OLD | NEW |
| (Empty) |
1 /* fts1 has a design flaw which can lead to database corruption (see | |
2 ** below). It is recommended not to use it any longer, instead use | |
3 ** fts3 (or higher). If you believe that your use of fts1 is safe, | |
4 ** add -DSQLITE_ENABLE_BROKEN_FTS1=1 to your CFLAGS. | |
5 */ | |
6 #if (!defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS1)) \ | |
7 && !defined(SQLITE_ENABLE_BROKEN_FTS1) | |
8 #error fts1 has a design flaw and has been deprecated. | |
9 #endif | |
10 /* The flaw is that fts1 uses the content table's unaliased rowid as | |
11 ** the unique docid. fts1 embeds the rowid in the index it builds, | |
12 ** and expects the rowid to not change. The SQLite VACUUM operation | |
13 ** will renumber such rowids, thereby breaking fts1. If you are using | |
14 ** fts1 in a system which has disabled VACUUM, then you can continue | |
15 ** to use it safely. Note that PRAGMA auto_vacuum does NOT disable | |
16 ** VACUUM, though systems using auto_vacuum are unlikely to invoke | |
17 ** VACUUM. | |
18 ** | |
19 ** fts1 should be safe even across VACUUM if you only insert documents | |
20 ** and never delete. | |
21 */ | |
22 | |
23 /* The author disclaims copyright to this source code. | |
24 * | |
25 * This is an SQLite module implementing full-text search. | |
26 */ | |
27 | |
28 /* | |
29 ** The code in this file is only compiled if: | |
30 ** | |
31 ** * The FTS1 module is being built as an extension | |
32 ** (in which case SQLITE_CORE is not defined), or | |
33 ** | |
34 ** * The FTS1 module is being built into the core of | |
35 ** SQLite (in which case SQLITE_ENABLE_FTS1 is defined). | |
36 */ | |
37 #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS1) | |
38 | |
39 #if defined(SQLITE_ENABLE_FTS1) && !defined(SQLITE_CORE) | |
40 # define SQLITE_CORE 1 | |
41 #endif | |
42 | |
43 #include <assert.h> | |
44 #include <stdlib.h> | |
45 #include <stdio.h> | |
46 #include <string.h> | |
47 #include <ctype.h> | |
48 | |
49 #include "fts1.h" | |
50 #include "fts1_hash.h" | |
51 #include "fts1_tokenizer.h" | |
52 #include "sqlite3.h" | |
53 #include "sqlite3ext.h" | |
54 SQLITE_EXTENSION_INIT1 | |
55 | |
56 | |
57 #if 0 | |
58 # define TRACE(A) printf A; fflush(stdout) | |
59 #else | |
60 # define TRACE(A) | |
61 #endif | |
62 | |
63 /* utility functions */ | |
64 | |
65 typedef struct StringBuffer { | |
66 int len; /* length, not including null terminator */ | |
67 int alloced; /* Space allocated for s[] */ | |
68 char *s; /* Content of the string */ | |
69 } StringBuffer; | |
70 | |
71 static void initStringBuffer(StringBuffer *sb){ | |
72 sb->len = 0; | |
73 sb->alloced = 100; | |
74 sb->s = malloc(100); | |
75 sb->s[0] = '\0'; | |
76 } | |
77 | |
78 static void nappend(StringBuffer *sb, const char *zFrom, int nFrom){ | |
79 if( sb->len + nFrom >= sb->alloced ){ | |
80 sb->alloced = sb->len + nFrom + 100; | |
81 sb->s = realloc(sb->s, sb->alloced+1); | |
82 if( sb->s==0 ){ | |
83 initStringBuffer(sb); | |
84 return; | |
85 } | |
86 } | |
87 memcpy(sb->s + sb->len, zFrom, nFrom); | |
88 sb->len += nFrom; | |
89 sb->s[sb->len] = 0; | |
90 } | |
91 static void append(StringBuffer *sb, const char *zFrom){ | |
92 nappend(sb, zFrom, strlen(zFrom)); | |
93 } | |
94 | |
95 /* We encode variable-length integers in little-endian order using seven bits | |
96 * per byte as follows: | |
97 ** | |
98 ** KEY: | |
99 ** A = 0xxxxxxx 7 bits of data and one flag bit | |
100 ** B = 1xxxxxxx 7 bits of data and one flag bit | |
101 ** | |
102 ** 7 bits - A | |
103 ** 14 bits - BA | |
104 ** 21 bits - BBA | |
105 ** and so on. | |
106 */ | |
107 | |
108 /* We may need up to VARINT_MAX bytes to store an encoded 64-bit integer. */ | |
109 #define VARINT_MAX 10 | |
110 | |
111 /* Write a 64-bit variable-length integer to memory starting at p[0]. | |
112 * The length of data written will be between 1 and VARINT_MAX bytes. | |
113 * The number of bytes written is returned. */ | |
114 static int putVarint(char *p, sqlite_int64 v){ | |
115 unsigned char *q = (unsigned char *) p; | |
116 sqlite_uint64 vu = v; | |
117 do{ | |
118 *q++ = (unsigned char) ((vu & 0x7f) | 0x80); | |
119 vu >>= 7; | |
120 }while( vu!=0 ); | |
121 q[-1] &= 0x7f; /* turn off high bit in final byte */ | |
122 assert( q - (unsigned char *)p <= VARINT_MAX ); | |
123 return (int) (q - (unsigned char *)p); | |
124 } | |
125 | |
126 /* Read a 64-bit variable-length integer from memory starting at p[0]. | |
127 * Return the number of bytes read, or 0 on error. | |
128 * The value is stored in *v. */ | |
129 static int getVarint(const char *p, sqlite_int64 *v){ | |
130 const unsigned char *q = (const unsigned char *) p; | |
131 sqlite_uint64 x = 0, y = 1; | |
132 while( (*q & 0x80) == 0x80 ){ | |
133 x += y * (*q++ & 0x7f); | |
134 y <<= 7; | |
135 if( q - (unsigned char *)p >= VARINT_MAX ){ /* bad data */ | |
136 assert( 0 ); | |
137 return 0; | |
138 } | |
139 } | |
140 x += y * (*q++); | |
141 *v = (sqlite_int64) x; | |
142 return (int) (q - (unsigned char *)p); | |
143 } | |
144 | |
145 static int getVarint32(const char *p, int *pi){ | |
146 sqlite_int64 i; | |
147 int ret = getVarint(p, &i); | |
148 *pi = (int) i; | |
149 assert( *pi==i ); | |
150 return ret; | |
151 } | |
152 | |
153 /*** Document lists *** | |
154 * | |
155 * A document list holds a sorted list of varint-encoded document IDs. | |
156 * | |
157 * A doclist with type DL_POSITIONS_OFFSETS is stored like this: | |
158 * | |
159 * array { | |
160 * varint docid; | |
161 * array { | |
162 * varint position; (delta from previous position plus POS_BASE) | |
163 * varint startOffset; (delta from previous startOffset) | |
164 * varint endOffset; (delta from startOffset) | |
165 * } | |
166 * } | |
167 * | |
168 * Here, array { X } means zero or more occurrences of X, adjacent in memory. | |
169 * | |
170 * A position list may hold positions for text in multiple columns. A position | |
171 * POS_COLUMN is followed by a varint containing the index of the column for | |
172 * following positions in the list. Any positions appearing before any | |
173 * occurrences of POS_COLUMN are for column 0. | |
174 * | |
175 * A doclist with type DL_POSITIONS is like the above, but holds only docids | |
176 * and positions without offset information. | |
177 * | |
178 * A doclist with type DL_DOCIDS is like the above, but holds only docids | |
179 * without positions or offset information. | |
180 * | |
181 * On disk, every document list has positions and offsets, so we don't bother | |
182 * to serialize a doclist's type. | |
183 * | |
184 * We don't yet delta-encode document IDs; doing so will probably be a | |
185 * modest win. | |
186 * | |
187 * NOTE(shess) I've thought of a slightly (1%) better offset encoding. | |
188 * After the first offset, estimate the next offset by using the | |
189 * current token position and the previous token position and offset, | |
190 * offset to handle some variance. So the estimate would be | |
191 * (iPosition*w->iStartOffset/w->iPosition-64), which is delta-encoded | |
192 * as normal. Offsets more than 64 chars from the estimate are | |
193 * encoded as the delta to the previous start offset + 128. An | |
194 * additional tiny increment can be gained by using the end offset of | |
195 * the previous token to make the estimate a tiny bit more precise. | |
196 */ | |
197 | |
198 /* It is not safe to call isspace(), tolower(), or isalnum() on | |
199 ** hi-bit-set characters. This is the same solution used in the | |
200 ** tokenizer. | |
201 */ | |
202 /* TODO(shess) The snippet-generation code should be using the | |
203 ** tokenizer-generated tokens rather than doing its own local | |
204 ** tokenization. | |
205 */ | |
206 /* TODO(shess) Is __isascii() a portable version of (c&0x80)==0? */ | |
207 static int safe_isspace(char c){ | |
208 return (c&0x80)==0 ? isspace(c) : 0; | |
209 } | |
210 static int safe_tolower(char c){ | |
211 return (c&0x80)==0 ? tolower(c) : c; | |
212 } | |
213 static int safe_isalnum(char c){ | |
214 return (c&0x80)==0 ? isalnum(c) : 0; | |
215 } | |
216 | |
217 typedef enum DocListType { | |
218 DL_DOCIDS, /* docids only */ | |
219 DL_POSITIONS, /* docids + positions */ | |
220 DL_POSITIONS_OFFSETS /* docids + positions + offsets */ | |
221 } DocListType; | |
222 | |
223 /* | |
224 ** By default, only positions and not offsets are stored in the doclists. | |
225 ** To change this so that offsets are stored too, compile with | |
226 ** | |
227 ** -DDL_DEFAULT=DL_POSITIONS_OFFSETS | |
228 ** | |
229 */ | |
230 #ifndef DL_DEFAULT | |
231 # define DL_DEFAULT DL_POSITIONS | |
232 #endif | |
233 | |
234 typedef struct DocList { | |
235 char *pData; | |
236 int nData; | |
237 DocListType iType; | |
238 int iLastColumn; /* the last column written */ | |
239 int iLastPos; /* the last position written */ | |
240 int iLastOffset; /* the last start offset written */ | |
241 } DocList; | |
242 | |
243 enum { | |
244 POS_END = 0, /* end of this position list */ | |
245 POS_COLUMN, /* followed by new column number */ | |
246 POS_BASE | |
247 }; | |
248 | |
249 /* Initialize a new DocList to hold the given data. */ | |
250 static void docListInit(DocList *d, DocListType iType, | |
251 const char *pData, int nData){ | |
252 d->nData = nData; | |
253 if( nData>0 ){ | |
254 d->pData = malloc(nData); | |
255 memcpy(d->pData, pData, nData); | |
256 } else { | |
257 d->pData = NULL; | |
258 } | |
259 d->iType = iType; | |
260 d->iLastColumn = 0; | |
261 d->iLastPos = d->iLastOffset = 0; | |
262 } | |
263 | |
264 /* Create a new dynamically-allocated DocList. */ | |
265 static DocList *docListNew(DocListType iType){ | |
266 DocList *d = (DocList *) malloc(sizeof(DocList)); | |
267 docListInit(d, iType, 0, 0); | |
268 return d; | |
269 } | |
270 | |
271 static void docListDestroy(DocList *d){ | |
272 free(d->pData); | |
273 #ifndef NDEBUG | |
274 memset(d, 0x55, sizeof(*d)); | |
275 #endif | |
276 } | |
277 | |
278 static void docListDelete(DocList *d){ | |
279 docListDestroy(d); | |
280 free(d); | |
281 } | |
282 | |
283 static char *docListEnd(DocList *d){ | |
284 return d->pData + d->nData; | |
285 } | |
286 | |
287 /* Append a varint to a DocList's data. */ | |
288 static void appendVarint(DocList *d, sqlite_int64 i){ | |
289 char c[VARINT_MAX]; | |
290 int n = putVarint(c, i); | |
291 d->pData = realloc(d->pData, d->nData + n); | |
292 memcpy(d->pData + d->nData, c, n); | |
293 d->nData += n; | |
294 } | |
295 | |
296 static void docListAddDocid(DocList *d, sqlite_int64 iDocid){ | |
297 appendVarint(d, iDocid); | |
298 if( d->iType>=DL_POSITIONS ){ | |
299 appendVarint(d, POS_END); /* initially empty position list */ | |
300 d->iLastColumn = 0; | |
301 d->iLastPos = d->iLastOffset = 0; | |
302 } | |
303 } | |
304 | |
305 /* helper function for docListAddPos and docListAddPosOffset */ | |
306 static void addPos(DocList *d, int iColumn, int iPos){ | |
307 assert( d->nData>0 ); | |
308 --d->nData; /* remove previous terminator */ | |
309 if( iColumn!=d->iLastColumn ){ | |
310 assert( iColumn>d->iLastColumn ); | |
311 appendVarint(d, POS_COLUMN); | |
312 appendVarint(d, iColumn); | |
313 d->iLastColumn = iColumn; | |
314 d->iLastPos = d->iLastOffset = 0; | |
315 } | |
316 assert( iPos>=d->iLastPos ); | |
317 appendVarint(d, iPos-d->iLastPos+POS_BASE); | |
318 d->iLastPos = iPos; | |
319 } | |
320 | |
321 /* Add a position to the last position list in a doclist. */ | |
322 static void docListAddPos(DocList *d, int iColumn, int iPos){ | |
323 assert( d->iType==DL_POSITIONS ); | |
324 addPos(d, iColumn, iPos); | |
325 appendVarint(d, POS_END); /* add new terminator */ | |
326 } | |
327 | |
328 /* | |
329 ** Add a position and starting and ending offsets to a doclist. | |
330 ** | |
331 ** If the doclist is setup to handle only positions, then insert | |
332 ** the position only and ignore the offsets. | |
333 */ | |
334 static void docListAddPosOffset( | |
335 DocList *d, /* Doclist under construction */ | |
336 int iColumn, /* Column the inserted term is part of */ | |
337 int iPos, /* Position of the inserted term */ | |
338 int iStartOffset, /* Starting offset of inserted term */ | |
339 int iEndOffset /* Ending offset of inserted term */ | |
340 ){ | |
341 assert( d->iType>=DL_POSITIONS ); | |
342 addPos(d, iColumn, iPos); | |
343 if( d->iType==DL_POSITIONS_OFFSETS ){ | |
344 assert( iStartOffset>=d->iLastOffset ); | |
345 appendVarint(d, iStartOffset-d->iLastOffset); | |
346 d->iLastOffset = iStartOffset; | |
347 assert( iEndOffset>=iStartOffset ); | |
348 appendVarint(d, iEndOffset-iStartOffset); | |
349 } | |
350 appendVarint(d, POS_END); /* add new terminator */ | |
351 } | |
352 | |
353 /* | |
354 ** A DocListReader object is a cursor into a doclist. Initialize | |
355 ** the cursor to the beginning of the doclist by calling readerInit(). | |
356 ** Then use routines | |
357 ** | |
358 ** peekDocid() | |
359 ** readDocid() | |
360 ** readPosition() | |
361 ** skipPositionList() | |
362 ** and so forth... | |
363 ** | |
364 ** to read information out of the doclist. When we reach the end | |
365 ** of the doclist, atEnd() returns TRUE. | |
366 */ | |
367 typedef struct DocListReader { | |
368 DocList *pDoclist; /* The document list we are stepping through */ | |
369 char *p; /* Pointer to next unread byte in the doclist */ | |
370 int iLastColumn; | |
371 int iLastPos; /* the last position read, or -1 when not in a position list */ | |
372 } DocListReader; | |
373 | |
374 /* | |
375 ** Initialize the DocListReader r to point to the beginning of pDoclist. | |
376 */ | |
377 static void readerInit(DocListReader *r, DocList *pDoclist){ | |
378 r->pDoclist = pDoclist; | |
379 if( pDoclist!=NULL ){ | |
380 r->p = pDoclist->pData; | |
381 } | |
382 r->iLastColumn = -1; | |
383 r->iLastPos = -1; | |
384 } | |
385 | |
386 /* | |
387 ** Return TRUE if we have reached then end of pReader and there is | |
388 ** nothing else left to read. | |
389 */ | |
390 static int atEnd(DocListReader *pReader){ | |
391 return pReader->pDoclist==0 || (pReader->p >= docListEnd(pReader->pDoclist)); | |
392 } | |
393 | |
394 /* Peek at the next docid without advancing the read pointer. | |
395 */ | |
396 static sqlite_int64 peekDocid(DocListReader *pReader){ | |
397 sqlite_int64 ret; | |
398 assert( !atEnd(pReader) ); | |
399 assert( pReader->iLastPos==-1 ); | |
400 getVarint(pReader->p, &ret); | |
401 return ret; | |
402 } | |
403 | |
404 /* Read the next docid. See also nextDocid(). | |
405 */ | |
406 static sqlite_int64 readDocid(DocListReader *pReader){ | |
407 sqlite_int64 ret; | |
408 assert( !atEnd(pReader) ); | |
409 assert( pReader->iLastPos==-1 ); | |
410 pReader->p += getVarint(pReader->p, &ret); | |
411 if( pReader->pDoclist->iType>=DL_POSITIONS ){ | |
412 pReader->iLastColumn = 0; | |
413 pReader->iLastPos = 0; | |
414 } | |
415 return ret; | |
416 } | |
417 | |
418 /* Read the next position and column index from a position list. | |
419 * Returns the position, or -1 at the end of the list. */ | |
420 static int readPosition(DocListReader *pReader, int *iColumn){ | |
