OLD | NEW |
| (Empty) |
1 /* | |
2 ** 2005 December 14 | |
3 ** | |
4 ** The author disclaims copyright to this source code. In place of | |
5 ** a legal notice, here is a blessing: | |
6 ** | |
7 ** May you do good and not evil. | |
8 ** May you find forgiveness for yourself and forgive others. | |
9 ** May you share freely, never taking more than you give. | |
10 ** | |
11 ************************************************************************* | |
12 ** | |
13 ** $Id: sqlite3async.c,v 1.7 2009/07/18 11:52:04 danielk1977 Exp $ | |
14 ** | |
15 ** This file contains the implementation of an asynchronous IO backend | |
16 ** for SQLite. | |
17 */ | |
18 | |
19 #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_ASYNCIO) | |
20 | |
21 #include "sqlite3async.h" | |
22 #include "sqlite3.h" | |
23 #include <stdarg.h> | |
24 #include <string.h> | |
25 #include <assert.h> | |
26 | |
27 /* Useful macros used in several places */ | |
28 #define MIN(x,y) ((x)<(y)?(x):(y)) | |
29 #define MAX(x,y) ((x)>(y)?(x):(y)) | |
30 | |
31 #ifndef SQLITE_AMALGAMATION | |
32 /* Macro to mark parameters as unused and silence compiler warnings. */ | |
33 #define UNUSED_PARAMETER(x) (void)(x) | |
34 #endif | |
35 | |
36 /* Forward references */ | |
37 typedef struct AsyncWrite AsyncWrite; | |
38 typedef struct AsyncFile AsyncFile; | |
39 typedef struct AsyncFileData AsyncFileData; | |
40 typedef struct AsyncFileLock AsyncFileLock; | |
41 typedef struct AsyncLock AsyncLock; | |
42 | |
43 /* Enable for debugging */ | |
44 #ifndef NDEBUG | |
45 #include <stdio.h> | |
46 static int sqlite3async_trace = 0; | |
47 # define ASYNC_TRACE(X) if( sqlite3async_trace ) asyncTrace X | |
48 static void asyncTrace(const char *zFormat, ...){ | |
49 char *z; | |
50 va_list ap; | |
51 va_start(ap, zFormat); | |
52 z = sqlite3_vmprintf(zFormat, ap); | |
53 va_end(ap); | |
54 fprintf(stderr, "[%d] %s", 0 /* (int)pthread_self() */, z); | |
55 sqlite3_free(z); | |
56 } | |
57 #else | |
58 # define ASYNC_TRACE(X) | |
59 #endif | |
60 | |
61 /* | |
62 ** THREAD SAFETY NOTES | |
63 ** | |
64 ** Basic rules: | |
65 ** | |
66 ** * Both read and write access to the global write-op queue must be | |
67 ** protected by the async.queueMutex. As are the async.ioError and | |
68 ** async.nFile variables. | |
69 ** | |
70 ** * The async.pLock list and all AsyncLock and AsyncFileLock | |
71 ** structures must be protected by the async.lockMutex mutex. | |
72 ** | |
73 ** * The file handles from the underlying system are not assumed to | |
74 ** be thread safe. | |
75 ** | |
76 ** * See the last two paragraphs under "The Writer Thread" for | |
77 ** an assumption to do with file-handle synchronization by the Os. | |
78 ** | |
79 ** Deadlock prevention: | |
80 ** | |
81 ** There are three mutex used by the system: the "writer" mutex, | |
82 ** the "queue" mutex and the "lock" mutex. Rules are: | |
83 ** | |
84 ** * It is illegal to block on the writer mutex when any other mutex | |
85 ** are held, and | |
86 ** | |
87 ** * It is illegal to block on the queue mutex when the lock mutex | |
88 ** is held. | |
89 ** | |
90 ** i.e. mutex's must be grabbed in the order "writer", "queue", "lock". | |
91 ** | |
92 ** File system operations (invoked by SQLite thread): | |
93 ** | |
94 ** xOpen | |
95 ** xDelete | |
96 ** xFileExists | |
97 ** | |
98 ** File handle operations (invoked by SQLite thread): | |
99 ** | |
100 ** asyncWrite, asyncClose, asyncTruncate, asyncSync | |
101 ** | |
102 ** The operations above add an entry to the global write-op list. They | |
103 ** prepare the entry, acquire the async.queueMutex momentarily while | |
