| OLD | NEW |
| (Empty) |
| 1 /* | |
| 2 ** 2005 December 14 | |
| 3 ** | |
| 4 ** The author disclaims copyright to this source code. In place of | |
| 5 ** a legal notice, here is a blessing: | |
| 6 ** | |
| 7 ** May you do good and not evil. | |
| 8 ** May you find forgiveness for yourself and forgive others. | |
| 9 ** May you share freely, never taking more than you give. | |
| 10 ** | |
| 11 ************************************************************************* | |
| 12 ** | |
| 13 ** $Id: sqlite3async.c,v 1.7 2009/07/18 11:52:04 danielk1977 Exp $ | |
| 14 ** | |
| 15 ** This file contains the implementation of an asynchronous IO backend | |
| 16 ** for SQLite. | |
| 17 */ | |
| 18 | |
| 19 #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_ASYNCIO) | |
| 20 | |
| 21 #include "sqlite3async.h" | |
| 22 #include "sqlite3.h" | |
| 23 #include <stdarg.h> | |
| 24 #include <string.h> | |
| 25 #include <assert.h> | |
| 26 | |
| 27 /* Useful macros used in several places */ | |
| 28 #define MIN(x,y) ((x)<(y)?(x):(y)) | |
| 29 #define MAX(x,y) ((x)>(y)?(x):(y)) | |
| 30 | |
| 31 #ifndef SQLITE_AMALGAMATION | |
| 32 /* Macro to mark parameters as unused and silence compiler warnings. */ | |
| 33 #define UNUSED_PARAMETER(x) (void)(x) | |
| 34 #endif | |
| 35 | |
| 36 /* Forward references */ | |
| 37 typedef struct AsyncWrite AsyncWrite; | |
| 38 typedef struct AsyncFile AsyncFile; | |
| 39 typedef struct AsyncFileData AsyncFileData; | |
| 40 typedef struct AsyncFileLock AsyncFileLock; | |
| 41 typedef struct AsyncLock AsyncLock; | |
| 42 | |
| 43 /* Enable for debugging */ | |
| 44 #ifndef NDEBUG | |
| 45 #include <stdio.h> | |
| 46 static int sqlite3async_trace = 0; | |
| 47 # define ASYNC_TRACE(X) if( sqlite3async_trace ) asyncTrace X | |
| 48 static void asyncTrace(const char *zFormat, ...){ | |
| 49 char *z; | |
| 50 va_list ap; | |
| 51 va_start(ap, zFormat); | |
| 52 z = sqlite3_vmprintf(zFormat, ap); | |
| 53 va_end(ap); | |
| 54 fprintf(stderr, "[%d] %s", 0 /* (int)pthread_self() */, z); | |
| 55 sqlite3_free(z); | |
| 56 } | |
| 57 #else | |
| 58 # define ASYNC_TRACE(X) | |
| 59 #endif | |
| 60 | |
| 61 /* | |
| 62 ** THREAD SAFETY NOTES | |
| 63 ** | |
| 64 ** Basic rules: | |
| 65 ** | |
| 66 ** * Both read and write access to the global write-op queue must be | |
| 67 ** protected by the async.queueMutex. As are the async.ioError and | |
| 68 ** async.nFile variables. | |
| 69 ** | |
| 70 ** * The async.pLock list and all AsyncLock and AsyncFileLock | |
| 71 ** structures must be protected by the async.lockMutex mutex. | |
| 72 ** | |
| 73 ** * The file handles from the underlying system are not assumed to | |
| 74 ** be thread safe. | |
| 75 ** | |
| 76 ** * See the last two paragraphs under "The Writer Thread" for | |
| 77 ** an assumption to do with file-handle synchronization by the Os. | |
| 78 ** | |
| 79 ** Deadlock prevention: | |
| 80 ** | |
| 81 ** There are three mutex used by the system: the "writer" mutex, | |
| 82 ** the "queue" mutex and the "lock" mutex. Rules are: | |
| 83 ** | |
| 84 ** * It is illegal to block on the writer mutex when any other mutex | |
| 85 ** are held, and | |
| 86 ** | |
| 87 ** * It is illegal to block on the queue mutex when the lock mutex | |
| 88 ** is held. | |
| 89 ** | |
| 90 ** i.e. mutex's must be grabbed in the order "writer", "queue", "lock". | |
| 91 ** | |
| 92 ** File system operations (invoked by SQLite thread): | |
| 93 ** | |
| 94 ** xOpen | |
| 95 ** xDelete | |
| 96 ** xFileExists | |
| 97 ** | |
| 98 ** File handle operations (invoked by SQLite thread): | |
| 99 ** | |
| 100 ** asyncWrite, asyncClose, asyncTruncate, asyncSync | |
| 101 ** | |
| 102 ** The operations above add an entry to the global write-op list. They | |
| 103 ** prepare the entry, acquire the async.queueMutex momentarily while | |
| 104 ** list pointers are manipulated to insert the new entry, then release | |
| 105 ** the mutex and signal the writer thread to wake up in case it happens | |
| 106 ** to be asleep. | |
| 107 ** | |
| 108 ** | |
| 109 ** asyncRead, asyncFileSize. | |
| 110 ** | |
| 111 ** Read operations. Both of these read from both the underlying file | |
| 112 ** first then adjust their result based on pending writes in the | |
| 113 ** write-op queue. So async.queueMutex is held for the duration | |
| 114 ** of these operations to prevent other threads from changing the | |
| 115 ** queue in mid operation. | |
| 116 ** | |
| 117 ** | |
| 118 ** asyncLock, asyncUnlock, asyncCheckReservedLock | |
| 119 ** | |
| 120 ** These primitives implement in-process locking using a hash table | |
| 121 ** on the file name. Files are locked correctly for connections coming | |
| 122 ** from the same process. But other processes cannot see these locks | |
| 123 ** and will therefore not honor them. | |
| 124 ** | |
| 125 ** | |
| 126 ** The writer thread: | |
| 127 ** | |
| 128 ** The async.writerMutex is used to make sure only there is only | |
| 129 ** a single writer thread running at a time. | |
| 130 ** | |
| 131 ** Inside the writer thread is a loop that works like this: | |
| 132 ** | |
| 133 ** WHILE (write-op list is not empty) | |
| 134 ** Do IO operation at head of write-op list | |
| 135 ** Remove entry from head of write-op list | |
| 136 ** END WHILE | |
| 137 ** | |
| 138 ** The async.queueMutex is always held during the <write-op list is | |
| 139 ** not empty> test, and when the entry is removed from the head | |
| 140 ** of the write-op list. Sometimes it is held for the interim | |
| 141 ** period (while the IO is performed), and sometimes it is | |
| 142 ** relinquished. It is relinquished if (a) the IO op is an | |
| 143 ** ASYNC_CLOSE or (b) when the file handle was opened, two of | |
| 144 ** the underlying systems handles were opened on the same | |
| 145 ** file-system entry. | |
| 146 ** | |
| 147 ** If condition (b) above is true, then one file-handle | |
| 148 ** (AsyncFile.pBaseRead) is used exclusively by sqlite threads to read the | |
| 149 ** file, the other (AsyncFile.pBaseWrite) by sqlite3_async_flush() | |
| 150 ** threads to perform write() operations. This means that read | |
| 151 ** operations are not blocked by asynchronous writes (although | |
| 152 ** asynchronous writes may still be blocked by reads). | |
| 153 ** | |
| 154 ** This assumes that the OS keeps two handles open on the same file | |
| 155 ** properly in sync. That is, any read operation that starts after a | |
| 156 ** write operation on the same file system entry has completed returns | |
| 157 ** data consistent with the write. We also assume that if one thread | |
| 158 ** reads a file while another is writing it all bytes other than the | |
| 159 ** ones actually being written contain valid data. | |
| 160 ** | |
| 161 ** If the above assumptions are not true, set the preprocessor symbol | |
| 162 ** SQLITE_ASYNC_TWO_FILEHANDLES to 0. | |
| 163 */ | |
| 164 | |
| 165 | |
| 166 #ifndef NDEBUG | |
| 167 # define TESTONLY( X ) X | |
| 168 #else | |
| 169 # define TESTONLY( X ) | |
| 170 #endif | |
| 171 | |
| 172 /* | |
| 173 ** PORTING FUNCTIONS | |
| 174 ** | |
| 175 ** There are two definitions of the following functions. One for pthreads | |
| 176 ** compatible systems and one for Win32. These functions isolate the OS | |
| 177 ** specific code required by each platform. | |
| 178 ** | |
| 179 ** The system uses three mutexes and a single condition variable. To | |
| 180 ** block on a mutex, async_mutex_enter() is called. The parameter passed | |
| 181 ** to async_mutex_enter(), which must be one of ASYNC_MUTEX_LOCK, | |
| 182 ** ASYNC_MUTEX_QUEUE or ASYNC_MUTEX_WRITER, identifies which of the three | |
| 183 ** mutexes to lock. Similarly, to unlock a mutex, async_mutex_leave() is | |
| 184 ** called with a parameter identifying the mutex being unlocked. Mutexes | |
| 185 ** are not recursive - it is an error to call async_mutex_enter() to | |
| 186 ** lock a mutex that is already locked, or to call async_mutex_leave() | |
| 187 ** to unlock a mutex that is not currently locked. | |
| 188 ** | |
| 189 ** The async_cond_wait() and async_cond_signal() functions are modelled | |
| 190 ** on the pthreads functions with similar names. The first parameter to | |
| 191 ** both functions is always ASYNC_COND_QUEUE. When async_cond_wait() | |