421 int i; | |
422 int iType = pReader->pDoclist->iType; | |
423 | |
424 if( pReader->iLastPos==-1 ){ | |
425 return -1; | |
426 } | |
427 assert( !atEnd(pReader) ); | |
428 | |
429 if( iType<DL_POSITIONS ){ | |
430 return -1; | |
431 } | |
432 pReader->p += getVarint32(pReader->p, &i); | |
433 if( i==POS_END ){ | |
434 pReader->iLastColumn = pReader->iLastPos = -1; | |
435 *iColumn = -1; | |
436 return -1; | |
437 } | |
438 if( i==POS_COLUMN ){ | |
439 pReader->p += getVarint32(pReader->p, &pReader->iLastColumn); | |
440 pReader->iLastPos = 0; | |
441 pReader->p += getVarint32(pReader->p, &i); | |
442 assert( i>=POS_BASE ); | |
443 } | |
444 pReader->iLastPos += ((int) i)-POS_BASE; | |
445 if( iType>=DL_POSITIONS_OFFSETS ){ | |
446 /* Skip over offsets, ignoring them for now. */ | |
447 int iStart, iEnd; | |
448 pReader->p += getVarint32(pReader->p, &iStart); | |
449 pReader->p += getVarint32(pReader->p, &iEnd); | |
450 } | |
451 *iColumn = pReader->iLastColumn; | |
452 return pReader->iLastPos; | |
453 } | |
454 | |
455 /* Skip past the end of a position list. */ | |
456 static void skipPositionList(DocListReader *pReader){ | |
457 DocList *p = pReader->pDoclist; | |
458 if( p && p->iType>=DL_POSITIONS ){ | |
459 int iColumn; | |
460 while( readPosition(pReader, &iColumn)!=-1 ){} | |
461 } | |
462 } | |
463 | |
464 /* Skip over a docid, including its position list if the doclist has | |
465 * positions. */ | |
466 static void skipDocument(DocListReader *pReader){ | |
467 readDocid(pReader); | |
468 skipPositionList(pReader); | |
469 } | |
470 | |
471 /* Skip past all docids which are less than [iDocid]. Returns 1 if a docid | |
472 * matching [iDocid] was found. */ | |
473 static int skipToDocid(DocListReader *pReader, sqlite_int64 iDocid){ | |
474 sqlite_int64 d = 0; | |
475 while( !atEnd(pReader) && (d=peekDocid(pReader))<iDocid ){ | |
476 skipDocument(pReader); | |
477 } | |
478 return !atEnd(pReader) && d==iDocid; | |
479 } | |
480 | |
481 /* Return the first document in a document list. | |
482 */ | |
483 static sqlite_int64 firstDocid(DocList *d){ | |
484 DocListReader r; | |
485 readerInit(&r, d); | |
486 return readDocid(&r); | |
487 } | |
488 | |
489 #ifdef SQLITE_DEBUG | |
490 /* | |
491 ** This routine is used for debugging purpose only. | |
492 ** | |
493 ** Write the content of a doclist to standard output. | |
494 */ | |
495 static void printDoclist(DocList *p){ | |
496 DocListReader r; | |
497 const char *zSep = ""; | |
498 | |
499 readerInit(&r, p); | |
500 while( !atEnd(&r) ){ | |
501 sqlite_int64 docid = readDocid(&r); | |
502 if( docid==0 ){ | |
503 skipPositionList(&r); | |
504 continue; | |
505 } | |
506 printf("%s%lld", zSep, docid); | |
507 zSep = ","; | |
508 if( p->iType>=DL_POSITIONS ){ | |
509 int iPos, iCol; | |
510 const char *zDiv = ""; | |
511 printf("("); | |
512 while( (iPos = readPosition(&r, &iCol))>=0 ){ | |
513 printf("%s%d:%d", zDiv, iCol, iPos); | |
514 zDiv = ":"; | |
515 } | |
516 printf(")"); | |
517 } | |
518 } | |
519 printf("\n"); | |
520 fflush(stdout); | |
521 } | |
522 #endif /* SQLITE_DEBUG */ | |
523 | |
524 /* Trim the given doclist to contain only positions in column | |
525 * [iRestrictColumn]. */ | |
526 static void docListRestrictColumn(DocList *in, int iRestrictColumn){ | |
527 DocListReader r; | |
528 DocList out; | |
529 | |
530 assert( in->iType>=DL_POSITIONS ); | |
531 readerInit(&r, in); | |
532 docListInit(&out, DL_POSITIONS, NULL, 0); | |
533 | |
534 while( !atEnd(&r) ){ | |
535 sqlite_int64 iDocid = readDocid(&r); | |
536 int iPos, iColumn; | |
537 | |
538 docListAddDocid(&out, iDocid); | |
539 while( (iPos = readPosition(&r, &iColumn)) != -1 ){ | |
540 if( iColumn==iRestrictColumn ){ | |
541 docListAddPos(&out, iColumn, iPos); | |
542 } | |
543 } | |
544 } | |
545 | |
546 docListDestroy(in); | |
547 *in = out; | |
548 } | |
549 | |
550 /* Trim the given doclist by discarding any docids without any remaining | |
551 * positions. */ | |
552 static void docListDiscardEmpty(DocList *in) { | |
553 DocListReader r; | |
554 DocList out; | |
555 | |
556 /* TODO: It would be nice to implement this operation in place; that | |
557 * could save a significant amount of memory in queries with long doclists. */ | |
558 assert( in->iType>=DL_POSITIONS ); | |
559 readerInit(&r, in); | |
560 docListInit(&out, DL_POSITIONS, NULL, 0); | |
561 | |
562 while( !atEnd(&r) ){ | |
563 sqlite_int64 iDocid = readDocid(&r); | |
564 int match = 0; | |
565 int iPos, iColumn; | |
566 while( (iPos = readPosition(&r, &iColumn)) != -1 ){ | |
567 if( !match ){ | |
568 docListAddDocid(&out, iDocid); | |
569 match = 1; | |
570 } | |
571 docListAddPos(&out, iColumn, iPos); | |
572 } | |
573 } | |
574 | |
575 docListDestroy(in); | |
576 *in = out; | |
577 } | |
578 | |
579 /* Helper function for docListUpdate() and docListAccumulate(). | |
580 ** Splices a doclist element into the doclist represented by r, | |
581 ** leaving r pointing after the newly spliced element. | |
582 */ | |
583 static void docListSpliceElement(DocListReader *r, sqlite_int64 iDocid, | |
584 const char *pSource, int nSource){ | |
585 DocList *d = r->pDoclist; | |
586 char *pTarget; | |
587 int nTarget, found; | |
588 | |
589 found = skipToDocid(r, iDocid); | |
590 | |
591 /* Describe slice in d to place pSource/nSource. */ | |
592 pTarget = r->p; | |
593 if( found ){ | |
594 skipDocument(r); | |
595 nTarget = r->p-pTarget; | |
596 }else{ | |
597 nTarget = 0; | |
598 } | |
599 | |
600 /* The sense of the following is that there are three possibilities. | |
601 ** If nTarget==nSource, we should not move any memory nor realloc. | |
602 ** If nTarget>nSource, trim target and realloc. | |
603 ** If nTarget<nSource, realloc then expand target. | |
604 */ | |
605 if( nTarget>nSource ){ | |
606 memmove(pTarget+nSource, pTarget+nTarget, docListEnd(d)-(pTarget+nTarget)); | |
607 } | |
608 if( nTarget!=nSource ){ | |
609 int iDoclist = pTarget-d->pData; | |
610 d->pData = realloc(d->pData, d->nData+nSource-nTarget); | |
611 pTarget = d->pData+iDoclist; | |
612 } | |
613 if( nTarget<nSource ){ | |
614 memmove(pTarget+nSource, pTarget+nTarget, docListEnd(d)-(pTarget+nTarget)); | |
615 } | |
616 | |
617 memcpy(pTarget, pSource, nSource); | |
618 d->nData += nSource-nTarget; | |
619 r->p = pTarget+nSource; | |
620 } | |
621 | |
622 /* Insert/update pUpdate into the doclist. */ | |
623 static void docListUpdate(DocList *d, DocList *pUpdate){ | |
624 DocListReader reader; | |
625 | |
626 assert( d!=NULL && pUpdate!=NULL ); | |
627 assert( d->iType==pUpdate->iType); | |
628 | |
629 readerInit(&reader, d); | |
630 docListSpliceElement(&reader, firstDocid(pUpdate), | |
631 pUpdate->pData, pUpdate->nData); | |
632 } | |
633 | |
634 /* Propagate elements from pUpdate to pAcc, overwriting elements with | |
635 ** matching docids. | |
636 */ | |
637 static void docListAccumulate(DocList *pAcc, DocList *pUpdate){ | |
638 DocListReader accReader, updateReader; | |
639 | |
640 /* Handle edge cases where one doclist is empty. */ | |
641 assert( pAcc!=NULL ); | |
642 if( pUpdate==NULL || pUpdate->nData==0 ) return; | |
643 if( pAcc->nData==0 ){ | |
644 pAcc->pData = malloc(pUpdate->nData); | |
645 memcpy(pAcc->pData, pUpdate->pData, pUpdate->nData); | |
646 pAcc->nData = pUpdate->nData; | |
647 return; | |
648 } | |
649 | |
650 readerInit(&accReader, pAcc); | |
651 readerInit(&updateReader, pUpdate); | |
652 | |
653 while( !atEnd(&updateReader) ){ | |
654 char *pSource = updateReader.p; | |
655 sqlite_int64 iDocid = readDocid(&updateReader); | |
656 skipPositionList(&updateReader); | |
657 docListSpliceElement(&accReader, iDocid, pSource, updateReader.p-pSource); | |
658 } | |
659 } | |
660 | |
661 /* | |
662 ** Read the next docid off of pIn. Return 0 if we reach the end. | |
663 * | |
664 * TODO: This assumes that docids are never 0, but they may actually be 0 since | |
665 * users can choose docids when inserting into a full-text table. Fix this. | |
666 */ | |
667 static sqlite_int64 nextDocid(DocListReader *pIn){ | |
668 skipPositionList(pIn); | |
669 return atEnd(pIn) ? 0 : readDocid(pIn); | |
670 } | |
671 | |
672 /* | |
673 ** pLeft and pRight are two DocListReaders that are pointing to | |
674 ** positions lists of the same document: iDocid. | |
675 ** | |
676 ** If there are no instances in pLeft or pRight where the position | |
677 ** of pLeft is one less than the position of pRight, then this | |
678 ** routine adds nothing to pOut. | |
679 ** | |
680 ** If there are one or more instances where positions from pLeft | |
681 ** are exactly one less than positions from pRight, then add a new | |
682 ** document record to pOut. If pOut wants to hold positions, then | |
683 ** include the positions from pRight that are one more than a | |
684 ** position in pLeft. In other words: pRight.iPos==pLeft.iPos+1. | |
685 ** | |
686 ** pLeft and pRight are left pointing at the next document record. | |
687 */ | |
688 static void mergePosList( | |
689 DocListReader *pLeft, /* Left position list */ | |
690 DocListReader *pRight, /* Right position list */ | |
691 sqlite_int64 iDocid, /* The docid from pLeft and pRight */ | |
692 DocList *pOut /* Write the merged document record here */ | |
693 ){ | |
694 int iLeftCol, iLeftPos = readPosition(pLeft, &iLeftCol); | |
695 int iRightCol, iRightPos = readPosition(pRight, &iRightCol); | |
696 int match = 0; | |
697 | |
698 /* Loop until we've reached the end of both position lists. */ | |
699 while( iLeftPos!=-1 && iRightPos!=-1 ){ | |
700 if( iLeftCol==iRightCol && iLeftPos+1==iRightPos ){ | |
701 if( !match ){ | |
702 docListAddDocid(pOut, iDocid); | |
703 match = 1; | |
704 } | |
705 if( pOut->iType>=DL_POSITIONS ){ | |
706 docListAddPos(pOut, iRightCol, iRightPos); | |
707 } | |
708 iLeftPos = readPosition(pLeft, &iLeftCol); | |
709 iRightPos = readPosition(pRight, &iRightCol); | |
710 }else if( iRightCol<iLeftCol || | |
711 (iRightCol==iLeftCol && iRightPos<iLeftPos+1) ){ | |
712 iRightPos = readPosition(pRight, &iRightCol); | |
713 }else{ | |
714 iLeftPos = readPosition(pLeft, &iLeftCol); | |
715 } | |
716 } | |
717 if( iLeftPos>=0 ) skipPositionList(pLeft); | |
718 if( iRightPos>=0 ) skipPositionList(pRight); | |
719 } | |
720 | |
721 /* We have two doclists: pLeft and pRight. | |
722 ** Write the phrase intersection of these two doclists into pOut. | |
723 ** | |
724 ** A phrase intersection means that two documents only match | |
725 ** if pLeft.iPos+1==pRight.iPos. | |
726 ** | |
727 ** The output pOut may or may not contain positions. If pOut | |
728 ** does contain positions, they are the positions of pRight. | |
729 */ | |
730 static void docListPhraseMerge( | |
731 DocList *pLeft, /* Doclist resulting from the words on the left */ | |
732 DocList *pRight, /* Doclist for the next word to the right */ | |
733 DocList *pOut /* Write the combined doclist here */ | |
734 ){ | |
735 DocListReader left, right; | |
736 sqlite_int64 docidLeft, docidRight; | |
737 | |
738 readerInit(&left, pLeft); | |
739 readerInit(&right, pRight); | |
740 docidLeft = nextDocid(&left); | |
741 docidRight = nextDocid(&right); | |
742 | |
743 while( docidLeft>0 && docidRight>0 ){ | |
744 if( docidLeft<docidRight ){ | |
745 docidLeft = nextDocid(&left); | |
746 }else if( docidRight<docidLeft ){ | |
747 docidRight = nextDocid(&right); | |
748 }else{ | |
749 mergePosList(&left, &right, docidLeft, pOut); | |
750 docidLeft = nextDocid(&left); | |
751 docidRight = nextDocid(&right); | |
752 } | |
753 } | |
754 } | |
755 | |
756 /* We have two doclists: pLeft and pRight. | |
757 ** Write the intersection of these two doclists into pOut. | |
758 ** Only docids are matched. Position information is ignored. | |
759 ** | |
760 ** The output pOut never holds positions. | |
761 */ | |
762 static void docListAndMerge( | |
763 DocList *pLeft, /* Doclist resulting from the words on the left */ | |
764 DocList *pRight, /* Doclist for the next word to the right */ | |
765 DocList *pOut /* Write the combined doclist here */ | |
766 ){ | |
767 DocListReader left, right; | |
768 sqlite_int64 docidLeft, docidRight; | |
769 | |
770 assert( pOut->iType<DL_POSITIONS ); | |
771 | |
772 readerInit(&left, pLeft); | |
773 readerInit(&right, pRight); | |
774 docidLeft = nextDocid(&left); | |
775 docidRight = nextDocid(&right); | |
776 | |
777 while( docidLeft>0 && docidRight>0 ){ | |
778 if( docidLeft<docidRight ){ | |
779 docidLeft = nextDocid(&left); | |
780 }else if( docidRight<docidLeft ){ | |
781 docidRight = nextDocid(&right); | |
782 }else{ | |
783 docListAddDocid(pOut, docidLeft); | |
784 docidLeft = nextDocid(&left); | |
785 docidRight = nextDocid(&right); | |
786 } | |
787 } | |
788 } | |
789 | |
790 /* We have two doclists: pLeft and pRight. | |
791 ** Write the union of these two doclists into pOut. | |
792 ** Only docids are matched. Position information is ignored. | |
793 ** | |
794 ** The output pOut never holds positions. | |
795 */ | |
796 static void docListOrMerge( | |
797 DocList *pLeft, /* Doclist resulting from the words on the left */ | |
798 DocList *pRight, /* Doclist for the next word to the right */ | |
799 DocList *pOut /* Write the combined doclist here */ | |
800 ){ | |
801 DocListReader left, right; | |
802 sqlite_int64 docidLeft, docidRight, priorLeft; | |
803 | |
804 readerInit(&left, pLeft); | |
805 readerInit(&right, pRight); | |
806 docidLeft = nextDocid(&left); | |
807 docidRight = nextDocid(&right); | |
808 | |
809 while( docidLeft>0 && docidRight>0 ){ | |
810 if( docidLeft<=docidRight ){ | |
811 docListAddDocid(pOut, docidLeft); | |
812 }else{ | |
813 docListAddDocid(pOut, docidRight); | |
814 } | |
815 priorLeft = docidLeft; | |
816 if( docidLeft<=docidRight ){ | |
817 docidLeft = nextDocid(&left); | |
818 } | |
819 if( docidRight>0 && docidRight<=priorLeft ){ | |
820 docidRight = nextDocid(&right); | |
821 } | |
822 } | |
823 while( docidLeft>0 ){ | |
824 docListAddDocid(pOut, docidLeft); | |
825 docidLeft = nextDocid(&left); | |
826 } | |
827 while( docidRight>0 ){ | |
828 docListAddDocid(pOut, docidRight); | |
829 docidRight = nextDocid(&right); | |
830 } | |
831 } | |
832 | |
833 /* We have two doclists: pLeft and pRight. | |
834 ** Write into pOut all documents that occur in pLeft but not | |
835 ** in pRight. | |
836 ** | |
837 ** Only docids are matched. Position information is ignored. | |
838 ** | |
839 ** The output pOut never holds positions. | |
840 */ | |
841 static void docListExceptMerge( | |
842 DocList *pLeft, /* Doclist resulting from the words on the left */ | |
843 DocList *pRight, /* Doclist for the next word to the right */ | |
844 DocList *pOut /* Write the combined doclist here */ | |
845 ){ | |
846 DocListReader left, right; | |
847 sqlite_int64 docidLeft, docidRight, priorLeft; | |
848 | |
849 readerInit(&left, pLeft); | |
850 readerInit(&right, pRight); | |
851 docidLeft = nextDocid(&left); | |
852 docidRight = nextDocid(&right); | |
853 | |
854 while( docidLeft>0 && docidRight>0 ){ | |
855 priorLeft = docidLeft; | |
856 if( docidLeft<docidRight ){ | |
857 docListAddDocid(pOut, docidLeft); | |