104 ** list pointers are manipulated to insert the new entry, then release | |
105 ** the mutex and signal the writer thread to wake up in case it happens | |
106 ** to be asleep. | |
107 ** | |
108 ** | |
109 ** asyncRead, asyncFileSize. | |
110 ** | |
111 ** Read operations. Both of these read from both the underlying file | |
112 ** first then adjust their result based on pending writes in the | |
113 ** write-op queue. So async.queueMutex is held for the duration | |
114 ** of these operations to prevent other threads from changing the | |
115 ** queue in mid operation. | |
116 ** | |
117 ** | |
118 ** asyncLock, asyncUnlock, asyncCheckReservedLock | |
119 ** | |
120 ** These primitives implement in-process locking using a hash table | |
121 ** on the file name. Files are locked correctly for connections coming | |
122 ** from the same process. But other processes cannot see these locks | |
123 ** and will therefore not honor them. | |
124 ** | |
125 ** | |
126 ** The writer thread: | |
127 ** | |
128 ** The async.writerMutex is used to make sure only there is only | |
129 ** a single writer thread running at a time. | |
130 ** | |
131 ** Inside the writer thread is a loop that works like this: | |
132 ** | |
133 ** WHILE (write-op list is not empty) | |
134 ** Do IO operation at head of write-op list | |
135 ** Remove entry from head of write-op list | |
136 ** END WHILE | |
137 ** | |
138 ** The async.queueMutex is always held during the <write-op list is | |
139 ** not empty> test, and when the entry is removed from the head | |
140 ** of the write-op list. Sometimes it is held for the interim | |
141 ** period (while the IO is performed), and sometimes it is | |
142 ** relinquished. It is relinquished if (a) the IO op is an | |
143 ** ASYNC_CLOSE or (b) when the file handle was opened, two of | |
144 ** the underlying systems handles were opened on the same | |
145 ** file-system entry. | |
146 ** | |
147 ** If condition (b) above is true, then one file-handle | |
148 ** (AsyncFile.pBaseRead) is used exclusively by sqlite threads to read the | |
149 ** file, the other (AsyncFile.pBaseWrite) by sqlite3_async_flush() | |
150 ** threads to perform write() operations. This means that read | |
151 ** operations are not blocked by asynchronous writes (although | |
152 ** asynchronous writes may still be blocked by reads). | |
153 ** | |
154 ** This assumes that the OS keeps two handles open on the same file | |
155 ** properly in sync. That is, any read operation that starts after a | |
156 ** write operation on the same file system entry has completed returns | |
157 ** data consistent with the write. We also assume that if one thread | |
158 ** reads a file while another is writing it all bytes other than the | |
159 ** ones actually being written contain valid data. | |
160 ** | |
161 ** If the above assumptions are not true, set the preprocessor symbol | |
162 ** SQLITE_ASYNC_TWO_FILEHANDLES to 0. | |
163 */ | |
164 | |
165 | |
166 #ifndef NDEBUG | |
167 # define TESTONLY( X ) X | |
168 #else | |
169 # define TESTONLY( X ) | |
170 #endif | |
171 | |
172 /* | |
173 ** PORTING FUNCTIONS | |
174 ** | |
175 ** There are two definitions of the following functions. One for pthreads | |
176 ** compatible systems and one for Win32. These functions isolate the OS | |
177 ** specific code required by each platform. | |
178 ** | |
179 ** The system uses three mutexes and a single condition variable. To | |
180 ** block on a mutex, async_mutex_enter() is called. The parameter passed | |
181 ** to async_mutex_enter(), which must be one of ASYNC_MUTEX_LOCK, | |
