert( pCsr->nTerm==0 ); | |
2792 assert( pCsr->aDoclist==0 ); | |
2793 assert( pCsr->nDoclist==0 ); | |
2794 | |
2795 pCsr->nAdvance = 0; | |
2796 pCsr->bRestart = 1; | |
2797 for(i=0; i<pCsr->nSegment; i++){ | |
2798 pCsr->apSegment[i]->pOffsetList = 0; | |
2799 pCsr->apSegment[i]->nOffsetList = 0; | |
2800 pCsr->apSegment[i]->iDocid = 0; | |
2801 } | |
2802 | |
2803 return SQLITE_OK; | |
2804 } | |
2805 | |
2806 | |
2807 int sqlite3Fts3SegReaderStep( | |
2808 Fts3Table *p, /* Virtual table handle */ | |
2809 Fts3MultiSegReader *pCsr /* Cursor object */ | |
2810 ){ | |
2811 int rc = SQLITE_OK; | |
2812 | |
2813 int isIgnoreEmpty = (pCsr->pFilter->flags & FTS3_SEGMENT_IGNORE_EMPTY); | |
2814 int isRequirePos = (pCsr->pFilter->flags & FTS3_SEGMENT_REQUIRE_POS); | |
2815 int isColFilter = (pCsr->pFilter->flags & FTS3_SEGMENT_COLUMN_FILTER); | |
2816 int isPrefix = (pCsr->pFilter->flags & FTS3_SEGMENT_PREFIX); | |
2817 int isScan = (pCsr->pFilter->flags & FTS3_SEGMENT_SCAN); | |
2818 int isFirst = (pCsr->pFilter->flags & FTS3_SEGMENT_FIRST); | |
2819 | |
2820 Fts3SegReader **apSegment = pCsr->apSegment; | |
2821 int nSegment = pCsr->nSegment; | |
2822 Fts3SegFilter *pFilter = pCsr->pFilter; | |
2823 int (*xCmp)(Fts3SegReader *, Fts3SegReader *) = ( | |
2824 p->bDescIdx ? fts3SegReaderDoclistCmpRev : fts3SegReaderDoclistCmp | |
2825 ); | |
2826 | |
2827 if( pCsr->nSegment==0 ) return SQLITE_OK; | |
2828 | |
2829 do { | |
2830 int nMerge; | |
2831 int i; | |
2832 | |
2833 /* Advance the first pCsr->nAdvance entries in the apSegment[] array | |
2834 ** forward. Then sort the list in order of current term again. | |
2835 */ | |
2836 for(i=0; i<pCsr->nAdvance; i++){ | |
2837 Fts3SegReader *pSeg = apSegment[i]; | |
2838 if( pSeg->bLookup ){ | |
2839 fts3SegReaderSetEof(pSeg); | |
2840 }else{ | |
2841 rc = fts3SegReaderNext(p, pSeg, 0); | |
2842 } | |
2843 if( rc!=SQLITE_OK ) return rc; | |
2844 } | |
2845 fts3SegReaderSort(apSegment, nSegment, pCsr->nAdvance, fts3SegReaderCmp); | |
2846 pCsr->nAdvance = 0; | |
2847 | |
2848 /* If all the seg-readers are at EOF, we're finished. return SQLITE_OK. */ | |
2849 assert( rc==SQLITE_OK ); | |
2850 if( apSegment[0]->aNode==0 ) break; | |
2851 | |
2852 pCsr->nTerm = apSegment[0]->nTerm; | |
2853 pCsr->zTerm = apSegment[0]->zTerm; | |
2854 | |
2855 /* If this is a prefix-search, and if the term that apSegment[0] points | |
2856 ** to does not share a suffix with pFilter->zTerm/nTerm, then all | |
2857 ** required callbacks have been made. In this case exit early. | |
2858 ** | |
2859 ** Similarly, if this is a search for an exact match, and the first term | |
2860 ** of segment apSegment[0] is not a match, exit early. | |
2861 */ | |
2862 if( pFilter->zTerm && !isScan ){ | |
2863 if( pCsr->nTerm<pFilter->nTerm | |
2864 || (!isPrefix && pCsr->nTerm>pFilter->nTerm) | |
2865 || memcmp(pCsr->zTerm, pFilter->zTerm, pFilter->nTerm) | |
2866 ){ | |
2867 break; | |
2868 } | |
2869 } | |
2870 | |
2871 nMerge = 1; | |
2872 while( nMerge<nSegment | |
2873 && apSegment[nMerge]->aNode | |
2874 && apSegment[nMerge]->nTerm==pCsr->nTerm | |
2875 && 0==memcmp(pCsr->zTerm, apSegment[nMerge]->zTerm, pCsr->nTerm) | |
2876 ){ | |
2877 nMerge++; | |
2878 } | |
2879 | |
2880 assert( isIgnoreEmpty || (isRequirePos && !isColFilter) ); | |
2881 if( nMerge==1 | |
2882 && !isIgnoreEmpty | |
2883 && !isFirst | |
2884 && (p->bDescIdx==0 || fts3SegReaderIsPending(apSegment[0])==0) | |
2885 ){ | |
2886 pCsr->nDoclist = apSegment[0]->nDoclist; | |
2887 if( fts3SegReaderIsPending(apSegment[0]) ){ | |
2888 rc = fts3MsrBufferData(pCsr, apSegment[0]->aDoclist, pCsr->nDoclist); | |
2889 pCsr->aDoclist = pCsr->aBuffer; | |
2890 }else{ | |
2891 pCsr->aDoclist = apSegment[0]->aDoclist; | |
2892 } | |
2893 if( rc==SQLITE_OK ) rc = SQLITE_ROW; | |
2894 }else{ | |
2895 int nDoclist = 0; /* Size of doclist */ | |
2896 sqlite3_int64 iPrev = 0; /* Previous docid stored in doclist */ | |
2897 | |
2898 /* The current term of the first nMerge entries in the array | |
2899 ** of Fts3SegReader objects is the same. The doclists must be merged | |
2900 ** and a single term returned with the merged doclist. | |
2901 */ | |
2902 for(i=0; i<nMerge; i++){ | |
2903 fts3SegReaderFirstDocid(p, apSegment[i]); | |
2904 } | |
2905 fts3SegReaderSort(apSegment, nMerge, nMerge, xCmp); | |
2906 while( apSegment[0]->pOffsetList ){ | |
2907 int j; /* Number of segments that share a docid */ | |
2908 char *pList = 0; | |
2909 int nList = 0; | |
2910 int nByte; | |
2911 sqlite3_int64 iDocid = apSegment[0]->iDocid; | |
2912 fts3SegReaderNextDocid(p, apSegment[0], &pList, &nList); | |
2913 j = 1; | |
2914 while( j<nMerge | |
2915 && apSegment[j]->pOffsetList | |
2916 && apSegment[j]->iDocid==iDocid | |
2917 ){ | |
2918 fts3SegReaderNextDocid(p, apSegment[j], 0, 0); | |
2919 j++; | |
2920 } | |
2921 | |
2922 if( isColFilter ){ | |
2923 fts3ColumnFilter(pFilter->iCol, 0, &pList, &nList); | |
2924 } | |
2925 | |
2926 if( !isIgnoreEmpty || nList>0 ){ | |
2927 | |
2928 /* Calculate the 'docid' delta value to write into the merged | |
2929 ** doclist. */ | |
2930 sqlite3_int64 iDelta; | |
2931 if( p->bDescIdx && nDoclist>0 ){ | |
2932 iDelta = iPrev - iDocid; | |
2933 }else{ | |
2934 iDelta = iDocid - iPrev; | |
2935 } | |
2936 assert( iDelta>0 || (nDoclist==0 && iDelta==iDocid) ); | |
2937 assert( nDoclist>0 || iDelta==iDocid ); | |
2938 | |
2939 nByte = sqlite3Fts3VarintLen(iDelta) + (isRequirePos?nList+1:0); | |
2940 if( nDoclist+nByte>pCsr->nBuffer ){ | |
2941 char *aNew; | |
2942 pCsr->nBuffer = (nDoclist+nByte)*2; | |
2943 aNew = sqlite3_realloc(pCsr->aBuffer, pCsr->nBuffer); | |
2944 if( !aNew ){ | |
2945 return SQLITE_NOMEM; | |
2946 } | |
2947 pCsr->aBuffer = aNew; | |
2948 } | |
2949 | |
2950 if( isFirst ){ | |
2951 char *a = &pCsr->aBuffer[nDoclist]; | |
2952 int nWrite; | |
2953 | |
2954 nWrite = sqlite3Fts3FirstFilter(iDelta, pList, nList, a); | |
2955 if( nWrite ){ | |
2956 iPrev = iDocid; | |
2957 nDoclist += nWrite; | |
2958 } | |
2959 }else{ | |
2960 nDoclist += sqlite3Fts3PutVarint(&pCsr->aBuffer[nDoclist], iDelta); | |
2961 iPrev = iDocid; | |
2962 if( isRequirePos ){ | |
2963 memcpy(&pCsr->aBuffer[nDoclist], pList, nList); | |
2964 nDoclist += nList; | |
2965 pCsr->aBuffer[nDoclist++] = '\0'; | |
2966 } | |
2967 } | |
2968 } | |
2969 | |
2970 fts3SegReaderSort(apSegment, nMerge, j, xCmp); | |
2971 } | |
2972 if( nDoclist>0 ){ | |
2973 pCsr->aDoclist = pCsr->aBuffer; | |
2974 pCsr->nDoclist = nDoclist; | |
2975 rc = SQLITE_ROW; | |
2976 } | |
2977 } | |
2978 pCsr->nAdvance = nMerge; | |
2979 }while( rc==SQLITE_OK ); | |
2980 | |
2981 return rc; | |
2982 } | |
2983 | |
2984 | |
2985 void sqlite3Fts3SegReaderFinish( | |
2986 Fts3MultiSegReader *pCsr /* Cursor object */ | |
2987 ){ | |
2988 if( pCsr ){ | |
2989 int i; | |
2990 for(i=0; i<pCsr->nSegment; i++){ | |
2991 sqlite3Fts3SegReaderFree(pCsr->apSegment[i]); | |
2992 } | |
2993 sqlite3_free(pCsr->apSegment); | |
2994 sqlite3_free(pCsr->aBuffer); | |
2995 | |
2996 pCsr->nSegment = 0; | |
2997 pCsr->apSegment = 0; | |
2998 pCsr->aBuffer = 0; | |
2999 } | |
3000 } | |
3001 | |
3002 /* | |
3003 ** Decode the "end_block" field, selected by column iCol of the SELECT | |
3004 ** statement passed as the first argument. | |
3005 ** | |
3006 ** The "end_block" field may contain either an integer, or a text field | |
3007 ** containing the text representation of two non-negative integers separated | |
3008 ** by one or more space (0x20) characters. In the first case, set *piEndBlock | |
3009 ** to the integer value and *pnByte to zero before returning. In the second, | |
3010 ** set *piEndBlock to the first value and *pnByte to the second. | |
3011 */ | |
3012 static void fts3ReadEndBlockField( | |
3013 sqlite3_stmt *pStmt, | |
3014 int iCol, | |
3015 i64 *piEndBlock, | |
3016 i64 *pnByte | |
3017 ){ | |
3018 const unsigned char *zText = sqlite3_column_text(pStmt, iCol); | |
3019 if( zText ){ | |
3020 int i; | |
3021 int iMul = 1; | |
3022 i64 iVal = 0; | |
3023 for(i=0; zText[i]>='0' && zText[i]<='9'; i++){ | |
3024 iVal = iVal*10 + (zText[i] - '0'); | |
3025 } | |
3026 *piEndBlock = iVal; | |
3027 while( zText[i]==' ' ) i++; | |
3028 iVal = 0; | |
3029 if( zText[i]=='-' ){ | |
3030 i++; | |
3031 iMul = -1; | |
3032 } | |
3033 for(/* no-op */; zText[i]>='0' && zText[i]<='9'; i++){ | |
3034 iVal = iVal*10 + (zText[i] - '0'); | |
3035 } | |
3036 *pnByte = (iVal * (i64)iMul); | |
3037 } | |
3038 } | |
3039 | |
3040 | |
3041 /* | |
3042 ** A segment of size nByte bytes has just been written to absolute level | |
3043 ** iAbsLevel. Promote any segments that should be promoted as a result. | |
3044 */ | |
3045 static int fts3PromoteSegments( | |
3046 Fts3Table *p, /* FTS table handle */ | |
3047 sqlite3_int64 iAbsLevel, /* Absolute level just updated */ | |
3048 sqlite3_int64 nByte /* Size of new segment at iAbsLevel */ | |
3049 ){ | |
3050 int rc = SQLITE_OK; | |
3051 sqlite3_stmt *pRange; | |
3052 | |
3053 rc = fts3SqlStmt(p, SQL_SELECT_LEVEL_RANGE2, &pRange, 0); | |
3054 | |
3055 if( rc==SQLITE_OK ){ | |
3056 int bOk = 0; | |
3057 i64 iLast = (iAbsLevel/FTS3_SEGDIR_MAXLEVEL + 1) * FTS3_SEGDIR_MAXLEVEL - 1; | |
3058 i64 nLimit = (nByte*3)/2; | |
3059 | |
3060 /* Loop through all entries in the %_segdir table corresponding to | |
3061 ** segments in this index on levels greater than iAbsLevel. If there is | |
3062 ** at least one such segment, and it is possible to determine that all | |
3063 ** such segments are smaller than nLimit bytes in size, they will be | |
3064 ** promoted to level iAbsLevel. */ | |
3065 sqlite3_bind_int64(pRange, 1, iAbsLevel+1); | |
3066 sqlite3_bind_int64(pRange, 2, iLast); | |
3067 while( SQLITE_ROW==sqlite3_step(pRange) ){ | |
3068 i64 nSize = 0, dummy; | |
3069 fts3ReadEndBlockField(pRange, 2, &dummy, &nSize); | |
3070 if( nSize<=0 || nSize>nLimit ){ | |
3071 /* If nSize==0, then the %_segdir.end_block field does not not | |
3072 ** contain a size value. This happens if it was written by an | |
3073 ** old version of FTS. In this case it is not possible to determine | |
3074 ** the size of the segment, and so segment promotion does not | |
3075 ** take place. */ | |
3076 bOk = 0; | |
3077 break; | |
3078 } | |
3079 bOk = 1; | |
3080 } | |
3081 rc = sqlite3_reset(pRange); | |
3082 | |
3083 if( bOk ){ | |
3084 int iIdx = 0; | |
3085 sqlite3_stmt *pUpdate1; | |
3086 sqlite3_stmt *pUpdate2; | |
3087 | |
3088 if( rc==SQLITE_OK ){ | |
3089 rc = fts3SqlStmt(p, SQL_UPDATE_LEVEL_IDX, &pUpdate1, 0); | |
3090 } | |
3091 if( rc==SQLITE_OK ){ | |
3092 rc = fts3SqlStmt(p, SQL_UPDATE_LEVEL, &pUpdate2, 0); | |
3093 } | |
3094 | |
3095 if( rc==SQLITE_OK ){ | |
3096 | |
3097 /* Loop through all %_segdir entries for segments in this index with | |
3098 ** levels equal to or greater than iAbsLevel. As each entry is visited, | |
3099 ** updated it to set (level = -1) and (idx = N), where N is 0 for the | |
3100 ** oldest segment in the range, 1 for the next oldest, and so on. | |
3101 ** | |
3102 ** In other words, move all segments being promoted to level -1, | |
3103 ** setting the "idx" fields as appropriate to keep them in the same | |
3104 ** order. The contents of level -1 (which is never used, except | |
3105 ** transiently here), will be moved back to level iAbsLevel below. */ | |
3106 sqlite3_bind_int64(pRange, 1, iAbsLevel); | |
3107 while( SQLITE_ROW==sqlite3_step(pRange) ){ | |
3108 sqlite3_bind_int(pUpdate1, 1, iIdx++); | |
3109 sqlite3_bind_int(pUpdate1, 2, sqlite3_column_int(pRange, 0)); | |
3110 sqlite3_bind_int(pUpdate1, 3, sqlite3_column_int(pRange, 1)); | |
3111 sqlite3_step(pUpdate1); | |
3112 rc = sqlite3_reset(pUpdate1); | |
3113 if( rc!=SQLITE_OK ){ | |
3114 sqlite3_reset(pRange); | |
3115 break; | |
3116 } | |
3117 } | |
3118 } | |
3119 if( rc==SQLITE_OK ){ | |
3120 rc = sqlite3_reset(pRange); | |
3121 } | |
3122 | |
3123 /* Move level -1 to level iAbsLevel */ | |
3124 if( rc==SQLITE_OK ){ | |
3125 sqlite3_bind_int64(pUpdate2, 1, iAbsLevel); | |
3126 sqlite3_step(pUpdate2); | |
3127 rc = sqlite3_reset(pUpdate2); | |
3128 } | |
3129 } | |
3130 } | |
3131 | |
3132 | |
3133 return rc; | |
3134 } | |
3135 | |
3136 /* | |
3137 ** Merge all level iLevel segments in the database into a single | |
3138 ** iLevel+1 segment. Or, if iLevel<0, merge all segments into a | |
3139 ** single segment with a level equal to the numerically largest level | |
3140 ** currently present in the database. | |
3141 ** | |
3142 ** If this function is called with iLevel<0, but there is only one | |
3143 ** segment in the database, SQLITE_DONE is returned immediately. | |
3144 ** Otherwise, if successful, SQLITE_OK is returned. If an error occurs, | |
3145 ** an SQLite error code is returned. | |
3146 */ | |
3147 static int fts3SegmentMerge( | |
3148 Fts3Table *p, | |
3149 int iLangid, /* Language id to merge */ | |
3150 int iIndex, /* Index in p->aIndex[] to merge */ | |
3151 int iLevel /* Level to merge */ | |
3152 ){ | |
3153 int rc; /* Return code */ | |
3154 int iIdx = 0; /* Index of new segment */ | |
3155 sqlite3_int64 iNewLevel = 0; /* Level/index to create new segment at */ | |
3156 SegmentWriter *pWriter = 0; /* Used to write the new, merged, segment */ | |
3157 Fts3SegFilter filter; /* Segment term filter condition */ | |
3158 Fts3MultiSegReader csr; /* Cursor to iterate through level(s) */ | |
3159 int bIgnoreEmpty = 0; /* True to ignore empty segments */ | |
3160 i64 iMaxLevel = 0; /* Max level number for this index/langid */ | |
3161 | |
3162 assert( iLevel==FTS3_SEGCURSOR_ALL | |
3163 || iLevel==FTS3_SEGCURSOR_PENDING | |
3164 || iLevel>=0 | |
3165 ); | |
3166 assert( iLevel<FTS3_SEGDIR_MAXLEVEL ); | |
3167 assert( iIndex>=0 && iIndex<p->nIndex ); | |