858 } | |
859 if( docidLeft<=docidRight ){ | |
860 docidLeft = nextDocid(&left); | |
861 } | |
862 if( docidRight>0 && docidRight<=priorLeft ){ | |
863 docidRight = nextDocid(&right); | |
864 } | |
865 } | |
866 while( docidLeft>0 ){ | |
867 docListAddDocid(pOut, docidLeft); | |
868 docidLeft = nextDocid(&left); | |
869 } | |
870 } | |
871 | |
872 static char *string_dup_n(const char *s, int n){ | |
873 char *str = malloc(n + 1); | |
874 memcpy(str, s, n); | |
875 str[n] = '\0'; | |
876 return str; | |
877 } | |
878 | |
879 /* Duplicate a string; the caller must free() the returned string. | |
880 * (We don't use strdup() since it is not part of the standard C library and | |
881 * may not be available everywhere.) */ | |
882 static char *string_dup(const char *s){ | |
883 return string_dup_n(s, strlen(s)); | |
884 } | |
885 | |
886 /* Format a string, replacing each occurrence of the % character with | |
887 * zDb.zName. This may be more convenient than sqlite_mprintf() | |
888 * when one string is used repeatedly in a format string. | |
889 * The caller must free() the returned string. */ | |
890 static char *string_format(const char *zFormat, | |
891 const char *zDb, const char *zName){ | |
892 const char *p; | |
893 size_t len = 0; | |
894 size_t nDb = strlen(zDb); | |
895 size_t nName = strlen(zName); | |
896 size_t nFullTableName = nDb+1+nName; | |
897 char *result; | |
898 char *r; | |
899 | |
900 /* first compute length needed */ | |
901 for(p = zFormat ; *p ; ++p){ | |
902 len += (*p=='%' ? nFullTableName : 1); | |
903 } | |
904 len += 1; /* for null terminator */ | |
905 | |
906 r = result = malloc(len); | |
907 for(p = zFormat; *p; ++p){ | |
908 if( *p=='%' ){ | |
909 memcpy(r, zDb, nDb); | |
910 r += nDb; | |
911 *r++ = '.'; | |
912 memcpy(r, zName, nName); | |
913 r += nName; | |
914 } else { | |
915 *r++ = *p; | |
916 } | |
917 } | |
918 *r++ = '\0'; | |
919 assert( r == result + len ); | |
920 return result; | |
921 } | |
922 | |
923 static int sql_exec(sqlite3 *db, const char *zDb, const char *zName, | |
924 const char *zFormat){ | |
925 char *zCommand = string_format(zFormat, zDb, zName); | |
926 int rc; | |
927 TRACE(("FTS1 sql: %s\n", zCommand)); | |
928 rc = sqlite3_exec(db, zCommand, NULL, 0, NULL); | |
929 free(zCommand); | |
930 return rc; | |
931 } | |
932 | |
933 static int sql_prepare(sqlite3 *db, const char *zDb, const char *zName, | |
934 sqlite3_stmt **ppStmt, const char *zFormat){ | |
935 char *zCommand = string_format(zFormat, zDb, zName); | |
936 int rc; | |
937 TRACE(("FTS1 prepare: %s\n", zCommand)); | |
938 rc = sqlite3_prepare(db, zCommand, -1, ppStmt, NULL); | |
939 free(zCommand); | |
940 return rc; | |
941 } | |
942 | |
943 /* end utility functions */ | |
944 | |
945 /* Forward reference */ | |
946 typedef struct fulltext_vtab fulltext_vtab; | |
947 | |
948 /* A single term in a query is represented by an instances of | |
949 ** the following structure. | |
950 */ | |
951 typedef struct QueryTerm { | |
952 short int nPhrase; /* How many following terms are part of the same phrase */ | |
953 short int iPhrase; /* This is the i-th term of a phrase. */ | |
954 short int iColumn; /* Column of the index that must match this term */ | |
955 signed char isOr; /* this term is preceded by "OR" */ | |
956 signed char isNot; /* this term is preceded by "-" */ | |
957 char *pTerm; /* text of the term. '\000' terminated. malloced */ | |
958 int nTerm; /* Number of bytes in pTerm[] */ | |
959 } QueryTerm; | |
960 | |
961 | |
962 /* A query string is parsed into a Query structure. | |
963 * | |
964 * We could, in theory, allow query strings to be complicated | |
965 * nested expressions with precedence determined by parentheses. | |
966 * But none of the major search engines do this. (Perhaps the | |
967 * feeling is that an parenthesized expression is two complex of | |
968 * an idea for the average user to grasp.) Taking our lead from | |
969 * the major search engines, we will allow queries to be a list | |
970 * of terms (with an implied AND operator) or phrases in double-quotes, | |
971 * with a single optional "-" before each non-phrase term to designate | |
972 * negation and an optional OR connector. | |
973 * | |
974 * OR binds more tightly than the implied AND, which is what the | |
975 * major search engines seem to do. So, for example: | |
976 * | |
977 * [one two OR three] ==> one AND (two OR three) | |
978 * [one OR two three] ==> (one OR two) AND three | |
979 * | |
980 * A "-" before a term matches all entries that lack that term. | |
981 * The "-" must occur immediately before the term with in intervening | |
982 * space. This is how the search engines do it. | |
983 * | |
984 * A NOT term cannot be the right-hand operand of an OR. If this | |
985 * occurs in the query string, the NOT is ignored: | |
986 * | |
987 * [one OR -two] ==> one OR two | |
988 * | |
989 */ | |
990 typedef struct Query { | |
991 fulltext_vtab *pFts; /* The full text index */ | |
992 int nTerms; /* Number of terms in the query */ | |
993 QueryTerm *pTerms; /* Array of terms. Space obtained from malloc() */ | |
994 int nextIsOr; /* Set the isOr flag on the next inserted term */ | |
995 int nextColumn; /* Next word parsed must be in this column */ | |
996 int dfltColumn; /* The default column */ | |
997 } Query; | |
998 | |
999 | |
1000 /* | |
1001 ** An instance of the following structure keeps track of generated | |
1002 ** matching-word offset information and snippets. | |
1003 */ | |
1004 typedef struct Snippet { | |
1005 int nMatch; /* Total number of matches */ | |
1006 int nAlloc; /* Space allocated for aMatch[] */ | |
1007 struct snippetMatch { /* One entry for each matching term */ | |
1008 char snStatus; /* Status flag for use while constructing snippets */ | |
1009 short int iCol; /* The column that contains the match */ | |
1010 short int iTerm; /* The index in Query.pTerms[] of the matching term */ | |
1011 short int nByte; /* Number of bytes in the term */ | |
1012 int iStart; /* The offset to the first character of the term */ | |
1013 } *aMatch; /* Points to space obtained from malloc */ | |
1014 char *zOffset; /* Text rendering of aMatch[] */ | |
1015 int nOffset; /* strlen(zOffset) */ | |
1016 char *zSnippet; /* Snippet text */ | |
1017 int nSnippet; /* strlen(zSnippet) */ | |
1018 } Snippet; | |
1019 | |
1020 | |
1021 typedef enum QueryType { | |
1022 QUERY_GENERIC, /* table scan */ | |
1023 QUERY_ROWID, /* lookup by rowid */ | |
1024 QUERY_FULLTEXT /* QUERY_FULLTEXT + [i] is a full-text search for column i*/ | |
1025 } QueryType; | |
1026 | |
1027 /* TODO(shess) CHUNK_MAX controls how much data we allow in segment 0 | |
1028 ** before we start aggregating into larger segments. Lower CHUNK_MAX | |
1029 ** means that for a given input we have more individual segments per | |
1030 ** term, which means more rows in the table and a bigger index (due to | |
1031 ** both more rows and bigger rowids). But it also reduces the average | |
1032 ** cost of adding new elements to the segment 0 doclist, and it seems | |
1033 ** to reduce the number of pages read and written during inserts. 256 | |
1034 ** was chosen by measuring insertion times for a certain input (first | |
1035 ** 10k documents of Enron corpus), though including query performance | |
1036 ** in the decision may argue for a larger value. | |
1037 */ | |
1038 #define CHUNK_MAX 256 | |
1039 | |
1040 typedef enum fulltext_statement { | |
1041 CONTENT_INSERT_STMT, | |
1042 CONTENT_SELECT_STMT, | |
1043 CONTENT_UPDATE_STMT, | |
1044 CONTENT_DELETE_STMT, | |
1045 | |
1046 TERM_SELECT_STMT, | |
1047 TERM_SELECT_ALL_STMT, | |
1048 TERM_INSERT_STMT, | |
1049 TERM_UPDATE_STMT, | |
1050 TERM_DELETE_STMT, | |
1051 | |
1052 MAX_STMT /* Always at end! */ | |
1053 } fulltext_statement; | |
1054 | |
1055 /* These must exactly match the enum above. */ | |
1056 /* TODO(adam): Is there some risk that a statement (in particular, | |
1057 ** pTermSelectStmt) will be used in two cursors at once, e.g. if a | |
1058 ** query joins a virtual table to itself? If so perhaps we should | |
1059 ** move some of these to the cursor object. | |
1060 */ | |
1061 static const char *const fulltext_zStatement[MAX_STMT] = { | |
1062 /* CONTENT_INSERT */ NULL, /* generated in contentInsertStatement() */ | |
1063 /* CONTENT_SELECT */ "select * from %_content where rowid = ?", | |
1064 /* CONTENT_UPDATE */ NULL, /* generated in contentUpdateStatement() */ | |
1065 /* CONTENT_DELETE */ "delete from %_content where rowid = ?", | |
1066 | |
1067 /* TERM_SELECT */ | |
1068 "select rowid, doclist from %_term where term = ? and segment = ?", | |
1069 /* TERM_SELECT_ALL */ | |
1070 "select doclist from %_term where term = ? order by segment", | |
1071 /* TERM_INSERT */ | |
1072 "insert into %_term (rowid, term, segment, doclist) values (?, ?, ?, ?)", | |
1073 /* TERM_UPDATE */ "update %_term set doclist = ? where rowid = ?", | |
1074 /* TERM_DELETE */ "delete from %_term where rowid = ?", | |
1075 }; | |
1076 | |
1077 /* | |
1078 ** A connection to a fulltext index is an instance of the following | |
1079 ** structure. The xCreate and xConnect methods create an instance | |
1080 ** of this structure and xDestroy and xDisconnect free that instance. | |
1081 ** All other methods receive a pointer to the structure as one of their | |
1082 ** arguments. | |
1083 */ | |
1084 struct fulltext_vtab { | |
1085 sqlite3_vtab base; /* Base class used by SQLite core */ | |
1086 sqlite3 *db; /* The database connection */ | |
1087 const char *zDb; /* logical database name */ | |
1088 const char *zName; /* virtual table name */ | |
1089 int nColumn; /* number of columns in virtual table */ | |
1090 char **azColumn; /* column names. malloced */ | |
1091 char **azContentColumn; /* column names in content table; malloced */ | |
1092 sqlite3_tokenizer *pTokenizer; /* tokenizer for inserts and queries */ | |
1093 | |
1094 /* Precompiled statements which we keep as long as the table is | |
1095 ** open. | |
1096 */ | |
1097 sqlite3_stmt *pFulltextStatements[MAX_STMT]; | |
1098 }; | |
1099 | |
1100 /* | |
1101 ** When the core wants to do a query, it create a cursor using a | |
1102 ** call to xOpen. This structure is an instance of a cursor. It | |
1103 ** is destroyed by xClose. | |
1104 */ | |
1105 typedef struct fulltext_cursor { | |
1106 sqlite3_vtab_cursor base; /* Base class used by SQLite core */ | |
1107 QueryType iCursorType; /* Copy of sqlite3_index_info.idxNum */ | |
1108 sqlite3_stmt *pStmt; /* Prepared statement in use by the cursor */ | |
1109 int eof; /* True if at End Of Results */ | |
1110 Query q; /* Parsed query string */ | |
1111 Snippet snippet; /* Cached snippet for the current row */ | |
1112 int iColumn; /* Column being searched */ | |
1113 DocListReader result; /* used when iCursorType == QUERY_FULLTEXT */ | |
1114 } fulltext_cursor; | |
1115 | |
1116 static struct fulltext_vtab *cursor_vtab(fulltext_cursor *c){ | |
1117 return (fulltext_vtab *) c->base.pVtab; | |
1118 } | |
1119 | |
1120 static const sqlite3_module fulltextModule; /* forward declaration */ | |
1121 | |
1122 /* Append a list of strings separated by commas to a StringBuffer. */ | |
1123 static void appendList(StringBuffer *sb, int nString, char **azString){ | |
1124 int i; | |
1125 for(i=0; i<nString; ++i){ | |
1126 if( i>0 ) append(sb, ", "); | |
1127 append(sb, azString[i]); | |
1128 } | |
1129 } | |
1130 | |
1131 /* Return a dynamically generated statement of the form | |
1132 * insert into %_content (rowid, ...) values (?, ...) | |
1133 */ | |
1134 static const char *contentInsertStatement(fulltext_vtab *v){ | |
1135 StringBuffer sb; | |
1136 int i; | |
1137 | |
1138 initStringBuffer(&sb); | |
1139 append(&sb, "insert into %_content (rowid, "); | |
1140 appendList(&sb, v->nColumn, v->azContentColumn); | |
1141 append(&sb, ") values (?"); | |
1142 for(i=0; i<v->nColumn; ++i) | |
1143 append(&sb, ", ?"); | |
1144 append(&sb, ")"); | |
1145 return sb.s; | |
1146 } | |
1147 | |
1148 /* Return a dynamically generated statement of the form | |
1149 * update %_content set [col_0] = ?, [col_1] = ?, ... | |
1150 * where rowid = ? | |
1151 */ | |
1152 static const char *contentUpdateStatement(fulltext_vtab *v){ | |
1153 StringBuffer sb; | |
1154 int i; | |
1155 | |
1156 initStringBuffer(&sb); | |
1157 append(&sb, "update %_content set "); | |
1158 for(i=0; i<v->nColumn; ++i) { | |
1159 if( i>0 ){ | |
1160 append(&sb, ", "); | |
1161 } | |
1162 append(&sb, v->azContentColumn[i]); | |
1163 append(&sb, " = ?"); | |
1164 } | |
1165 append(&sb, " where rowid = ?"); | |
1166 return sb.s; | |
1167 } | |
1168 | |
1169 /* Puts a freshly-prepared statement determined by iStmt in *ppStmt. | |
1170 ** If the indicated statement has never been prepared, it is prepared | |
1171 ** and cached, otherwise the cached version is reset. | |
1172 */ | |
1173 static int sql_get_statement(fulltext_vtab *v, fulltext_statement iStmt, | |
1174 sqlite3_stmt **ppStmt){ | |
1175 assert( iStmt<MAX_STMT ); | |
1176 if( v->pFulltextStatements[iStmt]==NULL ){ | |
1177 const char *zStmt; | |
1178 int rc; | |
1179 switch( iStmt ){ | |
1180 case CONTENT_INSERT_STMT: | |
1181 zStmt = contentInsertStatement(v); break; | |
1182 case CONTENT_UPDATE_STMT: | |
1183 zStmt = contentUpdateStatement(v); break; | |
1184 default: | |
1185 zStmt = fulltext_zStatement[iStmt]; | |
1186 } | |
1187 rc = sql_prepare(v->db, v->zDb, v->zName, &v->pFulltextStatements[iStmt], | |
1188 zStmt); | |
1189 if( zStmt != fulltext_zStatement[iStmt]) free((void *) zStmt); | |
1190 if( rc!=SQLITE_OK ) return rc; | |
1191 } else { | |
1192 int rc = sqlite3_reset(v->pFulltextStatements[iStmt]); | |
1193 if( rc!=SQLITE_OK ) return rc; | |
1194 } | |
1195 | |
1196 *ppStmt = v->pFulltextStatements[iStmt]; | |
1197 return SQLITE_OK; | |
1198 } | |
1199 | |
1200 /* Step the indicated statement, handling errors SQLITE_BUSY (by | |
1201 ** retrying) and SQLITE_SCHEMA (by re-preparing and transferring | |
1202 ** bindings to the new statement). | |
1203 ** TODO(adam): We should extend this function so that it can work with | |
1204 ** statements declared locally, not only globally cached statements. | |
1205 */ | |
1206 static int sql_step_statement(fulltext_vtab *v, fulltext_statement iStmt, | |
1207 sqlite3_stmt **ppStmt){ | |
1208 int rc; | |
1209 sqlite3_stmt *s = *ppStmt; | |
1210 assert( iStmt<MAX_STMT ); | |
1211 assert( s==v->pFulltextStatements[iStmt] ); | |
1212 | |
1213 while( (rc=sqlite3_step(s))!=SQLITE_DONE && rc!=SQLITE_ROW ){ | |
1214 if( rc==SQLITE_BUSY ) continue; | |
1215 if( rc!=SQLITE_ERROR ) return rc; | |
1216 | |
1217 /* If an SQLITE_SCHEMA error has occurred, then finalizing this | |
1218 * statement is going to delete the fulltext_vtab structure. If | |
1219 * the statement just executed is in the pFulltextStatements[] | |
1220 * array, it will be finalized twice. So remove it before | |
1221 * calling sqlite3_finalize(). | |
1222 */ | |
1223 v->pFulltextStatements[iStmt] = NULL; | |
1224 rc = sqlite3_finalize(s); | |
1225 break; | |
1226 } | |