182 ** ASYNC_MUTEX_QUEUE or ASYNC_MUTEX_WRITER, identifies which of the three | |
183 ** mutexes to lock. Similarly, to unlock a mutex, async_mutex_leave() is | |
184 ** called with a parameter identifying the mutex being unlocked. Mutexes | |
185 ** are not recursive - it is an error to call async_mutex_enter() to | |
186 ** lock a mutex that is already locked, or to call async_mutex_leave() | |
187 ** to unlock a mutex that is not currently locked. | |
188 ** | |
189 ** The async_cond_wait() and async_cond_signal() functions are modelled | |
190 ** on the pthreads functions with similar names. The first parameter to | |
191 ** both functions is always ASYNC_COND_QUEUE. When async_cond_wait() | |
192 ** is called the mutex identified by the second parameter must be held. | |
193 ** The mutex is unlocked, and the calling thread simultaneously begins | |
194 ** waiting for the condition variable to be signalled by another thread. | |
195 ** After another thread signals the condition variable, the calling | |
196 ** thread stops waiting, locks mutex eMutex and returns. The | |
197 ** async_cond_signal() function is used to signal the condition variable. | |
198 ** It is assumed that the mutex used by the thread calling async_cond_wait() | |
199 ** is held by the caller of async_cond_signal() (otherwise there would be | |
200 ** a race condition). | |
201 ** | |
202 ** It is guaranteed that no other thread will call async_cond_wait() when | |
203 ** there is already a thread waiting on the condition variable. | |
204 ** | |
205 ** The async_sched_yield() function is called to suggest to the operating | |
206 ** system that it would be a good time to shift the current thread off the | |
207 ** CPU. The system will still work if this function is not implemented | |
208 ** (it is not currently implemented for win32), but it might be marginally | |
209 ** more efficient if it is. | |
210 */ | |
211 static void async_mutex_enter(int eMutex); | |
212 static void async_mutex_leave(int eMutex); | |
213 static void async_cond_wait(int eCond, int eMutex); | |
214 static void async_cond_signal(int eCond); | |
215 static void async_sched_yield(void); | |
216 | |
217 /* | |
218 ** There are also two definitions of the following. async_os_initialize() | |
219 ** is called when the asynchronous VFS is first installed, and os_shutdown() | |
220 ** is called when it is uninstalled (from within sqlite3async_shutdown()). | |
221 ** | |
222 ** For pthreads builds, both of these functions are no-ops. For win32, | |
223 ** they provide an opportunity to initialize and finalize the required | |
224 ** mutex and condition variables. | |
225 ** | |
226 ** If async_os_initialize() returns other than zero, then the initialization | |
227 ** fails and SQLITE_ERROR is returned to the user. | |
228 */ | |
229 static int async_os_initialize(void); | |
230 static void async_os_shutdown(void); | |
231 | |
232 /* Values for use as the 'eMutex' argument of the above functions. The | |
233 ** integer values assigned to these constants are important for assert() | |
234 ** statements that verify that mutexes are locked in the correct order. | |
235 ** Specifically, it is unsafe to try to lock mutex N while holding a lock | |
236 ** on mutex M if (M<=N). | |
237 */ | |
238 #define ASYNC_MUTEX_LOCK 0 | |
239 #define ASYNC_MUTEX_QUEUE 1 | |
240 #define ASYNC_MUTEX_WRITER 2 | |
241 | |
242 /* Values for use as the 'eCond' argument of the above functions. */ | |
243 #define ASYNC_COND_QUEUE 0 | |
244 | |
245 /************************************************************************* | |
246 ** Start of OS specific code. | |
247 */ | |