3168 | |
3169 rc = sqlite3Fts3SegReaderCursor(p, iLangid, iIndex, iLevel, 0, 0, 1, 0, &csr); | |
3170 if( rc!=SQLITE_OK || csr.nSegment==0 ) goto finished; | |
3171 | |
3172 if( iLevel!=FTS3_SEGCURSOR_PENDING ){ | |
3173 rc = fts3SegmentMaxLevel(p, iLangid, iIndex, &iMaxLevel); | |
3174 if( rc!=SQLITE_OK ) goto finished; | |
3175 } | |
3176 | |
3177 if( iLevel==FTS3_SEGCURSOR_ALL ){ | |
3178 /* This call is to merge all segments in the database to a single | |
3179 ** segment. The level of the new segment is equal to the numerically | |
3180 ** greatest segment level currently present in the database for this | |
3181 ** index. The idx of the new segment is always 0. */ | |
3182 if( csr.nSegment==1 ){ | |
3183 rc = SQLITE_DONE; | |
3184 goto finished; | |
3185 } | |
3186 iNewLevel = iMaxLevel; | |
3187 bIgnoreEmpty = 1; | |
3188 | |
3189 }else{ | |
3190 /* This call is to merge all segments at level iLevel. find the next | |
3191 ** available segment index at level iLevel+1. The call to | |
3192 ** fts3AllocateSegdirIdx() will merge the segments at level iLevel+1 to | |
3193 ** a single iLevel+2 segment if necessary. */ | |
3194 assert( FTS3_SEGCURSOR_PENDING==-1 ); | |
3195 iNewLevel = getAbsoluteLevel(p, iLangid, iIndex, iLevel+1); | |
3196 rc = fts3AllocateSegdirIdx(p, iLangid, iIndex, iLevel+1, &iIdx); | |
3197 bIgnoreEmpty = (iLevel!=FTS3_SEGCURSOR_PENDING) && (iNewLevel>iMaxLevel); | |
3198 } | |
3199 if( rc!=SQLITE_OK ) goto finished; | |
3200 | |
3201 assert( csr.nSegment>0 ); | |
3202 assert( iNewLevel>=getAbsoluteLevel(p, iLangid, iIndex, 0) ); | |
3203 assert( iNewLevel<getAbsoluteLevel(p, iLangid, iIndex,FTS3_SEGDIR_MAXLEVEL) ); | |
3204 | |
3205 memset(&filter, 0, sizeof(Fts3SegFilter)); | |
3206 filter.flags = FTS3_SEGMENT_REQUIRE_POS; | |
3207 filter.flags |= (bIgnoreEmpty ? FTS3_SEGMENT_IGNORE_EMPTY : 0); | |
3208 | |
3209 rc = sqlite3Fts3SegReaderStart(p, &csr, &filter); | |
3210 while( SQLITE_OK==rc ){ | |
3211 rc = sqlite3Fts3SegReaderStep(p, &csr); | |
3212 if( rc!=SQLITE_ROW ) break; | |
3213 rc = fts3SegWriterAdd(p, &pWriter, 1, | |
3214 csr.zTerm, csr.nTerm, csr.aDoclist, csr.nDoclist); | |
3215 } | |
3216 if( rc!=SQLITE_OK ) goto finished; | |
3217 assert( pWriter || bIgnoreEmpty ); | |
3218 | |
3219 if( iLevel!=FTS3_SEGCURSOR_PENDING ){ | |
3220 rc = fts3DeleteSegdir( | |
3221 p, iLangid, iIndex, iLevel, csr.apSegment, csr.nSegment | |
3222 ); | |
3223 if( rc!=SQLITE_OK ) goto finished; | |
3224 } | |
3225 if( pWriter ){ | |
3226 rc = fts3SegWriterFlush(p, pWriter, iNewLevel, iIdx); | |
3227 if( rc==SQLITE_OK ){ | |
3228 if( iLevel==FTS3_SEGCURSOR_PENDING || iNewLevel<iMaxLevel ){ | |
3229 rc = fts3PromoteSegments(p, iNewLevel, pWriter->nLeafData); | |
3230 } | |
3231 } | |
3232 } | |
3233 | |
3234 finished: | |
3235 fts3SegWriterFree(pWriter); | |
3236 sqlite3Fts3SegReaderFinish(&csr); | |
3237 return rc; | |
3238 } | |
3239 | |
3240 | |
3241 /* | |
3242 ** Flush the contents of pendingTerms to level 0 segments. | |
3243 */ | |
3244 int sqlite3Fts3PendingTermsFlush(Fts3Table *p){ | |
3245 int rc = SQLITE_OK; | |
3246 int i; | |
3247 | |
3248 for(i=0; rc==SQLITE_OK && i<p->nIndex; i++){ | |
3249 rc = fts3SegmentMerge(p, p->iPrevLangid, i, FTS3_SEGCURSOR_PENDING); | |
3250 if( rc==SQLITE_DONE ) rc = SQLITE_OK; | |
3251 } | |
3252 sqlite3Fts3PendingTermsClear(p); | |
3253 | |
3254 /* Determine the auto-incr-merge setting if unknown. If enabled, | |
3255 ** estimate the number of leaf blocks of content to be written | |
3256 */ | |
3257 if( rc==SQLITE_OK && p->bHasStat | |
3258 && p->nAutoincrmerge==0xff && p->nLeafAdd>0 | |
3259 ){ | |
3260 sqlite3_stmt *pStmt = 0; | |
3261 rc = fts3SqlStmt(p, SQL_SELECT_STAT, &pStmt, 0); | |
3262 if( rc==SQLITE_OK ){ | |
3263 sqlite3_bind_int(pStmt, 1, FTS_STAT_AUTOINCRMERGE); | |
3264 rc = sqlite3_step(pStmt); | |
3265 if( rc==SQLITE_ROW ){ | |
3266 p->nAutoincrmerge = sqlite3_column_int(pStmt, 0); | |
3267 if( p->nAutoincrmerge==1 ) p->nAutoincrmerge = 8; | |
3268 }else if( rc==SQLITE_DONE ){ | |
3269 p->nAutoincrmerge = 0; | |
3270 } | |
3271 rc = sqlite3_reset(pStmt); | |
3272 } | |
3273 } | |
3274 return rc; | |
3275 } | |
3276 | |
3277 /* | |
3278 ** Encode N integers as varints into a blob. | |
3279 */ | |
3280 static void fts3EncodeIntArray( | |
3281 int N, /* The number of integers to encode */ | |
3282 u32 *a, /* The integer values */ | |
3283 char *zBuf, /* Write the BLOB here */ | |
3284 int *pNBuf /* Write number of bytes if zBuf[] used here */ | |
3285 ){ | |
3286 int i, j; | |
3287 for(i=j=0; i<N; i++){ | |
3288 j += sqlite3Fts3PutVarint(&zBuf[j], (sqlite3_int64)a[i]); | |
3289 } | |
3290 *pNBuf = j; | |
3291 } | |
3292 | |
3293 /* | |
3294 ** Decode a blob of varints into N integers | |
3295 */ | |
3296 static void fts3DecodeIntArray( | |
3297 int N, /* The number of integers to decode */ | |
3298 u32 *a, /* Write the integer values */ | |
3299 const char *zBuf, /* The BLOB containing the varints */ | |
3300 int nBuf /* size of the BLOB */ | |
3301 ){ | |
3302 int i, j; | |
3303 UNUSED_PARAMETER(nBuf); | |
3304 for(i=j=0; i<N; i++){ | |
3305 sqlite3_int64 x; | |
3306 j += sqlite3Fts3GetVarint(&zBuf[j], &x); | |
3307 assert(j<=nBuf); | |
3308 a[i] = (u32)(x & 0xffffffff); | |
3309 } | |
3310 } | |
3311 | |
3312 /* | |
3313 ** Insert the sizes (in tokens) for each column of the document | |
3314 ** with docid equal to p->iPrevDocid. The sizes are encoded as | |
3315 ** a blob of varints. | |
3316 */ | |
3317 static void fts3InsertDocsize( | |
3318 int *pRC, /* Result code */ | |
3319 Fts3Table *p, /* Table into which to insert */ | |
3320 u32 *aSz /* Sizes of each column, in tokens */ | |
3321 ){ | |
3322 char *pBlob; /* The BLOB encoding of the document size */ | |
3323 int nBlob; /* Number of bytes in the BLOB */ | |
3324 sqlite3_stmt *pStmt; /* Statement used to insert the encoding */ | |
3325 int rc; /* Result code from subfunctions */ | |
3326 | |
3327 if( *pRC ) return; | |
3328 pBlob = sqlite3_malloc( 10*p->nColumn ); | |
3329 if( pBlob==0 ){ | |
3330 *pRC = SQLITE_NOMEM; | |
3331 return; | |
3332 } | |
3333 fts3EncodeIntArray(p->nColumn, aSz, pBlob, &nBlob); | |
3334 rc = fts3SqlStmt(p, SQL_REPLACE_DOCSIZE, &pStmt, 0); | |
3335 if( rc ){ | |
3336 sqlite3_free(pBlob); | |
3337 *pRC = rc; | |
3338 return; | |
3339 } | |
3340 sqlite3_bind_int64(pStmt, 1, p->iPrevDocid); | |
3341 sqlite3_bind_blob(pStmt, 2, pBlob, nBlob, sqlite3_free); | |
3342 sqlite3_step(pStmt); | |
3343 *pRC = sqlite3_reset(pStmt); | |
3344 } | |
3345 | |
3346 /* | |
3347 ** Record 0 of the %_stat table contains a blob consisting of N varints, | |
3348 ** where N is the number of user defined columns in the fts3 table plus | |
3349 ** two. If nCol is the number of user defined columns, then values of the | |
3350 ** varints are set as follows: | |
3351 ** | |
3352 ** Varint 0: Total number of rows in the table. | |
3353 ** | |
3354 ** Varint 1..nCol: For each column, the total number of tokens stored in | |
3355 ** the column for all rows of the table. | |
3356 ** | |
3357 ** Varint 1+nCol: The total size, in bytes, of all text values in all | |
3358 ** columns of all rows of the table. | |
3359 ** | |
3360 */ | |
3361 static void fts3UpdateDocTotals( | |
3362 int *pRC, /* The result code */ | |
3363 Fts3Table *p, /* Table being updated */ | |
3364 u32 *aSzIns, /* Size increases */ | |
3365 u32 *aSzDel, /* Size decreases */ | |
3366 int nChng /* Change in the number of documents */ | |
3367 ){ | |
3368 char *pBlob; /* Storage for BLOB written into %_stat */ | |
3369 int nBlob; /* Size of BLOB written into %_stat */ | |
3370 u32 *a; /* Array of integers that becomes the BLOB */ | |
3371 sqlite3_stmt *pStmt; /* Statement for reading and writing */ | |
3372 int i; /* Loop counter */ | |
3373 int rc; /* Result code from subfunctions */ | |
3374 | |
3375 const int nStat = p->nColumn+2; | |
3376 | |
3377 if( *pRC ) return; | |
3378 a = sqlite3_malloc( (sizeof(u32)+10)*nStat ); | |
3379 if( a==0 ){ | |
3380 *pRC = SQLITE_NOMEM; | |
3381 return; | |
3382 } | |
3383 pBlob = (char*)&a[nStat]; | |
3384 rc = fts3SqlStmt(p, SQL_SELECT_STAT, &pStmt, 0); | |
3385 if( rc ){ | |
3386 sqlite3_free(a); | |
3387 *pRC = rc; | |
3388 return; | |
3389 } | |
3390 sqlite3_bind_int(pStmt, 1, FTS_STAT_DOCTOTAL); | |
3391 if( sqlite3_step(pStmt)==SQLITE_ROW ){ | |
3392 fts3DecodeIntArray(nStat, a, | |
3393 sqlite3_column_blob(pStmt, 0), | |
3394 sqlite3_column_bytes(pStmt, 0)); | |
3395 }else{ | |
3396 memset(a, 0, sizeof(u32)*(nStat) ); | |
3397 } | |
3398 rc = sqlite3_reset(pStmt); | |
3399 if( rc!=SQLITE_OK ){ | |
3400 sqlite3_free(a); | |
3401 *pRC = rc; | |
3402 return; | |
3403 } | |
3404 if( nChng<0 && a[0]<(u32)(-nChng) ){ | |
3405 a[0] = 0; | |
3406 }else{ | |
3407 a[0] += nChng; | |
3408 } | |
3409 for(i=0; i<p->nColumn+1; i++){ | |
3410 u32 x = a[i+1]; | |
3411 if( x+aSzIns[i] < aSzDel[i] ){ | |
3412 x = 0; | |
3413 }else{ | |
3414 x = x + aSzIns[i] - aSzDel[i]; | |
3415 } | |
3416 a[i+1] = x; | |
3417 } | |
3418 fts3EncodeIntArray(nStat, a, pBlob, &nBlob); | |
3419 rc = fts3SqlStmt(p, SQL_REPLACE_STAT, &pStmt, 0); | |
3420 if( rc ){ | |
3421 sqlite3_free(a); | |
3422 *pRC = rc; | |
3423 return; | |
3424 } | |
3425 sqlite3_bind_int(pStmt, 1, FTS_STAT_DOCTOTAL); | |
3426 sqlite3_bind_blob(pStmt, 2, pBlob, nBlob, SQLITE_STATIC); | |
3427 sqlite3_step(pStmt); | |
3428 *pRC = sqlite3_reset(pStmt); | |
3429 sqlite3_free(a); | |
3430 } | |
3431 | |
3432 /* | |
3433 ** Merge the entire database so that there is one segment for each | |
3434 ** iIndex/iLangid combination. | |
3435 */ | |
3436 static int fts3DoOptimize(Fts3Table *p, int bReturnDone){ | |
3437 int bSeenDone = 0; | |
3438 int rc; | |
3439 sqlite3_stmt *pAllLangid = 0; | |
3440 | |
3441 rc = fts3SqlStmt(p, SQL_SELECT_ALL_LANGID, &pAllLangid, 0); | |
3442 if( rc==SQLITE_OK ){ | |
3443 int rc2; | |
3444 sqlite3_bind_int(pAllLangid, 1, p->nIndex); | |
3445 while( sqlite3_step(pAllLangid)==SQLITE_ROW ){ | |
3446 int i; | |
3447 int iLangid = sqlite3_column_int(pAllLangid, 0); | |
3448 for(i=0; rc==SQLITE_OK && i<p->nIndex; i++){ | |
3449 rc = fts3SegmentMerge(p, iLangid, i, FTS3_SEGCURSOR_ALL); | |
3450 if( rc==SQLITE_DONE ){ | |
3451 bSeenDone = 1; | |
3452 rc = SQLITE_OK; | |
3453 } | |
3454 } | |
3455 } | |
3456 rc2 = sqlite3_reset(pAllLangid); | |
3457 if( rc==SQLITE_OK ) rc = rc2; | |
3458 } | |
3459 | |
3460 sqlite3Fts3SegmentsClose(p); | |
3461 sqlite3Fts3PendingTermsClear(p); | |
3462 | |
3463 return (rc==SQLITE_OK && bReturnDone && bSeenDone) ? SQLITE_DONE : rc; | |
3464 } | |
3465 | |
3466 /* | |
3467 ** This function is called when the user executes the following statement: | |
3468 ** | |
3469 ** INSERT INTO <tbl>(<tbl>) VALUES('rebuild'); | |
3470 ** | |
3471 ** The entire FTS index is discarded and rebuilt. If the table is one | |
3472 ** created using the content=xxx option, then the new index is based on | |
3473 ** the current contents of the xxx table. Otherwise, it is rebuilt based | |
3474 ** on the contents of the %_content table. | |
3475 */ | |
3476 static int fts3DoRebuild(Fts3Table *p){ | |
3477 int rc; /* Return Code */ | |
3478 | |
3479 rc = fts3DeleteAll(p, 0); | |
3480 if( rc==SQLITE_OK ){ | |
3481 u32 *aSz = 0; | |
3482 u32 *aSzIns = 0; | |
3483 u32 *aSzDel = 0; | |
3484 sqlite3_stmt *pStmt = 0; | |
3485 int nEntry = 0; | |
3486 | |
3487 /* Compose and prepare an SQL statement to loop through the content table */ | |
3488 char *zSql = sqlite3_mprintf("SELECT %s" , p->zReadExprlist); | |
3489 if( !zSql ){ | |
3490 rc = SQLITE_NOMEM; | |
3491 }else{ | |
3492 rc = sqlite3_prepare_v2(p->db, zSql, -1, &pStmt, 0); | |
3493 sqlite3_free(zSql); | |
3494 } | |
3495 | |
3496 if( rc==SQLITE_OK ){ | |
3497 int nByte = sizeof(u32) * (p->nColumn+1)*3; | |
3498 aSz = (u32 *)sqlite3_malloc(nByte); | |
3499 if( aSz==0 ){ | |
3500 rc = SQLITE_NOMEM; | |
3501 }else{ | |
3502 memset(aSz, 0, nByte); | |
3503 aSzIns = &aSz[p->nColumn+1]; | |
3504 aSzDel = &aSzIns[p->nColumn+1]; | |
3505 } | |
3506 } | |
3507 | |
3508 while( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pStmt) ){ | |
3509 int iCol; | |
3510 int iLangid = langidFromSelect(p, pStmt); | |
3511 rc = fts3PendingTermsDocid(p, iLangid, sqlite3_column_int64(pStmt, 0)); | |
3512 memset(aSz, 0, sizeof(aSz[0]) * (p->nColumn+1)); | |
3513 for(iCol=0; rc==SQLITE_OK && iCol<p->nColumn; iCol++){ | |
3514 if( p->abNotindexed[iCol]==0 ){ | |
3515 const char *z = (const char *) sqlite3_column_text(pStmt, iCol+1); | |
3516 rc = fts3PendingTermsAdd(p, iLangid, z, iCol, &aSz[iCol]); | |
3517 aSz[p->nColumn] += sqlite3_column_bytes(pStmt, iCol+1); | |
3518 } | |
3519 } | |
3520 if( p->bHasDocsize ){ | |
3521 fts3InsertDocsize(&rc, p, aSz); | |
3522 } | |
3523 if( rc!=SQLITE_OK ){ | |
3524 sqlite3_finalize(pStmt); | |
3525 pStmt = 0; | |
3526 }else{ | |
3527 nEntry++; | |
3528 for(iCol=0; iCol<=p->nColumn; iCol++){ | |
3529 aSzIns[iCol] += aSz[iCol]; | |
3530 } | |
3531 } | |
3532 } | |
3533 if( p->bFts4 ){ | |
3534 fts3UpdateDocTotals(&rc, p, aSzIns, aSzDel, nEntry); | |
3535 } | |
3536 sqlite3_free(aSz); | |
3537 | |
3538 if( pStmt ){ | |
3539 int rc2 = sqlite3_finalize(pStmt); | |
3540 if( rc==SQLITE_OK ){ | |
3541 rc = rc2; | |
3542 } | |
3543 } | |
3544 } | |
3545 | |
3546 return rc; | |
3547 } | |
3548 | |
3549 | |
3550 /* | |
3551 ** This function opens a cursor used to read the input data for an | |
3552 ** incremental merge operation. Specifically, it opens a cursor to scan | |
3553 ** the oldest nSeg segments (idx=0 through idx=(nSeg-1)) in absolute | |
3554 ** level iAbsLevel. | |
3555 */ | |
3556 static int fts3IncrmergeCsr( | |
3557 Fts3Table *p, /* FTS3 table handle */ | |
3558 sqlite3_int64 iAbsLevel, /* Absolute level to open */ | |