1227 return rc; | |
1228 | |
1229 err: | |
1230 sqlite3_finalize(s); | |
1231 return rc; | |
1232 } | |
1233 | |
1234 /* Like sql_step_statement(), but convert SQLITE_DONE to SQLITE_OK. | |
1235 ** Useful for statements like UPDATE, where we expect no results. | |
1236 */ | |
1237 static int sql_single_step_statement(fulltext_vtab *v, | |
1238 fulltext_statement iStmt, | |
1239 sqlite3_stmt **ppStmt){ | |
1240 int rc = sql_step_statement(v, iStmt, ppStmt); | |
1241 return (rc==SQLITE_DONE) ? SQLITE_OK : rc; | |
1242 } | |
1243 | |
1244 /* insert into %_content (rowid, ...) values ([rowid], [pValues]) */ | |
1245 static int content_insert(fulltext_vtab *v, sqlite3_value *rowid, | |
1246 sqlite3_value **pValues){ | |
1247 sqlite3_stmt *s; | |
1248 int i; | |
1249 int rc = sql_get_statement(v, CONTENT_INSERT_STMT, &s); | |
1250 if( rc!=SQLITE_OK ) return rc; | |
1251 | |
1252 rc = sqlite3_bind_value(s, 1, rowid); | |
1253 if( rc!=SQLITE_OK ) return rc; | |
1254 | |
1255 for(i=0; i<v->nColumn; ++i){ | |
1256 rc = sqlite3_bind_value(s, 2+i, pValues[i]); | |
1257 if( rc!=SQLITE_OK ) return rc; | |
1258 } | |
1259 | |
1260 return sql_single_step_statement(v, CONTENT_INSERT_STMT, &s); | |
1261 } | |
1262 | |
1263 /* update %_content set col0 = pValues[0], col1 = pValues[1], ... | |
1264 * where rowid = [iRowid] */ | |
1265 static int content_update(fulltext_vtab *v, sqlite3_value **pValues, | |
1266 sqlite_int64 iRowid){ | |
1267 sqlite3_stmt *s; | |
1268 int i; | |
1269 int rc = sql_get_statement(v, CONTENT_UPDATE_STMT, &s); | |
1270 if( rc!=SQLITE_OK ) return rc; | |
1271 | |
1272 for(i=0; i<v->nColumn; ++i){ | |
1273 rc = sqlite3_bind_value(s, 1+i, pValues[i]); | |
1274 if( rc!=SQLITE_OK ) return rc; | |
1275 } | |
1276 | |
1277 rc = sqlite3_bind_int64(s, 1+v->nColumn, iRowid); | |
1278 if( rc!=SQLITE_OK ) return rc; | |
1279 | |
1280 return sql_single_step_statement(v, CONTENT_UPDATE_STMT, &s); | |
1281 } | |
1282 | |
1283 static void freeStringArray(int nString, const char **pString){ | |
1284 int i; | |
1285 | |
1286 for (i=0 ; i < nString ; ++i) { | |
1287 if( pString[i]!=NULL ) free((void *) pString[i]); | |
1288 } | |
1289 free((void *) pString); | |
1290 } | |
1291 | |
1292 /* select * from %_content where rowid = [iRow] | |
1293 * The caller must delete the returned array and all strings in it. | |
1294 * null fields will be NULL in the returned array. | |
1295 * | |
1296 * TODO: Perhaps we should return pointer/length strings here for consistency | |
1297 * with other code which uses pointer/length. */ | |
1298 static int content_select(fulltext_vtab *v, sqlite_int64 iRow, | |
1299 const char ***pValues){ | |
1300 sqlite3_stmt *s; | |
1301 const char **values; | |
1302 int i; | |
1303 int rc; | |
1304 | |
1305 *pValues = NULL; | |
1306 | |
1307 rc = sql_get_statement(v, CONTENT_SELECT_STMT, &s); | |
1308 if( rc!=SQLITE_OK ) return rc; | |
1309 | |
1310 rc = sqlite3_bind_int64(s, 1, iRow); | |
1311 if( rc!=SQLITE_OK ) return rc; | |
1312 | |
1313 rc = sql_step_statement(v, CONTENT_SELECT_STMT, &s); | |
1314 if( rc!=SQLITE_ROW ) return rc; | |
1315 | |
1316 values = (const char **) malloc(v->nColumn * sizeof(const char *)); | |
1317 for(i=0; i<v->nColumn; ++i){ | |
1318 if( sqlite3_column_type(s, i)==SQLITE_NULL ){ | |
1319 values[i] = NULL; | |
1320 }else{ | |
1321 values[i] = string_dup((char*)sqlite3_column_text(s, i)); | |
1322 } | |
1323 } | |
1324 | |
1325 /* We expect only one row. We must execute another sqlite3_step() | |
1326 * to complete the iteration; otherwise the table will remain locked. */ | |
1327 rc = sqlite3_step(s); | |
1328 if( rc==SQLITE_DONE ){ | |
1329 *pValues = values; | |
1330 return SQLITE_OK; | |
1331 } | |
1332 | |
1333 freeStringArray(v->nColumn, values); | |
1334 return rc; | |
1335 } | |
1336 | |
1337 /* delete from %_content where rowid = [iRow ] */ | |
1338 static int content_delete(fulltext_vtab *v, sqlite_int64 iRow){ | |
1339 sqlite3_stmt *s; | |
1340 int rc = sql_get_statement(v, CONTENT_DELETE_STMT, &s); | |
1341 if( rc!=SQLITE_OK ) return rc; | |
1342 | |
1343 rc = sqlite3_bind_int64(s, 1, iRow); | |
1344 if( rc!=SQLITE_OK ) return rc; | |
1345 | |
1346 return sql_single_step_statement(v, CONTENT_DELETE_STMT, &s); | |
1347 } | |
1348 | |
1349 /* select rowid, doclist from %_term | |
1350 * where term = [pTerm] and segment = [iSegment] | |
1351 * If found, returns SQLITE_ROW; the caller must free the | |
1352 * returned doclist. If no rows found, returns SQLITE_DONE. */ | |
1353 static int term_select(fulltext_vtab *v, const char *pTerm, int nTerm, | |
1354 int iSegment, | |
1355 sqlite_int64 *rowid, DocList *out){ | |
1356 sqlite3_stmt *s; | |
1357 int rc = sql_get_statement(v, TERM_SELECT_STMT, &s); | |
1358 if( rc!=SQLITE_OK ) return rc; | |
1359 | |
1360 rc = sqlite3_bind_text(s, 1, pTerm, nTerm, SQLITE_STATIC); | |
1361 if( rc!=SQLITE_OK ) return rc; | |
1362 | |
1363 rc = sqlite3_bind_int(s, 2, iSegment); | |
1364 if( rc!=SQLITE_OK ) return rc; | |
1365 | |
1366 rc = sql_step_statement(v, TERM_SELECT_STMT, &s); | |
1367 if( rc!=SQLITE_ROW ) return rc; | |
1368 | |
1369 *rowid = sqlite3_column_int64(s, 0); | |
1370 docListInit(out, DL_DEFAULT, | |
1371 sqlite3_column_blob(s, 1), sqlite3_column_bytes(s, 1)); | |
1372 | |
1373 /* We expect only one row. We must execute another sqlite3_step() | |
1374 * to complete the iteration; otherwise the table will remain locked. */ | |
1375 rc = sqlite3_step(s); | |
1376 return rc==SQLITE_DONE ? SQLITE_ROW : rc; | |
1377 } | |
1378 | |
1379 /* Load the segment doclists for term pTerm and merge them in | |
1380 ** appropriate order into out. Returns SQLITE_OK if successful. If | |
1381 ** there are no segments for pTerm, successfully returns an empty | |
1382 ** doclist in out. | |
1383 ** | |
1384 ** Each document consists of 1 or more "columns". The number of | |
1385 ** columns is v->nColumn. If iColumn==v->nColumn, then return | |
1386 ** position information about all columns. If iColumn<v->nColumn, | |
1387 ** then only return position information about the iColumn-th column | |
1388 ** (where the first column is 0). | |
1389 */ | |
1390 static int term_select_all( | |
1391 fulltext_vtab *v, /* The fulltext index we are querying against */ | |
1392 int iColumn, /* If <nColumn, only look at the iColumn-th column */ | |
1393 const char *pTerm, /* The term whose posting lists we want */ | |
1394 int nTerm, /* Number of bytes in pTerm */ | |
1395 DocList *out /* Write the resulting doclist here */ | |
1396 ){ | |
1397 DocList doclist; | |
1398 sqlite3_stmt *s; | |
1399 int rc = sql_get_statement(v, TERM_SELECT_ALL_STMT, &s); | |
1400 if( rc!=SQLITE_OK ) return rc; | |
1401 | |
1402 rc = sqlite3_bind_text(s, 1, pTerm, nTerm, SQLITE_STATIC); | |
1403 if( rc!=SQLITE_OK ) return rc; | |
1404 | |
1405 docListInit(&doclist, DL_DEFAULT, 0, 0); | |
1406 | |
1407 /* TODO(shess) Handle schema and busy errors. */ | |
1408 while( (rc=sql_step_statement(v, TERM_SELECT_ALL_STMT, &s))==SQLITE_ROW ){ | |
1409 DocList old; | |
1410 | |
1411 /* TODO(shess) If we processed doclists from oldest to newest, we | |
1412 ** could skip the malloc() involved with the following call. For | |
1413 ** now, I'd rather keep this logic similar to index_insert_term(). | |
1414 ** We could additionally drop elements when we see deletes, but | |
1415 ** that would require a distinct version of docListAccumulate(). | |
1416 */ | |
1417 docListInit(&old, DL_DEFAULT, | |
1418 sqlite3_column_blob(s, 0), sqlite3_column_bytes(s, 0)); | |
1419 | |
1420 if( iColumn<v->nColumn ){ /* querying a single column */ | |
1421 docListRestrictColumn(&old, iColumn); | |
1422 } | |
1423 | |
1424 /* doclist contains the newer data, so write it over old. Then | |
1425 ** steal accumulated result for doclist. | |
1426 */ | |
1427 docListAccumulate(&old, &doclist); | |
1428 docListDestroy(&doclist); | |
1429 doclist = old; | |
1430 } | |
1431 if( rc!=SQLITE_DONE ){ | |
1432 docListDestroy(&doclist); | |
1433 return rc; | |
1434 } | |
1435 | |
1436 docListDiscardEmpty(&doclist); | |
1437 *out = doclist; | |
1438 return SQLITE_OK; | |
1439 } | |
1440 | |
1441 /* insert into %_term (rowid, term, segment, doclist) | |
1442 values ([piRowid], [pTerm], [iSegment], [doclist]) | |
1443 ** Lets sqlite select rowid if piRowid is NULL, else uses *piRowid. | |
1444 ** | |
1445 ** NOTE(shess) piRowid is IN, with values of "space of int64" plus | |
1446 ** null, it is not used to pass data back to the caller. | |
1447 */ | |
1448 static int term_insert(fulltext_vtab *v, sqlite_int64 *piRowid, | |
1449 const char *pTerm, int nTerm, | |
1450 int iSegment, DocList *doclist){ | |
1451 sqlite3_stmt *s; | |
1452 int rc = sql_get_statement(v, TERM_INSERT_STMT, &s); | |
1453 if( rc!=SQLITE_OK ) return rc; | |
1454 | |
1455 if( piRowid==NULL ){ | |
1456 rc = sqlite3_bind_null(s, 1); | |
1457 }else{ | |
1458 rc = sqlite3_bind_int64(s, 1, *piRowid); | |
1459 } | |
1460 if( rc!=SQLITE_OK ) return rc; | |
1461 | |
1462 rc = sqlite3_bind_text(s, 2, pTerm, nTerm, SQLITE_STATIC); | |
1463 if( rc!=SQLITE_OK ) return rc; | |
1464 | |
1465 rc = sqlite3_bind_int(s, 3, iSegment); | |
1466 if( rc!=SQLITE_OK ) return rc; | |
1467 | |
1468 rc = sqlite3_bind_blob(s, 4, doclist->pData, doclist->nData, SQLITE_STATIC); | |
1469 if( rc!=SQLITE_OK ) return rc; | |
1470 | |
1471 return sql_single_step_statement(v, TERM_INSERT_STMT, &s); | |
1472 } | |
1473 | |
1474 /* update %_term set doclist = [doclist] where rowid = [rowid] */ | |
1475 static int term_update(fulltext_vtab *v, sqlite_int64 rowid, | |
1476 DocList *doclist){ | |
1477 sqlite3_stmt *s; | |
1478 int rc = sql_get_statement(v, TERM_UPDATE_STMT, &s); | |
1479 if( rc!=SQLITE_OK ) return rc; | |
1480 | |
1481 rc = sqlite3_bind_blob(s, 1, doclist->pData, doclist->nData, SQLITE_STATIC); | |
1482 if( rc!=SQLITE_OK ) return rc; | |
1483 | |
1484 rc = sqlite3_bind_int64(s, 2, rowid); | |
1485 if( rc!=SQLITE_OK ) return rc; | |
1486 | |
1487 return sql_single_step_statement(v, TERM_UPDATE_STMT, &s); | |
1488 } | |
1489 | |
1490 static int term_delete(fulltext_vtab *v, sqlite_int64 rowid){ | |
1491 sqlite3_stmt *s; | |
1492 int rc = sql_get_statement(v, TERM_DELETE_STMT, &s); | |
1493 if( rc!=SQLITE_OK ) return rc; | |
1494 | |
1495 rc = sqlite3_bind_int64(s, 1, rowid); | |
1496 if( rc!=SQLITE_OK ) return rc; | |
1497 | |
1498 return sql_single_step_statement(v, TERM_DELETE_STMT, &s); | |
1499 } | |
1500 | |
1501 /* | |
1502 ** Free the memory used to contain a fulltext_vtab structure. | |
1503 */ | |
1504 static void fulltext_vtab_destroy(fulltext_vtab *v){ | |
1505 int iStmt, i; | |
1506 | |
1507 TRACE(("FTS1 Destroy %p\n", v)); | |
1508 for( iStmt=0; iStmt<MAX_STMT; iStmt++ ){ | |
1509 if( v->pFulltextStatements[iStmt]!=NULL ){ | |
1510 sqlite3_finalize(v->pFulltextStatements[iStmt]); | |
1511 v->pFulltextStatements[iStmt] = NULL; | |
1512 } | |
1513 } | |
1514 | |
1515 if( v->pTokenizer!=NULL ){ | |
1516 v->pTokenizer->pModule->xDestroy(v->pTokenizer); | |
1517 v->pTokenizer = NULL; | |
1518 } | |
1519 | |
1520 free(v->azColumn); | |
1521 for(i = 0; i < v->nColumn; ++i) { | |
1522 sqlite3_free(v->azContentColumn[i]); | |
1523 } | |
1524 free(v->azContentColumn); | |
1525 free(v); | |
1526 } | |
1527 | |
1528 /* | |
1529 ** Token types for parsing the arguments to xConnect or xCreate. | |
1530 */ | |
1531 #define TOKEN_EOF 0 /* End of file */ | |
1532 #define TOKEN_SPACE 1 /* Any kind of whitespace */ | |
1533 #define TOKEN_ID 2 /* An identifier */ | |
1534 #define TOKEN_STRING 3 /* A string literal */ | |
1535 #define TOKEN_PUNCT 4 /* A single punctuation character */ | |
1536 | |
1537 /* | |
1538 ** If X is a character that can be used in an identifier then | |
1539 ** IdChar(X) will be true. Otherwise it is false. | |
1540 ** | |
1541 ** For ASCII, any character with the high-order bit set is | |
1542 ** allowed in an identifier. For 7-bit characters, | |
1543 ** sqlite3IsIdChar[X] must be 1. | |
1544 ** | |
1545 ** Ticket #1066. the SQL standard does not allow '$' in the | |
1546 ** middle of identfiers. But many SQL implementations do. | |
1547 ** SQLite will allow '$' in identifiers for compatibility. | |
1548 ** But the feature is undocumented. | |
1549 */ | |
1550 static const char isIdChar[] = { | |
1551 /* x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF */ | |
1552 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 2x */ | |
1553 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, /* 3x */ | |
1554 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 4x */ | |
1555 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, /* 5x */ | |
1556 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 6x */ | |
1557 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, /* 7x */ | |
1558 }; | |
1559 #define IdChar(C) (((c=C)&0x80)!=0 || (c>0x1f && isIdChar[c-0x20])) | |
1560 | |
1561 | |
1562 /* | |
1563 ** Return the length of the token that begins at z[0]. | |
1564 ** Store the token type in *tokenType before returning. | |
1565 */ | |
1566 static int getToken(const char *z, int *tokenType){ | |
1567 int i, c; | |
1568 switch( *z ){ | |
1569 case 0: { | |
1570 *tokenType = TOKEN_EOF; | |
1571 return 0; | |
1572 } | |
1573 case ' ': case '\t': case '\n': case '\f': case '\r': { | |
1574 for(i=1; safe_isspace(z[i]); i++){} | |
1575 *tokenType = TOKEN_SPACE; | |
1576 return i; | |
1577 } | |
1578 case '`': | |
1579 case '\'': | |
1580 case '"': { | |
1581 int delim = z[0]; | |
1582 for(i=1; (c=z[i])!=0; i++){ | |
1583 if( c==delim ){ | |
1584 if( z[i+1]==delim ){ | |
1585 i++; | |
1586 }else{ | |
1587 break; | |
1588 } | |
1589 } | |
1590 } | |
1591 *tokenType = TOKEN_STRING; | |
1592 return i + (c!=0); | |
1593 } | |
1594 case '[': { | |
1595 for(i=1, c=z[0]; c!=']' && (c=z[i])!=0; i++){} | |
1596 *tokenType = TOKEN_ID; | |
1597 return i; | |
1598 } | |
1599 default: { | |
1600 if( !IdChar(*z) ){ | |
1601 break; | |
1602 } | |
1603 for(i=1; IdChar(z[i]); i++){} | |
1604 *tokenType = TOKEN_ID; | |
1605 return i; | |
1606 } | |
1607 } | |
1608 *tokenType = TOKEN_PUNCT; | |
1609 return 1; | |
1610 } | |
1611 | |
1612 /* | |
1613 ** A token extracted from a string is an instance of the following | |
1614 ** structure. | |
1615 */ | |
1616 typedef struct Token { | |
1617 const char *z; /* Pointer to token text. Not '\000' terminated */ | |
1618 short int n; /* Length of the token text in bytes. */ | |
1619 } Token; | |
1620 | |
1621 /* | |
1622 ** Given a input string (which is really one of the argv[] parameters | |
1623 ** passed into xConnect or xCreate) split the string up into tokens. | |
1624 ** Return an array of pointers to '\000' terminated strings, one string | |
1625 ** for each non-whitespace token. | |
1626 ** | |
1627 ** The returned array is terminated by a single NULL pointer. | |
1628 ** | |
1629 ** Space to hold the returned array is obtained from a single | |
1630 ** malloc and should be freed by passing the return value to free(). | |
1631 ** The individual strings within the token list are all a part of | |
1632 ** the single memory allocation and will all be freed at once. | |