248 #if SQLITE_OS_WIN || defined(_WIN32) || defined(WIN32) || defined(__CYGWIN__) ||
defined(__MINGW32__) || defined(__BORLANDC__) | |
249 | |
250 #include <windows.h> | |
251 | |
252 /* The following block contains the win32 specific code. */ | |
253 | |
254 #define mutex_held(X) (GetCurrentThreadId()==primitives.aHolder[X]) | |
255 | |
256 static struct AsyncPrimitives { | |
257 int isInit; | |
258 DWORD aHolder[3]; | |
259 CRITICAL_SECTION aMutex[3]; | |
260 HANDLE aCond[1]; | |
261 } primitives = { 0 }; | |
262 | |
263 static int async_os_initialize(void){ | |
264 if( !primitives.isInit ){ | |
265 primitives.aCond[0] = CreateEvent(NULL, TRUE, FALSE, 0); | |
266 if( primitives.aCond[0]==NULL ){ | |
267 return 1; | |
268 } | |
269 InitializeCriticalSection(&primitives.aMutex[0]); | |
270 InitializeCriticalSection(&primitives.aMutex[1]); | |
271 InitializeCriticalSection(&primitives.aMutex[2]); | |
272 primitives.isInit = 1; | |
273 } | |
274 return 0; | |
275 } | |
276 static void async_os_shutdown(void){ | |
277 if( primitives.isInit ){ | |
278 DeleteCriticalSection(&primitives.aMutex[0]); | |
279 DeleteCriticalSection(&primitives.aMutex[1]); | |
280 DeleteCriticalSection(&primitives.aMutex[2]); | |
281 CloseHandle(primitives.aCond[0]); | |
282 primitives.isInit = 0; | |
283 } | |
284 } | |
285 | |
286 /* The following block contains the Win32 specific code. */ | |
287 static void async_mutex_enter(int eMutex){ | |
288 assert( eMutex==0 || eMutex==1 || eMutex==2 ); | |
289 assert( eMutex!=2 || (!mutex_held(0) && !mutex_held(1) && !mutex_held(2)) ); | |
290 assert( eMutex!=1 || (!mutex_held(0) && !mutex_held(1)) ); | |
291 assert( eMutex!=0 || (!mutex_held(0)) ); | |
292 EnterCriticalSection(&primitives.aMutex[eMutex]); | |
293 TESTONLY( primitives.aHolder[eMutex] = GetCurrentThreadId(); ) | |
294 } | |
295 static void async_mutex_leave(int eMutex){ | |
296 assert( eMutex==0 || eMutex==1 || eMutex==2 ); | |
297 assert( mutex_held(eMutex) ); | |
298 TESTONLY( primitives.aHolder[eMutex] = 0; ) | |
299 LeaveCriticalSection(&primitives.aMutex[eMutex]); | |
300 } | |
301 static void async_cond_wait(int eCond, int eMutex){ | |
302 ResetEvent(primitives.aCond[eCond]); | |
303 async_mutex_leave(eMutex); | |
304 WaitForSingleObject(primitives.aCond[eCond], INFINITE); | |
305 async_mutex_enter(eMutex); | |
306 } | |
307 static void async_cond_signal(int eCond){ | |
308 assert( mutex_held(ASYNC_MUTEX_QUEUE) ); | |
309 SetEvent(primitives.aCond[eCond]); | |
310 } | |
311 static void async_sched_yield(void){ | |
312 Sleep(0); | |
313 } | |
314 #else | |
315 | |
316 /* The following block contains the pthreads specific code. */ | |
317 #include <pthread.h> | |
318 #include <sched.h> | |
319 | |
320 #define mutex_held(X) pthread_equal(primitives.aHolder[X], pthread_self()) | |
321 | |
322 static int async_os_initialize(void) {return 0;} | |
323 static void async_os_shutdown(void) {} | |
324 | |
325 static struct AsyncPrimitives { | |
326 pthread_mutex_t aMutex[3]; | |
327 pthread_cond_t aCond[1]; | |
328 pthread_t aHolder[3]; | |
329 } primitives = { | |
330 { PTHREAD_MUTEX_INITIALIZER, | |
331 PTHREAD_MUTEX_INITIALIZER, | |
332 PTHREAD_MUTEX_INITIALIZER | |
333 } , { | |
334 PTHREAD_COND_INITIALIZER | |
335 } , { 0, 0, 0 } | |
336 }; | |
337 | |
338 static void async_mutex_enter(int eMutex){ | |
339 assert( eMutex==0 || eMutex==1 || eMutex==2 ); | |
340 assert( eMutex!=2 || (!mutex_held(0) && !mutex_held(1) && !mutex_held(2)) ); | |
341 assert( eMutex!=1 || (!mutex_held(0) && !mutex_held(1)) ); | |
342 assert( eMutex!=0 || (!mutex_held(0)) ); | |
343 pthread_mutex_lock(&primitives.aMutex[eMutex]); | |