| 192 ** is called the mutex identified by the second parameter must be held. | |
| 193 ** The mutex is unlocked, and the calling thread simultaneously begins | |
| 194 ** waiting for the condition variable to be signalled by another thread. | |
| 195 ** After another thread signals the condition variable, the calling | |
| 196 ** thread stops waiting, locks mutex eMutex and returns. The | |
| 197 ** async_cond_signal() function is used to signal the condition variable. | |
| 198 ** It is assumed that the mutex used by the thread calling async_cond_wait() | |
| 199 ** is held by the caller of async_cond_signal() (otherwise there would be | |
| 200 ** a race condition). | |
| 201 ** | |
| 202 ** It is guaranteed that no other thread will call async_cond_wait() when | |
| 203 ** there is already a thread waiting on the condition variable. | |
| 204 ** | |
| 205 ** The async_sched_yield() function is called to suggest to the operating | |
| 206 ** system that it would be a good time to shift the current thread off the | |
| 207 ** CPU. The system will still work if this function is not implemented | |
| 208 ** (it is not currently implemented for win32), but it might be marginally | |
| 209 ** more efficient if it is. | |
| 210 */ | |
| 211 static void async_mutex_enter(int eMutex); | |
| 212 static void async_mutex_leave(int eMutex); | |
| 213 static void async_cond_wait(int eCond, int eMutex); | |
| 214 static void async_cond_signal(int eCond); | |
| 215 static void async_sched_yield(void); | |
| 216 | |
| 217 /* | |
| 218 ** There are also two definitions of the following. async_os_initialize() | |
| 219 ** is called when the asynchronous VFS is first installed, and os_shutdown() | |
| 220 ** is called when it is uninstalled (from within sqlite3async_shutdown()). | |
| 221 ** | |
| 222 ** For pthreads builds, both of these functions are no-ops. For win32, | |
| 223 ** they provide an opportunity to initialize and finalize the required | |
| 224 ** mutex and condition variables. | |
| 225 ** | |
| 226 ** If async_os_initialize() returns other than zero, then the initialization | |
| 227 ** fails and SQLITE_ERROR is returned to the user. | |
| 228 */ | |
| 229 static int async_os_initialize(void); | |
| 230 static void async_os_shutdown(void); | |
| 231 | |
| 232 /* Values for use as the 'eMutex' argument of the above functions. The | |
| 233 ** integer values assigned to these constants are important for assert() | |
| 234 ** statements that verify that mutexes are locked in the correct order. | |
| 235 ** Specifically, it is unsafe to try to lock mutex N while holding a lock | |
| 236 ** on mutex M if (M<=N). | |
| 237 */ | |
| 238 #define ASYNC_MUTEX_LOCK 0 | |
| 239 #define ASYNC_MUTEX_QUEUE 1 | |
| 240 #define ASYNC_MUTEX_WRITER 2 | |
| 241 | |
| 242 /* Values for use as the 'eCond' argument of the above functions. */ | |
| 243 #define ASYNC_COND_QUEUE 0 | |
| 244 | |
| 245 /************************************************************************* | |
| 246 ** Start of OS specific code. | |
| 247 */ | |
| 248 #if SQLITE_OS_WIN || defined(_WIN32) || defined(WIN32) || defined(__CYGWIN__) ||
defined(__MINGW32__) || defined(__BORLANDC__) | |
| 249 | |
| 250 #include <windows.h> | |
| 251 | |
| 252 /* The following block contains the win32 specific code. */ | |
| 253 | |
| 254 #define mutex_held(X) (GetCurrentThreadId()==primitives.aHolder[X]) | |
| 255 | |
| 256 static struct AsyncPrimitives { | |
| 257 int isInit; | |
| 258 DWORD aHolder[3]; | |
| 259 CRITICAL_SECTION aMutex[3]; | |
| 260 HANDLE aCond[1]; | |
| 261 } primitives = { 0 }; | |
| 262 | |
| 263 static int async_os_initialize(void){ | |
| 264 if( !primitives.isInit ){ | |
| 265 primitives.aCond[0] = CreateEvent(NULL, TRUE, FALSE, 0); | |
| 266 if( primitives.aCond[0]==NULL ){ | |
| 267 return 1; | |
| 268 } | |
| 269 InitializeCriticalSection(&primitives.aMutex[0]); | |
| 270 InitializeCriticalSection(&primitives.aMutex[1]); | |
| 271 InitializeCriticalSection(&primitives.aMutex[2]); | |
| 272 primitives.isInit = 1; | |
| 273 } | |
| 274 return 0; | |
| 275 } | |
| 276 static void async_os_shutdown(void){ | |
| 277 if( primitives.isInit ){ | |
| 278 DeleteCriticalSection(&primitives.aMutex[0]); | |
| 279 DeleteCriticalSection(&primitives.aMutex[1]); | |
| 280 DeleteCriticalSection(&primitives.aMutex[2]); | |
| 281 CloseHandle(primitives.aCond[0]); | |
| 282 primitives.isInit = 0; | |
| 283 } | |
| 284 } | |
| 285 | |
| 286 /* The following block contains the Win32 specific code. */ | |
| 287 static void async_mutex_enter(int eMutex){ | |
| 288 assert( eMutex==0 || eMutex==1 || eMutex==2 ); | |
| 289 assert( eMutex!=2 || (!mutex_held(0) && !mutex_held(1) && !mutex_held(2)) ); | |
| 290 assert( eMutex!=1 || (!mutex_held(0) && !mutex_held(1)) ); | |
| 291 assert( eMutex!=0 || (!mutex_held(0)) ); | |
| 292 EnterCriticalSection(&primitives.aMutex[eMutex]); | |
| 293 TESTONLY( primitives.aHolder[eMutex] = GetCurrentThreadId(); ) | |
| 294 } | |
| 295 static void async_mutex_leave(int eMutex){ | |
| 296 assert( eMutex==0 || eMutex==1 || eMutex==2 ); | |
| 297 assert( mutex_held(eMutex) ); | |
| 298 TESTONLY( primitives.aHolder[eMutex] = 0; ) | |
| 299 LeaveCriticalSection(&primitives.aMutex[eMutex]); | |
| 300 } | |
| 301 static void async_cond_wait(int eCond, int eMutex){ | |
| 302 ResetEvent(primitives.aCond[eCond]); | |
| 303 async_mutex_leave(eMutex); | |
| 304 WaitForSingleObject(primitives.aCond[eCond], INFINITE); | |
| 305 async_mutex_enter(eMutex); | |
| 306 } | |
| 307 static void async_cond_signal(int eCond){ | |
| 308 assert( mutex_held(ASYNC_MUTEX_QUEUE) ); | |
| 309 SetEvent(primitives.aCond[eCond]); | |
| 310 } | |
| 311 static void async_sched_yield(void){ | |
| 312 Sleep(0); | |
| 313 } | |
| 314 #else | |
| 315 | |
| 316 /* The following block contains the pthreads specific code. */ | |
| 317 #include <pthread.h> | |
| 318 #include <sched.h> | |
| 319 | |
| 320 #define mutex_held(X) pthread_equal(primitives.aHolder[X], pthread_self()) | |
| 321 | |
| 322 static int async_os_initialize(void) {return 0;} | |
| 323 static void async_os_shutdown(void) {} | |
| 324 | |
| 325 static struct AsyncPrimitives { | |
| 326 pthread_mutex_t aMutex[3]; | |
| 327 pthread_cond_t aCond[1]; | |
| 328 pthread_t aHolder[3]; | |
| 329 } primitives = { | |
| 330 { PTHREAD_MUTEX_INITIALIZER, | |
| 331 PTHREAD_MUTEX_INITIALIZER, | |
| 332 PTHREAD_MUTEX_INITIALIZER | |
| 333 } , { | |
| 334 PTHREAD_COND_INITIALIZER | |
| 335 } , { 0, 0, 0 } | |
| 336 }; | |
| 337 | |
| 338 static void async_mutex_enter(int eMutex){ | |
| 339 assert( eMutex==0 || eMutex==1 || eMutex==2 ); | |
| 340 assert( eMutex!=2 || (!mutex_held(0) && !mutex_held(1) && !mutex_held(2)) ); | |
| 341 assert( eMutex!=1 || (!mutex_held(0) && !mutex_held(1)) ); | |
| 342 assert( eMutex!=0 || (!mutex_held(0)) ); | |
| 343 pthread_mutex_lock(&primitives.aMutex[eMutex]); | |
| 344 TESTONLY( primitives.aHolder[eMutex] = pthread_self(); ) | |
| 345 } | |
| 346 static void async_mutex_leave(int eMutex){ | |
| 347 assert( eMutex==0 || eMutex==1 || eMutex==2 ); | |
| 348 assert( mutex_held(eMutex) ); | |
| 349 TESTONLY( primitives.aHolder[eMutex] = 0; ) | |
| 350 pthread_mutex_unlock(&primitives.aMutex[eMutex]); | |
| 351 } | |
| 352 static void async_cond_wait(int eCond, int eMutex){ | |
| 353 assert( eMutex==0 || eMutex==1 || eMutex==2 ); | |
| 354 assert( mutex_held(eMutex) ); | |
| 355 TESTONLY( primitives.aHolder[eMutex] = 0; ) | |
| 356 pthread_cond_wait(&primitives.aCond[eCond], &primitives.aMutex[eMutex]); | |
| 357 TESTONLY( primitives.aHolder[eMutex] = pthread_self(); ) | |
| 358 } | |
| 359 static void async_cond_signal(int eCond){ | |
| 360 assert( mutex_held(ASYNC_MUTEX_QUEUE) ); | |
| 361 pthread_cond_signal(&primitives.aCond[eCond]); | |
| 362 } | |
| 363 static void async_sched_yield(void){ | |
| 364 sched_yield(); | |
| 365 } | |
| 366 #endif | |
| 367 /* | |
| 368 ** End of OS specific code. | |
| 369 *************************************************************************/ | |
| 370 | |
| 371 #define assert_mutex_is_held(X) assert( mutex_held(X) ) | |
| 372 | |
| 373 | |
| 374 #ifndef SQLITE_ASYNC_TWO_FILEHANDLES | |
| 375 /* #define SQLITE_ASYNC_TWO_FILEHANDLES 0 */ | |
| 376 #define SQLITE_ASYNC_TWO_FILEHANDLES 1 | |