1633 */ | |
1634 static char **tokenizeString(const char *z, int *pnToken){ | |
1635 int nToken = 0; | |
1636 Token *aToken = malloc( strlen(z) * sizeof(aToken[0]) ); | |
1637 int n = 1; | |
1638 int e, i; | |
1639 int totalSize = 0; | |
1640 char **azToken; | |
1641 char *zCopy; | |
1642 while( n>0 ){ | |
1643 n = getToken(z, &e); | |
1644 if( e!=TOKEN_SPACE ){ | |
1645 aToken[nToken].z = z; | |
1646 aToken[nToken].n = n; | |
1647 nToken++; | |
1648 totalSize += n+1; | |
1649 } | |
1650 z += n; | |
1651 } | |
1652 azToken = (char**)malloc( nToken*sizeof(char*) + totalSize ); | |
1653 zCopy = (char*)&azToken[nToken]; | |
1654 nToken--; | |
1655 for(i=0; i<nToken; i++){ | |
1656 azToken[i] = zCopy; | |
1657 n = aToken[i].n; | |
1658 memcpy(zCopy, aToken[i].z, n); | |
1659 zCopy[n] = 0; | |
1660 zCopy += n+1; | |
1661 } | |
1662 azToken[nToken] = 0; | |
1663 free(aToken); | |
1664 *pnToken = nToken; | |
1665 return azToken; | |
1666 } | |
1667 | |
1668 /* | |
1669 ** Convert an SQL-style quoted string into a normal string by removing | |
1670 ** the quote characters. The conversion is done in-place. If the | |
1671 ** input does not begin with a quote character, then this routine | |
1672 ** is a no-op. | |
1673 ** | |
1674 ** Examples: | |
1675 ** | |
1676 ** "abc" becomes abc | |
1677 ** 'xyz' becomes xyz | |
1678 ** [pqr] becomes pqr | |
1679 ** `mno` becomes mno | |
1680 */ | |
1681 static void dequoteString(char *z){ | |
1682 int quote; | |
1683 int i, j; | |
1684 if( z==0 ) return; | |
1685 quote = z[0]; | |
1686 switch( quote ){ | |
1687 case '\'': break; | |
1688 case '"': break; | |
1689 case '`': break; /* For MySQL compatibility */ | |
1690 case '[': quote = ']'; break; /* For MS SqlServer compatibility */ | |
1691 default: return; | |
1692 } | |
1693 for(i=1, j=0; z[i]; i++){ | |
1694 if( z[i]==quote ){ | |
1695 if( z[i+1]==quote ){ | |
1696 z[j++] = quote; | |
1697 i++; | |
1698 }else{ | |
1699 z[j++] = 0; | |
1700 break; | |
1701 } | |
1702 }else{ | |
1703 z[j++] = z[i]; | |
1704 } | |
1705 } | |
1706 } | |
1707 | |
1708 /* | |
1709 ** The input azIn is a NULL-terminated list of tokens. Remove the first | |
1710 ** token and all punctuation tokens. Remove the quotes from | |
1711 ** around string literal tokens. | |
1712 ** | |
1713 ** Example: | |
1714 ** | |
1715 ** input: tokenize chinese ( 'simplifed' , 'mixed' ) | |
1716 ** output: chinese simplifed mixed | |
1717 ** | |
1718 ** Another example: | |
1719 ** | |
1720 ** input: delimiters ( '[' , ']' , '...' ) | |
1721 ** output: [ ] ... | |
1722 */ | |
1723 static void tokenListToIdList(char **azIn){ | |
1724 int i, j; | |
1725 if( azIn ){ | |
1726 for(i=0, j=-1; azIn[i]; i++){ | |
1727 if( safe_isalnum(azIn[i][0]) || azIn[i][1] ){ | |
1728 dequoteString(azIn[i]); | |
1729 if( j>=0 ){ | |
1730 azIn[j] = azIn[i]; | |
1731 } | |
1732 j++; | |
1733 } | |
1734 } | |
1735 azIn[j] = 0; | |
1736 } | |
1737 } | |
1738 | |
1739 | |
1740 /* | |
1741 ** Find the first alphanumeric token in the string zIn. Null-terminate | |
1742 ** this token. Remove any quotation marks. And return a pointer to | |
1743 ** the result. | |
1744 */ | |
1745 static char *firstToken(char *zIn, char **pzTail){ | |
1746 int n, ttype; | |
1747 while(1){ | |
1748 n = getToken(zIn, &ttype); | |
1749 if( ttype==TOKEN_SPACE ){ | |
1750 zIn += n; | |
1751 }else if( ttype==TOKEN_EOF ){ | |
1752 *pzTail = zIn; | |
1753 return 0; | |
1754 }else{ | |
1755 zIn[n] = 0; | |
1756 *pzTail = &zIn[1]; | |
1757 dequoteString(zIn); | |
1758 return zIn; | |
1759 } | |
1760 } | |
1761 /*NOTREACHED*/ | |
1762 } | |
1763 | |
1764 /* Return true if... | |
1765 ** | |
1766 ** * s begins with the string t, ignoring case | |
1767 ** * s is longer than t | |
1768 ** * The first character of s beyond t is not a alphanumeric | |
1769 ** | |
1770 ** Ignore leading space in *s. | |
1771 ** | |
1772 ** To put it another way, return true if the first token of | |
1773 ** s[] is t[]. | |
1774 */ | |
1775 static int startsWith(const char *s, const char *t){ | |
1776 while( safe_isspace(*s) ){ s++; } | |
1777 while( *t ){ | |
1778 if( safe_tolower(*s++)!=safe_tolower(*t++) ) return 0; | |
1779 } | |
1780 return *s!='_' && !safe_isalnum(*s); | |
1781 } | |
1782 | |
1783 /* | |
1784 ** An instance of this structure defines the "spec" of a | |
1785 ** full text index. This structure is populated by parseSpec | |
1786 ** and use by fulltextConnect and fulltextCreate. | |
1787 */ | |
1788 typedef struct TableSpec { | |
1789 const char *zDb; /* Logical database name */ | |
1790 const char *zName; /* Name of the full-text index */ | |
1791 int nColumn; /* Number of columns to be indexed */ | |
1792 char **azColumn; /* Original names of columns to be indexed */ | |
1793 char **azContentColumn; /* Column names for %_content */ | |
1794 char **azTokenizer; /* Name of tokenizer and its arguments */ | |
1795 } TableSpec; | |
1796 | |
1797 /* | |
1798 ** Reclaim all of the memory used by a TableSpec | |
1799 */ | |
1800 static void clearTableSpec(TableSpec *p) { | |
1801 free(p->azColumn); | |
1802 free(p->azContentColumn); | |
1803 free(p->azTokenizer); | |
1804 } | |
1805 | |
1806 /* Parse a CREATE VIRTUAL TABLE statement, which looks like this: | |
1807 * | |
1808 * CREATE VIRTUAL TABLE email | |
1809 * USING fts1(subject, body, tokenize mytokenizer(myarg)) | |
1810 * | |
1811 * We return parsed information in a TableSpec structure. | |
1812 * | |
1813 */ | |
1814 static int parseSpec(TableSpec *pSpec, int argc, const char *const*argv, | |
1815 char**pzErr){ | |
1816 int i, n; | |
1817 char *z, *zDummy; | |
1818 char **azArg; | |
1819 const char *zTokenizer = 0; /* argv[] entry describing the tokenizer */ | |
1820 | |
1821 assert( argc>=3 ); | |
1822 /* Current interface: | |
1823 ** argv[0] - module name | |
1824 ** argv[1] - database name | |
1825 ** argv[2] - table name | |
1826 ** argv[3..] - columns, optionally followed by tokenizer specification | |
1827 ** and snippet delimiters specification. | |
1828 */ | |
1829 | |
1830 /* Make a copy of the complete argv[][] array in a single allocation. | |
1831 ** The argv[][] array is read-only and transient. We can write to the | |
1832 ** copy in order to modify things and the copy is persistent. | |
1833 */ | |
1834 memset(pSpec, 0, sizeof(*pSpec)); | |
1835 for(i=n=0; i<argc; i++){ | |
1836 n += strlen(argv[i]) + 1; | |
1837 } | |
1838 azArg = malloc( sizeof(char*)*argc + n ); | |
1839 if( azArg==0 ){ | |
1840 return SQLITE_NOMEM; | |
1841 } | |
1842 z = (char*)&azArg[argc]; | |
1843 for(i=0; i<argc; i++){ | |
1844 azArg[i] = z; | |
1845 strcpy(z, argv[i]); | |
1846 z += strlen(z)+1; | |
1847 } | |
1848 | |
1849 /* Identify the column names and the tokenizer and delimiter arguments | |
1850 ** in the argv[][] array. | |
1851 */ | |
1852 pSpec->zDb = azArg[1]; | |
1853 pSpec->zName = azArg[2]; | |
1854 pSpec->nColumn = 0; | |
1855 pSpec->azColumn = azArg; | |
1856 zTokenizer = "tokenize simple"; | |
1857 for(i=3; i<argc; ++i){ | |
1858 if( startsWith(azArg[i],"tokenize") ){ | |
1859 zTokenizer = azArg[i]; | |
1860 }else{ | |
1861 z = azArg[pSpec->nColumn] = firstToken(azArg[i], &zDummy); | |
1862 pSpec->nColumn++; | |
1863 } | |
1864 } | |
1865 if( pSpec->nColumn==0 ){ | |
1866 azArg[0] = "content"; | |
1867 pSpec->nColumn = 1; | |
1868 } | |
1869 | |
1870 /* | |
1871 ** Construct the list of content column names. | |
1872 ** | |
1873 ** Each content column name will be of the form cNNAAAA | |
1874 ** where NN is the column number and AAAA is the sanitized | |
1875 ** column name. "sanitized" means that special characters are | |
1876 ** converted to "_". The cNN prefix guarantees that all column | |
1877 ** names are unique. | |
1878 ** | |
1879 ** The AAAA suffix is not strictly necessary. It is included | |
1880 ** for the convenience of people who might examine the generated | |
1881 ** %_content table and wonder what the columns are used for. | |
1882 */ | |
1883 pSpec->azContentColumn = malloc( pSpec->nColumn * sizeof(char *) ); | |
1884 if( pSpec->azContentColumn==0 ){ | |
1885 clearTableSpec(pSpec); | |
1886 return SQLITE_NOMEM; | |
1887 } | |
1888 for(i=0; i<pSpec->nColumn; i++){ | |
1889 char *p; | |
1890 pSpec->azContentColumn[i] = sqlite3_mprintf("c%d%s", i, azArg[i]); | |
1891 for (p = pSpec->azContentColumn[i]; *p ; ++p) { | |
1892 if( !safe_isalnum(*p) ) *p = '_'; | |
1893 } | |
1894 } | |
1895 | |
1896 /* | |
1897 ** Parse the tokenizer specification string. | |
1898 */ | |
1899 pSpec->azTokenizer = tokenizeString(zTokenizer, &n); | |
1900 tokenListToIdList(pSpec->azTokenizer); | |
1901 | |
1902 return SQLITE_OK; | |
1903 } | |
1904 | |
1905 /* | |
1906 ** Generate a CREATE TABLE statement that describes the schema of | |
1907 ** the virtual table. Return a pointer to this schema string. | |
1908 ** | |
1909 ** Space is obtained from sqlite3_mprintf() and should be freed | |
1910 ** using sqlite3_free(). | |
1911 */ | |
1912 static char *fulltextSchema( | |
1913 int nColumn, /* Number of columns */ | |
1914 const char *const* azColumn, /* List of columns */ | |
1915 const char *zTableName /* Name of the table */ | |
1916 ){ | |
1917 int i; | |
1918 char *zSchema, *zNext; | |
1919 const char *zSep = "("; | |
1920 zSchema = sqlite3_mprintf("CREATE TABLE x"); | |
1921 for(i=0; i<nColumn; i++){ | |
1922 zNext = sqlite3_mprintf("%s%s%Q", zSchema, zSep, azColumn[i]); | |
1923 sqlite3_free(zSchema); | |
1924 zSchema = zNext; | |
1925 zSep = ","; | |
1926 } | |
1927 zNext = sqlite3_mprintf("%s,%Q)", zSchema, zTableName); | |
1928 sqlite3_free(zSchema); | |
1929 return zNext; | |
1930 } | |
1931 | |
1932 /* | |
1933 ** Build a new sqlite3_vtab structure that will describe the | |
1934 ** fulltext index defined by spec. | |
1935 */ | |
1936 static int constructVtab( | |
1937 sqlite3 *db, /* The SQLite database connection */ | |
1938 TableSpec *spec, /* Parsed spec information from parseSpec() */ | |
1939 sqlite3_vtab **ppVTab, /* Write the resulting vtab structure here */ | |
1940 char **pzErr /* Write any error message here */ | |
1941 ){ | |
1942 int rc; | |
1943 int n; | |
1944 fulltext_vtab *v = 0; | |
1945 const sqlite3_tokenizer_module *m = NULL; | |
1946 char *schema; | |
1947 | |
1948 v = (fulltext_vtab *) malloc(sizeof(fulltext_vtab)); | |
1949 if( v==0 ) return SQLITE_NOMEM; | |
1950 memset(v, 0, sizeof(*v)); | |
1951 /* sqlite will initialize v->base */ | |
1952 v->db = db; | |
1953 v->zDb = spec->zDb; /* Freed when azColumn is freed */ | |
1954 v->zName = spec->zName; /* Freed when azColumn is freed */ | |
1955 v->nColumn = spec->nColumn; | |
1956 v->azContentColumn = spec->azContentColumn; | |
1957 spec->azContentColumn = 0; | |
1958 v->azColumn = spec->azColumn; | |
1959 spec->azColumn = 0; | |
1960 | |
1961 if( spec->azTokenizer==0 ){ | |
1962 return SQLITE_NOMEM; | |
1963 } | |
1964 /* TODO(shess) For now, add new tokenizers as else if clauses. */ | |
1965 if( spec->azTokenizer[0]==0 || startsWith(spec->azTokenizer[0], "simple") ){ | |
1966 sqlite3Fts1SimpleTokenizerModule(&m); | |
1967 }else if( startsWith(spec->azTokenizer[0], "porter") ){ | |
1968 sqlite3Fts1PorterTokenizerModule(&m); | |
1969 }else{ | |
1970 *pzErr = sqlite3_mprintf("unknown tokenizer: %s", spec->azTokenizer[0]); | |
1971 rc = SQLITE_ERROR; | |
1972 goto err; | |
1973 } | |
1974 for(n=0; spec->azTokenizer[n]; n++){} | |
1975 if( n ){ | |
1976 rc = m->xCreate(n-1, (const char*const*)&spec->azTokenizer[1], | |
1977 &v->pTokenizer); | |
1978 }else{ | |
1979 rc = m->xCreate(0, 0, &v->pTokenizer); | |
1980 } | |
1981 if( rc!=SQLITE_OK ) goto err; | |
1982 v->pTokenizer->pModule = m; | |
1983 | |
1984 /* TODO: verify the existence of backing tables foo_content, foo_term */ | |
1985 | |
1986 schema = fulltextSchema(v->nColumn, (const char*const*)v->azColumn, | |
1987 spec->zName); | |
1988 rc = sqlite3_declare_vtab(db, schema); | |
1989 sqlite3_free(schema); | |
1990 if( rc!=SQLITE_OK ) goto err; | |
1991 | |
1992 memset(v->pFulltextStatements, 0, sizeof(v->pFulltextStatements)); | |
1993 | |
1994 *ppVTab = &v->base; | |
1995 TRACE(("FTS1 Connect %p\n", v)); | |
1996 | |
1997 return rc; | |
1998 | |
1999 err: | |
2000 fulltext_vtab_destroy(v); | |
2001 return rc; | |
2002 } | |
2003 | |
2004 static int fulltextConnect( | |
2005 sqlite3 *db, | |
2006 void *pAux, | |
2007 int argc, const char *const*argv, | |
2008 sqlite3_vtab **ppVTab, | |
2009 char **pzErr | |
2010 ){ | |
2011 TableSpec spec; | |
2012 int rc = parseSpec(&spec, argc, argv, pzErr); | |
2013 if( rc!=SQLITE_OK ) return rc; | |
2014 | |
2015 rc = constructVtab(db, &spec, ppVTab, pzErr); | |
2016 clearTableSpec(&spec); | |
2017 return rc; | |
2018 } | |
2019 | |
2020 /* The %_content table holds the text of each document, with | |
2021 ** the rowid used as the docid. | |
2022 ** | |
2023 ** The %_term table maps each term to a document list blob | |
2024 ** containing elements sorted by ascending docid, each element | |
2025 ** encoded as: | |
2026 ** | |
2027 ** docid varint-encoded | |
2028 ** token elements: | |
2029 ** position+1 varint-encoded as delta from previous position | |
2030 ** start offset varint-encoded as delta from previous start offset | |
2031 ** end offset varint-encoded as delta from start offset | |
2032 ** | |
2033 ** The sentinel position of 0 indicates the end of the token list. | |
2034 ** | |
2035 ** Additionally, doclist blobs are chunked into multiple segments, | |
2036 ** using segment to order the segments. New elements are added to | |
2037 ** the segment at segment 0, until it exceeds CHUNK_MAX. Then | |
2038 ** segment 0 is deleted, and the doclist is inserted at segment 1. | |
2039 ** If there is already a doclist at segment 1, the segment 0 doclist | |
2040 ** is merged with it, the segment 1 doclist is deleted, and the | |
2041 ** merged doclist is inserted at segment 2, repeating those | |
2042 ** operations until an insert succeeds. | |
2043 ** | |
2044 ** Since this structure doesn't allow us to update elements in place | |
2045 ** in case of deletion or update, these are simply written to | |
2046 ** segment 0 (with an empty token list in case of deletion), with | |
2047 ** docListAccumulate() taking care to retain lower-segment | |
2048 ** information in preference to higher-segment information. | |
2049 */ | |
2050 /* TODO(shess) Provide a VACUUM type operation which both removes | |
2051 ** deleted elements which are no longer necessary, and duplicated | |
2052 ** elements. I suspect this will probably not be necessary in | |
2053 ** practice, though. | |
2054 */ | |
2055 static int fulltextCreate(sqlite3 *db, void *pAux, | |
2056 int argc, const char * const *argv, | |
2057 sqlite3_vtab **ppVTab, char **pzErr){ | |
2058 int rc; | |
2059 TableSpec spec; | |
2060 StringBuffer schema; | |
2061 TRACE(("FTS1 Create\n")); | |
2062 | |
2063 rc = parseSpec(&spec, argc, argv, pzErr); | |
2064 if( rc!=SQLITE_OK ) return rc; | |
2065 | |
2066 initStringBuffer(&schema); | |
2067 append(&schema, "CREATE TABLE %_content("); | |
2068 appendList(&schema, spec.nColumn, spec.azContentColumn); | |