344 TESTONLY( primitives.aHolder[eMutex] = pthread_self(); ) | |
345 } | |
346 static void async_mutex_leave(int eMutex){ | |
347 assert( eMutex==0 || eMutex==1 || eMutex==2 ); | |
348 assert( mutex_held(eMutex) ); | |
349 TESTONLY( primitives.aHolder[eMutex] = 0; ) | |
350 pthread_mutex_unlock(&primitives.aMutex[eMutex]); | |
351 } | |
352 static void async_cond_wait(int eCond, int eMutex){ | |
353 assert( eMutex==0 || eMutex==1 || eMutex==2 ); | |
354 assert( mutex_held(eMutex) ); | |
355 TESTONLY( primitives.aHolder[eMutex] = 0; ) | |
356 pthread_cond_wait(&primitives.aCond[eCond], &primitives.aMutex[eMutex]); | |
357 TESTONLY( primitives.aHolder[eMutex] = pthread_self(); ) | |
358 } | |
359 static void async_cond_signal(int eCond){ | |
360 assert( mutex_held(ASYNC_MUTEX_QUEUE) ); | |
361 pthread_cond_signal(&primitives.aCond[eCond]); | |
362 } | |
363 static void async_sched_yield(void){ | |
364 sched_yield(); | |
365 } | |
366 #endif | |
367 /* | |
368 ** End of OS specific code. | |
369 *************************************************************************/ | |
370 | |
371 #define assert_mutex_is_held(X) assert( mutex_held(X) ) | |
372 | |
373 | |
374 #ifndef SQLITE_ASYNC_TWO_FILEHANDLES | |
375 /* #define SQLITE_ASYNC_TWO_FILEHANDLES 0 */ | |
376 #define SQLITE_ASYNC_TWO_FILEHANDLES 1 | |
377 #endif | |
378 | |
379 /* | |
380 ** State information is held in the static variable "async" defined | |
381 ** as the following structure. | |
382 ** | |
383 ** Both async.ioError and async.nFile are protected by async.queueMutex. | |
384 */ | |
385 static struct TestAsyncStaticData { | |
386 AsyncWrite *pQueueFirst; /* Next write operation to be processed */ | |
387 AsyncWrite *pQueueLast; /* Last write operation on the list */ | |
388 AsyncLock *pLock; /* Linked list of all AsyncLock structures */ | |
389 volatile int ioDelay; /* Extra delay between write operations */ | |
390 volatile int eHalt; /* One of the SQLITEASYNC_HALT_XXX values */ | |
391 volatile int bLockFiles; /* Current value of "lockfiles" parameter */ | |
392 int ioError; /* True if an IO error has occurred */ | |
393 int nFile; /* Number of open files (from sqlite pov) */ | |
394 } async = { 0,0,0,0,0,1,0,0 }; | |
395 | |
396 /* Possible values of AsyncWrite.op */ | |
397 #define ASYNC_NOOP 0 | |
398 #define ASYNC_WRITE 1 | |
399 #define ASYNC_SYNC 2 | |
400 #define ASYNC_TRUNCATE 3 | |
401 #define ASYNC_CLOSE 4 | |
402 #define ASYNC_DELETE 5 | |
403 #define ASYNC_OPENEXCLUSIVE 6 | |
404 #define ASYNC_UNLOCK 7 | |
405 | |
406 /* Names of opcodes. Used for debugging only. | |
407 ** Make sure these stay in sync with the macros above! | |
408 */ | |
409 static const char *azOpcodeName[] = { | |
410 "NOOP", "WRITE", "SYNC", "TRUNCATE", "CLOSE", "DELETE", "OPENEX", "UNLOCK" | |
411 }; | |
412 | |
413 /* | |
414 ** Entries on the write-op queue are instances of the AsyncWrite | |
415 ** structure, defined here. | |
416 ** | |
417 ** The interpretation of the iOffset and nByte variables varies depending | |
418 ** on the value of AsyncWrite.op: | |
419 ** | |
420 ** ASYNC_NOOP: | |
421 ** No values used. | |
422 ** | |
423 ** ASYNC_WRITE: | |
424 ** iOffset -> Offset in file to write to. | |
425 ** nByte -> Number of bytes of data to write (pointed to by zBuf). | |
426 ** | |
427 ** ASYNC_SYNC: | |
428 ** nByte -> flags to pass to sqlite3OsSync(). | |
429 ** | |
430 ** ASYNC_TRUNCATE: | |
431 ** iOffset -> Size to truncate file to. | |
432 ** nByte -> Unused. | |
433 ** | |
434 ** ASYNC_CLOSE: | |
435 ** iOffset -> Unused. | |
436 ** nByte -> Unused. | |
437 ** | |
438 ** ASYNC_DELETE: | |
439 ** iOffset -> Contains the "syncDir" flag. | |