| 377 #endif | |
| 378 | |
| 379 /* | |
| 380 ** State information is held in the static variable "async" defined | |
| 381 ** as the following structure. | |
| 382 ** | |
| 383 ** Both async.ioError and async.nFile are protected by async.queueMutex. | |
| 384 */ | |
| 385 static struct TestAsyncStaticData { | |
| 386 AsyncWrite *pQueueFirst; /* Next write operation to be processed */ | |
| 387 AsyncWrite *pQueueLast; /* Last write operation on the list */ | |
| 388 AsyncLock *pLock; /* Linked list of all AsyncLock structures */ | |
| 389 volatile int ioDelay; /* Extra delay between write operations */ | |
| 390 volatile int eHalt; /* One of the SQLITEASYNC_HALT_XXX values */ | |
| 391 volatile int bLockFiles; /* Current value of "lockfiles" parameter */ | |
| 392 int ioError; /* True if an IO error has occurred */ | |
| 393 int nFile; /* Number of open files (from sqlite pov) */ | |
| 394 } async = { 0,0,0,0,0,1,0,0 }; | |
| 395 | |
| 396 /* Possible values of AsyncWrite.op */ | |
| 397 #define ASYNC_NOOP 0 | |
| 398 #define ASYNC_WRITE 1 | |
| 399 #define ASYNC_SYNC 2 | |
| 400 #define ASYNC_TRUNCATE 3 | |
| 401 #define ASYNC_CLOSE 4 | |
| 402 #define ASYNC_DELETE 5 | |
| 403 #define ASYNC_OPENEXCLUSIVE 6 | |
| 404 #define ASYNC_UNLOCK 7 | |
| 405 | |
| 406 /* Names of opcodes. Used for debugging only. | |
| 407 ** Make sure these stay in sync with the macros above! | |
| 408 */ | |
| 409 static const char *azOpcodeName[] = { | |
| 410 "NOOP", "WRITE", "SYNC", "TRUNCATE", "CLOSE", "DELETE", "OPENEX", "UNLOCK" | |
| 411 }; | |
| 412 | |
| 413 /* | |
| 414 ** Entries on the write-op queue are instances of the AsyncWrite | |
| 415 ** structure, defined here. | |
| 416 ** | |
| 417 ** The interpretation of the iOffset and nByte variables varies depending | |
| 418 ** on the value of AsyncWrite.op: | |
| 419 ** | |
| 420 ** ASYNC_NOOP: | |
| 421 ** No values used. | |
| 422 ** | |
| 423 ** ASYNC_WRITE: | |
| 424 ** iOffset -> Offset in file to write to. | |
| 425 ** nByte -> Number of bytes of data to write (pointed to by zBuf). | |
| 426 ** | |
| 427 ** ASYNC_SYNC: | |
| 428 ** nByte -> flags to pass to sqlite3OsSync(). | |
| 429 ** | |
| 430 ** ASYNC_TRUNCATE: | |
| 431 ** iOffset -> Size to truncate file to. | |
| 432 ** nByte -> Unused. | |
| 433 ** | |
| 434 ** ASYNC_CLOSE: | |
| 435 ** iOffset -> Unused. | |
| 436 ** nByte -> Unused. | |
| 437 ** | |
| 438 ** ASYNC_DELETE: | |
| 439 ** iOffset -> Contains the "syncDir" flag. | |
| 440 ** nByte -> Number of bytes of zBuf points to (file name). | |
| 441 ** | |
| 442 ** ASYNC_OPENEXCLUSIVE: | |
| 443 ** iOffset -> Value of "delflag". | |
| 444 ** nByte -> Number of bytes of zBuf points to (file name). | |
| 445 ** | |
| 446 ** ASYNC_UNLOCK: | |
| 447 ** nByte -> Argument to sqlite3OsUnlock(). | |
| 448 ** | |
| 449 ** | |
| 450 ** For an ASYNC_WRITE operation, zBuf points to the data to write to the file. | |
| 451 ** This space is sqlite3_malloc()d along with the AsyncWrite structure in a | |
| 452 ** single blob, so is deleted when sqlite3_free() is called on the parent | |
| 453 ** structure. | |
| 454 */ | |
| 455 struct AsyncWrite { | |
| 456 AsyncFileData *pFileData; /* File to write data to or sync */ | |
| 457 int op; /* One of ASYNC_xxx etc. */ | |
| 458 sqlite_int64 iOffset; /* See above */ | |
| 459 int nByte; /* See above */ | |
| 460 char *zBuf; /* Data to write to file (or NULL if op!=ASYNC_WRITE) */ | |
| 461 AsyncWrite *pNext; /* Next write operation (to any file) */ | |
| 462 }; | |
| 463 | |
| 464 /* | |
| 465 ** An instance of this structure is created for each distinct open file | |
| 466 ** (i.e. if two handles are opened on the one file, only one of these | |
| 467 ** structures is allocated) and stored in the async.aLock hash table. The | |
| 468 ** keys for async.aLock are the full pathnames of the opened files. | |
| 469 ** | |
| 470 ** AsyncLock.pList points to the head of a linked list of AsyncFileLock | |
| 471 ** structures, one for each handle currently open on the file. | |
| 472 ** | |
| 473 ** If the opened file is not a main-database (the SQLITE_OPEN_MAIN_DB is | |
| 474 ** not passed to the sqlite3OsOpen() call), or if async.bLockFiles is | |
| 475 ** false, variables AsyncLock.pFile and AsyncLock.eLock are never used. | |
| 476 ** Otherwise, pFile is a file handle opened on the file in question and | |
| 477 ** used to obtain the file-system locks required by database connections | |
| 478 ** within this process. | |
| 479 ** | |
| 480 ** See comments above the asyncLock() function for more details on | |
| 481 ** the implementation of database locking used by this backend. | |
| 482 */ | |
| 483 struct AsyncLock { | |
| 484 char *zFile; | |
| 485 int nFile; | |
| 486 sqlite3_file *pFile; | |
| 487 int eLock; | |
| 488 AsyncFileLock *pList; | |
| 489 AsyncLock *pNext; /* Next in linked list headed by async.pLock */ | |
| 490 }; | |
| 491 | |
| 492 /* | |
| 493 ** An instance of the following structure is allocated along with each | |
| 494 ** AsyncFileData structure (see AsyncFileData.lock), but is only used if the | |
| 495 ** file was opened with the SQLITE_OPEN_MAIN_DB. | |
| 496 */ | |
| 497 struct AsyncFileLock { | |
| 498 int eLock; /* Internally visible lock state (sqlite pov) */ | |
| 499 int eAsyncLock; /* Lock-state with write-queue unlock */ | |
| 500 AsyncFileLock *pNext; | |
| 501 }; | |
| 502 | |
| 503 /* | |
| 504 ** The AsyncFile structure is a subclass of sqlite3_file used for | |
| 505 ** asynchronous IO. | |
| 506 ** | |
| 507 ** All of the actual data for the structure is stored in the structure | |
| 508 ** pointed to by AsyncFile.pData, which is allocated as part of the | |
| 509 ** sqlite3OsOpen() using sqlite3_malloc(). The reason for this is that the | |
| 510 ** lifetime of the AsyncFile structure is ended by the caller after OsClose() | |
| 511 ** is called, but the data in AsyncFileData may be required by the | |
| 512 ** writer thread after that point. | |
| 513 */ | |
| 514 struct AsyncFile { | |
| 515 sqlite3_io_methods *pMethod; | |
| 516 AsyncFileData *pData; | |
| 517 }; | |
| 518 struct AsyncFileData { | |
| 519 char *zName; /* Underlying OS filename - used for debugging */ | |
| 520 int nName; /* Number of characters in zName */ | |
| 521 sqlite3_file *pBaseRead; /* Read handle to the underlying Os file */ | |
| 522 sqlite3_file *pBaseWrite; /* Write handle to the underlying Os file */ | |
| 523 AsyncFileLock lock; /* Lock state for this handle */ | |
| 524 AsyncLock *pLock; /* AsyncLock object for this file system entry */ | |
| 525 AsyncWrite closeOp; /* Preallocated close operation */ | |
| 526 }; | |
| 527 | |
| 528 /* | |
| 529 ** Add an entry to the end of the global write-op list. pWrite should point | |
| 530 ** to an AsyncWrite structure allocated using sqlite3_malloc(). The writer | |
| 531 ** thread will call sqlite3_free() to free the structure after the specified | |
| 532 ** operation has been completed. | |
| 533 ** | |
| 534 ** Once an AsyncWrite structure has been added to the list, it becomes the | |
| 535 ** property of the writer thread and must not be read or modified by the | |
| 536 ** caller. | |
| 537 */ | |
| 538 static void addAsyncWrite(AsyncWrite *pWrite){ | |
| 539 /* We must hold the queue mutex in order to modify the queue pointers */ | |
| 540 if( pWrite->op!=ASYNC_UNLOCK ){ | |
| 541 async_mutex_enter(ASYNC_MUTEX_QUEUE); | |
| 542 } | |
| 543 | |
| 544 /* Add the record to the end of the write-op queue */ | |
| 545 assert( !pWrite->pNext ); | |
| 546 if( async.pQueueLast ){ | |
| 547 assert( async.pQueueFirst ); | |
| 548 async.pQueueLast->pNext = pWrite; | |
| 549 }else{ | |
| 550 async.pQueueFirst = pWrite; | |
| 551 } | |
| 552 async.pQueueLast = pWrite; | |
| 553 ASYNC_TRACE(("PUSH %p (%s %s %d)\n", pWrite, azOpcodeName[pWrite->op], | |
| 554 pWrite->pFileData ? pWrite->pFileData->zName : "-", pWrite->iOffset)); | |
| 555 | |
| 556 if( pWrite->op==ASYNC_CLOSE ){ | |
| 557 async.nFile--; | |
| 558 } | |
| 559 | |
| 560 /* The writer thread might have been idle because there was nothing | |
| 561 ** on the write-op queue for it to do. So wake it up. */ | |
| 562 async_cond_signal(ASYNC_COND_QUEUE); | |
| 563 | |
| 564 /* Drop the queue mutex */ | |
| 565 if( pWrite->op!=ASYNC_UNLOCK ){ | |