2069 append(&schema, ")"); | |
2070 rc = sql_exec(db, spec.zDb, spec.zName, schema.s); | |
2071 free(schema.s); | |
2072 if( rc!=SQLITE_OK ) goto out; | |
2073 | |
2074 rc = sql_exec(db, spec.zDb, spec.zName, | |
2075 "create table %_term(term text, segment integer, doclist blob, " | |
2076 "primary key(term, segment));"); | |
2077 if( rc!=SQLITE_OK ) goto out; | |
2078 | |
2079 rc = constructVtab(db, &spec, ppVTab, pzErr); | |
2080 | |
2081 out: | |
2082 clearTableSpec(&spec); | |
2083 return rc; | |
2084 } | |
2085 | |
2086 /* Decide how to handle an SQL query. */ | |
2087 static int fulltextBestIndex(sqlite3_vtab *pVTab, sqlite3_index_info *pInfo){ | |
2088 int i; | |
2089 TRACE(("FTS1 BestIndex\n")); | |
2090 | |
2091 for(i=0; i<pInfo->nConstraint; ++i){ | |
2092 const struct sqlite3_index_constraint *pConstraint; | |
2093 pConstraint = &pInfo->aConstraint[i]; | |
2094 if( pConstraint->usable ) { | |
2095 if( pConstraint->iColumn==-1 && | |
2096 pConstraint->op==SQLITE_INDEX_CONSTRAINT_EQ ){ | |
2097 pInfo->idxNum = QUERY_ROWID; /* lookup by rowid */ | |
2098 TRACE(("FTS1 QUERY_ROWID\n")); | |
2099 } else if( pConstraint->iColumn>=0 && | |
2100 pConstraint->op==SQLITE_INDEX_CONSTRAINT_MATCH ){ | |
2101 /* full-text search */ | |
2102 pInfo->idxNum = QUERY_FULLTEXT + pConstraint->iColumn; | |
2103 TRACE(("FTS1 QUERY_FULLTEXT %d\n", pConstraint->iColumn)); | |
2104 } else continue; | |
2105 | |
2106 pInfo->aConstraintUsage[i].argvIndex = 1; | |
2107 pInfo->aConstraintUsage[i].omit = 1; | |
2108 | |
2109 /* An arbitrary value for now. | |
2110 * TODO: Perhaps rowid matches should be considered cheaper than | |
2111 * full-text searches. */ | |
2112 pInfo->estimatedCost = 1.0; | |
2113 | |
2114 return SQLITE_OK; | |
2115 } | |
2116 } | |
2117 pInfo->idxNum = QUERY_GENERIC; | |
2118 return SQLITE_OK; | |
2119 } | |
2120 | |
2121 static int fulltextDisconnect(sqlite3_vtab *pVTab){ | |
2122 TRACE(("FTS1 Disconnect %p\n", pVTab)); | |
2123 fulltext_vtab_destroy((fulltext_vtab *)pVTab); | |
2124 return SQLITE_OK; | |
2125 } | |
2126 | |
2127 static int fulltextDestroy(sqlite3_vtab *pVTab){ | |
2128 fulltext_vtab *v = (fulltext_vtab *)pVTab; | |
2129 int rc; | |
2130 | |
2131 TRACE(("FTS1 Destroy %p\n", pVTab)); | |
2132 rc = sql_exec(v->db, v->zDb, v->zName, | |
2133 "drop table if exists %_content;" | |
2134 "drop table if exists %_term;" | |
2135 ); | |
2136 if( rc!=SQLITE_OK ) return rc; | |
2137 | |
2138 fulltext_vtab_destroy((fulltext_vtab *)pVTab); | |
2139 return SQLITE_OK; | |
2140 } | |
2141 | |
2142 static int fulltextOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){ | |
2143 fulltext_cursor *c; | |
2144 | |
2145 c = (fulltext_cursor *) calloc(sizeof(fulltext_cursor), 1); | |
2146 /* sqlite will initialize c->base */ | |
2147 *ppCursor = &c->base; | |
2148 TRACE(("FTS1 Open %p: %p\n", pVTab, c)); | |
2149 | |
2150 return SQLITE_OK; | |
2151 } | |
2152 | |
2153 | |
2154 /* Free all of the dynamically allocated memory held by *q | |
2155 */ | |
2156 static void queryClear(Query *q){ | |
2157 int i; | |
2158 for(i = 0; i < q->nTerms; ++i){ | |
2159 free(q->pTerms[i].pTerm); | |
2160 } | |
2161 free(q->pTerms); | |
2162 memset(q, 0, sizeof(*q)); | |
2163 } | |
2164 | |
2165 /* Free all of the dynamically allocated memory held by the | |
2166 ** Snippet | |
2167 */ | |
2168 static void snippetClear(Snippet *p){ | |
2169 free(p->aMatch); | |
2170 free(p->zOffset); | |
2171 free(p->zSnippet); | |
2172 memset(p, 0, sizeof(*p)); | |
2173 } | |
2174 /* | |
2175 ** Append a single entry to the p->aMatch[] log. | |
2176 */ | |
2177 static void snippetAppendMatch( | |
2178 Snippet *p, /* Append the entry to this snippet */ | |
2179 int iCol, int iTerm, /* The column and query term */ | |
2180 int iStart, int nByte /* Offset and size of the match */ | |
2181 ){ | |
2182 int i; | |
2183 struct snippetMatch *pMatch; | |
2184 if( p->nMatch+1>=p->nAlloc ){ | |
2185 p->nAlloc = p->nAlloc*2 + 10; | |
2186 p->aMatch = realloc(p->aMatch, p->nAlloc*sizeof(p->aMatch[0]) ); | |
2187 if( p->aMatch==0 ){ | |
2188 p->nMatch = 0; | |
2189 p->nAlloc = 0; | |
2190 return; | |
2191 } | |
2192 } | |
2193 i = p->nMatch++; | |
2194 pMatch = &p->aMatch[i]; | |
2195 pMatch->iCol = iCol; | |
2196 pMatch->iTerm = iTerm; | |
2197 pMatch->iStart = iStart; | |
2198 pMatch->nByte = nByte; | |
2199 } | |
2200 | |
2201 /* | |
2202 ** Sizing information for the circular buffer used in snippetOffsetsOfColumn() | |
2203 */ | |
2204 #define FTS1_ROTOR_SZ (32) | |
2205 #define FTS1_ROTOR_MASK (FTS1_ROTOR_SZ-1) | |
2206 | |
2207 /* | |
2208 ** Add entries to pSnippet->aMatch[] for every match that occurs against | |
2209 ** document zDoc[0..nDoc-1] which is stored in column iColumn. | |
2210 */ | |
2211 static void snippetOffsetsOfColumn( | |
2212 Query *pQuery, | |
2213 Snippet *pSnippet, | |
2214 int iColumn, | |
2215 const char *zDoc, | |
2216 int nDoc | |
2217 ){ | |
2218 const sqlite3_tokenizer_module *pTModule; /* The tokenizer module */ | |
2219 sqlite3_tokenizer *pTokenizer; /* The specific tokenizer */ | |
2220 sqlite3_tokenizer_cursor *pTCursor; /* Tokenizer cursor */ | |
2221 fulltext_vtab *pVtab; /* The full text index */ | |
2222 int nColumn; /* Number of columns in the index */ | |
2223 const QueryTerm *aTerm; /* Query string terms */ | |
2224 int nTerm; /* Number of query string terms */ | |
2225 int i, j; /* Loop counters */ | |
2226 int rc; /* Return code */ | |
2227 unsigned int match, prevMatch; /* Phrase search bitmasks */ | |
2228 const char *zToken; /* Next token from the tokenizer */ | |
2229 int nToken; /* Size of zToken */ | |
2230 int iBegin, iEnd, iPos; /* Offsets of beginning and end */ | |
2231 | |
2232 /* The following variables keep a circular buffer of the last | |
2233 ** few tokens */ | |
2234 unsigned int iRotor = 0; /* Index of current token */ | |
2235 int iRotorBegin[FTS1_ROTOR_SZ]; /* Beginning offset of token */ | |
2236 int iRotorLen[FTS1_ROTOR_SZ]; /* Length of token */ | |
2237 | |
2238 pVtab = pQuery->pFts; | |
2239 nColumn = pVtab->nColumn; | |
2240 pTokenizer = pVtab->pTokenizer; | |
2241 pTModule = pTokenizer->pModule; | |
2242 rc = pTModule->xOpen(pTokenizer, zDoc, nDoc, &pTCursor); | |
2243 if( rc ) return; | |
2244 pTCursor->pTokenizer = pTokenizer; | |
2245 aTerm = pQuery->pTerms; | |
2246 nTerm = pQuery->nTerms; | |
2247 if( nTerm>=FTS1_ROTOR_SZ ){ | |
2248 nTerm = FTS1_ROTOR_SZ - 1; | |
2249 } | |
2250 prevMatch = 0; | |
2251 while(1){ | |
2252 rc = pTModule->xNext(pTCursor, &zToken, &nToken, &iBegin, &iEnd, &iPos); | |
2253 if( rc ) break; | |
2254 iRotorBegin[iRotor&FTS1_ROTOR_MASK] = iBegin; | |
2255 iRotorLen[iRotor&FTS1_ROTOR_MASK] = iEnd-iBegin; | |
2256 match = 0; | |
2257 for(i=0; i<nTerm; i++){ | |
2258 int iCol; | |
2259 iCol = aTerm[i].iColumn; | |
2260 if( iCol>=0 && iCol<nColumn && iCol!=iColumn ) continue; | |
2261 if( aTerm[i].nTerm!=nToken ) continue; | |
2262 if( memcmp(aTerm[i].pTerm, zToken, nToken) ) continue; | |
2263 if( aTerm[i].iPhrase>1 && (prevMatch & (1<<i))==0 ) continue; | |
2264 match |= 1<<i; | |
2265 if( i==nTerm-1 || aTerm[i+1].iPhrase==1 ){ | |
2266 for(j=aTerm[i].iPhrase-1; j>=0; j--){ | |
2267 int k = (iRotor-j) & FTS1_ROTOR_MASK; | |
2268 snippetAppendMatch(pSnippet, iColumn, i-j, | |
2269 iRotorBegin[k], iRotorLen[k]); | |
2270 } | |
2271 } | |
2272 } | |
2273 prevMatch = match<<1; | |
2274 iRotor++; | |
2275 } | |
2276 pTModule->xClose(pTCursor); | |
2277 } | |
2278 | |
2279 | |
2280 /* | |
2281 ** Compute all offsets for the current row of the query. | |
2282 ** If the offsets have already been computed, this routine is a no-op. | |
2283 */ | |
2284 static void snippetAllOffsets(fulltext_cursor *p){ | |
2285 int nColumn; | |
2286 int iColumn, i; | |
2287 int iFirst, iLast; | |
2288 fulltext_vtab *pFts; | |
2289 | |
2290 if( p->snippet.nMatch ) return; | |
2291 if( p->q.nTerms==0 ) return; | |
2292 pFts = p->q.pFts; | |
2293 nColumn = pFts->nColumn; | |
2294 iColumn = p->iCursorType - QUERY_FULLTEXT; | |
2295 if( iColumn<0 || iColumn>=nColumn ){ | |
2296 iFirst = 0; | |
2297 iLast = nColumn-1; | |
2298 }else{ | |
2299 iFirst = iColumn; | |
2300 iLast = iColumn; | |
2301 } | |
2302 for(i=iFirst; i<=iLast; i++){ | |
2303 const char *zDoc; | |
2304 int nDoc; | |
2305 zDoc = (const char*)sqlite3_column_text(p->pStmt, i+1); | |
2306 nDoc = sqlite3_column_bytes(p->pStmt, i+1); | |
2307 snippetOffsetsOfColumn(&p->q, &p->snippet, i, zDoc, nDoc); | |
2308 } | |
2309 } | |
2310 | |
2311 /* | |
2312 ** Convert the information in the aMatch[] array of the snippet | |
2313 ** into the string zOffset[0..nOffset-1]. | |
2314 */ | |
2315 static void snippetOffsetText(Snippet *p){ | |
2316 int i; | |
2317 int cnt = 0; | |
2318 StringBuffer sb; | |
2319 char zBuf[200]; | |
2320 if( p->zOffset ) return; | |
2321 initStringBuffer(&sb); | |
2322 for(i=0; i<p->nMatch; i++){ | |
2323 struct snippetMatch *pMatch = &p->aMatch[i]; | |
2324 zBuf[0] = ' '; | |
2325 sqlite3_snprintf(sizeof(zBuf)-1, &zBuf[cnt>0], "%d %d %d %d", | |
2326 pMatch->iCol, pMatch->iTerm, pMatch->iStart, pMatch->nByte); | |
2327 append(&sb, zBuf); | |
2328 cnt++; | |
2329 } | |
2330 p->zOffset = sb.s; | |
2331 p->nOffset = sb.len; | |
2332 } | |
2333 | |
2334 /* | |
2335 ** zDoc[0..nDoc-1] is phrase of text. aMatch[0..nMatch-1] are a set | |
2336 ** of matching words some of which might be in zDoc. zDoc is column | |
2337 ** number iCol. | |
2338 ** | |
2339 ** iBreak is suggested spot in zDoc where we could begin or end an | |
2340 ** excerpt. Return a value similar to iBreak but possibly adjusted | |
2341 ** to be a little left or right so that the break point is better. | |
2342 */ | |
2343 static int wordBoundary( | |
2344 int iBreak, /* The suggested break point */ | |
2345 const char *zDoc, /* Document text */ | |
2346 int nDoc, /* Number of bytes in zDoc[] */ | |
2347 struct snippetMatch *aMatch, /* Matching words */ | |
2348 int nMatch, /* Number of entries in aMatch[] */ | |
2349 int iCol /* The column number for zDoc[] */ | |
2350 ){ | |
2351 int i; | |
2352 if( iBreak<=10 ){ | |
2353 return 0; | |
2354 } | |
2355 if( iBreak>=nDoc-10 ){ | |
2356 return nDoc; | |
2357 } | |
2358 for(i=0; i<nMatch && aMatch[i].iCol<iCol; i++){} | |
2359 while( i<nMatch && aMatch[i].iStart+aMatch[i].nByte<iBreak ){ i++; } | |
2360 if( i<nMatch ){ | |
2361 if( aMatch[i].iStart<iBreak+10 ){ | |
2362 return aMatch[i].iStart; | |
2363 } | |
2364 if( i>0 && aMatch[i-1].iStart+aMatch[i-1].nByte>=iBreak ){ | |
2365 return aMatch[i-1].iStart; | |
2366 } | |
2367 } | |
2368 for(i=1; i<=10; i++){ | |
2369 if( safe_isspace(zDoc[iBreak-i]) ){ | |
2370 return iBreak - i + 1; | |
2371 } | |
2372 if( safe_isspace(zDoc[iBreak+i]) ){ | |
2373 return iBreak + i + 1; | |
2374 } | |
2375 } | |
2376 return iBreak; | |
2377 } | |
2378 | |
2379 /* | |
2380 ** If the StringBuffer does not end in white space, add a single | |
2381 ** space character to the end. | |
2382 */ | |
2383 static void appendWhiteSpace(StringBuffer *p){ | |
2384 if( p->len==0 ) return; | |
2385 if( safe_isspace(p->s[p->len-1]) ) return; | |
2386 append(p, " "); | |
2387 } | |
2388 | |
2389 /* | |
2390 ** Remove white space from teh end of the StringBuffer | |
2391 */ | |
2392 static void trimWhiteSpace(StringBuffer *p){ | |
2393 while( p->len>0 && safe_isspace(p->s[p->len-1]) ){ | |
2394 p->len--; | |
2395 } | |
2396 } | |
2397 | |
2398 | |
2399 | |
2400 /* | |
2401 ** Allowed values for Snippet.aMatch[].snStatus | |
2402 */ | |
2403 #define SNIPPET_IGNORE 0 /* It is ok to omit this match from the snippet */ | |
2404 #define SNIPPET_DESIRED 1 /* We want to include this match in the snippet */ | |
2405 | |
2406 /* | |
2407 ** Generate the text of a snippet. | |
2408 */ | |
2409 static void snippetText( | |
2410 fulltext_cursor *pCursor, /* The cursor we need the snippet for */ | |
2411 const char *zStartMark, /* Markup to appear before each match */ | |
2412 const char *zEndMark, /* Markup to appear after each match */ | |
2413 const char *zEllipsis /* Ellipsis mark */ | |
2414 ){ | |
2415 int i, j; | |
2416 struct snippetMatch *aMatch; | |
2417 int nMatch; | |
2418 int nDesired; | |
2419 StringBuffer sb; | |
2420 int tailCol; | |
2421 int tailOffset; | |
2422 int iCol; | |
2423 int nDoc; | |
2424 const char *zDoc; | |
2425 int iStart, iEnd; | |
2426 int tailEllipsis = 0; | |
2427 int iMatch; | |
2428 | |
2429 | |
2430 free(pCursor->snippet.zSnippet); | |
2431 pCursor->snippet.zSnippet = 0; | |
2432 aMatch = pCursor->snippet.aMatch; | |
2433 nMatch = pCursor->snippet.nMatch; | |
2434 initStringBuffer(&sb); | |
2435 | |
2436 for(i=0; i<nMatch; i++){ | |
2437 aMatch[i].snStatus = SNIPPET_IGNORE; | |
2438 } | |
2439 nDesired = 0; | |
2440 for(i=0; i<pCursor->q.nTerms; i++){ | |
2441 for(j=0; j<nMatch; j++){ | |
2442 if( aMatch[j].iTerm==i ){ | |
2443 aMatch[j].snStatus = SNIPPET_DESIRED; | |
2444 nDesired++; | |
2445 break; | |
2446 } | |
2447 } | |
2448 } | |
2449 | |
2450 iMatch = 0; | |
2451 tailCol = -1; | |
2452 tailOffset = 0; | |
2453 for(i=0; i<nMatch && nDesired>0; i++){ | |
2454 if( aMatch[i].snStatus!=SNIPPET_DESIRED ) continue; | |
2455 nDesired--; | |
2456 iCol = aMatch[i].iCol; | |
2457 zDoc = (const char*)sqlite3_column_text(pCursor->pStmt, iCol+1); | |
2458 nDoc = sqlite3_column_bytes(pCursor->pStmt, iCol+1); | |
2459 iStart = aMatch[i].iStart - 40; | |
2460 iStart = wordBoundary(iStart, zDoc, nDoc, aMatch, nMatch, iCol); | |
2461 if( iStart<=10 ){ | |
2462 iStart = 0; | |
2463 } | |
2464 if( iCol==tailCol && iStart<=tailOffset+20 ){ | |
2465 iStart = tailOffset; | |
2466 } | |
2467 if( (iCol!=tailCol && tailCol>=0) || iStart!=tailOffset ){ | |
2468 trimWhiteSpace(&sb); | |
2469 appendWhiteSpace(&sb); | |
2470 append(&sb, zEllipsis); | |
2471 appendWhiteSpace(&sb); | |
2472 } | |
2473 iEnd = aMatch[i].iStart + aMatch[i].nByte + 40; | |
2474 iEnd = wordBoundary(iEnd, zDoc, nDoc, aMatch, nMatch, iCol); | |
2475 if( iEnd>=nDoc-10 ){ | |
2476 iEnd = nDoc; | |
2477 tailEllipsis = 0; | |
2478 }else{ | |
2479 tailEllipsis = 1; | |
2480 } | |
2481 while( iMatch<nMatch && aMatch[iMatch].iCol<iCol ){ iMatch++; } | |
2482 while( iStart<iEnd ){ | |
2483 while( iMatch<nMatch && aMatch[iMatch].iStart<iStart | |
2484 && aMatch[iMatch].iCol<=iCol ){ | |
2485 iMatch++; | |
2486 } | |
2487 if( iMatch<nMatch && aMatch[iMatch].iStart<iEnd | |
2488 && aMatch[iMatch].iCol==iCol ){ | |
2489 nappend(&sb, &zDoc[iStart], aMatch[iMatch].iStart - iStart); | |
2490 iStart = aMatch[iMatch].iStart; | |
2491 append(&sb, zStartMark); | |
2492 nappend(&sb, &zDoc[iStart], aMatch[iMatch].nByte); | |
2493 append(&sb, zEndMark); | |
2494 iStart += aMatch[iMatch].nByte; | |
2495 for(j=iMatch+1; j<nMatch; j++){ | |
2496 if( aMatch[j].iTerm==aMatch[iMatch].iTerm | |
2497 && aMatch[j].snStatus==SNIPPET_DESIRED ){ | |
2498 nDesired--; | |
2499 aMatch[j].snStatus = SNIPPET_IGNORE; | |
2500 } | |
2501 } | |
2502 }else{ | |
2503 nappend(&sb, &zDoc[iStart], iEnd - iStart); | |
2504 iStart = iEnd; | |
2505 } | |
2506 } | |
2507 tailCol = iCol; | |
2508 tailOffset = iEnd; | |
2509 } | |
2510 trimWhiteSpace(&sb); | |