3559 int nSeg, /* Number of segments to merge */ | |
3560 Fts3MultiSegReader *pCsr /* Cursor object to populate */ | |
3561 ){ | |
3562 int rc; /* Return Code */ | |
3563 sqlite3_stmt *pStmt = 0; /* Statement used to read %_segdir entry */ | |
3564 int nByte; /* Bytes allocated at pCsr->apSegment[] */ | |
3565 | |
3566 /* Allocate space for the Fts3MultiSegReader.aCsr[] array */ | |
3567 memset(pCsr, 0, sizeof(*pCsr)); | |
3568 nByte = sizeof(Fts3SegReader *) * nSeg; | |
3569 pCsr->apSegment = (Fts3SegReader **)sqlite3_malloc(nByte); | |
3570 | |
3571 if( pCsr->apSegment==0 ){ | |
3572 rc = SQLITE_NOMEM; | |
3573 }else{ | |
3574 memset(pCsr->apSegment, 0, nByte); | |
3575 rc = fts3SqlStmt(p, SQL_SELECT_LEVEL, &pStmt, 0); | |
3576 } | |
3577 if( rc==SQLITE_OK ){ | |
3578 int i; | |
3579 int rc2; | |
3580 sqlite3_bind_int64(pStmt, 1, iAbsLevel); | |
3581 assert( pCsr->nSegment==0 ); | |
3582 for(i=0; rc==SQLITE_OK && sqlite3_step(pStmt)==SQLITE_ROW && i<nSeg; i++){ | |
3583 rc = sqlite3Fts3SegReaderNew(i, 0, | |
3584 sqlite3_column_int64(pStmt, 1), /* segdir.start_block */ | |
3585 sqlite3_column_int64(pStmt, 2), /* segdir.leaves_end_block */ | |
3586 sqlite3_column_int64(pStmt, 3), /* segdir.end_block */ | |
3587 sqlite3_column_blob(pStmt, 4), /* segdir.root */ | |
3588 sqlite3_column_bytes(pStmt, 4), /* segdir.root */ | |
3589 &pCsr->apSegment[i] | |
3590 ); | |
3591 pCsr->nSegment++; | |
3592 } | |
3593 rc2 = sqlite3_reset(pStmt); | |
3594 if( rc==SQLITE_OK ) rc = rc2; | |
3595 } | |
3596 | |
3597 return rc; | |
3598 } | |
3599 | |
3600 typedef struct IncrmergeWriter IncrmergeWriter; | |
3601 typedef struct NodeWriter NodeWriter; | |
3602 typedef struct Blob Blob; | |
3603 typedef struct NodeReader NodeReader; | |
3604 | |
3605 /* | |
3606 ** An instance of the following structure is used as a dynamic buffer | |
3607 ** to build up nodes or other blobs of data in. | |
3608 ** | |
3609 ** The function blobGrowBuffer() is used to extend the allocation. | |
3610 */ | |
3611 struct Blob { | |
3612 char *a; /* Pointer to allocation */ | |
3613 int n; /* Number of valid bytes of data in a[] */ | |
3614 int nAlloc; /* Allocated size of a[] (nAlloc>=n) */ | |
3615 }; | |
3616 | |
3617 /* | |
3618 ** This structure is used to build up buffers containing segment b-tree | |
3619 ** nodes (blocks). | |
3620 */ | |
3621 struct NodeWriter { | |
3622 sqlite3_int64 iBlock; /* Current block id */ | |
3623 Blob key; /* Last key written to the current block */ | |
3624 Blob block; /* Current block image */ | |
3625 }; | |
3626 | |
3627 /* | |
3628 ** An object of this type contains the state required to create or append | |
3629 ** to an appendable b-tree segment. | |
3630 */ | |
3631 struct IncrmergeWriter { | |
3632 int nLeafEst; /* Space allocated for leaf blocks */ | |
3633 int nWork; /* Number of leaf pages flushed */ | |
3634 sqlite3_int64 iAbsLevel; /* Absolute level of input segments */ | |
3635 int iIdx; /* Index of *output* segment in iAbsLevel+1 */ | |
3636 sqlite3_int64 iStart; /* Block number of first allocated block */ | |
3637 sqlite3_int64 iEnd; /* Block number of last allocated block */ | |
3638 sqlite3_int64 nLeafData; /* Bytes of leaf page data so far */ | |
3639 u8 bNoLeafData; /* If true, store 0 for segment size */ | |
3640 NodeWriter aNodeWriter[FTS_MAX_APPENDABLE_HEIGHT]; | |
3641 }; | |
3642 | |
3643 /* | |
3644 ** An object of the following type is used to read data from a single | |
3645 ** FTS segment node. See the following functions: | |
3646 ** | |
3647 ** nodeReaderInit() | |
3648 ** nodeReaderNext() | |
3649 ** nodeReaderRelease() | |
3650 */ | |
3651 struct NodeReader { | |
3652 const char *aNode; | |
3653 int nNode; | |
3654 int iOff; /* Current offset within aNode[] */ | |
3655 | |
3656 /* Output variables. Containing the current node entry. */ | |
3657 sqlite3_int64 iChild; /* Pointer to child node */ | |
3658 Blob term; /* Current term */ | |
3659 const char *aDoclist; /* Pointer to doclist */ | |
3660 int nDoclist; /* Size of doclist in bytes */ | |
3661 }; | |
3662 | |
3663 /* | |
3664 ** If *pRc is not SQLITE_OK when this function is called, it is a no-op. | |
3665 ** Otherwise, if the allocation at pBlob->a is not already at least nMin | |
3666 ** bytes in size, extend (realloc) it to be so. | |
3667 ** | |
3668 ** If an OOM error occurs, set *pRc to SQLITE_NOMEM and leave pBlob->a | |
3669 ** unmodified. Otherwise, if the allocation succeeds, update pBlob->nAlloc | |
3670 ** to reflect the new size of the pBlob->a[] buffer. | |
3671 */ | |
3672 static void blobGrowBuffer(Blob *pBlob, int nMin, int *pRc){ | |
3673 if( *pRc==SQLITE_OK && nMin>pBlob->nAlloc ){ | |
3674 int nAlloc = nMin; | |
3675 char *a = (char *)sqlite3_realloc(pBlob->a, nAlloc); | |
3676 if( a ){ | |
3677 pBlob->nAlloc = nAlloc; | |
3678 pBlob->a = a; | |
3679 }else{ | |
3680 *pRc = SQLITE_NOMEM; | |
3681 } | |
3682 } | |
3683 } | |
3684 | |
3685 /* | |
3686 ** Attempt to advance the node-reader object passed as the first argument to | |
3687 ** the next entry on the node. | |
3688 ** | |
3689 ** Return an error code if an error occurs (SQLITE_NOMEM is possible). | |
3690 ** Otherwise return SQLITE_OK. If there is no next entry on the node | |
3691 ** (e.g. because the current entry is the last) set NodeReader->aNode to | |
3692 ** NULL to indicate EOF. Otherwise, populate the NodeReader structure output | |
3693 ** variables for the new entry. | |
3694 */ | |
3695 static int nodeReaderNext(NodeReader *p){ | |
3696 int bFirst = (p->term.n==0); /* True for first term on the node */ | |
3697 int nPrefix = 0; /* Bytes to copy from previous term */ | |
3698 int nSuffix = 0; /* Bytes to append to the prefix */ | |
3699 int rc = SQLITE_OK; /* Return code */ | |
3700 | |
3701 assert( p->aNode ); | |
3702 if( p->iChild && bFirst==0 ) p->iChild++; | |
3703 if( p->iOff>=p->nNode ){ | |
3704 /* EOF */ | |
3705 p->aNode = 0; | |
3706 }else{ | |
3707 if( bFirst==0 ){ | |
3708 p->iOff += fts3GetVarint32(&p->aNode[p->iOff], &nPrefix); | |
3709 } | |
3710 p->iOff += fts3GetVarint32(&p->aNode[p->iOff], &nSuffix); | |
3711 | |
3712 blobGrowBuffer(&p->term, nPrefix+nSuffix, &rc); | |
3713 if( rc==SQLITE_OK ){ | |
3714 memcpy(&p->term.a[nPrefix], &p->aNode[p->iOff], nSuffix); | |
3715 p->term.n = nPrefix+nSuffix; | |
3716 p->iOff += nSuffix; | |
3717 if( p->iChild==0 ){ | |
3718 p->iOff += fts3GetVarint32(&p->aNode[p->iOff], &p->nDoclist); | |
3719 p->aDoclist = &p->aNode[p->iOff]; | |
3720 p->iOff += p->nDoclist; | |
3721 } | |
3722 } | |
3723 } | |
3724 | |
3725 assert( p->iOff<=p->nNode ); | |
3726 | |
3727 return rc; | |
3728 } | |
3729 | |
3730 /* | |
3731 ** Release all dynamic resources held by node-reader object *p. | |
3732 */ | |
3733 static void nodeReaderRelease(NodeReader *p){ | |
3734 sqlite3_free(p->term.a); | |
3735 } | |
3736 | |
3737 /* | |
3738 ** Initialize a node-reader object to read the node in buffer aNode/nNode. | |
3739 ** | |
3740 ** If successful, SQLITE_OK is returned and the NodeReader object set to | |
3741 ** point to the first entry on the node (if any). Otherwise, an SQLite | |
3742 ** error code is returned. | |
3743 */ | |
3744 static int nodeReaderInit(NodeReader *p, const char *aNode, int nNode){ | |
3745 memset(p, 0, sizeof(NodeReader)); | |
3746 p->aNode = aNode; | |
3747 p->nNode = nNode; | |
3748 | |
3749 /* Figure out if this is a leaf or an internal node. */ | |
3750 if( p->aNode[0] ){ | |
3751 /* An internal node. */ | |
3752 p->iOff = 1 + sqlite3Fts3GetVarint(&p->aNode[1], &p->iChild); | |
3753 }else{ | |
3754 p->iOff = 1; | |
3755 } | |
3756 | |
3757 return nodeReaderNext(p); | |
3758 } | |
3759 | |
3760 /* | |
3761 ** This function is called while writing an FTS segment each time a leaf o | |
3762 ** node is finished and written to disk. The key (zTerm/nTerm) is guaranteed | |
3763 ** to be greater than the largest key on the node just written, but smaller | |
3764 ** than or equal to the first key that will be written to the next leaf | |
3765 ** node. | |
3766 ** | |
3767 ** The block id of the leaf node just written to disk may be found in | |
3768 ** (pWriter->aNodeWriter[0].iBlock) when this function is called. | |
3769 */ | |
3770 static int fts3IncrmergePush( | |
3771 Fts3Table *p, /* Fts3 table handle */ | |
3772 IncrmergeWriter *pWriter, /* Writer object */ | |
3773 const char *zTerm, /* Term to write to internal node */ | |
3774 int nTerm /* Bytes at zTerm */ | |
3775 ){ | |
3776 sqlite3_int64 iPtr = pWriter->aNodeWriter[0].iBlock; | |
3777 int iLayer; | |
3778 | |
3779 assert( nTerm>0 ); | |
3780 for(iLayer=1; ALWAYS(iLayer<FTS_MAX_APPENDABLE_HEIGHT); iLayer++){ | |
3781 sqlite3_int64 iNextPtr = 0; | |
3782 NodeWriter *pNode = &pWriter->aNodeWriter[iLayer]; | |
3783 int rc = SQLITE_OK; | |
3784 int nPrefix; | |
3785 int nSuffix; | |
3786 int nSpace; | |
3787 | |
3788 /* Figure out how much space the key will consume if it is written to | |
3789 ** the current node of layer iLayer. Due to the prefix compression, | |
3790 ** the space required changes depending on which node the key is to | |
3791 ** be added to. */ | |
3792 nPrefix = fts3PrefixCompress(pNode->key.a, pNode->key.n, zTerm, nTerm); | |
3793 nSuffix = nTerm - nPrefix; | |
3794 nSpace = sqlite3Fts3VarintLen(nPrefix); | |
3795 nSpace += sqlite3Fts3VarintLen(nSuffix) + nSuffix; | |
3796 | |
3797 if( pNode->key.n==0 || (pNode->block.n + nSpace)<=p->nNodeSize ){ | |
3798 /* If the current node of layer iLayer contains zero keys, or if adding | |
3799 ** the key to it will not cause it to grow to larger than nNodeSize | |
3800 ** bytes in size, write the key here. */ | |
3801 | |
3802 Blob *pBlk = &pNode->block; | |
3803 if( pBlk->n==0 ){ | |
3804 blobGrowBuffer(pBlk, p->nNodeSize, &rc); | |
3805 if( rc==SQLITE_OK ){ | |
3806 pBlk->a[0] = (char)iLayer; | |
3807 pBlk->n = 1 + sqlite3Fts3PutVarint(&pBlk->a[1], iPtr); | |
3808 } | |
3809 } | |
3810 blobGrowBuffer(pBlk, pBlk->n + nSpace, &rc); | |
3811 blobGrowBuffer(&pNode->key, nTerm, &rc); | |
3812 | |
3813 if( rc==SQLITE_OK ){ | |
3814 if( pNode->key.n ){ | |
3815 pBlk->n += sqlite3Fts3PutVarint(&pBlk->a[pBlk->n], nPrefix); | |
3816 } | |
3817 pBlk->n += sqlite3Fts3PutVarint(&pBlk->a[pBlk->n], nSuffix); | |
3818 memcpy(&pBlk->a[pBlk->n], &zTerm[nPrefix], nSuffix); | |
3819 pBlk->n += nSuffix; | |
3820 | |
3821 memcpy(pNode->key.a, zTerm, nTerm); | |
3822 pNode->key.n = nTerm; | |
3823 } | |
3824 }else{ | |
3825 /* Otherwise, flush the current node of layer iLayer to disk. | |
3826 ** Then allocate a new, empty sibling node. The key will be written | |
3827 ** into the parent of this node. */ | |
3828 rc = fts3WriteSegment(p, pNode->iBlock, pNode->block.a, pNode->block.n); | |
3829 | |
3830 assert( pNode->block.nAlloc>=p->nNodeSize ); | |
3831 pNode->block.a[0] = (char)iLayer; | |
3832 pNode->block.n = 1 + sqlite3Fts3PutVarint(&pNode->block.a[1], iPtr+1); | |
3833 | |
3834 iNextPtr = pNode->iBlock; | |
3835 pNode->iBlock++; | |
3836 pNode->key.n = 0; | |
3837 } | |
3838 | |
3839 if( rc!=SQLITE_OK || iNextPtr==0 ) return rc; | |
3840 iPtr = iNextPtr; | |
3841 } | |
3842 | |
3843 assert( 0 ); | |
3844 return 0; | |
3845 } | |
3846 | |
3847 /* | |
3848 ** Append a term and (optionally) doclist to the FTS segment node currently | |
3849 ** stored in blob *pNode. The node need not contain any terms, but the | |
3850 ** header must be written before this function is called. | |
3851 ** | |
3852 ** A node header is a single 0x00 byte for a leaf node, or a height varint | |
3853 ** followed by the left-hand-child varint for an internal node. | |
3854 ** | |
3855 ** The term to be appended is passed via arguments zTerm/nTerm. For a | |
3856 ** leaf node, the doclist is passed as aDoclist/nDoclist. For an internal | |
3857 ** node, both aDoclist and nDoclist must be passed 0. | |
3858 ** | |
3859 ** If the size of the value in blob pPrev is zero, then this is the first | |
3860 ** term written to the node. Otherwise, pPrev contains a copy of the | |
3861 ** previous term. Before this function returns, it is updated to contain a | |
3862 ** copy of zTerm/nTerm. | |
3863 ** | |
3864 ** It is assumed that the buffer associated with pNode is already large | |
3865 ** enough to accommodate the new entry. The buffer associated with pPrev | |
3866 ** is extended by this function if requrired. | |
3867 ** | |
3868 ** If an error (i.e. OOM condition) occurs, an SQLite error code is | |
3869 ** returned. Otherwise, SQLITE_OK. | |
3870 */ | |
3871 static int fts3AppendToNode( | |
3872 Blob *pNode, /* Current node image to append to */ | |
3873 Blob *pPrev, /* Buffer containing previous term written */ | |
3874 const char *zTerm, /* New term to write */ | |
3875 int nTerm, /* Size of zTerm in bytes */ | |
3876 const char *aDoclist, /* Doclist (or NULL) to write */ | |
3877 int nDoclist /* Size of aDoclist in bytes */ | |
3878 ){ | |
3879 int rc = SQLITE_OK; /* Return code */ | |
3880 int bFirst = (pPrev->n==0); /* True if this is the first term written */ | |
3881 int nPrefix; /* Size of term prefix in bytes */ | |
3882 int nSuffix; /* Size of term suffix in bytes */ | |
3883 | |
3884 /* Node must have already been started. There must be a doclist for a | |
3885 ** leaf node, and there must not be a doclist for an internal node. */ | |
3886 assert( pNode->n>0 ); | |
3887 assert( (pNode->a[0]=='\0')==(aDoclist!=0) ); | |
3888 | |
3889 blobGrowBuffer(pPrev, nTerm, &rc); | |
3890 if( rc!=SQLITE_OK ) return rc; | |
3891 | |
3892 nPrefix = fts3PrefixCompress(pPrev->a, pPrev->n, zTerm, nTerm); | |
3893 nSuffix = nTerm - nPrefix; | |
3894 memcpy(pPrev->a, zTerm, nTerm); | |
3895 pPrev->n = nTerm; | |
3896 | |
3897 if( bFirst==0 ){ | |
3898 pNode->n += sqlite3Fts3PutVarint(&pNode->a[pNode->n], nPrefix); | |