| 566 async_mutex_leave(ASYNC_MUTEX_QUEUE); | |
| 567 } | |
| 568 } | |
| 569 | |
| 570 /* | |
| 571 ** Increment async.nFile in a thread-safe manner. | |
| 572 */ | |
| 573 static void incrOpenFileCount(void){ | |
| 574 /* We must hold the queue mutex in order to modify async.nFile */ | |
| 575 async_mutex_enter(ASYNC_MUTEX_QUEUE); | |
| 576 if( async.nFile==0 ){ | |
| 577 async.ioError = SQLITE_OK; | |
| 578 } | |
| 579 async.nFile++; | |
| 580 async_mutex_leave(ASYNC_MUTEX_QUEUE); | |
| 581 } | |
| 582 | |
| 583 /* | |
| 584 ** This is a utility function to allocate and populate a new AsyncWrite | |
| 585 ** structure and insert it (via addAsyncWrite() ) into the global list. | |
| 586 */ | |
| 587 static int addNewAsyncWrite( | |
| 588 AsyncFileData *pFileData, | |
| 589 int op, | |
| 590 sqlite3_int64 iOffset, | |
| 591 int nByte, | |
| 592 const char *zByte | |
| 593 ){ | |
| 594 AsyncWrite *p; | |
| 595 if( op!=ASYNC_CLOSE && async.ioError ){ | |
| 596 return async.ioError; | |
| 597 } | |
| 598 p = sqlite3_malloc(sizeof(AsyncWrite) + (zByte?nByte:0)); | |
| 599 if( !p ){ | |
| 600 /* The upper layer does not expect operations like OsWrite() to | |
| 601 ** return SQLITE_NOMEM. This is partly because under normal conditions | |
| 602 ** SQLite is required to do rollback without calling malloc(). So | |
| 603 ** if malloc() fails here, treat it as an I/O error. The above | |
| 604 ** layer knows how to handle that. | |
| 605 */ | |
| 606 return SQLITE_IOERR; | |
| 607 } | |
| 608 p->op = op; | |
| 609 p->iOffset = iOffset; | |
| 610 p->nByte = nByte; | |
| 611 p->pFileData = pFileData; | |
| 612 p->pNext = 0; | |
| 613 if( zByte ){ | |
| 614 p->zBuf = (char *)&p[1]; | |
| 615 memcpy(p->zBuf, zByte, nByte); | |
| 616 }else{ | |
| 617 p->zBuf = 0; | |
| 618 } | |
| 619 addAsyncWrite(p); | |
| 620 return SQLITE_OK; | |
| 621 } | |
| 622 | |
| 623 /* | |
| 624 ** Close the file. This just adds an entry to the write-op list, the file is | |
| 625 ** not actually closed. | |
| 626 */ | |
| 627 static int asyncClose(sqlite3_file *pFile){ | |
| 628 AsyncFileData *p = ((AsyncFile *)pFile)->pData; | |
| 629 | |
| 630 /* Unlock the file, if it is locked */ | |
| 631 async_mutex_enter(ASYNC_MUTEX_LOCK); | |
| 632 p->lock.eLock = 0; | |
| 633 async_mutex_leave(ASYNC_MUTEX_LOCK); | |
| 634 | |
| 635 addAsyncWrite(&p->closeOp); | |
| 636 return SQLITE_OK; | |
| 637 } | |
| 638 | |
| 639 /* | |
| 640 ** Implementation of sqlite3OsWrite() for asynchronous files. Instead of | |
| 641 ** writing to the underlying file, this function adds an entry to the end of | |
| 642 ** the global AsyncWrite list. Either SQLITE_OK or SQLITE_NOMEM may be | |
| 643 ** returned. | |
| 644 */ | |
| 645 static int asyncWrite( | |
| 646 sqlite3_file *pFile, | |
| 647 const void *pBuf, | |
| 648 int amt, | |
| 649 sqlite3_int64 iOff | |
| 650 ){ | |
| 651 AsyncFileData *p = ((AsyncFile *)pFile)->pData; | |
| 652 return addNewAsyncWrite(p, ASYNC_WRITE, iOff, amt, pBuf); | |
| 653 } | |
| 654 | |
| 655 /* | |
| 656 ** Read data from the file. First we read from the filesystem, then adjust | |
| 657 ** the contents of the buffer based on ASYNC_WRITE operations in the | |
| 658 ** write-op queue. | |
| 659 ** | |
| 660 ** This method holds the mutex from start to finish. | |
| 661 */ | |
| 662 static int asyncRead( | |
| 663 sqlite3_file *pFile, | |
| 664 void *zOut, | |
| 665 int iAmt, | |
| 666 sqlite3_int64 iOffset | |
| 667 ){ | |
| 668 AsyncFileData *p = ((AsyncFile *)pFile)->pData; | |
| 669 int rc = SQLITE_OK; | |
| 670 sqlite3_int64 filesize = 0; | |
| 671 sqlite3_file *pBase = p->pBaseRead; | |
| 672 sqlite3_int64 iAmt64 = (sqlite3_int64)iAmt; | |
| 673 | |
| 674 /* Grab the write queue mutex for the duration of the call */ | |
| 675 async_mutex_enter(ASYNC_MUTEX_QUEUE); | |
| 676 | |
| 677 /* If an I/O error has previously occurred in this virtual file | |
| 678 ** system, then all subsequent operations fail. | |
| 679 */ | |
| 680 if( async.ioError!=SQLITE_OK ){ | |
| 681 rc = async.ioError; | |
| 682 goto asyncread_out; | |
| 683 } | |
| 684 | |
| 685 if( pBase->pMethods ){ | |
| 686 sqlite3_int64 nRead; | |
| 687 rc = pBase->pMethods->xFileSize(pBase, &filesize); | |
| 688 if( rc!=SQLITE_OK ){ | |
| 689 goto asyncread_out; | |
| 690 } | |
| 691 nRead = MIN(filesize - iOffset, iAmt64); | |
| 692 if( nRead>0 ){ | |
| 693 rc = pBase->pMethods->xRead(pBase, zOut, (int)nRead, iOffset); | |
| 694 ASYNC_TRACE(("READ %s %d bytes at %d\n", p->zName, nRead, iOffset)); | |
| 695 } | |
| 696 } | |
| 697 | |
| 698 if( rc==SQLITE_OK ){ | |
| 699 AsyncWrite *pWrite; | |
| 700 char *zName = p->zName; | |
| 701 | |
| 702 for(pWrite=async.pQueueFirst; pWrite; pWrite = pWrite->pNext){ | |
| 703 if( pWrite->op==ASYNC_WRITE && ( | |
| 704 (pWrite->pFileData==p) || | |
| 705 (zName && pWrite->pFileData->zName==zName) | |
| 706 )){ | |
| 707 sqlite3_int64 nCopy; | |
| 708 sqlite3_int64 nByte64 = (sqlite3_int64)pWrite->nByte; | |
| 709 | |
| 710 /* Set variable iBeginIn to the offset in buffer pWrite->zBuf[] from | |
| 711 ** which data should be copied. Set iBeginOut to the offset within | |
| 712 ** the output buffer to which data should be copied. If either of | |
| 713 ** these offsets is a negative number, set them to 0. | |
| 714 */ | |
| 715 sqlite3_int64 iBeginOut = (pWrite->iOffset-iOffset); | |
| 716 sqlite3_int64 iBeginIn = -iBeginOut; | |
| 717 if( iBeginIn<0 ) iBeginIn = 0; | |
| 718 if( iBeginOut<0 ) iBeginOut = 0; | |
| 719 | |
| 720 filesize = MAX(filesize, pWrite->iOffset+nByte64); | |
| 721 | |
| 722 nCopy = MIN(nByte64-iBeginIn, iAmt64-iBeginOut); | |
| 723 if( nCopy>0 ){ | |
| 724 memcpy(&((char *)zOut)[iBeginOut], &pWrite->zBuf[iBeginIn], (size_t)nC
opy); | |
| 725 ASYNC_TRACE(("OVERREAD %d bytes at %d\n", nCopy, iBeginOut+iOffset)); | |
| 726 } | |
| 727 } | |
| 728 } | |
| 729 } | |
| 730 | |
| 731 asyncread_out: | |
| 732 async_mutex_leave(ASYNC_MUTEX_QUEUE); | |
| 733 if( rc==SQLITE_OK && filesize<(iOffset+iAmt) ){ | |
| 734 rc = SQLITE_IOERR_SHORT_READ; | |
| 735 } | |
| 736 return rc; | |
| 737 } | |
| 738 | |
| 739 /* | |
| 740 ** Truncate the file to nByte bytes in length. This just adds an entry to | |
| 741 ** the write-op list, no IO actually takes place. | |
| 742 */ | |
| 743 static int asyncTruncate(sqlite3_file *pFile, sqlite3_int64 nByte){ | |
| 744 AsyncFileData *p = ((AsyncFile *)pFile)->pData; | |
| 745 return addNewAsyncWrite(p, ASYNC_TRUNCATE, nByte, 0, 0); | |
| 746 } | |
| 747 | |
| 748 /* | |
| 749 ** Sync the file. This just adds an entry to the write-op list, the | |
| 750 ** sync() is done later by sqlite3_async_flush(). | |
| 751 */ | |
| 752 static int asyncSync(sqlite3_file *pFile, int flags){ | |
| 753 AsyncFileData *p = ((AsyncFile *)pFile)->pData; | |
| 754 return addNewAsyncWrite(p, ASYNC_SYNC, 0, flags, 0); | |
| 755 } | |
| 756 | |
| 757 /* | |
| 758 ** Read the size of the file. First we read the size of the file system | |
| 759 ** entry, then adjust for any ASYNC_WRITE or ASYNC_TRUNCATE operations | |
| 760 ** currently in the write-op list. | |
| 761 ** | |
| 762 ** This method holds the mutex from start to finish. | |
| 763 */ | |
| 764 int asyncFileSize(sqlite3_file *pFile, sqlite3_int64 *piSize){ | |
| 765 AsyncFileData *p = ((AsyncFile *)pFile)->pData; | |
| 766 int rc = SQLITE_OK; | |
| 767 sqlite3_int64 s = 0; | |
| 768 sqlite3_file *pBase; | |
| 769 | |
| 770 async_mutex_enter(ASYNC_MUTEX_QUEUE); | |
| 771 | |
| 772 /* Read the filesystem size from the base file. If pMethods is NULL, this | |
| 773 ** means the file hasn't been opened yet. In this case all relevant data | |
| 774 ** must be in the write-op queue anyway, so we can omit reading from the | |
| 775 ** file-system. | |
| 776 */ | |
| 777 pBase = p->pBaseRead; | |
| 778 if( pBase->pMethods ){ | |
| 779 rc = pBase->pMethods->xFileSize(pBase, &s); | |
| 780 } | |
| 781 | |
| 782 if( rc==SQLITE_OK ){ | |
| 783 AsyncWrite *pWrite; | |
| 784 for(pWrite=async.pQueueFirst; pWrite; pWrite = pWrite->pNext){ | |
| 785 if( pWrite->op==ASYNC_DELETE | |
| 786 && p->zName | |
| 787 && strcmp(p->zName, pWrite->zBuf)==0 | |
| 788 ){ | |
| 789 s = 0; | |
| 790 }else if( pWrite->pFileData && ( | |
| 791 (pWrite->pFileData==p) | |
| 792 || (p->zName && pWrite->pFileData->zName==p->zName) | |
| 793 )){ | |