2511 if( tailEllipsis ){ | |
2512 appendWhiteSpace(&sb); | |
2513 append(&sb, zEllipsis); | |
2514 } | |
2515 pCursor->snippet.zSnippet = sb.s; | |
2516 pCursor->snippet.nSnippet = sb.len; | |
2517 } | |
2518 | |
2519 | |
2520 /* | |
2521 ** Close the cursor. For additional information see the documentation | |
2522 ** on the xClose method of the virtual table interface. | |
2523 */ | |
2524 static int fulltextClose(sqlite3_vtab_cursor *pCursor){ | |
2525 fulltext_cursor *c = (fulltext_cursor *) pCursor; | |
2526 TRACE(("FTS1 Close %p\n", c)); | |
2527 sqlite3_finalize(c->pStmt); | |
2528 queryClear(&c->q); | |
2529 snippetClear(&c->snippet); | |
2530 if( c->result.pDoclist!=NULL ){ | |
2531 docListDelete(c->result.pDoclist); | |
2532 } | |
2533 free(c); | |
2534 return SQLITE_OK; | |
2535 } | |
2536 | |
2537 static int fulltextNext(sqlite3_vtab_cursor *pCursor){ | |
2538 fulltext_cursor *c = (fulltext_cursor *) pCursor; | |
2539 sqlite_int64 iDocid; | |
2540 int rc; | |
2541 | |
2542 TRACE(("FTS1 Next %p\n", pCursor)); | |
2543 snippetClear(&c->snippet); | |
2544 if( c->iCursorType < QUERY_FULLTEXT ){ | |
2545 /* TODO(shess) Handle SQLITE_SCHEMA AND SQLITE_BUSY. */ | |
2546 rc = sqlite3_step(c->pStmt); | |
2547 switch( rc ){ | |
2548 case SQLITE_ROW: | |
2549 c->eof = 0; | |
2550 return SQLITE_OK; | |
2551 case SQLITE_DONE: | |
2552 c->eof = 1; | |
2553 return SQLITE_OK; | |
2554 default: | |
2555 c->eof = 1; | |
2556 return rc; | |
2557 } | |
2558 } else { /* full-text query */ | |
2559 rc = sqlite3_reset(c->pStmt); | |
2560 if( rc!=SQLITE_OK ) return rc; | |
2561 | |
2562 iDocid = nextDocid(&c->result); | |
2563 if( iDocid==0 ){ | |
2564 c->eof = 1; | |
2565 return SQLITE_OK; | |
2566 } | |
2567 rc = sqlite3_bind_int64(c->pStmt, 1, iDocid); | |
2568 if( rc!=SQLITE_OK ) return rc; | |
2569 /* TODO(shess) Handle SQLITE_SCHEMA AND SQLITE_BUSY. */ | |
2570 rc = sqlite3_step(c->pStmt); | |
2571 if( rc==SQLITE_ROW ){ /* the case we expect */ | |
2572 c->eof = 0; | |
2573 return SQLITE_OK; | |
2574 } | |
2575 /* an error occurred; abort */ | |
2576 return rc==SQLITE_DONE ? SQLITE_ERROR : rc; | |
2577 } | |
2578 } | |
2579 | |
2580 | |
2581 /* Return a DocList corresponding to the query term *pTerm. If *pTerm | |
2582 ** is the first term of a phrase query, go ahead and evaluate the phrase | |
2583 ** query and return the doclist for the entire phrase query. | |
2584 ** | |
2585 ** The result is stored in pTerm->doclist. | |
2586 */ | |
2587 static int docListOfTerm( | |
2588 fulltext_vtab *v, /* The full text index */ | |
2589 int iColumn, /* column to restrict to. No restrition if >=nColumn */ | |
2590 QueryTerm *pQTerm, /* Term we are looking for, or 1st term of a phrase */ | |
2591 DocList **ppResult /* Write the result here */ | |
2592 ){ | |
2593 DocList *pLeft, *pRight, *pNew; | |
2594 int i, rc; | |
2595 | |
2596 pLeft = docListNew(DL_POSITIONS); | |
2597 rc = term_select_all(v, iColumn, pQTerm->pTerm, pQTerm->nTerm, pLeft); | |
2598 if( rc ){ | |
2599 docListDelete(pLeft); | |
2600 return rc; | |
2601 } | |
2602 for(i=1; i<=pQTerm->nPhrase; i++){ | |
2603 pRight = docListNew(DL_POSITIONS); | |
2604 rc = term_select_all(v, iColumn, pQTerm[i].pTerm, pQTerm[i].nTerm, pRight); | |
2605 if( rc ){ | |
2606 docListDelete(pLeft); | |
2607 return rc; | |
2608 } | |
2609 pNew = docListNew(i<pQTerm->nPhrase ? DL_POSITIONS : DL_DOCIDS); | |
2610 docListPhraseMerge(pLeft, pRight, pNew); | |
2611 docListDelete(pLeft); | |
2612 docListDelete(pRight); | |
2613 pLeft = pNew; | |
2614 } | |
2615 *ppResult = pLeft; | |
2616 return SQLITE_OK; | |
2617 } | |
2618 | |
2619 /* Add a new term pTerm[0..nTerm-1] to the query *q. | |
2620 */ | |
2621 static void queryAdd(Query *q, const char *pTerm, int nTerm){ | |
2622 QueryTerm *t; | |
2623 ++q->nTerms; | |
2624 q->pTerms = realloc(q->pTerms, q->nTerms * sizeof(q->pTerms[0])); | |
2625 if( q->pTerms==0 ){ | |
2626 q->nTerms = 0; | |
2627 return; | |
2628 } | |
2629 t = &q->pTerms[q->nTerms - 1]; | |
2630 memset(t, 0, sizeof(*t)); | |
2631 t->pTerm = malloc(nTerm+1); | |
2632 memcpy(t->pTerm, pTerm, nTerm); | |
2633 t->pTerm[nTerm] = 0; | |
2634 t->nTerm = nTerm; | |
2635 t->isOr = q->nextIsOr; | |
2636 q->nextIsOr = 0; | |
2637 t->iColumn = q->nextColumn; | |
2638 q->nextColumn = q->dfltColumn; | |
2639 } | |
2640 | |
2641 /* | |
2642 ** Check to see if the string zToken[0...nToken-1] matches any | |
2643 ** column name in the virtual table. If it does, | |
2644 ** return the zero-indexed column number. If not, return -1. | |
2645 */ | |
2646 static int checkColumnSpecifier( | |
2647 fulltext_vtab *pVtab, /* The virtual table */ | |
2648 const char *zToken, /* Text of the token */ | |
2649 int nToken /* Number of characters in the token */ | |
2650 ){ | |
2651 int i; | |
2652 for(i=0; i<pVtab->nColumn; i++){ | |
2653 if( memcmp(pVtab->azColumn[i], zToken, nToken)==0 | |
2654 && pVtab->azColumn[i][nToken]==0 ){ | |
2655 return i; | |
2656 } | |
2657 } | |
2658 return -1; | |
2659 } | |
2660 | |
2661 /* | |
2662 ** Parse the text at pSegment[0..nSegment-1]. Add additional terms | |
2663 ** to the query being assemblied in pQuery. | |
2664 ** | |
2665 ** inPhrase is true if pSegment[0..nSegement-1] is contained within | |
2666 ** double-quotes. If inPhrase is true, then the first term | |
2667 ** is marked with the number of terms in the phrase less one and | |
2668 ** OR and "-" syntax is ignored. If inPhrase is false, then every | |
2669 ** term found is marked with nPhrase=0 and OR and "-" syntax is significant. | |
2670 */ | |
2671 static int tokenizeSegment( | |
2672 sqlite3_tokenizer *pTokenizer, /* The tokenizer to use */ | |
2673 const char *pSegment, int nSegment, /* Query expression being parsed */ | |
2674 int inPhrase, /* True if within "..." */ | |
2675 Query *pQuery /* Append results here */ | |
2676 ){ | |
2677 const sqlite3_tokenizer_module *pModule = pTokenizer->pModule; | |
2678 sqlite3_tokenizer_cursor *pCursor; | |
2679 int firstIndex = pQuery->nTerms; | |
2680 int iCol; | |
2681 int nTerm = 1; | |
2682 | |
2683 int rc = pModule->xOpen(pTokenizer, pSegment, nSegment, &pCursor); | |
2684 if( rc!=SQLITE_OK ) return rc; | |
2685 pCursor->pTokenizer = pTokenizer; | |
2686 | |
2687 while( 1 ){ | |
2688 const char *pToken; | |
2689 int nToken, iBegin, iEnd, iPos; | |
2690 | |
2691 rc = pModule->xNext(pCursor, | |
2692 &pToken, &nToken, | |
2693 &iBegin, &iEnd, &iPos); | |
2694 if( rc!=SQLITE_OK ) break; | |
2695 if( !inPhrase && | |
2696 pSegment[iEnd]==':' && | |
2697 (iCol = checkColumnSpecifier(pQuery->pFts, pToken, nToken))>=0 ){ | |
2698 pQuery->nextColumn = iCol; | |
2699 continue; | |
2700 } | |
2701 if( !inPhrase && pQuery->nTerms>0 && nToken==2 | |
2702 && pSegment[iBegin]=='O' && pSegment[iBegin+1]=='R' ){ | |
2703 pQuery->nextIsOr = 1; | |
2704 continue; | |
2705 } | |
2706 queryAdd(pQuery, pToken, nToken); | |
2707 if( !inPhrase && iBegin>0 && pSegment[iBegin-1]=='-' ){ | |
2708 pQuery->pTerms[pQuery->nTerms-1].isNot = 1; | |
2709 } | |
2710 pQuery->pTerms[pQuery->nTerms-1].iPhrase = nTerm; | |
2711 if( inPhrase ){ | |
2712 nTerm++; | |
2713 } | |
2714 } | |
2715 | |
2716 if( inPhrase && pQuery->nTerms>firstIndex ){ | |
2717 pQuery->pTerms[firstIndex].nPhrase = pQuery->nTerms - firstIndex - 1; | |
2718 } | |
2719 | |
2720 return pModule->xClose(pCursor); | |
2721 } | |
2722 | |
2723 /* Parse a query string, yielding a Query object pQuery. | |
2724 ** | |
2725 ** The calling function will need to queryClear() to clean up | |
2726 ** the dynamically allocated memory held by pQuery. | |
2727 */ | |
2728 static int parseQuery( | |
2729 fulltext_vtab *v, /* The fulltext index */ | |
2730 const char *zInput, /* Input text of the query string */ | |
2731 int nInput, /* Size of the input text */ | |
2732 int dfltColumn, /* Default column of the index to match against */ | |
2733 Query *pQuery /* Write the parse results here. */ | |
2734 ){ | |
2735 int iInput, inPhrase = 0; | |
2736 | |
2737 if( zInput==0 ) nInput = 0; | |
2738 if( nInput<0 ) nInput = strlen(zInput); | |
2739 pQuery->nTerms = 0; | |
2740 pQuery->pTerms = NULL; | |
2741 pQuery->nextIsOr = 0; | |
2742 pQuery->nextColumn = dfltColumn; | |
2743 pQuery->dfltColumn = dfltColumn; | |
2744 pQuery->pFts = v; | |
2745 | |
2746 for(iInput=0; iInput<nInput; ++iInput){ | |
2747 int i; | |
2748 for(i=iInput; i<nInput && zInput[i]!='"'; ++i){} | |
2749 if( i>iInput ){ | |
2750 tokenizeSegment(v->pTokenizer, zInput+iInput, i-iInput, inPhrase, | |
2751 pQuery); | |
2752 } | |
2753 iInput = i; | |
2754 if( i<nInput ){ | |
2755 assert( zInput[i]=='"' ); | |
2756 inPhrase = !inPhrase; | |
2757 } | |
2758 } | |
2759 | |
2760 if( inPhrase ){ | |
2761 /* unmatched quote */ | |
2762 queryClear(pQuery); | |
2763 return SQLITE_ERROR; | |
2764 } | |
2765 return SQLITE_OK; | |
2766 } | |
2767 | |
2768 /* Perform a full-text query using the search expression in | |
2769 ** zInput[0..nInput-1]. Return a list of matching documents | |
2770 ** in pResult. | |
2771 ** | |
2772 ** Queries must match column iColumn. Or if iColumn>=nColumn | |
2773 ** they are allowed to match against any column. | |
2774 */ | |
2775 static int fulltextQuery( | |
2776 fulltext_vtab *v, /* The full text index */ | |
2777 int iColumn, /* Match against this column by default */ | |
2778 const char *zInput, /* The query string */ | |
2779 int nInput, /* Number of bytes in zInput[] */ | |
2780 DocList **pResult, /* Write the result doclist here */ | |
2781 Query *pQuery /* Put parsed query string here */ | |
2782 ){ | |
2783 int i, iNext, rc; | |
2784 DocList *pLeft = NULL; | |
2785 DocList *pRight, *pNew, *pOr; | |
2786 int nNot = 0; | |
2787 QueryTerm *aTerm; | |
2788 | |
2789 rc = parseQuery(v, zInput, nInput, iColumn, pQuery); | |
2790 if( rc!=SQLITE_OK ) return rc; | |
2791 | |
2792 /* Merge AND terms. */ | |
2793 aTerm = pQuery->pTerms; | |
2794 for(i = 0; i<pQuery->nTerms; i=iNext){ | |
2795 if( aTerm[i].isNot ){ | |
2796 /* Handle all NOT terms in a separate pass */ | |
2797 nNot++; | |
2798 iNext = i + aTerm[i].nPhrase+1; | |
2799 continue; | |
2800 } | |
2801 iNext = i + aTerm[i].nPhrase + 1; | |
2802 rc = docListOfTerm(v, aTerm[i].iColumn, &aTerm[i], &pRight); | |
2803 if( rc ){ | |
2804 queryClear(pQuery); | |
2805 return rc; | |
2806 } | |
2807 while( iNext<pQuery->nTerms && aTerm[iNext].isOr ){ | |
2808 rc = docListOfTerm(v, aTerm[iNext].iColumn, &aTerm[iNext], &pOr); | |
2809 iNext += aTerm[iNext].nPhrase + 1; | |
2810 if( rc ){ | |
2811 queryClear(pQuery); | |
2812 return rc; | |
2813 } | |
2814 pNew = docListNew(DL_DOCIDS); | |
2815 docListOrMerge(pRight, pOr, pNew); | |
2816 docListDelete(pRight); | |
2817 docListDelete(pOr); | |
2818 pRight = pNew; | |
2819 } | |
2820 if( pLeft==0 ){ | |
2821 pLeft = pRight; | |
2822 }else{ | |
2823 pNew = docListNew(DL_DOCIDS); | |
2824 docListAndMerge(pLeft, pRight, pNew); | |
2825 docListDelete(pRight); | |
2826 docListDelete(pLeft); | |
2827 pLeft = pNew; | |
2828 } | |
2829 } | |
2830 | |
2831 if( nNot && pLeft==0 ){ | |
2832 /* We do not yet know how to handle a query of only NOT terms */ | |
2833 return SQLITE_ERROR; | |
2834 } | |
2835 | |
2836 /* Do the EXCEPT terms */ | |
2837 for(i=0; i<pQuery->nTerms; i += aTerm[i].nPhrase + 1){ | |
2838 if( !aTerm[i].isNot ) continue; | |
2839 rc = docListOfTerm(v, aTerm[i].iColumn, &aTerm[i], &pRight); | |
2840 if( rc ){ | |
2841 queryClear(pQuery); | |
2842 docListDelete(pLeft); | |
2843 return rc; | |
2844 } | |
2845 pNew = docListNew(DL_DOCIDS); | |
2846 docListExceptMerge(pLeft, pRight, pNew); | |
2847 docListDelete(pRight); | |
2848 docListDelete(pLeft); | |
2849 pLeft = pNew; | |
2850 } | |
2851 | |
2852 *pResult = pLeft; | |
2853 return rc; | |
2854 } | |
2855 | |
2856 /* | |
2857 ** This is the xFilter interface for the virtual table. See | |
2858 ** the virtual table xFilter method documentation for additional | |
2859 ** information. | |
2860 ** | |
2861 ** If idxNum==QUERY_GENERIC then do a full table scan against | |
2862 ** the %_content table. | |
2863 ** | |
2864 ** If idxNum==QUERY_ROWID then do a rowid lookup for a single entry | |
2865 ** in the %_content table. | |
2866 ** | |
2867 ** If idxNum>=QUERY_FULLTEXT then use the full text index. The | |
2868 ** column on the left-hand side of the MATCH operator is column | |
2869 ** number idxNum-QUERY_FULLTEXT, 0 indexed. argv[0] is the right-hand | |
2870 ** side of the MATCH operator. | |
2871 */ | |
2872 /* TODO(shess) Upgrade the cursor initialization and destruction to | |
2873 ** account for fulltextFilter() being called multiple times on the | |
2874 ** same cursor. The current solution is very fragile. Apply fix to | |
2875 ** fts2 as appropriate. | |
2876 */ | |
2877 static int fulltextFilter( | |
2878 sqlite3_vtab_cursor *pCursor, /* The cursor used for this query */ | |
2879 int idxNum, const char *idxStr, /* Which indexing scheme to use */ | |
2880 int argc, sqlite3_value **argv /* Arguments for the indexing scheme */ | |
2881 ){ | |
2882 fulltext_cursor *c = (fulltext_cursor *) pCursor; | |
2883 fulltext_vtab *v = cursor_vtab(c); | |
2884 int rc; | |
2885 char *zSql; | |
2886 | |
2887 TRACE(("FTS1 Filter %p\n",pCursor)); | |
2888 | |
2889 zSql = sqlite3_mprintf("select rowid, * from %%_content %s", | |
2890 idxNum==QUERY_GENERIC ? "" : "where rowid=?"); | |
2891 sqlite3_finalize(c->pStmt); | |
2892 rc = sql_prepare(v->db, v->zDb, v->zName, &c->pStmt, zSql); | |
2893 sqlite3_free(zSql); | |
2894 if( rc!=SQLITE_OK ) return rc; | |
2895 | |
2896 c->iCursorType = idxNum; | |
2897 switch( idxNum ){ | |
2898 case QUERY_GENERIC: | |
2899 break; | |
2900 | |
2901 case QUERY_ROWID: | |
2902 rc = sqlite3_bind_int64(c->pStmt, 1, sqlite3_value_int64(argv[0])); | |
2903 if( rc!=SQLITE_OK ) return rc; | |
2904 break; | |
2905 | |
2906 default: /* full-text search */ | |
2907 { | |
2908 const char *zQuery = (const char *)sqlite3_value_text(argv[0]); | |
2909 DocList *pResult; | |
2910 assert( idxNum<=QUERY_FULLTEXT+v->nColumn); | |
2911 assert( argc==1 ); | |
2912 queryClear(&c->q); | |
2913 rc = fulltextQuery(v, idxNum-QUERY_FULLTEXT, zQuery, -1, &pResult, &c->q); | |
2914 if( rc!=SQLITE_OK ) return rc; | |
2915 if( c->result.pDoclist!=NULL ) docListDelete(c->result.pDoclist); | |
2916 readerInit(&c->result, pResult); | |
2917 break; | |
2918 } | |
2919 } | |
2920 | |
2921 return fulltextNext(pCursor); | |
2922 } | |
2923 | |
2924 /* This is the xEof method of the virtual table. The SQLite core | |
2925 ** calls this routine to find out if it has reached the end of | |
2926 ** a query's results set. | |
2927 */ | |
2928 static int fulltextEof(sqlite3_vtab_cursor *pCursor){ | |
2929 fulltext_cursor *c = (fulltext_cursor *) pCursor; | |
2930 return c->eof; | |
2931 } | |
2932 | |
2933 /* This is the xColumn method of the virtual table. The SQLite | |
2934 ** core calls this method during a query when it needs the value | |
2935 ** of a column from the virtual table. This method needs to use | |
2936 ** one of the sqlite3_result_*() routines to store the requested | |
2937 ** value back in the pContext. | |