3899 } | |
3900 pNode->n += sqlite3Fts3PutVarint(&pNode->a[pNode->n], nSuffix); | |
3901 memcpy(&pNode->a[pNode->n], &zTerm[nPrefix], nSuffix); | |
3902 pNode->n += nSuffix; | |
3903 | |
3904 if( aDoclist ){ | |
3905 pNode->n += sqlite3Fts3PutVarint(&pNode->a[pNode->n], nDoclist); | |
3906 memcpy(&pNode->a[pNode->n], aDoclist, nDoclist); | |
3907 pNode->n += nDoclist; | |
3908 } | |
3909 | |
3910 assert( pNode->n<=pNode->nAlloc ); | |
3911 | |
3912 return SQLITE_OK; | |
3913 } | |
3914 | |
3915 /* | |
3916 ** Append the current term and doclist pointed to by cursor pCsr to the | |
3917 ** appendable b-tree segment opened for writing by pWriter. | |
3918 ** | |
3919 ** Return SQLITE_OK if successful, or an SQLite error code otherwise. | |
3920 */ | |
3921 static int fts3IncrmergeAppend( | |
3922 Fts3Table *p, /* Fts3 table handle */ | |
3923 IncrmergeWriter *pWriter, /* Writer object */ | |
3924 Fts3MultiSegReader *pCsr /* Cursor containing term and doclist */ | |
3925 ){ | |
3926 const char *zTerm = pCsr->zTerm; | |
3927 int nTerm = pCsr->nTerm; | |
3928 const char *aDoclist = pCsr->aDoclist; | |
3929 int nDoclist = pCsr->nDoclist; | |
3930 int rc = SQLITE_OK; /* Return code */ | |
3931 int nSpace; /* Total space in bytes required on leaf */ | |
3932 int nPrefix; /* Size of prefix shared with previous term */ | |
3933 int nSuffix; /* Size of suffix (nTerm - nPrefix) */ | |
3934 NodeWriter *pLeaf; /* Object used to write leaf nodes */ | |
3935 | |
3936 pLeaf = &pWriter->aNodeWriter[0]; | |
3937 nPrefix = fts3PrefixCompress(pLeaf->key.a, pLeaf->key.n, zTerm, nTerm); | |
3938 nSuffix = nTerm - nPrefix; | |
3939 | |
3940 nSpace = sqlite3Fts3VarintLen(nPrefix); | |
3941 nSpace += sqlite3Fts3VarintLen(nSuffix) + nSuffix; | |
3942 nSpace += sqlite3Fts3VarintLen(nDoclist) + nDoclist; | |
3943 | |
3944 /* If the current block is not empty, and if adding this term/doclist | |
3945 ** to the current block would make it larger than Fts3Table.nNodeSize | |
3946 ** bytes, write this block out to the database. */ | |
3947 if( pLeaf->block.n>0 && (pLeaf->block.n + nSpace)>p->nNodeSize ){ | |
3948 rc = fts3WriteSegment(p, pLeaf->iBlock, pLeaf->block.a, pLeaf->block.n); | |
3949 pWriter->nWork++; | |
3950 | |
3951 /* Add the current term to the parent node. The term added to the | |
3952 ** parent must: | |
3953 ** | |
3954 ** a) be greater than the largest term on the leaf node just written | |
3955 ** to the database (still available in pLeaf->key), and | |
3956 ** | |
3957 ** b) be less than or equal to the term about to be added to the new | |
3958 ** leaf node (zTerm/nTerm). | |
3959 ** | |
3960 ** In other words, it must be the prefix of zTerm 1 byte longer than | |
3961 ** the common prefix (if any) of zTerm and pWriter->zTerm. | |
3962 */ | |
3963 if( rc==SQLITE_OK ){ | |
3964 rc = fts3IncrmergePush(p, pWriter, zTerm, nPrefix+1); | |
3965 } | |
3966 | |
3967 /* Advance to the next output block */ | |
3968 pLeaf->iBlock++; | |
3969 pLeaf->key.n = 0; | |
3970 pLeaf->block.n = 0; | |
3971 | |
3972 nSuffix = nTerm; | |
3973 nSpace = 1; | |
3974 nSpace += sqlite3Fts3VarintLen(nSuffix) + nSuffix; | |
3975 nSpace += sqlite3Fts3VarintLen(nDoclist) + nDoclist; | |
3976 } | |
3977 | |
3978 pWriter->nLeafData += nSpace; | |
3979 blobGrowBuffer(&pLeaf->block, pLeaf->block.n + nSpace, &rc); | |
3980 if( rc==SQLITE_OK ){ | |
3981 if( pLeaf->block.n==0 ){ | |
3982 pLeaf->block.n = 1; | |
3983 pLeaf->block.a[0] = '\0'; | |
3984 } | |
3985 rc = fts3AppendToNode( | |
3986 &pLeaf->block, &pLeaf->key, zTerm, nTerm, aDoclist, nDoclist | |
3987 ); | |
3988 } | |
3989 | |
3990 return rc; | |
3991 } | |
3992 | |
3993 /* | |
3994 ** This function is called to release all dynamic resources held by the | |
3995 ** merge-writer object pWriter, and if no error has occurred, to flush | |
3996 ** all outstanding node buffers held by pWriter to disk. | |
3997 ** | |
3998 ** If *pRc is not SQLITE_OK when this function is called, then no attempt | |
3999 ** is made to write any data to disk. Instead, this function serves only | |
4000 ** to release outstanding resources. | |
4001 ** | |
4002 ** Otherwise, if *pRc is initially SQLITE_OK and an error occurs while | |
4003 ** flushing buffers to disk, *pRc is set to an SQLite error code before | |
4004 ** returning. | |
4005 */ | |
4006 static void fts3IncrmergeRelease( | |
4007 Fts3Table *p, /* FTS3 table handle */ | |
4008 IncrmergeWriter *pWriter, /* Merge-writer object */ | |
4009 int *pRc /* IN/OUT: Error code */ | |
4010 ){ | |
4011 int i; /* Used to iterate through non-root layers */ | |
4012 int iRoot; /* Index of root in pWriter->aNodeWriter */ | |
4013 NodeWriter *pRoot; /* NodeWriter for root node */ | |
4014 int rc = *pRc; /* Error code */ | |
4015 | |
4016 /* Set iRoot to the index in pWriter->aNodeWriter[] of the output segment | |
4017 ** root node. If the segment fits entirely on a single leaf node, iRoot | |
4018 ** will be set to 0. If the root node is the parent of the leaves, iRoot | |
4019 ** will be 1. And so on. */ | |
4020 for(iRoot=FTS_MAX_APPENDABLE_HEIGHT-1; iRoot>=0; iRoot--){ | |
4021 NodeWriter *pNode = &pWriter->aNodeWriter[iRoot]; | |
4022 if( pNode->block.n>0 ) break; | |
4023 assert( *pRc || pNode->block.nAlloc==0 ); | |
4024 assert( *pRc || pNode->key.nAlloc==0 ); | |
4025 sqlite3_free(pNode->block.a); | |
4026 sqlite3_free(pNode->key.a); | |
4027 } | |
4028 | |
4029 /* Empty output segment. This is a no-op. */ | |
4030 if( iRoot<0 ) return; | |
4031 | |
4032 /* The entire output segment fits on a single node. Normally, this means | |
4033 ** the node would be stored as a blob in the "root" column of the %_segdir | |
4034 ** table. However, this is not permitted in this case. The problem is that | |
4035 ** space has already been reserved in the %_segments table, and so the | |
4036 ** start_block and end_block fields of the %_segdir table must be populated. | |
4037 ** And, by design or by accident, released versions of FTS cannot handle | |
4038 ** segments that fit entirely on the root node with start_block!=0. | |
4039 ** | |
4040 ** Instead, create a synthetic root node that contains nothing but a | |
4041 ** pointer to the single content node. So that the segment consists of a | |
4042 ** single leaf and a single interior (root) node. | |
4043 ** | |
4044 ** Todo: Better might be to defer allocating space in the %_segments | |
4045 ** table until we are sure it is needed. | |
4046 */ | |
4047 if( iRoot==0 ){ | |
4048 Blob *pBlock = &pWriter->aNodeWriter[1].block; | |
4049 blobGrowBuffer(pBlock, 1 + FTS3_VARINT_MAX, &rc); | |
4050 if( rc==SQLITE_OK ){ | |
4051 pBlock->a[0] = 0x01; | |
4052 pBlock->n = 1 + sqlite3Fts3PutVarint( | |
4053 &pBlock->a[1], pWriter->aNodeWriter[0].iBlock | |
4054 ); | |
4055 } | |
4056 iRoot = 1; | |
4057 } | |
4058 pRoot = &pWriter->aNodeWriter[iRoot]; | |
4059 | |
4060 /* Flush all currently outstanding nodes to disk. */ | |
4061 for(i=0; i<iRoot; i++){ | |
4062 NodeWriter *pNode = &pWriter->aNodeWriter[i]; | |
4063 if( pNode->block.n>0 && rc==SQLITE_OK ){ | |
4064 rc = fts3WriteSegment(p, pNode->iBlock, pNode->block.a, pNode->block.n); | |
4065 } | |
4066 sqlite3_free(pNode->block.a); | |
4067 sqlite3_free(pNode->key.a); | |
4068 } | |
4069 | |
4070 /* Write the %_segdir record. */ | |
4071 if( rc==SQLITE_OK ){ | |
4072 rc = fts3WriteSegdir(p, | |
4073 pWriter->iAbsLevel+1, /* level */ | |
4074 pWriter->iIdx, /* idx */ | |
4075 pWriter->iStart, /* start_block */ | |
4076 pWriter->aNodeWriter[0].iBlock, /* leaves_end_block */ | |
4077 pWriter->iEnd, /* end_block */ | |
4078 (pWriter->bNoLeafData==0 ? pWriter->nLeafData : 0), /* end_block */ | |
4079 pRoot->block.a, pRoot->block.n /* root */ | |
4080 ); | |
4081 } | |
4082 sqlite3_free(pRoot->block.a); | |
4083 sqlite3_free(pRoot->key.a); | |
4084 | |
4085 *pRc = rc; | |
4086 } | |
4087 | |
4088 /* | |
4089 ** Compare the term in buffer zLhs (size in bytes nLhs) with that in | |
4090 ** zRhs (size in bytes nRhs) using memcmp. If one term is a prefix of | |
4091 ** the other, it is considered to be smaller than the other. | |
4092 ** | |
4093 ** Return -ve if zLhs is smaller than zRhs, 0 if it is equal, or +ve | |
4094 ** if it is greater. | |
4095 */ | |
4096 static int fts3TermCmp( | |
4097 const char *zLhs, int nLhs, /* LHS of comparison */ | |
4098 const char *zRhs, int nRhs /* RHS of comparison */ | |
4099 ){ | |
4100 int nCmp = MIN(nLhs, nRhs); | |
4101 int res; | |
4102 | |
4103 res = memcmp(zLhs, zRhs, nCmp); | |
4104 if( res==0 ) res = nLhs - nRhs; | |
4105 | |
4106 return res; | |
4107 } | |
4108 | |
4109 | |
4110 /* | |
4111 ** Query to see if the entry in the %_segments table with blockid iEnd is | |
4112 ** NULL. If no error occurs and the entry is NULL, set *pbRes 1 before | |
4113 ** returning. Otherwise, set *pbRes to 0. | |
4114 ** | |
4115 ** Or, if an error occurs while querying the database, return an SQLite | |
4116 ** error code. The final value of *pbRes is undefined in this case. | |
4117 ** | |
4118 ** This is used to test if a segment is an "appendable" segment. If it | |
4119 ** is, then a NULL entry has been inserted into the %_segments table | |
4120 ** with blockid %_segdir.end_block. | |
4121 */ | |
4122 static int fts3IsAppendable(Fts3Table *p, sqlite3_int64 iEnd, int *pbRes){ | |
4123 int bRes = 0; /* Result to set *pbRes to */ | |
4124 sqlite3_stmt *pCheck = 0; /* Statement to query database with */ | |
4125 int rc; /* Return code */ | |
4126 | |
4127 rc = fts3SqlStmt(p, SQL_SEGMENT_IS_APPENDABLE, &pCheck, 0); | |
4128 if( rc==SQLITE_OK ){ | |
4129 sqlite3_bind_int64(pCheck, 1, iEnd); | |
4130 if( SQLITE_ROW==sqlite3_step(pCheck) ) bRes = 1; | |
4131 rc = sqlite3_reset(pCheck); | |
4132 } | |
4133 | |
4134 *pbRes = bRes; | |
4135 return rc; | |
4136 } | |
4137 | |
4138 /* | |
4139 ** This function is called when initializing an incremental-merge operation. | |
4140 ** It checks if the existing segment with index value iIdx at absolute level | |
4141 ** (iAbsLevel+1) can be appended to by the incremental merge. If it can, the | |
4142 ** merge-writer object *pWriter is initialized to write to it. | |
4143 ** | |
4144 ** An existing segment can be appended to by an incremental merge if: | |
4145 ** | |
4146 ** * It was initially created as an appendable segment (with all required | |
4147 ** space pre-allocated), and | |
4148 ** | |
4149 ** * The first key read from the input (arguments zKey and nKey) is | |
4150 ** greater than the largest key currently stored in the potential | |
4151 ** output segment. | |
4152 */ | |
4153 static int fts3IncrmergeLoad( | |
4154 Fts3Table *p, /* Fts3 table handle */ | |
4155 sqlite3_int64 iAbsLevel, /* Absolute level of input segments */ | |
4156 int iIdx, /* Index of candidate output segment */ | |
4157 const char *zKey, /* First key to write */ | |
4158 int nKey, /* Number of bytes in nKey */ | |
4159 IncrmergeWriter *pWriter /* Populate this object */ | |
4160 ){ | |
4161 int rc; /* Return code */ | |
4162 sqlite3_stmt *pSelect = 0; /* SELECT to read %_segdir entry */ | |
4163 | |
4164 rc = fts3SqlStmt(p, SQL_SELECT_SEGDIR, &pSelect, 0); | |
4165 if( rc==SQLITE_OK ){ | |
4166 sqlite3_int64 iStart = 0; /* Value of %_segdir.start_block */ | |
4167 sqlite3_int64 iLeafEnd = 0; /* Value of %_segdir.leaves_end_block */ | |
4168 sqlite3_int64 iEnd = 0; /* Value of %_segdir.end_block */ | |
4169 const char *aRoot = 0; /* Pointer to %_segdir.root buffer */ | |
4170 int nRoot = 0; /* Size of aRoot[] in bytes */ | |
4171 int rc2; /* Return code from sqlite3_reset() */ | |
4172 int bAppendable = 0; /* Set to true if segment is appendable */ | |
4173 | |
4174 /* Read the %_segdir entry for index iIdx absolute level (iAbsLevel+1) */ | |
4175 sqlite3_bind_int64(pSelect, 1, iAbsLevel+1); | |
4176 sqlite3_bind_int(pSelect, 2, iIdx); | |
4177 if( sqlite3_step(pSelect)==SQLITE_ROW ){ | |
4178 iStart = sqlite3_column_int64(pSelect, 1); | |
4179 iLeafEnd = sqlite3_column_int64(pSelect, 2); | |
4180 fts3ReadEndBlockField(pSelect, 3, &iEnd, &pWriter->nLeafData); | |
4181 if( pWriter->nLeafData<0 ){ | |
4182 pWriter->nLeafData = pWriter->nLeafData * -1; | |
4183 } | |
4184 pWriter->bNoLeafData = (pWriter->nLeafData==0); | |
4185 nRoot = sqlite3_column_bytes(pSelect, 4); | |
4186 aRoot = sqlite3_column_blob(pSelect, 4); | |
4187 }else{ | |
4188 return sqlite3_reset(pSelect); | |
4189 } | |
4190 | |
4191 /* Check for the zero-length marker in the %_segments table */ | |
4192 rc = fts3IsAppendable(p, iEnd, &bAppendable); | |
4193 | |
4194 /* Check that zKey/nKey is larger than the largest key the candidate */ | |
4195 if( rc==SQLITE_OK && bAppendable ){ | |
4196 char *aLeaf = 0; | |
4197 int nLeaf = 0; | |
4198 | |
4199 rc = sqlite3Fts3ReadBlock(p, iLeafEnd, &aLeaf, &nLeaf, 0); | |
4200 if( rc==SQLITE_OK ){ | |
4201 NodeReader reader; | |
4202 for(rc = nodeReaderInit(&reader, aLeaf, nLeaf); | |
4203 rc==SQLITE_OK && reader.aNode; | |
4204 rc = nodeReaderNext(&reader) | |
4205 ){ | |
4206 assert( reader.aNode ); | |
4207 } | |
4208 if( fts3TermCmp(zKey, nKey, reader.term.a, reader.term.n)<=0 ){ | |
4209 bAppendable = 0; | |
4210 } | |
4211 nodeReaderRelease(&reader); | |
4212 } | |
4213 sqlite3_free(aLeaf); | |
4214 } | |
4215 | |
4216 if( rc==SQLITE_OK && bAppendable ){ | |
4217 /* It is possible to append to this segment. Set up the IncrmergeWriter | |
4218 ** object to do so. */ | |
4219 int i; | |
4220 int nHeight = (int)aRoot[0]; | |
4221 NodeWriter *pNode; | |
4222 | |
4223 pWriter->nLeafEst = (int)((iEnd - iStart) + 1)/FTS_MAX_APPENDABLE_HEIGHT; | |
4224 pWriter->iStart = iStart; | |
4225 pWriter->iEnd = iEnd; | |
4226 pWriter->iAbsLevel = iAbsLevel; | |
4227 pWriter->iIdx = iIdx; | |