| 794 switch( pWrite->op ){ | |
| 795 case ASYNC_WRITE: | |
| 796 s = MAX(pWrite->iOffset + (sqlite3_int64)(pWrite->nByte), s); | |
| 797 break; | |
| 798 case ASYNC_TRUNCATE: | |
| 799 s = MIN(s, pWrite->iOffset); | |
| 800 break; | |
| 801 } | |
| 802 } | |
| 803 } | |
| 804 *piSize = s; | |
| 805 } | |
| 806 async_mutex_leave(ASYNC_MUTEX_QUEUE); | |
| 807 return rc; | |
| 808 } | |
| 809 | |
| 810 /* | |
| 811 ** Lock or unlock the actual file-system entry. | |
| 812 */ | |
| 813 static int getFileLock(AsyncLock *pLock){ | |
| 814 int rc = SQLITE_OK; | |
| 815 AsyncFileLock *pIter; | |
| 816 int eRequired = 0; | |
| 817 | |
| 818 if( pLock->pFile ){ | |
| 819 for(pIter=pLock->pList; pIter; pIter=pIter->pNext){ | |
| 820 assert(pIter->eAsyncLock>=pIter->eLock); | |
| 821 if( pIter->eAsyncLock>eRequired ){ | |
| 822 eRequired = pIter->eAsyncLock; | |
| 823 assert(eRequired>=0 && eRequired<=SQLITE_LOCK_EXCLUSIVE); | |
| 824 } | |
| 825 } | |
| 826 | |
| 827 if( eRequired>pLock->eLock ){ | |
| 828 rc = pLock->pFile->pMethods->xLock(pLock->pFile, eRequired); | |
| 829 if( rc==SQLITE_OK ){ | |
| 830 pLock->eLock = eRequired; | |
| 831 } | |
| 832 } | |
| 833 else if( eRequired<pLock->eLock && eRequired<=SQLITE_LOCK_SHARED ){ | |
| 834 rc = pLock->pFile->pMethods->xUnlock(pLock->pFile, eRequired); | |
| 835 if( rc==SQLITE_OK ){ | |
| 836 pLock->eLock = eRequired; | |
| 837 } | |
| 838 } | |
| 839 } | |
| 840 | |
| 841 return rc; | |
| 842 } | |
| 843 | |
| 844 /* | |
| 845 ** Return the AsyncLock structure from the global async.pLock list | |
| 846 ** associated with the file-system entry identified by path zName | |
| 847 ** (a string of nName bytes). If no such structure exists, return 0. | |
| 848 */ | |
| 849 static AsyncLock *findLock(const char *zName, int nName){ | |
| 850 AsyncLock *p = async.pLock; | |
| 851 while( p && (p->nFile!=nName || memcmp(p->zFile, zName, nName)) ){ | |
| 852 p = p->pNext; | |
| 853 } | |
| 854 return p; | |
| 855 } | |
| 856 | |
| 857 /* | |
| 858 ** The following two methods - asyncLock() and asyncUnlock() - are used | |
| 859 ** to obtain and release locks on database files opened with the | |
| 860 ** asynchronous backend. | |
| 861 */ | |
| 862 static int asyncLock(sqlite3_file *pFile, int eLock){ | |
| 863 int rc = SQLITE_OK; | |
| 864 AsyncFileData *p = ((AsyncFile *)pFile)->pData; | |
| 865 | |
| 866 if( p->zName ){ | |
| 867 async_mutex_enter(ASYNC_MUTEX_LOCK); | |
| 868 if( p->lock.eLock<eLock ){ | |
| 869 AsyncLock *pLock = p->pLock; | |
| 870 AsyncFileLock *pIter; | |
| 871 assert(pLock && pLock->pList); | |
| 872 for(pIter=pLock->pList; pIter; pIter=pIter->pNext){ | |
| 873 if( pIter!=&p->lock && ( | |
| 874 (eLock==SQLITE_LOCK_EXCLUSIVE && pIter->eLock>=SQLITE_LOCK_SHARED) || | |
| 875 (eLock==SQLITE_LOCK_PENDING && pIter->eLock>=SQLITE_LOCK_RESERVED) || | |
| 876 (eLock==SQLITE_LOCK_RESERVED && pIter->eLock>=SQLITE_LOCK_RESERVED) || | |
| 877 (eLock==SQLITE_LOCK_SHARED && pIter->eLock>=SQLITE_LOCK_PENDING) | |
| 878 )){ | |
| 879 rc = SQLITE_BUSY; | |
| 880 } | |
| 881 } | |
| 882 if( rc==SQLITE_OK ){ | |
| 883 p->lock.eLock = eLock; | |
| 884 p->lock.eAsyncLock = MAX(p->lock.eAsyncLock, eLock); | |
| 885 } | |
| 886 assert(p->lock.eAsyncLock>=p->lock.eLock); | |
| 887 if( rc==SQLITE_OK ){ | |
| 888 rc = getFileLock(pLock); | |
| 889 } | |
| 890 } | |
| 891 async_mutex_leave(ASYNC_MUTEX_LOCK); | |
| 892 } | |
| 893 | |
| 894 ASYNC_TRACE(("LOCK %d (%s) rc=%d\n", eLock, p->zName, rc)); | |
| 895 return rc; | |
| 896 } | |
| 897 static int asyncUnlock(sqlite3_file *pFile, int eLock){ | |
| 898 int rc = SQLITE_OK; | |
| 899 AsyncFileData *p = ((AsyncFile *)pFile)->pData; | |
| 900 if( p->zName ){ | |
| 901 AsyncFileLock *pLock = &p->lock; | |
| 902 async_mutex_enter(ASYNC_MUTEX_QUEUE); | |
| 903 async_mutex_enter(ASYNC_MUTEX_LOCK); | |
| 904 pLock->eLock = MIN(pLock->eLock, eLock); | |
| 905 rc = addNewAsyncWrite(p, ASYNC_UNLOCK, 0, eLock, 0); | |
| 906 async_mutex_leave(ASYNC_MUTEX_LOCK); | |
| 907 async_mutex_leave(ASYNC_MUTEX_QUEUE); | |
| 908 } | |
| 909 return rc; | |
| 910 } | |
| 911 | |
| 912 /* | |
| 913 ** This function is called when the pager layer first opens a database file | |
| 914 ** and is checking for a hot-journal. | |
| 915 */ | |
| 916 static int asyncCheckReservedLock(sqlite3_file *pFile, int *pResOut){ | |
| 917 int ret = 0; | |
| 918 AsyncFileLock *pIter; | |
| 919 AsyncFileData *p = ((AsyncFile *)pFile)->pData; | |
| 920 | |
| 921 async_mutex_enter(ASYNC_MUTEX_LOCK); | |
| 922 for(pIter=p->pLock->pList; pIter; pIter=pIter->pNext){ | |
| 923 if( pIter->eLock>=SQLITE_LOCK_RESERVED ){ | |
| 924 ret = 1; | |
| 925 break; | |
| 926 } | |
| 927 } | |
| 928 async_mutex_leave(ASYNC_MUTEX_LOCK); | |
| 929 | |
| 930 ASYNC_TRACE(("CHECK-LOCK %d (%s)\n", ret, p->zName)); | |
| 931 *pResOut = ret; | |
| 932 return SQLITE_OK; | |
| 933 } | |
| 934 | |
| 935 /* | |
| 936 ** sqlite3_file_control() implementation. | |
| 937 */ | |
| 938 static int asyncFileControl(sqlite3_file *id, int op, void *pArg){ | |
| 939 switch( op ){ | |
| 940 case SQLITE_FCNTL_LOCKSTATE: { | |
| 941 async_mutex_enter(ASYNC_MUTEX_LOCK); | |
| 942 *(int*)pArg = ((AsyncFile*)id)->pData->lock.eLock; | |
| 943 async_mutex_leave(ASYNC_MUTEX_LOCK); | |
| 944 return SQLITE_OK; | |
| 945 } | |
| 946 } | |
| 947 return SQLITE_NOTFOUND; | |
| 948 } | |
| 949 | |
| 950 /* | |
| 951 ** Return the device characteristics and sector-size of the device. It | |
| 952 ** is tricky to implement these correctly, as this backend might | |
| 953 ** not have an open file handle at this point. | |
| 954 */ | |
| 955 static int asyncSectorSize(sqlite3_file *pFile){ | |
| 956 UNUSED_PARAMETER(pFile); | |
| 957 return 512; | |
| 958 } | |
| 959 static int asyncDeviceCharacteristics(sqlite3_file *pFile){ | |
| 960 UNUSED_PARAMETER(pFile); | |
| 961 return 0; | |
| 962 } | |
| 963 | |
| 964 static int unlinkAsyncFile(AsyncFileData *pData){ | |
| 965 AsyncFileLock **ppIter; | |
| 966 int rc = SQLITE_OK; | |
| 967 | |
| 968 if( pData->zName ){ | |
| 969 AsyncLock *pLock = pData->pLock; | |
| 970 for(ppIter=&pLock->pList; *ppIter; ppIter=&((*ppIter)->pNext)){ | |
| 971 if( (*ppIter)==&pData->lock ){ | |
| 972 *ppIter = pData->lock.pNext; | |
| 973 break; | |
| 974 } | |
| 975 } | |
| 976 if( !pLock->pList ){ | |
| 977 AsyncLock **pp; | |
| 978 if( pLock->pFile ){ | |
| 979 pLock->pFile->pMethods->xClose(pLock->pFile); | |
| 980 } | |
| 981 for(pp=&async.pLock; *pp!=pLock; pp=&((*pp)->pNext)); | |
| 982 *pp = pLock->pNext; | |
| 983 sqlite3_free(pLock); | |
| 984 }else{ | |
| 985 rc = getFileLock(pLock); | |
| 986 } | |
| 987 } | |
| 988 | |
| 989 return rc; | |
| 990 } | |
| 991 | |
| 992 /* | |
| 993 ** The parameter passed to this function is a copy of a 'flags' parameter | |
| 994 ** passed to this modules xOpen() method. This function returns true | |
| 995 ** if the file should be opened asynchronously, or false if it should | |
| 996 ** be opened immediately. | |
| 997 ** | |
| 998 ** If the file is to be opened asynchronously, then asyncOpen() will add | |
| 999 ** an entry to the event queue and the file will not actually be opened | |
| 1000 ** until the event is processed. Otherwise, the file is opened directly | |
| 1001 ** by the caller. | |
| 1002 */ | |
| 1003 static int doAsynchronousOpen(int flags){ | |
| 1004 return (flags&SQLITE_OPEN_CREATE) && ( | |
| 1005 (flags&SQLITE_OPEN_MAIN_JOURNAL) || | |
| 1006 (flags&SQLITE_OPEN_TEMP_JOURNAL) || | |
| 1007 (flags&SQLITE_OPEN_DELETEONCLOSE) | |
| 1008 ); | |
| 1009 } | |
| 1010 | |
| 1011 /* | |
| 1012 ** Open a file. | |
| 1013 */ | |
| 1014 static int asyncOpen( | |
| 1015 sqlite3_vfs *pAsyncVfs, | |
| 1016 const char *zName, | |
| 1017 sqlite3_file *pFile, | |
| 1018 int flags, | |
| 1019 int *pOutFlags | |
| 1020 ){ | |
| 1021 static sqlite3_io_methods async_methods = { | |
| 1022 1, /* iVersion */ | |
| 1023 asyncClose, /* xClose */ | |
| 1024 asyncRead, /* xRead */ | |
| 1025 asyncWrite, /* xWrite */ | |
| 1026 asyncTruncate, /* xTruncate */ | |
| 1027 asyncSync, /* xSync */ | |
| 1028 asyncFileSize, /* xFileSize */ | |
| 1029 asyncLock, /* xLock */ | |
| 1030 asyncUnlock, /* xUnlock */ | |
| 1031 asyncCheckReservedLock, /* xCheckReservedLock */ | |
| 1032 asyncFileControl, /* xFileControl */ | |