2938 */ | |
2939 static int fulltextColumn(sqlite3_vtab_cursor *pCursor, | |
2940 sqlite3_context *pContext, int idxCol){ | |
2941 fulltext_cursor *c = (fulltext_cursor *) pCursor; | |
2942 fulltext_vtab *v = cursor_vtab(c); | |
2943 | |
2944 if( idxCol<v->nColumn ){ | |
2945 sqlite3_value *pVal = sqlite3_column_value(c->pStmt, idxCol+1); | |
2946 sqlite3_result_value(pContext, pVal); | |
2947 }else if( idxCol==v->nColumn ){ | |
2948 /* The extra column whose name is the same as the table. | |
2949 ** Return a blob which is a pointer to the cursor | |
2950 */ | |
2951 sqlite3_result_blob(pContext, &c, sizeof(c), SQLITE_TRANSIENT); | |
2952 } | |
2953 return SQLITE_OK; | |
2954 } | |
2955 | |
2956 /* This is the xRowid method. The SQLite core calls this routine to | |
2957 ** retrive the rowid for the current row of the result set. The | |
2958 ** rowid should be written to *pRowid. | |
2959 */ | |
2960 static int fulltextRowid(sqlite3_vtab_cursor *pCursor, sqlite_int64 *pRowid){ | |
2961 fulltext_cursor *c = (fulltext_cursor *) pCursor; | |
2962 | |
2963 *pRowid = sqlite3_column_int64(c->pStmt, 0); | |
2964 return SQLITE_OK; | |
2965 } | |
2966 | |
2967 /* Add all terms in [zText] to the given hash table. If [iColumn] > 0, | |
2968 * we also store positions and offsets in the hash table using the given | |
2969 * column number. */ | |
2970 static int buildTerms(fulltext_vtab *v, fts1Hash *terms, sqlite_int64 iDocid, | |
2971 const char *zText, int iColumn){ | |
2972 sqlite3_tokenizer *pTokenizer = v->pTokenizer; | |
2973 sqlite3_tokenizer_cursor *pCursor; | |
2974 const char *pToken; | |
2975 int nTokenBytes; | |
2976 int iStartOffset, iEndOffset, iPosition; | |
2977 int rc; | |
2978 | |
2979 rc = pTokenizer->pModule->xOpen(pTokenizer, zText, -1, &pCursor); | |
2980 if( rc!=SQLITE_OK ) return rc; | |
2981 | |
2982 pCursor->pTokenizer = pTokenizer; | |
2983 while( SQLITE_OK==pTokenizer->pModule->xNext(pCursor, | |
2984 &pToken, &nTokenBytes, | |
2985 &iStartOffset, &iEndOffset, | |
2986 &iPosition) ){ | |
2987 DocList *p; | |
2988 | |
2989 /* Positions can't be negative; we use -1 as a terminator internally. */ | |
2990 if( iPosition<0 ){ | |
2991 pTokenizer->pModule->xClose(pCursor); | |
2992 return SQLITE_ERROR; | |
2993 } | |
2994 | |
2995 p = fts1HashFind(terms, pToken, nTokenBytes); | |
2996 if( p==NULL ){ | |
2997 p = docListNew(DL_DEFAULT); | |
2998 docListAddDocid(p, iDocid); | |
2999 fts1HashInsert(terms, pToken, nTokenBytes, p); | |
3000 } | |
3001 if( iColumn>=0 ){ | |
3002 docListAddPosOffset(p, iColumn, iPosition, iStartOffset, iEndOffset); | |
3003 } | |
3004 } | |
3005 | |
3006 /* TODO(shess) Check return? Should this be able to cause errors at | |
3007 ** this point? Actually, same question about sqlite3_finalize(), | |
3008 ** though one could argue that failure there means that the data is | |
3009 ** not durable. *ponder* | |
3010 */ | |
3011 pTokenizer->pModule->xClose(pCursor); | |
3012 return rc; | |
3013 } | |
3014 | |
3015 /* Update the %_terms table to map the term [pTerm] to the given rowid. */ | |
3016 static int index_insert_term(fulltext_vtab *v, const char *pTerm, int nTerm, | |
3017 DocList *d){ | |
3018 sqlite_int64 iIndexRow; | |
3019 DocList doclist; | |
3020 int iSegment = 0, rc; | |
3021 | |
3022 rc = term_select(v, pTerm, nTerm, iSegment, &iIndexRow, &doclist); | |
3023 if( rc==SQLITE_DONE ){ | |
3024 docListInit(&doclist, DL_DEFAULT, 0, 0); | |
3025 docListUpdate(&doclist, d); | |
3026 /* TODO(shess) Consider length(doclist)>CHUNK_MAX? */ | |
3027 rc = term_insert(v, NULL, pTerm, nTerm, iSegment, &doclist); | |
3028 goto err; | |
3029 } | |
3030 if( rc!=SQLITE_ROW ) return SQLITE_ERROR; | |
3031 | |
3032 docListUpdate(&doclist, d); | |
3033 if( doclist.nData<=CHUNK_MAX ){ | |
3034 rc = term_update(v, iIndexRow, &doclist); | |
3035 goto err; | |
3036 } | |
3037 | |
3038 /* Doclist doesn't fit, delete what's there, and accumulate | |
3039 ** forward. | |
3040 */ | |
3041 rc = term_delete(v, iIndexRow); | |
3042 if( rc!=SQLITE_OK ) goto err; | |
3043 | |
3044 /* Try to insert the doclist into a higher segment bucket. On | |
3045 ** failure, accumulate existing doclist with the doclist from that | |
3046 ** bucket, and put results in the next bucket. | |
3047 */ | |
3048 iSegment++; | |
3049 while( (rc=term_insert(v, &iIndexRow, pTerm, nTerm, iSegment, | |
3050 &doclist))!=SQLITE_OK ){ | |
3051 sqlite_int64 iSegmentRow; | |
3052 DocList old; | |
3053 int rc2; | |
3054 | |
3055 /* Retain old error in case the term_insert() error was really an | |
3056 ** error rather than a bounced insert. | |
3057 */ | |
3058 rc2 = term_select(v, pTerm, nTerm, iSegment, &iSegmentRow, &old); | |
3059 if( rc2!=SQLITE_ROW ) goto err; | |
3060 | |
3061 rc = term_delete(v, iSegmentRow); | |
3062 if( rc!=SQLITE_OK ) goto err; | |
3063 | |
3064 /* Reusing lowest-number deleted row keeps the index smaller. */ | |
3065 if( iSegmentRow<iIndexRow ) iIndexRow = iSegmentRow; | |
3066 | |
3067 /* doclist contains the newer data, so accumulate it over old. | |
3068 ** Then steal accumulated data for doclist. | |
3069 */ | |
3070 docListAccumulate(&old, &doclist); | |
3071 docListDestroy(&doclist); | |
3072 doclist = old; | |
3073 | |
3074 iSegment++; | |
3075 } | |
3076 | |
3077 err: | |
3078 docListDestroy(&doclist); | |
3079 return rc; | |
3080 } | |
3081 | |
3082 /* Add doclists for all terms in [pValues] to the hash table [terms]. */ | |
3083 static int insertTerms(fulltext_vtab *v, fts1Hash *terms, sqlite_int64 iRowid, | |
3084 sqlite3_value **pValues){ | |
3085 int i; | |
3086 for(i = 0; i < v->nColumn ; ++i){ | |
3087 char *zText = (char*)sqlite3_value_text(pValues[i]); | |
3088 int rc = buildTerms(v, terms, iRowid, zText, i); | |
3089 if( rc!=SQLITE_OK ) return rc; | |
3090 } | |
3091 return SQLITE_OK; | |
3092 } | |
3093 | |
3094 /* Add empty doclists for all terms in the given row's content to the hash | |
3095 * table [pTerms]. */ | |
3096 static int deleteTerms(fulltext_vtab *v, fts1Hash *pTerms, sqlite_int64 iRowid){ | |
3097 const char **pValues; | |
3098 int i; | |
3099 | |
3100 int rc = content_select(v, iRowid, &pValues); | |
3101 if( rc!=SQLITE_OK ) return rc; | |
3102 | |
3103 for(i = 0 ; i < v->nColumn; ++i) { | |
3104 rc = buildTerms(v, pTerms, iRowid, pValues[i], -1); | |
3105 if( rc!=SQLITE_OK ) break; | |
3106 } | |
3107 | |
3108 freeStringArray(v->nColumn, pValues); | |
3109 return SQLITE_OK; | |
3110 } | |
3111 | |
3112 /* Insert a row into the %_content table; set *piRowid to be the ID of the | |
3113 * new row. Fill [pTerms] with new doclists for the %_term table. */ | |
3114 static int index_insert(fulltext_vtab *v, sqlite3_value *pRequestRowid, | |
3115 sqlite3_value **pValues, | |
3116 sqlite_int64 *piRowid, fts1Hash *pTerms){ | |
3117 int rc; | |
3118 | |
3119 rc = content_insert(v, pRequestRowid, pValues); /* execute an SQL INSERT */ | |
3120 if( rc!=SQLITE_OK ) return rc; | |
3121 *piRowid = sqlite3_last_insert_rowid(v->db); | |
3122 return insertTerms(v, pTerms, *piRowid, pValues); | |
3123 } | |
3124 | |
3125 /* Delete a row from the %_content table; fill [pTerms] with empty doclists | |
3126 * to be written to the %_term table. */ | |
3127 static int index_delete(fulltext_vtab *v, sqlite_int64 iRow, fts1Hash *pTerms){ | |
3128 int rc = deleteTerms(v, pTerms, iRow); | |
3129 if( rc!=SQLITE_OK ) return rc; | |
3130 return content_delete(v, iRow); /* execute an SQL DELETE */ | |
3131 } | |
3132 | |
3133 /* Update a row in the %_content table; fill [pTerms] with new doclists for the | |
3134 * %_term table. */ | |
3135 static int index_update(fulltext_vtab *v, sqlite_int64 iRow, | |
3136 sqlite3_value **pValues, fts1Hash *pTerms){ | |
3137 /* Generate an empty doclist for each term that previously appeared in this | |
3138 * row. */ | |
3139 int rc = deleteTerms(v, pTerms, iRow); | |
3140 if( rc!=SQLITE_OK ) return rc; | |
3141 | |
3142 rc = content_update(v, pValues, iRow); /* execute an SQL UPDATE */ | |
3143 if( rc!=SQLITE_OK ) return rc; | |
3144 | |
3145 /* Now add positions for terms which appear in the updated row. */ | |
3146 return insertTerms(v, pTerms, iRow, pValues); | |
3147 } | |
3148 | |
3149 /* This function implements the xUpdate callback; it is the top-level entry | |
3150 * point for inserting, deleting or updating a row in a full-text table. */ | |
3151 static int fulltextUpdate(sqlite3_vtab *pVtab, int nArg, sqlite3_value **ppArg, | |
3152 sqlite_int64 *pRowid){ | |
3153 fulltext_vtab *v = (fulltext_vtab *) pVtab; | |
3154 fts1Hash terms; /* maps term string -> PosList */ | |
3155 int rc; | |
3156 fts1HashElem *e; | |
3157 | |
3158 TRACE(("FTS1 Update %p\n", pVtab)); | |
3159 | |
3160 fts1HashInit(&terms, FTS1_HASH_STRING, 1); | |
3161 | |
3162 if( nArg<2 ){ | |
3163 rc = index_delete(v, sqlite3_value_int64(ppArg[0]), &terms); | |
3164 } else if( sqlite3_value_type(ppArg[0]) != SQLITE_NULL ){ | |
3165 /* An update: | |
3166 * ppArg[0] = old rowid | |
3167 * ppArg[1] = new rowid | |
3168 * ppArg[2..2+v->nColumn-1] = values | |
3169 * ppArg[2+v->nColumn] = value for magic column (we ignore this) | |
3170 */ | |
3171 sqlite_int64 rowid = sqlite3_value_int64(ppArg[0]); | |
3172 if( sqlite3_value_type(ppArg[1]) != SQLITE_INTEGER || | |
3173 sqlite3_value_int64(ppArg[1]) != rowid ){ | |
3174 rc = SQLITE_ERROR; /* we don't allow changing the rowid */ | |
3175 } else { | |
3176 assert( nArg==2+v->nColumn+1); | |
3177 rc = index_update(v, rowid, &ppArg[2], &terms); | |
3178 } | |
3179 } else { | |
3180 /* An insert: | |
3181 * ppArg[1] = requested rowid | |
3182 * ppArg[2..2+v->nColumn-1] = values | |
3183 * ppArg[2+v->nColumn] = value for magic column (we ignore this) | |
3184 */ | |
3185 assert( nArg==2+v->nColumn+1); | |
3186 rc = index_insert(v, ppArg[1], &ppArg[2], pRowid, &terms); | |
3187 } | |
3188 | |
3189 if( rc==SQLITE_OK ){ | |
3190 /* Write updated doclists to disk. */ | |
3191 for(e=fts1HashFirst(&terms); e; e=fts1HashNext(e)){ | |
3192 DocList *p = fts1HashData(e); | |
3193 rc = index_insert_term(v, fts1HashKey(e), fts1HashKeysize(e), p); | |
3194 if( rc!=SQLITE_OK ) break; | |
3195 } | |
3196 } | |
3197 | |
3198 /* clean up */ | |
3199 for(e=fts1HashFirst(&terms); e; e=fts1HashNext(e)){ | |
3200 DocList *p = fts1HashData(e); | |
3201 docListDelete(p); | |
3202 } | |
3203 fts1HashClear(&terms); | |
3204 | |
3205 return rc; | |
3206 } | |
3207 | |
3208 /* | |
3209 ** Implementation of the snippet() function for FTS1 | |
3210 */ | |
3211 static void snippetFunc( | |
3212 sqlite3_context *pContext, | |
3213 int argc, | |
3214 sqlite3_value **argv | |
3215 ){ | |
3216 fulltext_cursor *pCursor; | |
3217 if( argc<1 ) return; | |
3218 if( sqlite3_value_type(argv[0])!=SQLITE_BLOB || | |
3219 sqlite3_value_bytes(argv[0])!=sizeof(pCursor) ){ | |
3220 sqlite3_result_error(pContext, "illegal first argument to html_snippet",-1); | |
3221 }else{ | |
3222 const char *zStart = "<b>"; | |
3223 const char *zEnd = "</b>"; | |
3224 const char *zEllipsis = "<b>...</b>"; | |
3225 memcpy(&pCursor, sqlite3_value_blob(argv[0]), sizeof(pCursor)); | |
3226 if( argc>=2 ){ | |
3227 zStart = (const char*)sqlite3_value_text(argv[1]); | |
3228 if( argc>=3 ){ | |
3229 zEnd = (const char*)sqlite3_value_text(argv[2]); | |
3230 if( argc>=4 ){ | |
3231 zEllipsis = (const char*)sqlite3_value_text(argv[3]); | |
3232 } | |
3233 } | |
3234 } | |
3235 snippetAllOffsets(pCursor); | |
3236 snippetText(pCursor, zStart, zEnd, zEllipsis); | |
3237 sqlite3_result_text(pContext, pCursor->snippet.zSnippet, | |
3238 pCursor->snippet.nSnippet, SQLITE_STATIC); | |
3239 } | |
3240 } | |
3241 | |
3242 /* | |
3243 ** Implementation of the offsets() function for FTS1 | |
3244 */ | |
3245 static void snippetOffsetsFunc( | |
3246 sqlite3_context *pContext, | |
3247 int argc, | |
3248 sqlite3_value **argv | |
3249 ){ | |
3250 fulltext_cursor *pCursor; | |
3251 if( argc<1 ) return; | |
3252 if( sqlite3_value_type(argv[0])!=SQLITE_BLOB || | |
3253 sqlite3_value_bytes(argv[0])!=sizeof(pCursor) ){ | |
3254 sqlite3_result_error(pContext, "illegal first argument to offsets",-1); | |
3255 }else{ | |
3256 memcpy(&pCursor, sqlite3_value_blob(argv[0]), sizeof(pCursor)); | |
3257 snippetAllOffsets(pCursor); | |
3258 snippetOffsetText(&pCursor->snippet); | |
3259 sqlite3_result_text(pContext, | |
3260 pCursor->snippet.zOffset, pCursor->snippet.nOffset, | |
3261 SQLITE_STATIC); | |
3262 } | |
3263 } | |
3264 | |
3265 /* | |
3266 ** This routine implements the xFindFunction method for the FTS1 | |
3267 ** virtual table. | |
3268 */ | |
3269 static int fulltextFindFunction( | |
3270 sqlite3_vtab *pVtab, | |
3271 int nArg, | |
3272 const char *zName, | |
3273 void (**pxFunc)(sqlite3_context*,int,sqlite3_value**), | |
3274 void **ppArg | |
3275 ){ | |
3276 if( strcmp(zName,"snippet")==0 ){ | |
3277 *pxFunc = snippetFunc; | |
3278 return 1; | |
3279 }else if( strcmp(zName,"offsets")==0 ){ | |
3280 *pxFunc = snippetOffsetsFunc; | |
3281 return 1; | |
3282 } | |
3283 return 0; | |
3284 } | |
3285 | |
3286 /* | |
3287 ** Rename an fts1 table. | |
3288 */ | |
3289 static int fulltextRename( | |
3290 sqlite3_vtab *pVtab, | |
3291 const char *zName | |
3292 ){ | |
3293 fulltext_vtab *p = (fulltext_vtab *)pVtab; | |
3294 int rc = SQLITE_NOMEM; | |
3295 char *zSql = sqlite3_mprintf( | |
3296 "ALTER TABLE %Q.'%q_content' RENAME TO '%q_content';" | |
3297 "ALTER TABLE %Q.'%q_term' RENAME TO '%q_term';" | |
3298 , p->zDb, p->zName, zName | |
3299 , p->zDb, p->zName, zName | |
3300 ); | |
3301 if( zSql ){ | |
3302 rc = sqlite3_exec(p->db, zSql, 0, 0, 0); | |
3303 sqlite3_free(zSql); | |
3304 } | |
3305 return rc; | |
3306 } | |
3307 | |
3308 static const sqlite3_module fulltextModule = { | |
3309 /* iVersion */ 0, | |
3310 /* xCreate */ fulltextCreate, | |
3311 /* xConnect */ fulltextConnect, | |
3312 /* xBestIndex */ fulltextBestIndex, | |
3313 /* xDisconnect */ fulltextDisconnect, | |
3314 /* xDestroy */ fulltextDestroy, | |
3315 /* xOpen */ fulltextOpen, | |
3316 /* xClose */ fulltextClose, | |
3317 /* xFilter */ fulltextFilter, | |
3318 /* xNext */ fulltextNext, | |
3319 /* xEof */ fulltextEof, | |
3320 /* xColumn */ fulltextColumn, | |
3321 /* xRowid */ fulltextRowid, | |
3322 /* xUpdate */ fulltextUpdate, | |
3323 /* xBegin */ 0, | |
3324 /* xSync */ 0, | |
3325 /* xCommit */ 0, | |
3326 /* xRollback */ 0, | |
3327 /* xFindFunction */ fulltextFindFunction, | |
3328 /* xRename */ fulltextRename, | |
3329 }; | |
3330 | |
3331 int sqlite3Fts1Init(sqlite3 *db){ | |
3332 sqlite3_overload_function(db, "snippet", -1); | |
3333 sqlite3_overload_function(db, "offsets", -1); | |
3334 return sqlite3_create_module(db, "fts1", &fulltextModule, 0); | |
3335 } | |
3336 | |
3337 #if !SQLITE_CORE | |
3338 #ifdef _WIN32 | |
3339 __declspec(dllexport) | |
3340 #endif | |
3341 int sqlite3_fts1_init(sqlite3 *db, char **pzErrMsg, | |
3342 const sqlite3_api_routines *pApi){ | |
3343 SQLITE_EXTENSION_INIT2(pApi) | |
3344 return sqlite3Fts1Init(db); | |
3345 } | |
3346 #endif | |
3347 | |
3348 #endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS1) */ | |
OLD | NEW |