4228 | |
4229 for(i=nHeight+1; i<FTS_MAX_APPENDABLE_HEIGHT; i++){ | |
4230 pWriter->aNodeWriter[i].iBlock = pWriter->iStart + i*pWriter->nLeafEst; | |
4231 } | |
4232 | |
4233 pNode = &pWriter->aNodeWriter[nHeight]; | |
4234 pNode->iBlock = pWriter->iStart + pWriter->nLeafEst*nHeight; | |
4235 blobGrowBuffer(&pNode->block, MAX(nRoot, p->nNodeSize), &rc); | |
4236 if( rc==SQLITE_OK ){ | |
4237 memcpy(pNode->block.a, aRoot, nRoot); | |
4238 pNode->block.n = nRoot; | |
4239 } | |
4240 | |
4241 for(i=nHeight; i>=0 && rc==SQLITE_OK; i--){ | |
4242 NodeReader reader; | |
4243 pNode = &pWriter->aNodeWriter[i]; | |
4244 | |
4245 rc = nodeReaderInit(&reader, pNode->block.a, pNode->block.n); | |
4246 while( reader.aNode && rc==SQLITE_OK ) rc = nodeReaderNext(&reader); | |
4247 blobGrowBuffer(&pNode->key, reader.term.n, &rc); | |
4248 if( rc==SQLITE_OK ){ | |
4249 memcpy(pNode->key.a, reader.term.a, reader.term.n); | |
4250 pNode->key.n = reader.term.n; | |
4251 if( i>0 ){ | |
4252 char *aBlock = 0; | |
4253 int nBlock = 0; | |
4254 pNode = &pWriter->aNodeWriter[i-1]; | |
4255 pNode->iBlock = reader.iChild; | |
4256 rc = sqlite3Fts3ReadBlock(p, reader.iChild, &aBlock, &nBlock, 0); | |
4257 blobGrowBuffer(&pNode->block, MAX(nBlock, p->nNodeSize), &rc); | |
4258 if( rc==SQLITE_OK ){ | |
4259 memcpy(pNode->block.a, aBlock, nBlock); | |
4260 pNode->block.n = nBlock; | |
4261 } | |
4262 sqlite3_free(aBlock); | |
4263 } | |
4264 } | |
4265 nodeReaderRelease(&reader); | |
4266 } | |
4267 } | |
4268 | |
4269 rc2 = sqlite3_reset(pSelect); | |
4270 if( rc==SQLITE_OK ) rc = rc2; | |
4271 } | |
4272 | |
4273 return rc; | |
4274 } | |
4275 | |
4276 /* | |
4277 ** Determine the largest segment index value that exists within absolute | |
4278 ** level iAbsLevel+1. If no error occurs, set *piIdx to this value plus | |
4279 ** one before returning SQLITE_OK. Or, if there are no segments at all | |
4280 ** within level iAbsLevel, set *piIdx to zero. | |
4281 ** | |
4282 ** If an error occurs, return an SQLite error code. The final value of | |
4283 ** *piIdx is undefined in this case. | |
4284 */ | |
4285 static int fts3IncrmergeOutputIdx( | |
4286 Fts3Table *p, /* FTS Table handle */ | |
4287 sqlite3_int64 iAbsLevel, /* Absolute index of input segments */ | |
4288 int *piIdx /* OUT: Next free index at iAbsLevel+1 */ | |
4289 ){ | |
4290 int rc; | |
4291 sqlite3_stmt *pOutputIdx = 0; /* SQL used to find output index */ | |
4292 | |
4293 rc = fts3SqlStmt(p, SQL_NEXT_SEGMENT_INDEX, &pOutputIdx, 0); | |
4294 if( rc==SQLITE_OK ){ | |
4295 sqlite3_bind_int64(pOutputIdx, 1, iAbsLevel+1); | |
4296 sqlite3_step(pOutputIdx); | |
4297 *piIdx = sqlite3_column_int(pOutputIdx, 0); | |
4298 rc = sqlite3_reset(pOutputIdx); | |
4299 } | |
4300 | |
4301 return rc; | |
4302 } | |
4303 | |
4304 /* | |
4305 ** Allocate an appendable output segment on absolute level iAbsLevel+1 | |
4306 ** with idx value iIdx. | |
4307 ** | |
4308 ** In the %_segdir table, a segment is defined by the values in three | |
4309 ** columns: | |
4310 ** | |
4311 ** start_block | |
4312 ** leaves_end_block | |
4313 ** end_block | |
4314 ** | |
4315 ** When an appendable segment is allocated, it is estimated that the | |
4316 ** maximum number of leaf blocks that may be required is the sum of the | |
4317 ** number of leaf blocks consumed by the input segments, plus the number | |
4318 ** of input segments, multiplied by two. This value is stored in stack | |
4319 ** variable nLeafEst. | |
4320 ** | |
4321 ** A total of 16*nLeafEst blocks are allocated when an appendable segment | |
4322 ** is created ((1 + end_block - start_block)==16*nLeafEst). The contiguous | |
4323 ** array of leaf nodes starts at the first block allocated. The array | |
4324 ** of interior nodes that are parents of the leaf nodes start at block | |
4325 ** (start_block + (1 + end_block - start_block) / 16). And so on. | |
4326 ** | |
4327 ** In the actual code below, the value "16" is replaced with the | |
4328 ** pre-processor macro FTS_MAX_APPENDABLE_HEIGHT. | |
4329 */ | |
4330 static int fts3IncrmergeWriter( | |
4331 Fts3Table *p, /* Fts3 table handle */ | |
4332 sqlite3_int64 iAbsLevel, /* Absolute level of input segments */ | |
4333 int iIdx, /* Index of new output segment */ | |
4334 Fts3MultiSegReader *pCsr, /* Cursor that data will be read from */ | |
4335 IncrmergeWriter *pWriter /* Populate this object */ | |
4336 ){ | |
4337 int rc; /* Return Code */ | |
4338 int i; /* Iterator variable */ | |
4339 int nLeafEst = 0; /* Blocks allocated for leaf nodes */ | |
4340 sqlite3_stmt *pLeafEst = 0; /* SQL used to determine nLeafEst */ | |
4341 sqlite3_stmt *pFirstBlock = 0; /* SQL used to determine first block */ | |
4342 | |
4343 /* Calculate nLeafEst. */ | |
4344 rc = fts3SqlStmt(p, SQL_MAX_LEAF_NODE_ESTIMATE, &pLeafEst, 0); | |
4345 if( rc==SQLITE_OK ){ | |
4346 sqlite3_bind_int64(pLeafEst, 1, iAbsLevel); | |
4347 sqlite3_bind_int64(pLeafEst, 2, pCsr->nSegment); | |
4348 if( SQLITE_ROW==sqlite3_step(pLeafEst) ){ | |
4349 nLeafEst = sqlite3_column_int(pLeafEst, 0); | |
4350 } | |
4351 rc = sqlite3_reset(pLeafEst); | |
4352 } | |
4353 if( rc!=SQLITE_OK ) return rc; | |
4354 | |
4355 /* Calculate the first block to use in the output segment */ | |
4356 rc = fts3SqlStmt(p, SQL_NEXT_SEGMENTS_ID, &pFirstBlock, 0); | |
4357 if( rc==SQLITE_OK ){ | |
4358 if( SQLITE_ROW==sqlite3_step(pFirstBlock) ){ | |
4359 pWriter->iStart = sqlite3_column_int64(pFirstBlock, 0); | |
4360 pWriter->iEnd = pWriter->iStart - 1; | |
4361 pWriter->iEnd += nLeafEst * FTS_MAX_APPENDABLE_HEIGHT; | |
4362 } | |
4363 rc = sqlite3_reset(pFirstBlock); | |
4364 } | |
4365 if( rc!=SQLITE_OK ) return rc; | |
4366 | |
4367 /* Insert the marker in the %_segments table to make sure nobody tries | |
4368 ** to steal the space just allocated. This is also used to identify | |
4369 ** appendable segments. */ | |
4370 rc = fts3WriteSegment(p, pWriter->iEnd, 0, 0); | |
4371 if( rc!=SQLITE_OK ) return rc; | |
4372 | |
4373 pWriter->iAbsLevel = iAbsLevel; | |
4374 pWriter->nLeafEst = nLeafEst; | |
4375 pWriter->iIdx = iIdx; | |
4376 | |
4377 /* Set up the array of NodeWriter objects */ | |
4378 for(i=0; i<FTS_MAX_APPENDABLE_HEIGHT; i++){ | |
4379 pWriter->aNodeWriter[i].iBlock = pWriter->iStart + i*pWriter->nLeafEst; | |
4380 } | |
4381 return SQLITE_OK; | |
4382 } | |
4383 | |
4384 /* | |
4385 ** Remove an entry from the %_segdir table. This involves running the | |
4386 ** following two statements: | |
4387 ** | |
4388 ** DELETE FROM %_segdir WHERE level = :iAbsLevel AND idx = :iIdx | |
4389 ** UPDATE %_segdir SET idx = idx - 1 WHERE level = :iAbsLevel AND idx > :iIdx | |
4390 ** | |
4391 ** The DELETE statement removes the specific %_segdir level. The UPDATE | |
4392 ** statement ensures that the remaining segments have contiguously allocated | |
4393 ** idx values. | |
4394 */ | |
4395 static int fts3RemoveSegdirEntry( | |
4396 Fts3Table *p, /* FTS3 table handle */ | |
4397 sqlite3_int64 iAbsLevel, /* Absolute level to delete from */ | |
4398 int iIdx /* Index of %_segdir entry to delete */ | |
4399 ){ | |
4400 int rc; /* Return code */ | |
4401 sqlite3_stmt *pDelete = 0; /* DELETE statement */ | |
4402 | |
4403 rc = fts3SqlStmt(p, SQL_DELETE_SEGDIR_ENTRY, &pDelete, 0); | |
4404 if( rc==SQLITE_OK ){ | |
4405 sqlite3_bind_int64(pDelete, 1, iAbsLevel); | |
4406 sqlite3_bind_int(pDelete, 2, iIdx); | |
4407 sqlite3_step(pDelete); | |
4408 rc = sqlite3_reset(pDelete); | |
4409 } | |
4410 | |
4411 return rc; | |
4412 } | |
4413 | |
4414 /* | |
4415 ** One or more segments have just been removed from absolute level iAbsLevel. | |
4416 ** Update the 'idx' values of the remaining segments in the level so that | |
4417 ** the idx values are a contiguous sequence starting from 0. | |
4418 */ | |
4419 static int fts3RepackSegdirLevel( | |
4420 Fts3Table *p, /* FTS3 table handle */ | |
4421 sqlite3_int64 iAbsLevel /* Absolute level to repack */ | |
4422 ){ | |
4423 int rc; /* Return code */ | |
4424 int *aIdx = 0; /* Array of remaining idx values */ | |
4425 int nIdx = 0; /* Valid entries in aIdx[] */ | |
4426 int nAlloc = 0; /* Allocated size of aIdx[] */ | |
4427 int i; /* Iterator variable */ | |
4428 sqlite3_stmt *pSelect = 0; /* Select statement to read idx values */ | |
4429 sqlite3_stmt *pUpdate = 0; /* Update statement to modify idx values */ | |
4430 | |
4431 rc = fts3SqlStmt(p, SQL_SELECT_INDEXES, &pSelect, 0); | |
4432 if( rc==SQLITE_OK ){ | |
4433 int rc2; | |
4434 sqlite3_bind_int64(pSelect, 1, iAbsLevel); | |
4435 while( SQLITE_ROW==sqlite3_step(pSelect) ){ | |
4436 if( nIdx>=nAlloc ){ | |
4437 int *aNew; | |
4438 nAlloc += 16; | |
4439 aNew = sqlite3_realloc(aIdx, nAlloc*sizeof(int)); | |
4440 if( !aNew ){ | |
4441 rc = SQLITE_NOMEM; | |
4442 break; | |
4443 } | |
4444 aIdx = aNew; | |
4445 } | |
4446 aIdx[nIdx++] = sqlite3_column_int(pSelect, 0); | |
4447 } | |
4448 rc2 = sqlite3_reset(pSelect); | |
4449 if( rc==SQLITE_OK ) rc = rc2; | |
4450 } | |
4451 | |
4452 if( rc==SQLITE_OK ){ | |
4453 rc = fts3SqlStmt(p, SQL_SHIFT_SEGDIR_ENTRY, &pUpdate, 0); | |
4454 } | |
4455 if( rc==SQLITE_OK ){ | |
4456 sqlite3_bind_int64(pUpdate, 2, iAbsLevel); | |
4457 } | |
4458 | |
4459 assert( p->bIgnoreSavepoint==0 ); | |
4460 p->bIgnoreSavepoint = 1; | |
4461 for(i=0; rc==SQLITE_OK && i<nIdx; i++){ | |
4462 if( aIdx[i]!=i ){ | |
4463 sqlite3_bind_int(pUpdate, 3, aIdx[i]); | |
4464 sqlite3_bind_int(pUpdate, 1, i); | |
4465 sqlite3_step(pUpdate); | |
4466 rc = sqlite3_reset(pUpdate); | |
4467 } | |
4468 } | |
4469 p->bIgnoreSavepoint = 0; | |
4470 | |
4471 sqlite3_free(aIdx); | |
4472 return rc; | |
4473 } | |
4474 | |
4475 static void fts3StartNode(Blob *pNode, int iHeight, sqlite3_int64 iChild){ | |
4476 pNode->a[0] = (char)iHeight; | |
4477 if( iChild ){ | |
4478 assert( pNode->nAlloc>=1+sqlite3Fts3VarintLen(iChild) ); | |
4479 pNode->n = 1 + sqlite3Fts3PutVarint(&pNode->a[1], iChild); | |
4480 }else{ | |
4481 assert( pNode->nAlloc>=1 ); | |
4482 pNode->n = 1; | |
4483 } | |
4484 } | |
4485 | |
4486 /* | |
4487 ** The first two arguments are a pointer to and the size of a segment b-tree | |
4488 ** node. The node may be a leaf or an internal node. | |
4489 ** | |
4490 ** This function creates a new node image in blob object *pNew by copying | |
4491 ** all terms that are greater than or equal to zTerm/nTerm (for leaf nodes) | |
4492 ** or greater than zTerm/nTerm (for internal nodes) from aNode/nNode. | |
4493 */ | |
4494 static int fts3TruncateNode( | |
4495 const char *aNode, /* Current node image */ | |
4496 int nNode, /* Size of aNode in bytes */ | |
4497 Blob *pNew, /* OUT: Write new node image here */ | |
4498 const char *zTerm, /* Omit all terms smaller than this */ | |
4499 int nTerm, /* Size of zTerm in bytes */ | |
4500 sqlite3_int64 *piBlock /* OUT: Block number in next layer down */ | |
4501 ){ | |
4502 NodeReader reader; /* Reader object */ | |
4503 Blob prev = {0, 0, 0}; /* Previous term written to new node */ | |
4504 int rc = SQLITE_OK; /* Return code */ | |
4505 int bLeaf = aNode[0]=='\0'; /* True for a leaf node */ | |
4506 | |
4507 /* Allocate required output space */ | |
4508 blobGrowBuffer(pNew, nNode, &rc); | |
4509 if( rc!=SQLITE_OK ) return rc; | |
4510 pNew->n = 0; | |
4511 | |
4512 /* Populate new node buffer */ | |
4513 for(rc = nodeReaderInit(&reader, aNode, nNode); | |
4514 rc==SQLITE_OK && reader.aNode; | |
4515 rc = nodeReaderNext(&reader) | |
4516 ){ | |
4517 if( pNew->n==0 ){ | |
4518 int res = fts3TermCmp(reader.term.a, reader.term.n, zTerm, nTerm); | |
4519 if( res<0 || (bLeaf==0 && res==0) ) continue; | |
4520 fts3StartNode(pNew, (int)aNode[0], reader.iChild); | |
4521 *piBlock = reader.iChild; | |
4522 } | |
4523 rc = fts3AppendToNode( | |
4524 pNew, &prev, reader.term.a, reader.term.n, | |
4525 reader.aDoclist, reader.nDoclist | |
4526 ); | |
4527 if( rc!=SQLITE_OK ) break; | |
4528 } | |
4529 if( pNew->n==0 ){ | |
4530 fts3StartNode(pNew, (int)aNode[0], reader.iChild); | |
4531 *piBlock = reader.iChild; | |
4532 } | |
4533 assert( pNew->n<=pNew->nAlloc ); | |
4534 | |
4535 nodeReaderRelease(&reader); | |
4536 sqlite3_free(prev.a); | |
4537 return rc; | |
4538 } | |
4539 | |
4540 /* | |
4541 ** Remove all terms smaller than zTerm/nTerm from segment iIdx in absolute | |
4542 ** level iAbsLevel. This may involve deleting entries from the %_segments | |
4543 ** table, and modifying existing entries in both the %_segments and %_segdir | |
4544 ** tables. | |
4545 ** | |
4546 ** SQLITE_OK is returned if the segment is updated successfully. Or an | |
4547 ** SQLite error code otherwise. | |
4548 */ | |
4549 static int fts3TruncateSegment( | |
4550 Fts3Table *p, /* FTS3 table handle */ | |
4551 sqlite3_int64 iAbsLevel, /* Absolute level of segment to modify */ | |
4552 int iIdx, /* Index within level of segment to modify */ | |
4553 const char *zTerm, /* Remove terms smaller than this */ | |
4554 int nTerm /* Number of bytes in buffer zTerm */ | |
4555 ){ | |
4556 int rc = SQLITE_OK; /* Return code */ | |
4557 Blob root = {0,0,0}; /* New root page image */ | |
4558 Blob block = {0,0,0}; /* Buffer used for any other block */ | |
4559 sqlite3_int64 iBlock = 0; /* Block id */ | |
4560 sqlite3_int64 iNewStart = 0; /* New value for iStartBlock */ | |
4561 sqlite3_int64 iOldStart = 0; /* Old value for iStartBlock */ | |
4562 sqlite3_stmt *pFetch = 0; /* Statement used to fetch segdir */ | |
4563 | |
4564 rc = fts3SqlStmt(p, SQL_SELECT_SEGDIR, &pFetch, 0); | |
4565 if( rc==SQLITE_OK ){ | |
4566 int rc2; /* sqlite3_reset() return code */ | |
4567 sqlite3_bind_int64(pFetch, 1, iAbsLevel); | |
4568 sqlite3_bind_int(pFetch, 2, iIdx); | |
4569 if( SQLITE_ROW==sqlite3_step(pFetch) ){ | |