440 ** nByte -> Number of bytes of zBuf points to (file name). | |
441 ** | |
442 ** ASYNC_OPENEXCLUSIVE: | |
443 ** iOffset -> Value of "delflag". | |
444 ** nByte -> Number of bytes of zBuf points to (file name). | |
445 ** | |
446 ** ASYNC_UNLOCK: | |
447 ** nByte -> Argument to sqlite3OsUnlock(). | |
448 ** | |
449 ** | |
450 ** For an ASYNC_WRITE operation, zBuf points to the data to write to the file. | |
451 ** This space is sqlite3_malloc()d along with the AsyncWrite structure in a | |
452 ** single blob, so is deleted when sqlite3_free() is called on the parent | |
453 ** structure. | |
454 */ | |
455 struct AsyncWrite { | |
456 AsyncFileData *pFileData; /* File to write data to or sync */ | |
457 int op; /* One of ASYNC_xxx etc. */ | |
458 sqlite_int64 iOffset; /* See above */ | |
459 int nByte; /* See above */ | |
460 char *zBuf; /* Data to write to file (or NULL if op!=ASYNC_WRITE) */ | |
461 AsyncWrite *pNext; /* Next write operation (to any file) */ | |
462 }; | |
463 | |
464 /* | |
465 ** An instance of this structure is created for each distinct open file | |
466 ** (i.e. if two handles are opened on the one file, only one of these | |
467 ** structures is allocated) and stored in the async.aLock hash table. The | |
468 ** keys for async.aLock are the full pathnames of the opened files. | |
469 ** | |
470 ** AsyncLock.pList points to the head of a linked list of AsyncFileLock | |
471 ** structures, one for each handle currently open on the file. | |
472 ** | |
473 ** If the opened file is not a main-database (the SQLITE_OPEN_MAIN_DB is | |
474 ** not passed to the sqlite3OsOpen() call), or if async.bLockFiles is | |
475 ** false, variables AsyncLock.pFile and AsyncLock.eLock are never used. | |
476 ** Otherwise, pFile is a file handle opened on the file in question and | |
477 ** used to obtain the file-system locks required by database connections | |
478 ** within this process. | |
479 ** | |
480 ** See comments above the asyncLock() function for more details on | |
481 ** the implementation of database locking used by this backend. | |
482 */ | |
483 struct AsyncLock { | |
484 char *zFile; | |
485 int nFile; | |
486 sqlite3_file *pFile; | |
487 int eLock; | |
488 AsyncFileLock *pList; | |
489 AsyncLock *pNext; /* Next in linked list headed by async.pLock */ | |
490 }; | |
491 | |
492 /* | |
493 ** An instance of the following structure is allocated along with each | |
494 ** AsyncFileData structure (see AsyncFileData.lock), but is only used if the | |
495 ** file was opened with the SQLITE_OPEN_MAIN_DB. | |
496 */ | |
497 struct AsyncFileLock { | |
498 int eLock; /* Internally visible lock state (sqlite pov) */ | |
499 int eAsyncLock; /* Lock-state with write-queue unlock */ | |
500 AsyncFileLock *pNext; | |
501 }; | |
502 | |
503 /* | |
504 ** The AsyncFile structure is a subclass of sqlite3_file used for | |
505 ** asynchronous IO. | |
506 ** | |
507 ** All of the actual data for the structure is stored in the structure | |
508 ** pointed to by AsyncFile.pData, which is allocated as part of the | |
509 ** sqlite3OsOpen() using sqlite3_malloc(). The reason for this is that the | |
510 ** lifetime of the AsyncFile structure is ended by the caller after OsClose() | |
511 ** is called, but the data in AsyncFileData may be required by the | |
512 ** writer thread after that point. | |
513 */ | |
514 struct AsyncFile { | |
515 sqlite3_io_methods *pMethod; | |
516 AsyncFileData *pData; | |
517 }; | |
518 struct AsyncFileData { | |
519 char *zName; /* Underlying OS filename - used for debugging */ | |
520 int nName; /* Number of characters in zName */ | |