| 1033 asyncSectorSize, /* xSectorSize */ | |
| 1034 asyncDeviceCharacteristics /* xDeviceCharacteristics */ | |
| 1035 }; | |
| 1036 | |
| 1037 sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData; | |
| 1038 AsyncFile *p = (AsyncFile *)pFile; | |
| 1039 int nName = 0; | |
| 1040 int rc = SQLITE_OK; | |
| 1041 int nByte; | |
| 1042 AsyncFileData *pData; | |
| 1043 AsyncLock *pLock = 0; | |
| 1044 char *z; | |
| 1045 int isAsyncOpen = doAsynchronousOpen(flags); | |
| 1046 | |
| 1047 /* If zName is NULL, then the upper layer is requesting an anonymous file. | |
| 1048 ** Otherwise, allocate enough space to make a copy of the file name (along | |
| 1049 ** with the second nul-terminator byte required by xOpen). | |
| 1050 */ | |
| 1051 if( zName ){ | |
| 1052 nName = (int)strlen(zName); | |
| 1053 } | |
| 1054 | |
| 1055 nByte = ( | |
| 1056 sizeof(AsyncFileData) + /* AsyncFileData structure */ | |
| 1057 2 * pVfs->szOsFile + /* AsyncFileData.pBaseRead and pBaseWrite */ | |
| 1058 nName + 2 /* AsyncFileData.zName */ | |
| 1059 ); | |
| 1060 z = sqlite3_malloc(nByte); | |
| 1061 if( !z ){ | |
| 1062 return SQLITE_NOMEM; | |
| 1063 } | |
| 1064 memset(z, 0, nByte); | |
| 1065 pData = (AsyncFileData*)z; | |
| 1066 z += sizeof(pData[0]); | |
| 1067 pData->pBaseRead = (sqlite3_file*)z; | |
| 1068 z += pVfs->szOsFile; | |
| 1069 pData->pBaseWrite = (sqlite3_file*)z; | |
| 1070 pData->closeOp.pFileData = pData; | |
| 1071 pData->closeOp.op = ASYNC_CLOSE; | |
| 1072 | |
| 1073 if( zName ){ | |
| 1074 z += pVfs->szOsFile; | |
| 1075 pData->zName = z; | |
| 1076 pData->nName = nName; | |
| 1077 memcpy(pData->zName, zName, nName); | |
| 1078 } | |
| 1079 | |
| 1080 if( !isAsyncOpen ){ | |
| 1081 int flagsout; | |
| 1082 rc = pVfs->xOpen(pVfs, pData->zName, pData->pBaseRead, flags, &flagsout); | |
| 1083 if( rc==SQLITE_OK | |
| 1084 && (flagsout&SQLITE_OPEN_READWRITE) | |
| 1085 && (flags&SQLITE_OPEN_EXCLUSIVE)==0 | |
| 1086 ){ | |
| 1087 rc = pVfs->xOpen(pVfs, pData->zName, pData->pBaseWrite, flags, 0); | |
| 1088 } | |
| 1089 if( pOutFlags ){ | |
| 1090 *pOutFlags = flagsout; | |
| 1091 } | |
| 1092 } | |
| 1093 | |
| 1094 async_mutex_enter(ASYNC_MUTEX_LOCK); | |
| 1095 | |
| 1096 if( zName && rc==SQLITE_OK ){ | |
| 1097 pLock = findLock(pData->zName, pData->nName); | |
| 1098 if( !pLock ){ | |
| 1099 int nByte = pVfs->szOsFile + sizeof(AsyncLock) + pData->nName + 1; | |
| 1100 pLock = (AsyncLock *)sqlite3_malloc(nByte); | |
| 1101 if( pLock ){ | |
| 1102 memset(pLock, 0, nByte); | |
| 1103 if( async.bLockFiles && (flags&SQLITE_OPEN_MAIN_DB) ){ | |
| 1104 pLock->pFile = (sqlite3_file *)&pLock[1]; | |
| 1105 rc = pVfs->xOpen(pVfs, pData->zName, pLock->pFile, flags, 0); | |
| 1106 if( rc!=SQLITE_OK ){ | |
| 1107 sqlite3_free(pLock); | |
| 1108 pLock = 0; | |
| 1109 } | |
| 1110 } | |
| 1111 if( pLock ){ | |
| 1112 pLock->nFile = pData->nName; | |
| 1113 pLock->zFile = &((char *)(&pLock[1]))[pVfs->szOsFile]; | |
| 1114 memcpy(pLock->zFile, pData->zName, pLock->nFile); | |
| 1115 pLock->pNext = async.pLock; | |
| 1116 async.pLock = pLock; | |
| 1117 } | |
| 1118 }else{ | |
| 1119 rc = SQLITE_NOMEM; | |
| 1120 } | |
| 1121 } | |
| 1122 } | |
| 1123 | |
| 1124 if( rc==SQLITE_OK ){ | |
| 1125 p->pMethod = &async_methods; | |
| 1126 p->pData = pData; | |
| 1127 | |
| 1128 /* Link AsyncFileData.lock into the linked list of | |
| 1129 ** AsyncFileLock structures for this file. | |
| 1130 */ | |
| 1131 if( zName ){ | |
| 1132 pData->lock.pNext = pLock->pList; | |
| 1133 pLock->pList = &pData->lock; | |
| 1134 pData->zName = pLock->zFile; | |
| 1135 } | |
| 1136 }else{ | |
| 1137 if( pData->pBaseRead->pMethods ){ | |
| 1138 pData->pBaseRead->pMethods->xClose(pData->pBaseRead); | |
| 1139 } | |
| 1140 if( pData->pBaseWrite->pMethods ){ | |
| 1141 pData->pBaseWrite->pMethods->xClose(pData->pBaseWrite); | |
| 1142 } | |
| 1143 sqlite3_free(pData); | |
| 1144 } | |
| 1145 | |
| 1146 async_mutex_leave(ASYNC_MUTEX_LOCK); | |
| 1147 | |
| 1148 if( rc==SQLITE_OK ){ | |
| 1149 pData->pLock = pLock; | |
| 1150 } | |
| 1151 | |
| 1152 if( rc==SQLITE_OK && isAsyncOpen ){ | |
| 1153 rc = addNewAsyncWrite(pData, ASYNC_OPENEXCLUSIVE, (sqlite3_int64)flags,0,0); | |
| 1154 if( rc==SQLITE_OK ){ | |
| 1155 if( pOutFlags ) *pOutFlags = flags; | |
| 1156 }else{ | |
| 1157 async_mutex_enter(ASYNC_MUTEX_LOCK); | |
| 1158 unlinkAsyncFile(pData); | |
| 1159 async_mutex_leave(ASYNC_MUTEX_LOCK); | |
| 1160 sqlite3_free(pData); | |
| 1161 } | |
| 1162 } | |
| 1163 if( rc!=SQLITE_OK ){ | |
| 1164 p->pMethod = 0; | |
| 1165 }else{ | |
| 1166 incrOpenFileCount(); | |
| 1167 } | |
| 1168 | |
| 1169 return rc; | |
| 1170 } | |
| 1171 | |
| 1172 /* | |
| 1173 ** Implementation of sqlite3OsDelete. Add an entry to the end of the | |
| 1174 ** write-op queue to perform the delete. | |
| 1175 */ | |
| 1176 static int asyncDelete(sqlite3_vfs *pAsyncVfs, const char *z, int syncDir){ | |
| 1177 UNUSED_PARAMETER(pAsyncVfs); | |
| 1178 return addNewAsyncWrite(0, ASYNC_DELETE, syncDir, (int)strlen(z)+1, z); | |
| 1179 } | |
| 1180 | |
| 1181 /* | |
| 1182 ** Implementation of sqlite3OsAccess. This method holds the mutex from | |
| 1183 ** start to finish. | |
| 1184 */ | |
| 1185 static int asyncAccess( | |
| 1186 sqlite3_vfs *pAsyncVfs, | |
| 1187 const char *zName, | |
| 1188 int flags, | |
| 1189 int *pResOut | |
| 1190 ){ | |
| 1191 int rc; | |
| 1192 int ret; | |
| 1193 AsyncWrite *p; | |
| 1194 sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData; | |
| 1195 | |
| 1196 assert(flags==SQLITE_ACCESS_READWRITE | |
| 1197 || flags==SQLITE_ACCESS_READ | |
| 1198 || flags==SQLITE_ACCESS_EXISTS | |
| 1199 ); | |
| 1200 | |
| 1201 async_mutex_enter(ASYNC_MUTEX_QUEUE); | |
| 1202 rc = pVfs->xAccess(pVfs, zName, flags, &ret); | |
| 1203 if( rc==SQLITE_OK && flags==SQLITE_ACCESS_EXISTS ){ | |
| 1204 for(p=async.pQueueFirst; p; p = p->pNext){ | |
| 1205 if( p->op==ASYNC_DELETE && 0==strcmp(p->zBuf, zName) ){ | |
| 1206 ret = 0; | |
| 1207 }else if( p->op==ASYNC_OPENEXCLUSIVE | |
| 1208 && p->pFileData->zName | |
| 1209 && 0==strcmp(p->pFileData->zName, zName) | |
| 1210 ){ | |
| 1211 ret = 1; | |
| 1212 } | |
| 1213 } | |
| 1214 } | |
| 1215 ASYNC_TRACE(("ACCESS(%s): %s = %d\n", | |
| 1216 flags==SQLITE_ACCESS_READWRITE?"read-write": | |
| 1217 flags==SQLITE_ACCESS_READ?"read":"exists" | |
| 1218 , zName, ret) | |
| 1219 ); | |
| 1220 async_mutex_leave(ASYNC_MUTEX_QUEUE); | |
| 1221 *pResOut = ret; | |
| 1222 return rc; | |
| 1223 } | |
| 1224 | |
| 1225 /* | |
| 1226 ** Fill in zPathOut with the full path to the file identified by zPath. | |
| 1227 */ | |
| 1228 static int asyncFullPathname( | |
| 1229 sqlite3_vfs *pAsyncVfs, | |
| 1230 const char *zPath, | |
| 1231 int nPathOut, | |
| 1232 char *zPathOut | |
| 1233 ){ | |
| 1234 int rc; | |
| 1235 sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData; | |
| 1236 rc = pVfs->xFullPathname(pVfs, zPath, nPathOut, zPathOut); | |
| 1237 | |
| 1238 /* Because of the way intra-process file locking works, this backend | |
| 1239 ** needs to return a canonical path. The following block assumes the | |
| 1240 ** file-system uses unix style paths. | |
| 1241 */ | |
| 1242 if( rc==SQLITE_OK ){ | |
| 1243 int i, j; | |
| 1244 char *z = zPathOut; | |
| 1245 int n = (int)strlen(z); | |
| 1246 while( n>1 && z[n-1]=='/' ){ n--; } | |
| 1247 for(i=j=0; i<n; i++){ | |
| 1248 if( z[i]=='/' ){ | |
| 1249 if( z[i+1]=='/' ) continue; | |
| 1250 if( z[i+1]=='.' && i+2<n && z[i+2]=='/' ){ | |
| 1251 i += 1; | |
| 1252 continue; | |
| 1253 } | |
| 1254 if( z[i+1]=='.' && i+3<n && z[i+2]=='.' && z[i+3]=='/' ){ | |
| 1255 while( j>0 && z[j-1]!='/' ){ j--; } | |
| 1256 if( j>0 ){ j--; } | |
| 1257 i += 2; | |
| 1258 continue; | |
| 1259 } | |
| 1260 } | |
| 1261 z[j++] = z[i]; | |
| 1262 } | |
| 1263 z[j] = 0; | |
| 1264 } | |
| 1265 | |
| 1266 return rc; | |
| 1267 } | |
| 1268 static void *asyncDlOpen(sqlite3_vfs *pAsyncVfs, const char *zPath){ | |
| 1269 sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData; | |
| 1270 return pVfs->xDlOpen(pVfs, zPath); | |
| 1271 } | |
| 1272 static void asyncDlError(sqlite3_vfs *pAsyncVfs, int nByte, char *zErrMsg){ | |
| 1273 sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData; | |
| 1274 pVfs->xDlError(pVfs, nByte, zErrMsg); | |
| 1275 } | |
| 1276 static void (*asyncDlSym( | |