4570 const char *aRoot = sqlite3_column_blob(pFetch, 4); | |
4571 int nRoot = sqlite3_column_bytes(pFetch, 4); | |
4572 iOldStart = sqlite3_column_int64(pFetch, 1); | |
4573 rc = fts3TruncateNode(aRoot, nRoot, &root, zTerm, nTerm, &iBlock); | |
4574 } | |
4575 rc2 = sqlite3_reset(pFetch); | |
4576 if( rc==SQLITE_OK ) rc = rc2; | |
4577 } | |
4578 | |
4579 while( rc==SQLITE_OK && iBlock ){ | |
4580 char *aBlock = 0; | |
4581 int nBlock = 0; | |
4582 iNewStart = iBlock; | |
4583 | |
4584 rc = sqlite3Fts3ReadBlock(p, iBlock, &aBlock, &nBlock, 0); | |
4585 if( rc==SQLITE_OK ){ | |
4586 rc = fts3TruncateNode(aBlock, nBlock, &block, zTerm, nTerm, &iBlock); | |
4587 } | |
4588 if( rc==SQLITE_OK ){ | |
4589 rc = fts3WriteSegment(p, iNewStart, block.a, block.n); | |
4590 } | |
4591 sqlite3_free(aBlock); | |
4592 } | |
4593 | |
4594 /* Variable iNewStart now contains the first valid leaf node. */ | |
4595 if( rc==SQLITE_OK && iNewStart ){ | |
4596 sqlite3_stmt *pDel = 0; | |
4597 rc = fts3SqlStmt(p, SQL_DELETE_SEGMENTS_RANGE, &pDel, 0); | |
4598 if( rc==SQLITE_OK ){ | |
4599 sqlite3_bind_int64(pDel, 1, iOldStart); | |
4600 sqlite3_bind_int64(pDel, 2, iNewStart-1); | |
4601 sqlite3_step(pDel); | |
4602 rc = sqlite3_reset(pDel); | |
4603 } | |
4604 } | |
4605 | |
4606 if( rc==SQLITE_OK ){ | |
4607 sqlite3_stmt *pChomp = 0; | |
4608 rc = fts3SqlStmt(p, SQL_CHOMP_SEGDIR, &pChomp, 0); | |
4609 if( rc==SQLITE_OK ){ | |
4610 sqlite3_bind_int64(pChomp, 1, iNewStart); | |
4611 sqlite3_bind_blob(pChomp, 2, root.a, root.n, SQLITE_STATIC); | |
4612 sqlite3_bind_int64(pChomp, 3, iAbsLevel); | |
4613 sqlite3_bind_int(pChomp, 4, iIdx); | |
4614 sqlite3_step(pChomp); | |
4615 rc = sqlite3_reset(pChomp); | |
4616 } | |
4617 } | |
4618 | |
4619 sqlite3_free(root.a); | |
4620 sqlite3_free(block.a); | |
4621 return rc; | |
4622 } | |
4623 | |
4624 /* | |
4625 ** This function is called after an incrmental-merge operation has run to | |
4626 ** merge (or partially merge) two or more segments from absolute level | |
4627 ** iAbsLevel. | |
4628 ** | |
4629 ** Each input segment is either removed from the db completely (if all of | |
4630 ** its data was copied to the output segment by the incrmerge operation) | |
4631 ** or modified in place so that it no longer contains those entries that | |
4632 ** have been duplicated in the output segment. | |
4633 */ | |
4634 static int fts3IncrmergeChomp( | |
4635 Fts3Table *p, /* FTS table handle */ | |
4636 sqlite3_int64 iAbsLevel, /* Absolute level containing segments */ | |
4637 Fts3MultiSegReader *pCsr, /* Chomp all segments opened by this cursor */ | |
4638 int *pnRem /* Number of segments not deleted */ | |
4639 ){ | |
4640 int i; | |
4641 int nRem = 0; | |
4642 int rc = SQLITE_OK; | |
4643 | |
4644 for(i=pCsr->nSegment-1; i>=0 && rc==SQLITE_OK; i--){ | |
4645 Fts3SegReader *pSeg = 0; | |
4646 int j; | |
4647 | |
4648 /* Find the Fts3SegReader object with Fts3SegReader.iIdx==i. It is hiding | |
4649 ** somewhere in the pCsr->apSegment[] array. */ | |
4650 for(j=0; ALWAYS(j<pCsr->nSegment); j++){ | |
4651 pSeg = pCsr->apSegment[j]; | |
4652 if( pSeg->iIdx==i ) break; | |
4653 } | |
4654 assert( j<pCsr->nSegment && pSeg->iIdx==i ); | |
4655 | |
4656 if( pSeg->aNode==0 ){ | |
4657 /* Seg-reader is at EOF. Remove the entire input segment. */ | |
4658 rc = fts3DeleteSegment(p, pSeg); | |
4659 if( rc==SQLITE_OK ){ | |
4660 rc = fts3RemoveSegdirEntry(p, iAbsLevel, pSeg->iIdx); | |
4661 } | |
4662 *pnRem = 0; | |
4663 }else{ | |
4664 /* The incremental merge did not copy all the data from this | |
4665 ** segment to the upper level. The segment is modified in place | |
4666 ** so that it contains no keys smaller than zTerm/nTerm. */ | |
4667 const char *zTerm = pSeg->zTerm; | |
4668 int nTerm = pSeg->nTerm; | |
4669 rc = fts3TruncateSegment(p, iAbsLevel, pSeg->iIdx, zTerm, nTerm); | |
4670 nRem++; | |
4671 } | |
4672 } | |
4673 | |
4674 if( rc==SQLITE_OK && nRem!=pCsr->nSegment ){ | |
4675 rc = fts3RepackSegdirLevel(p, iAbsLevel); | |
4676 } | |
4677 | |
4678 *pnRem = nRem; | |
4679 return rc; | |
4680 } | |
4681 | |
4682 /* | |
4683 ** Store an incr-merge hint in the database. | |
4684 */ | |
4685 static int fts3IncrmergeHintStore(Fts3Table *p, Blob *pHint){ | |
4686 sqlite3_stmt *pReplace = 0; | |
4687 int rc; /* Return code */ | |
4688 | |
4689 rc = fts3SqlStmt(p, SQL_REPLACE_STAT, &pReplace, 0); | |
4690 if( rc==SQLITE_OK ){ | |
4691 sqlite3_bind_int(pReplace, 1, FTS_STAT_INCRMERGEHINT); | |
4692 sqlite3_bind_blob(pReplace, 2, pHint->a, pHint->n, SQLITE_STATIC); | |
4693 sqlite3_step(pReplace); | |
4694 rc = sqlite3_reset(pReplace); | |
4695 } | |
4696 | |
4697 return rc; | |
4698 } | |
4699 | |
4700 /* | |
4701 ** Load an incr-merge hint from the database. The incr-merge hint, if one | |
4702 ** exists, is stored in the rowid==1 row of the %_stat table. | |
4703 ** | |
4704 ** If successful, populate blob *pHint with the value read from the %_stat | |
4705 ** table and return SQLITE_OK. Otherwise, if an error occurs, return an | |
4706 ** SQLite error code. | |
4707 */ | |
4708 static int fts3IncrmergeHintLoad(Fts3Table *p, Blob *pHint){ | |
4709 sqlite3_stmt *pSelect = 0; | |
4710 int rc; | |
4711 | |
4712 pHint->n = 0; | |
4713 rc = fts3SqlStmt(p, SQL_SELECT_STAT, &pSelect, 0); | |
4714 if( rc==SQLITE_OK ){ | |
4715 int rc2; | |
4716 sqlite3_bind_int(pSelect, 1, FTS_STAT_INCRMERGEHINT); | |
4717 if( SQLITE_ROW==sqlite3_step(pSelect) ){ | |
4718 const char *aHint = sqlite3_column_blob(pSelect, 0); | |
4719 int nHint = sqlite3_column_bytes(pSelect, 0); | |
4720 if( aHint ){ | |
4721 blobGrowBuffer(pHint, nHint, &rc); | |
4722 if( rc==SQLITE_OK ){ | |
4723 memcpy(pHint->a, aHint, nHint); | |
4724 pHint->n = nHint; | |
4725 } | |
4726 } | |
4727 } | |
4728 rc2 = sqlite3_reset(pSelect); | |
4729 if( rc==SQLITE_OK ) rc = rc2; | |
4730 } | |
4731 | |
4732 return rc; | |
4733 } | |
4734 | |
4735 /* | |
4736 ** If *pRc is not SQLITE_OK when this function is called, it is a no-op. | |
4737 ** Otherwise, append an entry to the hint stored in blob *pHint. Each entry | |
4738 ** consists of two varints, the absolute level number of the input segments | |
4739 ** and the number of input segments. | |
4740 ** | |
4741 ** If successful, leave *pRc set to SQLITE_OK and return. If an error occurs, | |
4742 ** set *pRc to an SQLite error code before returning. | |
4743 */ | |
4744 static void fts3IncrmergeHintPush( | |
4745 Blob *pHint, /* Hint blob to append to */ | |
4746 i64 iAbsLevel, /* First varint to store in hint */ | |
4747 int nInput, /* Second varint to store in hint */ | |
4748 int *pRc /* IN/OUT: Error code */ | |
4749 ){ | |
4750 blobGrowBuffer(pHint, pHint->n + 2*FTS3_VARINT_MAX, pRc); | |
4751 if( *pRc==SQLITE_OK ){ | |
4752 pHint->n += sqlite3Fts3PutVarint(&pHint->a[pHint->n], iAbsLevel); | |
4753 pHint->n += sqlite3Fts3PutVarint(&pHint->a[pHint->n], (i64)nInput); | |
4754 } | |
4755 } | |
4756 | |
4757 /* | |
4758 ** Read the last entry (most recently pushed) from the hint blob *pHint | |
4759 ** and then remove the entry. Write the two values read to *piAbsLevel and | |
4760 ** *pnInput before returning. | |
4761 ** | |
4762 ** If no error occurs, return SQLITE_OK. If the hint blob in *pHint does | |
4763 ** not contain at least two valid varints, return SQLITE_CORRUPT_VTAB. | |
4764 */ | |
4765 static int fts3IncrmergeHintPop(Blob *pHint, i64 *piAbsLevel, int *pnInput){ | |
4766 const int nHint = pHint->n; | |
4767 int i; | |
4768 | |
4769 i = pHint->n-2; | |
4770 while( i>0 && (pHint->a[i-1] & 0x80) ) i--; | |
4771 while( i>0 && (pHint->a[i-1] & 0x80) ) i--; | |
4772 | |
4773 pHint->n = i; | |
4774 i += sqlite3Fts3GetVarint(&pHint->a[i], piAbsLevel); | |
4775 i += fts3GetVarint32(&pHint->a[i], pnInput); | |
4776 if( i!=nHint ) return SQLITE_CORRUPT_VTAB; | |
4777 | |
4778 return SQLITE_OK; | |
4779 } | |
4780 | |
4781 | |
4782 /* | |
4783 ** Attempt an incremental merge that writes nMerge leaf blocks. | |
4784 ** | |
4785 ** Incremental merges happen nMin segments at a time. The segments | |
4786 ** to be merged are the nMin oldest segments (the ones with the smallest | |
4787 ** values for the _segdir.idx field) in the highest level that contains | |
4788 ** at least nMin segments. Multiple merges might occur in an attempt to | |
4789 ** write the quota of nMerge leaf blocks. | |
4790 */ | |
4791 int sqlite3Fts3Incrmerge(Fts3Table *p, int nMerge, int nMin){ | |
4792 int rc; /* Return code */ | |
4793 int nRem = nMerge; /* Number of leaf pages yet to be written */ | |
4794 Fts3MultiSegReader *pCsr; /* Cursor used to read input data */ | |
4795 Fts3SegFilter *pFilter; /* Filter used with cursor pCsr */ | |
4796 IncrmergeWriter *pWriter; /* Writer object */ | |
4797 int nSeg = 0; /* Number of input segments */ | |
4798 sqlite3_int64 iAbsLevel = 0; /* Absolute level number to work on */ | |
4799 Blob hint = {0, 0, 0}; /* Hint read from %_stat table */ | |
4800 int bDirtyHint = 0; /* True if blob 'hint' has been modified */ | |
4801 | |
4802 /* Allocate space for the cursor, filter and writer objects */ | |
4803 const int nAlloc = sizeof(*pCsr) + sizeof(*pFilter) + sizeof(*pWriter); | |
4804 pWriter = (IncrmergeWriter *)sqlite3_malloc(nAlloc); | |
4805 if( !pWriter ) return SQLITE_NOMEM; | |
4806 pFilter = (Fts3SegFilter *)&pWriter[1]; | |
4807 pCsr = (Fts3MultiSegReader *)&pFilter[1]; | |
4808 | |
4809 rc = fts3IncrmergeHintLoad(p, &hint); | |
4810 while( rc==SQLITE_OK && nRem>0 ){ | |
4811 const i64 nMod = FTS3_SEGDIR_MAXLEVEL * p->nIndex; | |
4812 sqlite3_stmt *pFindLevel = 0; /* SQL used to determine iAbsLevel */ | |
4813 int bUseHint = 0; /* True if attempting to append */ | |
4814 int iIdx = 0; /* Largest idx in level (iAbsLevel+1) */ | |
4815 | |
4816 /* Search the %_segdir table for the absolute level with the smallest | |
4817 ** relative level number that contains at least nMin segments, if any. | |
4818 ** If one is found, set iAbsLevel to the absolute level number and | |
4819 ** nSeg to nMin. If no level with at least nMin segments can be found, | |
4820 ** set nSeg to -1. | |
4821 */ | |
4822 rc = fts3SqlStmt(p, SQL_FIND_MERGE_LEVEL, &pFindLevel, 0); | |
4823 sqlite3_bind_int(pFindLevel, 1, nMin); | |
4824 if( sqlite3_step(pFindLevel)==SQLITE_ROW ){ | |
4825 iAbsLevel = sqlite3_column_int64(pFindLevel, 0); | |
4826 nSeg = nMin; | |
4827 }else{ | |
4828 nSeg = -1; | |
4829 } | |
4830 rc = sqlite3_reset(pFindLevel); | |
4831 | |
4832 /* If the hint read from the %_stat table is not empty, check if the | |
4833 ** last entry in it specifies a relative level smaller than or equal | |
4834 ** to the level identified by the block above (if any). If so, this | |
4835 ** iteration of the loop will work on merging at the hinted level. | |
4836 */ | |
4837 if( rc==SQLITE_OK && hint.n ){ | |
4838 int nHint = hint.n; | |
4839 sqlite3_int64 iHintAbsLevel = 0; /* Hint level */ | |
4840 int nHintSeg = 0; /* Hint number of segments */ | |
4841 | |
4842 rc = fts3IncrmergeHintPop(&hint, &iHintAbsLevel, &nHintSeg); | |
4843 if( nSeg<0 || (iAbsLevel % nMod) >= (iHintAbsLevel % nMod) ){ | |
4844 iAbsLevel = iHintAbsLevel; | |
4845 nSeg = nHintSeg; | |
4846 bUseHint = 1; | |
4847 bDirtyHint = 1; | |
4848 }else{ | |
4849 /* This undoes the effect of the HintPop() above - so that no entry | |
4850 ** is removed from the hint blob. */ | |
4851 hint.n = nHint; | |
4852 } | |
4853 } | |
4854 | |
4855 /* If nSeg is less that zero, then there is no level with at least | |
4856 ** nMin segments and no hint in the %_stat table. No work to do. | |
4857 ** Exit early in this case. */ | |
4858 if( nSeg<0 ) break; | |
4859 | |
4860 /* Open a cursor to iterate through the contents of the oldest nSeg | |
4861 ** indexes of absolute level iAbsLevel. If this cursor is opened using | |
4862 ** the 'hint' parameters, it is possible that there are less than nSeg | |
4863 ** segments available in level iAbsLevel. In this case, no work is | |
4864 ** done on iAbsLevel - fall through to the next iteration of the loop | |
4865 ** to start work on some other level. */ | |
4866 memset(pWriter, 0, nAlloc); | |
4867 pFilter->flags = FTS3_SEGMENT_REQUIRE_POS; | |
4868 | |
4869 if( rc==SQLITE_OK ){ | |
4870 rc = fts3IncrmergeOutputIdx(p, iAbsLevel, &iIdx); | |
4871 assert( bUseHint==1 || bUseHint==0 ); | |
4872 if( iIdx==0 || (bUseHint && iIdx==1) ){ | |
4873 int bIgnore = 0; | |
4874 rc = fts3SegmentIsMaxLevel(p, iAbsLevel+1, &bIgnore); | |
4875 if( bIgnore ){ | |
4876 pFilter->flags |= FTS3_SEGMENT_IGNORE_EMPTY; | |
4877 } | |
4878 } | |
4879 } | |
4880 | |
4881 if( rc==SQLITE_OK ){ | |
4882 rc = fts3IncrmergeCsr(p, iAbsLevel, nSeg, pCsr); | |
4883 } | |
4884 if( SQLITE_OK==rc && pCsr->nSegment==nSeg | |
4885 && SQLITE_OK==(rc = sqlite3Fts3SegReaderStart(p, pCsr, pFilter)) | |
4886 && SQLITE_ROW==(rc = sqlite3Fts3SegReaderStep(p, pCsr)) | |
4887 ){ | |
4888 if( bUseHint && iIdx>0 ){ | |
4889 const char *zKey = pCsr->zTerm; | |
4890 int nKey = pCsr->nTerm; | |
4891 rc = fts3IncrmergeLoad(p, iAbsLevel, iIdx-1, zKey, nKey, pWriter); | |
4892 }else{ | |
4893 rc = fts3IncrmergeWriter(p, iAbsLevel, iIdx, pCsr, pWriter); | |
4894 } | |
4895 | |
4896 if( rc==SQLITE_OK && pWriter->nLeafEst ){ | |
4897 fts3LogMerge(nSeg, iAbsLevel); | |
4898 do { | |
4899 rc = fts3IncrmergeAppend(p, pWriter, pCsr); | |
4900 if( rc==SQLITE_OK ) rc = sqlite3Fts3SegReaderStep(p, pCsr); | |
4901 if( pWriter->nWork>=nRem && rc==SQLITE_ROW ) rc = SQLITE_OK; | |
4902 }while( rc==SQLITE_ROW ); | |
4903 | |
4904 /* Update or delete the input segments */ | |
4905 if( rc==SQLITE_OK ){ | |
4906 nRem -= (1 + pWriter->nWork); | |
4907 rc = fts3IncrmergeChomp(p, iAbsLevel, pCsr, &nSeg); | |
4908 if( nSeg!=0 ){ | |
4909 bDirtyHint = 1; | |
4910 fts3IncrmergeHintPush(&hint, iAbsLevel, nSeg, &rc); | |
4911 } | |
4912 } | |
4913 } | |
4914 | |
4915 if( nSeg!=0 ){ | |
4916 pWriter->nLeafData = pWriter->nLeafData * -1; | |
4917 } | |
4918 fts3IncrmergeRelease(p, pWriter, &rc); | |
4919 if( nSeg==0 && pWriter->bNoLeafData==0 ){ | |
4920 fts3PromoteSegments(p, iAbsLevel+1, pWriter->nLeafData); | |
4921 } | |
4922 } | |
4923 | |
4924 sqlite3Fts3SegReaderFinish(pCsr); | |
4925 } | |
4926 | |
4927 /* Write the hint values into the %_stat table for the next incr-merger */ | |
4928 if( bDirtyHint && rc==SQLITE_OK ){ | |
4929 rc = fts3IncrmergeHintStore(p, &hint); | |
4930 } | |
4931 | |
4932 sqlite3_free(pWriter); | |
4933 sqlite3_free(hint.a); | |
4934 return rc; | |
4935 } | |
4936 | |
4937 /* | |
4938 ** Convert the text beginning at *pz into an integer and return | |
4939 ** its value. Advance *pz to point to the first character past | |
4940 ** the integer. | |
4941 */ | |
4942 static int fts3Getint(const char **pz){ | |
4943 const char *z = *pz; | |
4944 int i = 0; | |
4945 while( (*z)>='0' && (*z)<='9' ) i = 10*i + *(z++) - '0'; | |
4946 *pz = z; | |
4947 return i; | |
4948 } | |
4949 | |
4950 /* | |
4951 ** Process statements of the form: | |
4952 ** | |
4953 ** INSERT INTO table(table) VALUES('merge=A,B'); | |
4954 ** | |
4955 ** A and B are integers that decode to be the number of leaf pages | |
4956 ** written for the merge, and the minimum number of segments on a level | |
4957 ** before it will be selected for a merge, respectively. | |
4958 */ | |
4959 static int fts3DoIncrmerge( | |
4960 Fts3Table *p, /* FTS3 table handle */ | |
4961 const char *zParam /* Nul-terminated string containing "A,B" */ | |
4962 ){ | |
4963 int rc; | |
4964 int nMin = (FTS3_MERGE_COUNT / 2); | |
4965 int nMerge = 0; | |
4966 const char *z = zParam; | |
4967 | |
4968 /* Read the first integer value */ | |
4969 nMerge = fts3Getint(&z); | |
4970 | |
4971 /* If the first integer value is followed by a ',', read the second | |
4972 ** integer value. */ | |
4973 if( z[0]==',' && z[1]!='\0' ){ | |
4974 z++; | |
4975 nMin = fts3Getint(&z); | |
4976 } | |
4977 | |
4978 if( z[0]!='\0' || nMin<2 ){ | |
4979 rc = SQLITE_ERROR; | |
4980 }else{ | |
4981 rc = SQLITE_OK; | |
4982 if( !p->bHasStat ){ | |
4983 assert( p->bFts4==0 ); | |
4984 sqlite3Fts3CreateStatTable(&rc, p); | |
4985 } | |
4986 if( rc==SQLITE_OK ){ | |
4987 rc = sqlite3Fts3Incrmerge(p, nMerge, nMin); | |
4988 } | |
4989 sqlite3Fts3SegmentsClose(p); | |
4990 } | |
4991 return rc; | |
4992 } | |
4993 | |
4994 /* | |
4995 ** Process statements of the form: | |
4996 ** | |
4997 ** INSERT INTO table(table) VALUES('automerge=X'); | |
4998 ** | |
4999 ** where X is an integer. X==0 means to turn automerge off. X!=0 means | |
5000 ** turn it on. The setting is persistent. | |
5001 */ | |
5002 static int fts3DoAutoincrmerge( | |
5003 Fts3Table *p, /* FTS3 table handle */ | |
5004 const char *zParam /* Nul-terminated string containing boolean */ | |
5005 ){ | |
5006 int rc = SQLITE_OK; | |
5007 sqlite3_stmt *pStmt = 0; | |
5008 p->nAutoincrmerge = fts3Getint(&zParam); | |
5009 if( p->nAutoincrmerge==1 || p->nAutoincrmerge>FTS3_MERGE_COUNT ){ | |
5010 p->nAutoincrmerge = 8; | |
5011 } | |
5012 if( !p->bHasStat ){ | |
5013 assert( p->bFts4==0 ); | |
5014 sqlite3Fts3CreateStatTable(&rc, p); | |
5015 if( rc ) return rc; | |
5016 } | |
5017 rc = fts3SqlStmt(p, SQL_REPLACE_STAT, &pStmt, 0); | |
5018 if( rc ) return rc; | |
5019 sqlite3_bind_int(pStmt, 1, FTS_STAT_AUTOINCRMERGE); | |
5020 sqlite3_bind_int(pStmt, 2, p->nAutoincrmerge); | |
5021 sqlite3_step(pStmt); | |
5022 rc = sqlite3_reset(pStmt); | |
5023 return rc; | |
5024 } | |
5025 | |
5026 /* | |
5027 ** Return a 64-bit checksum for the FTS index entry specified by the | |
5028 ** arguments to this function. | |
5029 */ | |
5030 static u64 fts3ChecksumEntry( | |
5031 const char *zTerm, /* Pointer to buffer containing term */ | |
5032 int nTerm, /* Size of zTerm in bytes */ | |
5033 int iLangid, /* Language id for current row */ | |
5034 int iIndex, /* Index (0..Fts3Table.nIndex-1) */ | |
5035 i64 iDocid, /* Docid for current row. */ | |
5036 int iCol, /* Column number */ | |
5037 int iPos /* Position */ | |
5038 ){ | |
5039 int i; | |
5040 u64 ret = (u64)iDocid; | |
5041 | |
5042 ret += (ret<<3) + iLangid; | |
5043 ret += (ret<<3) + iIndex; | |
5044 ret += (ret<<3) + iCol; | |
5045 ret += (ret<<3) + iPos; | |
5046 for(i=0; i<nTerm; i++) ret += (ret<<3) + zTerm[i]; | |
5047 | |
5048 return ret; | |
5049 } | |
5050 | |
5051 /* | |
5052 ** Return a checksum of all entries in the FTS index that correspond to | |
5053 ** language id iLangid. The checksum is calculated by XORing the checksums | |
5054 ** of each individual entry (see fts3ChecksumEntry()) together. | |
5055 ** | |
5056 ** If successful, the checksum value is returned and *pRc set to SQLITE_OK. | |
5057 ** Otherwise, if an error occurs, *pRc is set to an SQLite error code. The | |
5058 ** return value is undefined in this case. | |
5059 */ | |
5060 static u64 fts3ChecksumIndex( | |
5061 Fts3Table *p, /* FTS3 table handle */ | |
5062 int iLangid, /* Language id to return cksum for */ | |
5063 int iIndex, /* Index to cksum (0..p->nIndex-1) */ | |
5064 int *pRc /* OUT: Return code */ | |
5065 ){ | |
5066 Fts3SegFilter filter; | |
5067 Fts3MultiSegReader csr; | |
5068 int rc; | |
5069 u64 cksum = 0; | |
5070 | |
5071 assert( *pRc==SQLITE_OK ); | |
5072 | |
5073 memset(&filter, 0, sizeof(filter)); | |
5074 memset(&csr, 0, sizeof(csr)); | |
5075 filter.flags = FTS3_SEGMENT_REQUIRE_POS|FTS3_SEGMENT_IGNORE_EMPTY; | |
5076 filter.flags |= FTS3_SEGMENT_SCAN; | |
5077 | |
5078 rc = sqlite3Fts3SegReaderCursor( | |
5079 p, iLangid, iIndex, FTS3_SEGCURSOR_ALL, 0, 0, 0, 1,&csr | |
5080 ); | |
5081 if( rc==SQLITE_OK ){ | |
5082 rc = sqlite3Fts3SegReaderStart(p, &csr, &filter); | |
5083 } | |
5084 | |
5085 if( rc==SQLITE_OK ){ | |
5086 while( SQLITE_ROW==(rc = sqlite3Fts3SegReaderStep(p, &csr)) ){ | |
5087 char *pCsr = csr.aDoclist; | |
5088 char *pEnd = &pCsr[csr.nDoclist]; | |
5089 | |
5090 i64 iDocid = 0; | |
5091 i64 iCol = 0; | |
5092 i64 iPos = 0; | |
5093 | |
5094 pCsr += sqlite3Fts3GetVarint(pCsr, &iDocid); | |
5095 while( pCsr<pEnd ){ | |
5096 i64 iVal = 0; | |
5097 pCsr += sqlite3Fts3GetVarint(pCsr, &iVal); | |
5098 if( pCsr<pEnd ){ | |
5099 if( iVal==0 || iVal==1 ){ | |
5100 iCol = 0; | |
5101 iPos = 0; | |
5102 if( iVal ){ | |
5103 pCsr += sqlite3Fts3GetVarint(pCsr, &iCol); | |
5104 }else{ | |
5105 pCsr += sqlite3Fts3GetVarint(pCsr, &iVal); | |
5106 iDocid += iVal; | |
5107 } | |
5108 }else{ | |
5109 iPos += (iVal - 2); | |
5110 cksum = cksum ^ fts3ChecksumEntry( | |
5111 csr.zTerm, csr.nTerm, iLangid, iIndex, iDocid, | |
5112 (int)iCol, (int)iPos | |
5113 ); | |
5114 } | |
5115 } | |
5116 } | |
5117 } | |
5118 } | |
5119 sqlite3Fts3SegReaderFinish(&csr); | |
5120 | |
5121 *pRc = rc; | |
5122 return cksum; | |
5123 } | |
5124 | |
5125 /* | |
5126 ** Check if the contents of the FTS index match the current contents of the | |
5127 ** content table. If no error occurs and the contents do match, set *pbOk | |
5128 ** to true and return SQLITE_OK. Or if the contents do not match, set *pbOk | |
5129 ** to false before returning. | |
5130 ** | |
5131 ** If an error occurs (e.g. an OOM or IO error), return an SQLite error | |
5132 ** code. The final value of *pbOk is undefined in this case. | |
5133 */ | |
5134 static int fts3IntegrityCheck(Fts3Table *p, int *pbOk){ | |
5135 int rc = SQLITE_OK; /* Return code */ | |
5136 u64 cksum1 = 0; /* Checksum based on FTS index contents */ | |
5137 u64 cksum2 = 0; /* Checksum based on %_content contents */ | |
5138 sqlite3_stmt *pAllLangid = 0; /* Statement to return all language-ids */ | |
5139 | |
5140 /* This block calculates the checksum according to the FTS index. */ | |
5141 rc = fts3SqlStmt(p, SQL_SELECT_ALL_LANGID, &pAllLangid, 0); | |
5142 if( rc==SQLITE_OK ){ | |
5143 int rc2; | |
5144 sqlite3_bind_int(pAllLangid, 1, p->nIndex); | |
5145 while( rc==SQLITE_OK && sqlite3_step(pAllLangid)==SQLITE_ROW ){ | |
5146 int iLangid = sqlite3_column_int(pAllLangid, 0); | |
5147 int i; | |
5148 for(i=0; i<p->nIndex; i++){ | |
5149 cksum1 = cksum1 ^ fts3ChecksumIndex(p, iLangid, i, &rc); | |
5150 } | |
5151 } | |
5152 rc2 = sqlite3_reset(pAllLangid); | |
5153 if( rc==SQLITE_OK ) rc = rc2; | |
5154 } | |
5155 | |
5156 /* This block calculates the checksum according to the %_content table */ | |
5157 rc = fts3SqlStmt(p, SQL_SELECT_ALL_LANGID, &pAllLangid, 0); | |
5158 if( rc==SQLITE_OK ){ | |
5159 sqlite3_tokenizer_module const *pModule = p->pTokenizer->pModule; | |
5160 sqlite3_stmt *pStmt = 0; | |
5161 char *zSql; | |
5162 | |
5163 zSql = sqlite3_mprintf("SELECT %s" , p->zReadExprlist); | |
5164 if( !zSql ){ | |
5165 rc = SQLITE_NOMEM; | |
5166 }else{ | |
5167 rc = sqlite3_prepare_v2(p->db, zSql, -1, &pStmt, 0); | |
5168 sqlite3_free(zSql); | |
5169 } | |
5170 | |
5171 while( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pStmt) ){ | |
5172 i64 iDocid = sqlite3_column_int64(pStmt, 0); | |
5173 int iLang = langidFromSelect(p, pStmt); | |
5174 int iCol; | |
5175 | |
5176 for(iCol=0; rc==SQLITE_OK && iCol<p->nColumn; iCol++){ | |
5177 if( p->abNotindexed[iCol]==0 ){ | |
5178 const char *zText = (const char *)sqlite3_column_text(pStmt, iCol+1); | |
5179 int nText = sqlite3_column_bytes(pStmt, iCol+1); | |
5180 sqlite3_tokenizer_cursor *pT = 0; | |
5181 | |
5182 rc = sqlite3Fts3OpenTokenizer(p->pTokenizer, iLang, zText, nText,&pT); | |
5183 while( rc==SQLITE_OK ){ | |
5184 char const *zToken; /* Buffer containing token */ | |
5185 int nToken = 0; /* Number of bytes in token */ | |
5186 int iDum1 = 0, iDum2 = 0; /* Dummy variables */ | |
5187 int iPos = 0; /* Position of token in zText */ | |
5188 | |
5189 rc = pModule->xNext(pT, &zToken, &nToken, &iDum1, &iDum2, &iPos); | |
5190 if( rc==SQLITE_OK ){ | |
5191 int i; | |
5192 cksum2 = cksum2 ^ fts3ChecksumEntry( | |
5193 zToken, nToken, iLang, 0, iDocid, iCol, iPos | |
5194 ); | |
5195 for(i=1; i<p->nIndex; i++){ | |
5196 if( p->aIndex[i].nPrefix<=nToken ){ | |
5197 cksum2 = cksum2 ^ fts3ChecksumEntry( | |
5198 zToken, p->aIndex[i].nPrefix, iLang, i, iDocid, iCol, iPos | |
5199 ); | |
5200 } | |
5201 } | |
5202 } | |
5203 } | |
5204 if( pT ) pModule->xClose(pT); | |
5205 if( rc==SQLITE_DONE ) rc = SQLITE_OK; | |
5206 } | |
5207 } | |
5208 } | |
5209 | |
5210 sqlite3_finalize(pStmt); | |
5211 } | |
5212 | |
5213 *pbOk = (cksum1==cksum2); | |
5214 return rc; | |
5215 } | |
5216 | |
5217 /* | |
5218 ** Run the integrity-check. If no error occurs and the current contents of | |
5219 ** the FTS index are correct, return SQLITE_OK. Or, if the contents of the | |
5220 ** FTS index are incorrect, return SQLITE_CORRUPT_VTAB. | |
5221 ** | |
5222 ** Or, if an error (e.g. an OOM or IO error) occurs, return an SQLite | |
5223 ** error code. | |
5224 ** | |
5225 ** The integrity-check works as follows. For each token and indexed token | |
5226 ** prefix in the document set, a 64-bit checksum is calculated (by code | |
5227 ** in fts3ChecksumEntry()) based on the following: | |
5228 ** | |
5229 ** + The index number (0 for the main index, 1 for the first prefix | |
5230 ** index etc.), | |
5231 ** + The token (or token prefix) text itself, | |
5232 ** + The language-id of the row it appears in, | |
5233 ** + The docid of the row it appears in, | |
5234 ** + The column it appears in, and | |
5235 ** + The tokens position within that column. | |
5236 ** | |
5237 ** The checksums for all entries in the index are XORed together to create | |
5238 ** a single checksum for the entire index. | |
5239 ** | |
5240 ** The integrity-check code calculates the same checksum in two ways: | |
5241 ** | |
5242 ** 1. By scanning the contents of the FTS index, and | |
5243 ** 2. By scanning and tokenizing the content table. | |
5244 ** | |
5245 ** If the two checksums are identical, the integrity-check is deemed to have | |
5246 ** passed. | |
5247 */ | |
5248 static int fts3DoIntegrityCheck( | |
5249 Fts3Table *p /* FTS3 table handle */ | |
5250 ){ | |
5251 int rc; | |
5252 int bOk = 0; | |
5253 rc = fts3IntegrityCheck(p, &bOk); | |
5254 if( rc==SQLITE_OK && bOk==0 ) rc = SQLITE_CORRUPT_VTAB; | |
5255 return rc; | |
5256 } | |
5257 | |
5258 /* | |
5259 ** Handle a 'special' INSERT of the form: | |
5260 ** | |
5261 ** "INSERT INTO tbl(tbl) VALUES(<expr>)" | |
5262 ** | |
5263 ** Argument pVal contains the result of <expr>. Currently the only | |
5264 ** meaningful value to insert is the text 'optimize'. | |
5265 */ | |
5266 static int fts3SpecialInsert(Fts3Table *p, sqlite3_value *pVal){ | |
5267 int rc; /* Return Code */ | |
5268 const char *zVal = (const char *)sqlite3_value_text(pVal); | |
5269 int nVal = sqlite3_value_bytes(pVal); | |
5270 | |
5271 if( !zVal ){ | |
5272 return SQLITE_NOMEM; | |
5273 }else if( nVal==8 && 0==sqlite3_strnicmp(zVal, "optimize", 8) ){ | |
5274 rc = fts3DoOptimize(p, 0); | |
5275 }else if( nVal==7 && 0==sqlite3_strnicmp(zVal, "rebuild", 7) ){ | |
5276 rc = fts3DoRebuild(p); | |
5277 }else if( nVal==15 && 0==sqlite3_strnicmp(zVal, "integrity-check", 15) ){ | |
5278 rc = fts3DoIntegrityCheck(p); | |
5279 }else if( nVal>6 && 0==sqlite3_strnicmp(zVal, "merge=", 6) ){ | |
5280 rc = fts3DoIncrmerge(p, &zVal[6]); | |
5281 }else if( nVal>10 && 0==sqlite3_strnicmp(zVal, "automerge=", 10) ){ | |
5282 rc = fts3DoAutoincrmerge(p, &zVal[10]); | |
5283 #ifdef SQLITE_TEST | |
5284 }else if( nVal>9 && 0==sqlite3_strnicmp(zVal, "nodesize=", 9) ){ | |
5285 p->nNodeSize = atoi(&zVal[9]); | |
5286 rc = SQLITE_OK; | |
5287 }else if( nVal>11 && 0==sqlite3_strnicmp(zVal, "maxpending=", 9) ){ | |
5288 p->nMaxPendingData = atoi(&zVal[11]); | |
5289 rc = SQLITE_OK; | |