| 1277 sqlite3_vfs *pAsyncVfs, | |
| 1278 void *pHandle, | |
| 1279 const char *zSymbol | |
| 1280 ))(void){ | |
| 1281 sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData; | |
| 1282 return pVfs->xDlSym(pVfs, pHandle, zSymbol); | |
| 1283 } | |
| 1284 static void asyncDlClose(sqlite3_vfs *pAsyncVfs, void *pHandle){ | |
| 1285 sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData; | |
| 1286 pVfs->xDlClose(pVfs, pHandle); | |
| 1287 } | |
| 1288 static int asyncRandomness(sqlite3_vfs *pAsyncVfs, int nByte, char *zBufOut){ | |
| 1289 sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData; | |
| 1290 return pVfs->xRandomness(pVfs, nByte, zBufOut); | |
| 1291 } | |
| 1292 static int asyncSleep(sqlite3_vfs *pAsyncVfs, int nMicro){ | |
| 1293 sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData; | |
| 1294 return pVfs->xSleep(pVfs, nMicro); | |
| 1295 } | |
| 1296 static int asyncCurrentTime(sqlite3_vfs *pAsyncVfs, double *pTimeOut){ | |
| 1297 sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData; | |
| 1298 return pVfs->xCurrentTime(pVfs, pTimeOut); | |
| 1299 } | |
| 1300 | |
| 1301 static sqlite3_vfs async_vfs = { | |
| 1302 1, /* iVersion */ | |
| 1303 sizeof(AsyncFile), /* szOsFile */ | |
| 1304 0, /* mxPathname */ | |
| 1305 0, /* pNext */ | |
| 1306 SQLITEASYNC_VFSNAME, /* zName */ | |
| 1307 0, /* pAppData */ | |
| 1308 asyncOpen, /* xOpen */ | |
| 1309 asyncDelete, /* xDelete */ | |
| 1310 asyncAccess, /* xAccess */ | |
| 1311 asyncFullPathname, /* xFullPathname */ | |
| 1312 asyncDlOpen, /* xDlOpen */ | |
| 1313 asyncDlError, /* xDlError */ | |
| 1314 asyncDlSym, /* xDlSym */ | |
| 1315 asyncDlClose, /* xDlClose */ | |
| 1316 asyncRandomness, /* xDlError */ | |
| 1317 asyncSleep, /* xDlSym */ | |
| 1318 asyncCurrentTime /* xDlClose */ | |
| 1319 }; | |
| 1320 | |
| 1321 /* | |
| 1322 ** This procedure runs in a separate thread, reading messages off of the | |
| 1323 ** write queue and processing them one by one. | |
| 1324 ** | |
| 1325 ** If async.writerHaltNow is true, then this procedure exits | |
| 1326 ** after processing a single message. | |
| 1327 ** | |
| 1328 ** If async.writerHaltWhenIdle is true, then this procedure exits when | |
| 1329 ** the write queue is empty. | |
| 1330 ** | |
| 1331 ** If both of the above variables are false, this procedure runs | |
| 1332 ** indefinately, waiting for operations to be added to the write queue | |
| 1333 ** and processing them in the order in which they arrive. | |
| 1334 ** | |
| 1335 ** An artifical delay of async.ioDelay milliseconds is inserted before | |
| 1336 ** each write operation in order to simulate the effect of a slow disk. | |
| 1337 ** | |
| 1338 ** Only one instance of this procedure may be running at a time. | |
| 1339 */ | |
| 1340 static void asyncWriterThread(void){ | |
| 1341 sqlite3_vfs *pVfs = (sqlite3_vfs *)(async_vfs.pAppData); | |
| 1342 AsyncWrite *p = 0; | |
| 1343 int rc = SQLITE_OK; | |
| 1344 int holdingMutex = 0; | |
| 1345 | |
| 1346 async_mutex_enter(ASYNC_MUTEX_WRITER); | |
| 1347 | |
| 1348 while( async.eHalt!=SQLITEASYNC_HALT_NOW ){ | |
| 1349 int doNotFree = 0; | |
| 1350 sqlite3_file *pBase = 0; | |
| 1351 | |
| 1352 if( !holdingMutex ){ | |
| 1353 async_mutex_enter(ASYNC_MUTEX_QUEUE); | |
| 1354 } | |
| 1355 while( (p = async.pQueueFirst)==0 ){ | |
| 1356 if( async.eHalt!=SQLITEASYNC_HALT_NEVER ){ | |
| 1357 async_mutex_leave(ASYNC_MUTEX_QUEUE); | |
| 1358 break; | |
| 1359 }else{ | |
| 1360 ASYNC_TRACE(("IDLE\n")); | |
| 1361 async_cond_wait(ASYNC_COND_QUEUE, ASYNC_MUTEX_QUEUE); | |
| 1362 ASYNC_TRACE(("WAKEUP\n")); | |
| 1363 } | |
| 1364 } | |
| 1365 if( p==0 ) break; | |
| 1366 holdingMutex = 1; | |
| 1367 | |
| 1368 /* Right now this thread is holding the mutex on the write-op queue. | |
| 1369 ** Variable 'p' points to the first entry in the write-op queue. In | |
| 1370 ** the general case, we hold on to the mutex for the entire body of | |
| 1371 ** the loop. | |
| 1372 ** | |
| 1373 ** However in the cases enumerated below, we relinquish the mutex, | |
| 1374 ** perform the IO, and then re-request the mutex before removing 'p' from | |
| 1375 ** the head of the write-op queue. The idea is to increase concurrency with | |
| 1376 ** sqlite threads. | |
| 1377 ** | |
| 1378 ** * An ASYNC_CLOSE operation. | |
| 1379 ** * An ASYNC_OPENEXCLUSIVE operation. For this one, we relinquish | |
| 1380 ** the mutex, call the underlying xOpenExclusive() function, then | |
| 1381 ** re-aquire the mutex before seting the AsyncFile.pBaseRead | |
| 1382 ** variable. | |
| 1383 ** * ASYNC_SYNC and ASYNC_WRITE operations, if | |
| 1384 ** SQLITE_ASYNC_TWO_FILEHANDLES was set at compile time and two | |
| 1385 ** file-handles are open for the particular file being "synced". | |
| 1386 */ | |
| 1387 if( async.ioError!=SQLITE_OK && p->op!=ASYNC_CLOSE ){ | |
| 1388 p->op = ASYNC_NOOP; | |
| 1389 } | |
| 1390 if( p->pFileData ){ | |
| 1391 pBase = p->pFileData->pBaseWrite; | |
| 1392 if( | |
| 1393 p->op==ASYNC_CLOSE || | |
| 1394 p->op==ASYNC_OPENEXCLUSIVE || | |
| 1395 (pBase->pMethods && (p->op==ASYNC_SYNC || p->op==ASYNC_WRITE) ) | |
| 1396 ){ | |
| 1397 async_mutex_leave(ASYNC_MUTEX_QUEUE); | |
| 1398 holdingMutex = 0; | |
| 1399 } | |
| 1400 if( !pBase->pMethods ){ | |
| 1401 pBase = p->pFileData->pBaseRead; | |
| 1402 } | |
| 1403 } | |
| 1404 | |
| 1405 switch( p->op ){ | |
| 1406 case ASYNC_NOOP: | |
| 1407 break; | |
| 1408 | |
| 1409 case ASYNC_WRITE: | |
| 1410 assert( pBase ); | |
| 1411 ASYNC_TRACE(("WRITE %s %d bytes at %d\n", | |
| 1412 p->pFileData->zName, p->nByte, p->iOffset)); | |
| 1413 rc = pBase->pMethods->xWrite(pBase, (void *)(p->zBuf), p->nByte, p->iOff
set); | |
| 1414 break; | |
| 1415 | |
| 1416 case ASYNC_SYNC: | |
| 1417 assert( pBase ); | |
| 1418 ASYNC_TRACE(("SYNC %s\n", p->pFileData->zName)); | |
| 1419 rc = pBase->pMethods->xSync(pBase, p->nByte); | |
| 1420 break; | |
| 1421 | |
| 1422 case ASYNC_TRUNCATE: | |
| 1423 assert( pBase ); | |
| 1424 ASYNC_TRACE(("TRUNCATE %s to %d bytes\n", | |
| 1425 p->pFileData->zName, p->iOffset)); | |
| 1426 rc = pBase->pMethods->xTruncate(pBase, p->iOffset); | |
| 1427 break; | |
| 1428 | |
| 1429 case ASYNC_CLOSE: { | |
| 1430 AsyncFileData *pData = p->pFileData; | |
| 1431 ASYNC_TRACE(("CLOSE %s\n", p->pFileData->zName)); | |
| 1432 if( pData->pBaseWrite->pMethods ){ | |
| 1433 pData->pBaseWrite->pMethods->xClose(pData->pBaseWrite); | |
| 1434 } | |
| 1435 if( pData->pBaseRead->pMethods ){ | |
| 1436 pData->pBaseRead->pMethods->xClose(pData->pBaseRead); | |
| 1437 } | |
| 1438 | |
| 1439 /* Unlink AsyncFileData.lock from the linked list of AsyncFileLock | |
| 1440 ** structures for this file. Obtain the async.lockMutex mutex | |
| 1441 ** before doing so. | |
| 1442 */ | |
| 1443 async_mutex_enter(ASYNC_MUTEX_LOCK); | |
| 1444 rc = unlinkAsyncFile(pData); | |
| 1445 async_mutex_leave(ASYNC_MUTEX_LOCK); | |
| 1446 | |
| 1447 if( !holdingMutex ){ | |
| 1448 async_mutex_enter(ASYNC_MUTEX_QUEUE); | |
| 1449 holdingMutex = 1; | |
| 1450 } | |
| 1451 assert_mutex_is_held(ASYNC_MUTEX_QUEUE); | |
| 1452 async.pQueueFirst = p->pNext; | |
| 1453 sqlite3_free(pData); | |
| 1454 doNotFree = 1; | |
| 1455 break; | |
| 1456 } | |
| 1457 | |
| 1458 case ASYNC_UNLOCK: { | |
| 1459 AsyncWrite *pIter; | |
| 1460 AsyncFileData *pData = p->pFileData; | |
| 1461 int eLock = p->nByte; | |
| 1462 | |
| 1463 /* When a file is locked by SQLite using the async backend, it is | |
| 1464 ** locked within the 'real' file-system synchronously. When it is | |
| 1465 ** unlocked, an ASYNC_UNLOCK event is added to the write-queue to | |
| 1466 ** unlock the file asynchronously. The design of the async backend | |
| 1467 ** requires that the 'real' file-system file be locked from the | |
| 1468 ** time that SQLite first locks it (and probably reads from it) | |
| 1469 ** until all asynchronous write events that were scheduled before | |
| 1470 ** SQLite unlocked the file have been processed. | |
| 1471 ** | |
| 1472 ** This is more complex if SQLite locks and unlocks the file multiple | |
| 1473 ** times in quick succession. For example, if SQLite does: | |
| 1474 ** | |
| 1475 ** lock, write, unlock, lock, write, unlock | |
| 1476 ** | |
| 1477 ** Each "lock" operation locks the file immediately. Each "write" | |