5290 }else if( nVal>21 && 0==sqlite3_strnicmp(zVal, "test-no-incr-doclist=", 21) ){ | |
5291 p->bNoIncrDoclist = atoi(&zVal[21]); | |
5292 rc = SQLITE_OK; | |
5293 #endif | |
5294 }else{ | |
5295 rc = SQLITE_ERROR; | |
5296 } | |
5297 | |
5298 return rc; | |
5299 } | |
5300 | |
5301 #ifndef SQLITE_DISABLE_FTS4_DEFERRED | |
5302 /* | |
5303 ** Delete all cached deferred doclists. Deferred doclists are cached | |
5304 ** (allocated) by the sqlite3Fts3CacheDeferredDoclists() function. | |
5305 */ | |
5306 void sqlite3Fts3FreeDeferredDoclists(Fts3Cursor *pCsr){ | |
5307 Fts3DeferredToken *pDef; | |
5308 for(pDef=pCsr->pDeferred; pDef; pDef=pDef->pNext){ | |
5309 fts3PendingListDelete(pDef->pList); | |
5310 pDef->pList = 0; | |
5311 } | |
5312 } | |
5313 | |
5314 /* | |
5315 ** Free all entries in the pCsr->pDeffered list. Entries are added to | |
5316 ** this list using sqlite3Fts3DeferToken(). | |
5317 */ | |
5318 void sqlite3Fts3FreeDeferredTokens(Fts3Cursor *pCsr){ | |
5319 Fts3DeferredToken *pDef; | |
5320 Fts3DeferredToken *pNext; | |
5321 for(pDef=pCsr->pDeferred; pDef; pDef=pNext){ | |
5322 pNext = pDef->pNext; | |
5323 fts3PendingListDelete(pDef->pList); | |
5324 sqlite3_free(pDef); | |
5325 } | |
5326 pCsr->pDeferred = 0; | |
5327 } | |
5328 | |
5329 /* | |
5330 ** Generate deferred-doclists for all tokens in the pCsr->pDeferred list | |
5331 ** based on the row that pCsr currently points to. | |
5332 ** | |
5333 ** A deferred-doclist is like any other doclist with position information | |
5334 ** included, except that it only contains entries for a single row of the | |
5335 ** table, not for all rows. | |
5336 */ | |
5337 int sqlite3Fts3CacheDeferredDoclists(Fts3Cursor *pCsr){ | |
5338 int rc = SQLITE_OK; /* Return code */ | |
5339 if( pCsr->pDeferred ){ | |
5340 int i; /* Used to iterate through table columns */ | |
5341 sqlite3_int64 iDocid; /* Docid of the row pCsr points to */ | |
5342 Fts3DeferredToken *pDef; /* Used to iterate through deferred tokens */ | |
5343 | |
5344 Fts3Table *p = (Fts3Table *)pCsr->base.pVtab; | |
5345 sqlite3_tokenizer *pT = p->pTokenizer; | |
5346 sqlite3_tokenizer_module const *pModule = pT->pModule; | |
5347 | |
5348 assert( pCsr->isRequireSeek==0 ); | |
5349 iDocid = sqlite3_column_int64(pCsr->pStmt, 0); | |
5350 | |
5351 for(i=0; i<p->nColumn && rc==SQLITE_OK; i++){ | |
5352 if( p->abNotindexed[i]==0 ){ | |
5353 const char *zText = (const char *)sqlite3_column_text(pCsr->pStmt, i+1); | |
5354 sqlite3_tokenizer_cursor *pTC = 0; | |
5355 | |
5356 rc = sqlite3Fts3OpenTokenizer(pT, pCsr->iLangid, zText, -1, &pTC); | |
5357 while( rc==SQLITE_OK ){ | |
5358 char const *zToken; /* Buffer containing token */ | |
5359 int nToken = 0; /* Number of bytes in token */ | |
5360 int iDum1 = 0, iDum2 = 0; /* Dummy variables */ | |
5361 int iPos = 0; /* Position of token in zText */ | |
5362 | |
5363 rc = pModule->xNext(pTC, &zToken, &nToken, &iDum1, &iDum2, &iPos); | |
5364 for(pDef=pCsr->pDeferred; pDef && rc==SQLITE_OK; pDef=pDef->pNext){ | |
5365 Fts3PhraseToken *pPT = pDef->pToken; | |
5366 if( (pDef->iCol>=p->nColumn || pDef->iCol==i) | |
5367 && (pPT->bFirst==0 || iPos==0) | |
5368 && (pPT->n==nToken || (pPT->isPrefix && pPT->n<nToken)) | |
5369 && (0==memcmp(zToken, pPT->z, pPT->n)) | |
5370 ){ | |
5371 fts3PendingListAppend(&pDef->pList, iDocid, i, iPos, &rc); | |
5372 } | |
5373 } | |
5374 } | |
5375 if( pTC ) pModule->xClose(pTC); | |
5376 if( rc==SQLITE_DONE ) rc = SQLITE_OK; | |
5377 } | |
5378 } | |
5379 | |
5380 for(pDef=pCsr->pDeferred; pDef && rc==SQLITE_OK; pDef=pDef->pNext){ | |
5381 if( pDef->pList ){ | |
5382 rc = fts3PendingListAppendVarint(&pDef->pList, 0); | |
5383 } | |
5384 } | |
5385 } | |
5386 | |
5387 return rc; | |
5388 } | |
5389 | |
5390 int sqlite3Fts3DeferredTokenList( | |
5391 Fts3DeferredToken *p, | |
5392 char **ppData, | |
5393 int *pnData | |
5394 ){ | |
5395 char *pRet; | |
5396 int nSkip; | |
5397 sqlite3_int64 dummy; | |
5398 | |
5399 *ppData = 0; | |
5400 *pnData = 0; | |
5401 | |
5402 if( p->pList==0 ){ | |
5403 return SQLITE_OK; | |
5404 } | |
5405 | |
5406 pRet = (char *)sqlite3_malloc(p->pList->nData); | |
5407 if( !pRet ) return SQLITE_NOMEM; | |
5408 | |
5409 nSkip = sqlite3Fts3GetVarint(p->pList->aData, &dummy); | |
5410 *pnData = p->pList->nData - nSkip; | |
5411 *ppData = pRet; | |
5412 | |
5413 memcpy(pRet, &p->pList->aData[nSkip], *pnData); | |
5414 return SQLITE_OK; | |
5415 } | |
5416 | |
5417 /* | |
5418 ** Add an entry for token pToken to the pCsr->pDeferred list. | |
5419 */ | |
5420 int sqlite3Fts3DeferToken( | |
5421 Fts3Cursor *pCsr, /* Fts3 table cursor */ | |
5422 Fts3PhraseToken *pToken, /* Token to defer */ | |
5423 int iCol /* Column that token must appear in (or -1) */ | |
5424 ){ | |
5425 Fts3DeferredToken *pDeferred; | |
5426 pDeferred = sqlite3_malloc(sizeof(*pDeferred)); | |
5427 if( !pDeferred ){ | |
5428 return SQLITE_NOMEM; | |
5429 } | |
5430 memset(pDeferred, 0, sizeof(*pDeferred)); | |
5431 pDeferred->pToken = pToken; | |
5432 pDeferred->pNext = pCsr->pDeferred; | |
5433 pDeferred->iCol = iCol; | |
5434 pCsr->pDeferred = pDeferred; | |
5435 | |
5436 assert( pToken->pDeferred==0 ); | |
5437 pToken->pDeferred = pDeferred; | |
5438 | |
5439 return SQLITE_OK; | |
5440 } | |
5441 #endif | |
5442 | |
5443 /* | |
5444 ** SQLite value pRowid contains the rowid of a row that may or may not be | |
5445 ** present in the FTS3 table. If it is, delete it and adjust the contents | |
5446 ** of subsiduary data structures accordingly. | |
5447 */ | |
5448 static int fts3DeleteByRowid( | |
5449 Fts3Table *p, | |
5450 sqlite3_value *pRowid, | |
5451 int *pnChng, /* IN/OUT: Decrement if row is deleted */ | |
5452 u32 *aSzDel | |
5453 ){ | |
5454 int rc = SQLITE_OK; /* Return code */ | |
5455 int bFound = 0; /* True if *pRowid really is in the table */ | |
5456 | |
5457 fts3DeleteTerms(&rc, p, pRowid, aSzDel, &bFound); | |
5458 if( bFound && rc==SQLITE_OK ){ | |
5459 int isEmpty = 0; /* Deleting *pRowid leaves the table empty */ | |
5460 rc = fts3IsEmpty(p, pRowid, &isEmpty); | |
5461 if( rc==SQLITE_OK ){ | |
5462 if( isEmpty ){ | |
5463 /* Deleting this row means the whole table is empty. In this case | |
5464 ** delete the contents of all three tables and throw away any | |
5465 ** data in the pendingTerms hash table. */ | |
5466 rc = fts3DeleteAll(p, 1); | |
5467 *pnChng = 0; | |
5468 memset(aSzDel, 0, sizeof(u32) * (p->nColumn+1) * 2); | |
5469 }else{ | |
5470 *pnChng = *pnChng - 1; | |
5471 if( p->zContentTbl==0 ){ | |
5472 fts3SqlExec(&rc, p, SQL_DELETE_CONTENT, &pRowid); | |
5473 } | |
5474 if( p->bHasDocsize ){ | |
5475 fts3SqlExec(&rc, p, SQL_DELETE_DOCSIZE, &pRowid); | |
5476 } | |
5477 } | |
5478 } | |
5479 } | |
5480 | |
5481 return rc; | |
5482 } | |
5483 | |
5484 /* | |
5485 ** This function does the work for the xUpdate method of FTS3 virtual | |
5486 ** tables. The schema of the virtual table being: | |
5487 ** | |
5488 ** CREATE TABLE <table name>( | |
5489 ** <user columns>, | |
5490 ** <table name> HIDDEN, | |
5491 ** docid HIDDEN, | |
5492 ** <langid> HIDDEN | |
5493 ** ); | |
5494 ** | |
5495 ** | |
5496 */ | |
5497 int sqlite3Fts3UpdateMethod( | |
5498 sqlite3_vtab *pVtab, /* FTS3 vtab object */ | |
5499 int nArg, /* Size of argument array */ | |
5500 sqlite3_value **apVal, /* Array of arguments */ | |
5501 sqlite_int64 *pRowid /* OUT: The affected (or effected) rowid */ | |
5502 ){ | |
5503 Fts3Table *p = (Fts3Table *)pVtab; | |
5504 int rc = SQLITE_OK; /* Return Code */ | |
5505 int isRemove = 0; /* True for an UPDATE or DELETE */ | |
5506 u32 *aSzIns = 0; /* Sizes of inserted documents */ | |
5507 u32 *aSzDel = 0; /* Sizes of deleted documents */ | |
5508 int nChng = 0; /* Net change in number of documents */ | |
5509 int bInsertDone = 0; | |
5510 | |
5511 /* At this point it must be known if the %_stat table exists or not. | |
5512 ** So bHasStat may not be 2. */ | |
5513 assert( p->bHasStat==0 || p->bHasStat==1 ); | |
5514 | |
5515 assert( p->pSegments==0 ); | |
5516 assert( | |
5517 nArg==1 /* DELETE operations */ | |
5518 || nArg==(2 + p->nColumn + 3) /* INSERT or UPDATE operations */ | |
5519 ); | |
5520 | |
5521 /* Check for a "special" INSERT operation. One of the form: | |
5522 ** | |
5523 ** INSERT INTO xyz(xyz) VALUES('command'); | |
5524 */ | |
5525 if( nArg>1 | |
5526 && sqlite3_value_type(apVal[0])==SQLITE_NULL | |
5527 && sqlite3_value_type(apVal[p->nColumn+2])!=SQLITE_NULL | |
5528 ){ | |
5529 rc = fts3SpecialInsert(p, apVal[p->nColumn+2]); | |
5530 goto update_out; | |
5531 } | |
5532 | |
5533 if( nArg>1 && sqlite3_value_int(apVal[2 + p->nColumn + 2])<0 ){ | |
5534 rc = SQLITE_CONSTRAINT; | |
5535 goto update_out; | |
5536 } | |
5537 | |
5538 /* Allocate space to hold the change in document sizes */ | |
5539 aSzDel = sqlite3_malloc( sizeof(aSzDel[0])*(p->nColumn+1)*2 ); | |
5540 if( aSzDel==0 ){ | |
5541 rc = SQLITE_NOMEM; | |
5542 goto update_out; | |
5543 } | |
5544 aSzIns = &aSzDel[p->nColumn+1]; | |
5545 memset(aSzDel, 0, sizeof(aSzDel[0])*(p->nColumn+1)*2); | |
5546 | |
5547 rc = fts3Writelock(p); | |
5548 if( rc!=SQLITE_OK ) goto update_out; | |
5549 | |
5550 /* If this is an INSERT operation, or an UPDATE that modifies the rowid | |
5551 ** value, then this operation requires constraint handling. | |
5552 ** | |
5553 ** If the on-conflict mode is REPLACE, this means that the existing row | |
5554 ** should be deleted from the database before inserting the new row. Or, | |
5555 ** if the on-conflict mode is other than REPLACE, then this method must | |
5556 ** detect the conflict and return SQLITE_CONSTRAINT before beginning to | |
5557 ** modify the database file. | |
5558 */ | |
5559 if( nArg>1 && p->zContentTbl==0 ){ | |
5560 /* Find the value object that holds the new rowid value. */ | |
5561 sqlite3_value *pNewRowid = apVal[3+p->nColumn]; | |
5562 if( sqlite3_value_type(pNewRowid)==SQLITE_NULL ){ | |
5563 pNewRowid = apVal[1]; | |
5564 } | |
5565 | |
5566 if( sqlite3_value_type(pNewRowid)!=SQLITE_NULL && ( | |
5567 sqlite3_value_type(apVal[0])==SQLITE_NULL | |
5568 || sqlite3_value_int64(apVal[0])!=sqlite3_value_int64(pNewRowid) | |
5569 )){ | |
5570 /* The new rowid is not NULL (in this case the rowid will be | |
5571 ** automatically assigned and there is no chance of a conflict), and | |
5572 ** the statement is either an INSERT or an UPDATE that modifies the | |
5573 ** rowid column. So if the conflict mode is REPLACE, then delete any | |
5574 ** existing row with rowid=pNewRowid. | |
5575 ** | |
5576 ** Or, if the conflict mode is not REPLACE, insert the new record into | |
5577 ** the %_content table. If we hit the duplicate rowid constraint (or any | |
5578 ** other error) while doing so, return immediately. | |
5579 ** | |
5580 ** This branch may also run if pNewRowid contains a value that cannot | |
5581 ** be losslessly converted to an integer. In this case, the eventual | |
5582 ** call to fts3InsertData() (either just below or further on in this | |
5583 ** function) will return SQLITE_MISMATCH. If fts3DeleteByRowid is | |
5584 ** invoked, it will delete zero rows (since no row will have | |
5585 ** docid=$pNewRowid if $pNewRowid is not an integer value). | |
5586 */ | |
5587 if( sqlite3_vtab_on_conflict(p->db)==SQLITE_REPLACE ){ | |
5588 rc = fts3DeleteByRowid(p, pNewRowid, &nChng, aSzDel); | |
5589 }else{ | |
5590 rc = fts3InsertData(p, apVal, pRowid); | |
5591 bInsertDone = 1; | |
5592 } | |
5593 } | |
5594 } | |
5595 if( rc!=SQLITE_OK ){ | |
5596 goto update_out; | |
5597 } | |
5598 | |
5599 /* If this is a DELETE or UPDATE operation, remove the old record. */ | |
5600 if( sqlite3_value_type(apVal[0])!=SQLITE_NULL ){ | |
5601 assert( sqlite3_value_type(apVal[0])==SQLITE_INTEGER ); | |
5602 rc = fts3DeleteByRowid(p, apVal[0], &nChng, aSzDel); | |
5603 isRemove = 1; | |
5604 } | |
5605 | |
5606 /* If this is an INSERT or UPDATE operation, insert the new record. */ | |
5607 if( nArg>1 && rc==SQLITE_OK ){ | |
5608 int iLangid = sqlite3_value_int(apVal[2 + p->nColumn + 2]); | |
5609 if( bInsertDone==0 ){ | |
5610 rc = fts3InsertData(p, apVal, pRowid); | |
5611 if( rc==SQLITE_CONSTRAINT && p->zContentTbl==0 ){ | |
5612 rc = FTS_CORRUPT_VTAB; | |
5613 } | |
5614 } | |
5615 if( rc==SQLITE_OK && (!isRemove || *pRowid!=p->iPrevDocid ) ){ | |
5616 rc = fts3PendingTermsDocid(p, iLangid, *pRowid); | |
5617 } | |
5618 if( rc==SQLITE_OK ){ | |
5619 assert( p->iPrevDocid==*pRowid ); | |
5620 rc = fts3InsertTerms(p, iLangid, apVal, aSzIns); | |
5621 } | |
5622 if( p->bHasDocsize ){ | |
5623 fts3InsertDocsize(&rc, p, aSzIns); | |
5624 } | |
5625 nChng++; | |
5626 } | |
5627 | |
5628 if( p->bFts4 ){ | |
5629 fts3UpdateDocTotals(&rc, p, aSzIns, aSzDel, nChng); | |
5630 } | |
5631 | |
5632 update_out: | |
5633 sqlite3_free(aSzDel); | |
5634 sqlite3Fts3SegmentsClose(p); | |
5635 return rc; | |
5636 } | |
5637 | |
5638 /* | |
5639 ** Flush any data in the pending-terms hash table to disk. If successful, | |
5640 ** merge all segments in the database (including the new segment, if | |
5641 ** there was any data to flush) into a single segment. | |
5642 */ | |
5643 int sqlite3Fts3Optimize(Fts3Table *p){ | |
5644 int rc; | |
5645 rc = sqlite3_exec(p->db, "SAVEPOINT fts3", 0, 0, 0); | |
5646 if( rc==SQLITE_OK ){ | |
5647 rc = fts3DoOptimize(p, 1); | |
5648 if( rc==SQLITE_OK || rc==SQLITE_DONE ){ | |
5649 int rc2 = sqlite3_exec(p->db, "RELEASE fts3", 0, 0, 0); | |
5650 if( rc2!=SQLITE_OK ) rc = rc2; | |
5651 }else{ | |
5652 sqlite3_exec(p->db, "ROLLBACK TO fts3", 0, 0, 0); | |
5653 sqlite3_exec(p->db, "RELEASE fts3", 0, 0, 0); | |
5654 } | |
5655 } | |
5656 sqlite3Fts3SegmentsClose(p); | |
5657 return rc; | |
5658 } | |
5659 | |
5660 #endif | |
OLD | NEW |