| 1478 ** and "unlock" operation adds an event to the event queue. If the | |
| 1479 ** second "lock" operation is performed before the first "unlock" | |
| 1480 ** operation has been processed asynchronously, then the first | |
| 1481 ** "unlock" cannot be safely processed as is, since this would mean | |
| 1482 ** the file was unlocked when the second "write" operation is | |
| 1483 ** processed. To work around this, when processing an ASYNC_UNLOCK | |
| 1484 ** operation, SQLite: | |
| 1485 ** | |
| 1486 ** 1) Unlocks the file to the minimum of the argument passed to | |
| 1487 ** the xUnlock() call and the current lock from SQLite's point | |
| 1488 ** of view, and | |
| 1489 ** | |
| 1490 ** 2) Only unlocks the file at all if this event is the last | |
| 1491 ** ASYNC_UNLOCK event on this file in the write-queue. | |
| 1492 */ | |
| 1493 assert( holdingMutex==1 ); | |
| 1494 assert( async.pQueueFirst==p ); | |
| 1495 for(pIter=async.pQueueFirst->pNext; pIter; pIter=pIter->pNext){ | |
| 1496 if( pIter->pFileData==pData && pIter->op==ASYNC_UNLOCK ) break; | |
| 1497 } | |
| 1498 if( !pIter ){ | |
| 1499 async_mutex_enter(ASYNC_MUTEX_LOCK); | |
| 1500 pData->lock.eAsyncLock = MIN( | |
| 1501 pData->lock.eAsyncLock, MAX(pData->lock.eLock, eLock) | |
| 1502 ); | |
| 1503 assert(pData->lock.eAsyncLock>=pData->lock.eLock); | |
| 1504 rc = getFileLock(pData->pLock); | |
| 1505 async_mutex_leave(ASYNC_MUTEX_LOCK); | |
| 1506 } | |
| 1507 break; | |
| 1508 } | |
| 1509 | |
| 1510 case ASYNC_DELETE: | |
| 1511 ASYNC_TRACE(("DELETE %s\n", p->zBuf)); | |
| 1512 rc = pVfs->xDelete(pVfs, p->zBuf, (int)p->iOffset); | |
| 1513 if( rc==SQLITE_IOERR_DELETE_NOENT ) rc = SQLITE_OK; | |
| 1514 break; | |
| 1515 | |
| 1516 case ASYNC_OPENEXCLUSIVE: { | |
| 1517 int flags = (int)p->iOffset; | |
| 1518 AsyncFileData *pData = p->pFileData; | |
| 1519 ASYNC_TRACE(("OPEN %s flags=%d\n", p->zBuf, (int)p->iOffset)); | |
| 1520 assert(pData->pBaseRead->pMethods==0 && pData->pBaseWrite->pMethods==0); | |
| 1521 rc = pVfs->xOpen(pVfs, pData->zName, pData->pBaseRead, flags, 0); | |
| 1522 assert( holdingMutex==0 ); | |
| 1523 async_mutex_enter(ASYNC_MUTEX_QUEUE); | |
| 1524 holdingMutex = 1; | |
| 1525 break; | |
| 1526 } | |
| 1527 | |
| 1528 default: assert(!"Illegal value for AsyncWrite.op"); | |
| 1529 } | |
| 1530 | |
| 1531 /* If we didn't hang on to the mutex during the IO op, obtain it now | |
| 1532 ** so that the AsyncWrite structure can be safely removed from the | |
| 1533 ** global write-op queue. | |
| 1534 */ | |
| 1535 if( !holdingMutex ){ | |
| 1536 async_mutex_enter(ASYNC_MUTEX_QUEUE); | |
| 1537 holdingMutex = 1; | |
| 1538 } | |
| 1539 /* ASYNC_TRACE(("UNLINK %p\n", p)); */ | |
| 1540 if( p==async.pQueueLast ){ | |
| 1541 async.pQueueLast = 0; | |
| 1542 } | |
| 1543 if( !doNotFree ){ | |
| 1544 assert_mutex_is_held(ASYNC_MUTEX_QUEUE); | |
| 1545 async.pQueueFirst = p->pNext; | |
| 1546 sqlite3_free(p); | |
| 1547 } | |
| 1548 assert( holdingMutex ); | |
| 1549 | |
| 1550 /* An IO error has occurred. We cannot report the error back to the | |
| 1551 ** connection that requested the I/O since the error happened | |
| 1552 ** asynchronously. The connection has already moved on. There | |
| 1553 ** really is nobody to report the error to. | |
| 1554 ** | |
| 1555 ** The file for which the error occurred may have been a database or | |
| 1556 ** journal file. Regardless, none of the currently queued operations | |
| 1557 ** associated with the same database should now be performed. Nor should | |
| 1558 ** any subsequently requested IO on either a database or journal file | |
| 1559 ** handle for the same database be accepted until the main database | |
| 1560 ** file handle has been closed and reopened. | |
| 1561 ** | |
| 1562 ** Furthermore, no further IO should be queued or performed on any file | |
| 1563 ** handle associated with a database that may have been part of a | |
| 1564 ** multi-file transaction that included the database associated with | |
| 1565 ** the IO error (i.e. a database ATTACHed to the same handle at some | |
| 1566 ** point in time). | |
| 1567 */ | |
| 1568 if( rc!=SQLITE_OK ){ | |
| 1569 async.ioError = rc; | |
| 1570 } | |
| 1571 | |
| 1572 if( async.ioError && !async.pQueueFirst ){ | |
| 1573 async_mutex_enter(ASYNC_MUTEX_LOCK); | |
| 1574 if( 0==async.pLock ){ | |
| 1575 async.ioError = SQLITE_OK; | |
| 1576 } | |
| 1577 async_mutex_leave(ASYNC_MUTEX_LOCK); | |
| 1578 } | |
| 1579 | |
| 1580 /* Drop the queue mutex before continuing to the next write operation | |
| 1581 ** in order to give other threads a chance to work with the write queue. | |
| 1582 */ | |
| 1583 if( !async.pQueueFirst || !async.ioError ){ | |
| 1584 async_mutex_leave(ASYNC_MUTEX_QUEUE); | |
| 1585 holdingMutex = 0; | |
| 1586 if( async.ioDelay>0 ){ | |
| 1587 pVfs->xSleep(pVfs, async.ioDelay*1000); | |
| 1588 }else{ | |
| 1589 async_sched_yield(); | |
| 1590 } | |
| 1591 } | |
| 1592 } | |
| 1593 | |
| 1594 async_mutex_leave(ASYNC_MUTEX_WRITER); | |
| 1595 return; | |
| 1596 } | |
| 1597 | |
| 1598 /* | |
| 1599 ** Install the asynchronous VFS. | |
| 1600 */ | |
| 1601 int sqlite3async_initialize(const char *zParent, int isDefault){ | |
| 1602 int rc = SQLITE_OK; | |
| 1603 if( async_vfs.pAppData==0 ){ | |
| 1604 sqlite3_vfs *pParent = sqlite3_vfs_find(zParent); | |
| 1605 if( !pParent || async_os_initialize() ){ | |
| 1606 rc = SQLITE_ERROR; | |
| 1607 }else if( SQLITE_OK!=(rc = sqlite3_vfs_register(&async_vfs, isDefault)) ){ | |
| 1608 async_os_shutdown(); | |
| 1609 }else{ | |
| 1610 async_vfs.pAppData = (void *)pParent; | |
| 1611 async_vfs.mxPathname = ((sqlite3_vfs *)async_vfs.pAppData)->mxPathname; | |
| 1612 } | |
| 1613 } | |
| 1614 return rc; | |
| 1615 } | |
| 1616 | |
| 1617 /* | |
| 1618 ** Uninstall the asynchronous VFS. | |
| 1619 */ | |
| 1620 void sqlite3async_shutdown(void){ | |
| 1621 if( async_vfs.pAppData ){ | |
| 1622 async_os_shutdown(); | |
| 1623 sqlite3_vfs_unregister((sqlite3_vfs *)&async_vfs); | |
| 1624 async_vfs.pAppData = 0; | |
| 1625 } | |
| 1626 } | |
| 1627 | |
| 1628 /* | |
| 1629 ** Process events on the write-queue. | |
| 1630 */ | |
| 1631 void sqlite3async_run(void){ | |
| 1632 asyncWriterThread(); | |
| 1633 } | |
| 1634 | |
| 1635 /* | |
| 1636 ** Control/configure the asynchronous IO system. | |
| 1637 */ | |
| 1638 int sqlite3async_control(int op, ...){ | |
| 1639 va_list ap; | |
| 1640 va_start(ap, op); | |
| 1641 switch( op ){ | |
| 1642 case SQLITEASYNC_HALT: { | |
| 1643 int eWhen = va_arg(ap, int); | |
| 1644 if( eWhen!=SQLITEASYNC_HALT_NEVER | |
| 1645 && eWhen!=SQLITEASYNC_HALT_NOW | |
| 1646 && eWhen!=SQLITEASYNC_HALT_IDLE | |
| 1647 ){ | |
| 1648 return SQLITE_MISUSE; | |
| 1649 } | |
| 1650 async.eHalt = eWhen; | |
| 1651 async_mutex_enter(ASYNC_MUTEX_QUEUE); | |
| 1652 async_cond_signal(ASYNC_COND_QUEUE); | |
| 1653 async_mutex_leave(ASYNC_MUTEX_QUEUE); | |
| 1654 break; | |
| 1655 } | |
| 1656 | |
| 1657 case SQLITEASYNC_DELAY: { | |
| 1658 int iDelay = va_arg(ap, int); | |
| 1659 if( iDelay<0 ){ | |
| 1660 return SQLITE_MISUSE; | |
| 1661 } | |
| 1662 async.ioDelay = iDelay; | |
| 1663 break; | |
| 1664 } | |
| 1665 | |
| 1666 case SQLITEASYNC_LOCKFILES: { | |
| 1667 int bLock = va_arg(ap, int); | |
| 1668 async_mutex_enter(ASYNC_MUTEX_QUEUE); | |
| 1669 if( async.nFile || async.pQueueFirst ){ | |
| 1670 async_mutex_leave(ASYNC_MUTEX_QUEUE); | |
| 1671 return SQLITE_MISUSE; | |
| 1672 } | |
| 1673 async.bLockFiles = bLock; | |
| 1674 async_mutex_leave(ASYNC_MUTEX_QUEUE); | |
| 1675 break; | |
| 1676 } | |
| 1677 | |
| 1678 case SQLITEASYNC_GET_HALT: { | |
| 1679 int *peWhen = va_arg(ap, int *); | |
| 1680 *peWhen = async.eHalt; | |
| 1681 break; | |
| 1682 } | |
| 1683 case SQLITEASYNC_GET_DELAY: { | |
| 1684 int *piDelay = va_arg(ap, int *); | |
| 1685 *piDelay = async.ioDelay; | |
| 1686 break; | |
| 1687 } | |
| 1688 case SQLITEASYNC_GET_LOCKFILES: { | |
| 1689 int *piDelay = va_arg(ap, int *); | |
| 1690 *piDelay = async.bLockFiles; | |
| 1691 break; | |
| 1692 } | |
| 1693 | |
| 1694 default: | |
| 1695 return SQLITE_ERROR; | |
| 1696 } | |
| 1697 return SQLITE_OK; | |
| 1698 } | |
| 1699 | |
| 1700 #endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_ASYNCIO) */ | |
| 1701 | |
| OLD | NEW |