521 sqlite3_file *pBaseRead; /* Read handle to the underlying Os file */ | |
522 sqlite3_file *pBaseWrite; /* Write handle to the underlying Os file */ | |
523 AsyncFileLock lock; /* Lock state for this handle */ | |
524 AsyncLock *pLock; /* AsyncLock object for this file system entry */ | |
525 AsyncWrite closeOp; /* Preallocated close operation */ | |
526 }; | |
527 | |
528 /* | |
529 ** Add an entry to the end of the global write-op list. pWrite should point | |
530 ** to an AsyncWrite structure allocated using sqlite3_malloc(). The writer | |
531 ** thread will call sqlite3_free() to free the structure after the specified | |
532 ** operation has been completed. | |
533 ** | |
534 ** Once an AsyncWrite structure has been added to the list, it becomes the | |
535 ** property of the writer thread and must not be read or modified by the | |
536 ** caller. | |
537 */ | |
538 static void addAsyncWrite(AsyncWrite *pWrite){ | |
539 /* We must hold the queue mutex in order to modify the queue pointers */ | |
540 if( pWrite->op!=ASYNC_UNLOCK ){ | |
541 async_mutex_enter(ASYNC_MUTEX_QUEUE); | |
542 } | |
543 | |
544 /* Add the record to the end of the write-op queue */ | |
545 assert( !pWrite->pNext ); | |
546 if( async.pQueueLast ){ | |
547 assert( async.pQueueFirst ); | |
548 async.pQueueLast->pNext = pWrite; | |
549 }else{ | |
550 async.pQueueFirst = pWrite; | |
551 } | |
552 async.pQueueLast = pWrite; | |
553 ASYNC_TRACE(("PUSH %p (%s %s %d)\n", pWrite, azOpcodeName[pWrite->op], | |
554 pWrite->pFileData ? pWrite->pFileData->zName : "-", pWrite->iOffset)); | |
555 | |
556 if( pWrite->op==ASYNC_CLOSE ){ | |
557 async.nFile--; | |
558 } | |
559 | |
560 /* The writer thread might have been idle because there was nothing | |
561 ** on the write-op queue for it to do. So wake it up. */ | |
562 async_cond_signal(ASYNC_COND_QUEUE); | |
563 | |
564 /* Drop the queue mutex */ | |
565 if( pWrite->op!=ASYNC_UNLOCK ){ | |
566 async_mutex_leave(ASYNC_MUTEX_QUEUE); | |
567 } | |
568 } | |
569 | |
570 /* | |
571 ** Increment async.nFile in a thread-safe manner. | |
572 */ | |
573 static void incrOpenFileCount(void){ | |
574 /* We must hold the queue mutex in order to modify async.nFile */ | |
575 async_mutex_enter(ASYNC_MUTEX_QUEUE); | |
576 if( async.nFile==0 ){ | |
577 async.ioError = SQLITE_OK; | |
578 } | |
579 async.nFile++; | |
580 async_mutex_leave(ASYNC_MUTEX_QUEUE); | |
581 } | |
582 | |
583 /* | |
584 ** This is a utility function to allocate and populate a new AsyncWrite | |
585 ** structure and insert it (via addAsyncWrite() ) into the global list. | |
586 */ | |
587 static int addNewAsyncWrite( | |
588 AsyncFileData *pFileData, | |
589 int op, | |
590 sqlite3_int64 iOffset, | |
591 int nByte, | |
592 const char *zByte | |
593 ){ | |
594 AsyncWrite *p; | |
595 if( op!=ASYNC_CLOSE && async.ioError ){ | |
596 return async.ioError; | |
597 } | |
598 p = sqlite3_malloc(sizeof(AsyncWrite) + (zByte?nByte:0)); | |
599 if( !p ){ | |
600 /* The upper layer does not expect operations like OsWrite() to | |
601 ** return SQLITE_NOMEM. This is partly because under normal conditions | |
602 ** SQLite is required to do rollback without calling malloc(). So | |
603 ** if malloc() fails here, treat it as an I/O error. The above | |
604 ** layer knows how to handle that. | |
605 */ | |
606 return SQLITE_IOERR; | |
607 } | |
608 p->op = op; | |
609 p->iOffset = iOffset; | |
610 p->nByte = nByte; | |
611 p->pFileData = pFileData; | |
612 p->pNext = 0; | |
613 if( zByte ){ | |
614 p->zBuf = (char *)&p[1]; | |
615 memcpy(p->zBuf, zByte, nByte); | |
616 }else{ | |
617 p->zBuf = 0; | |
618 } | |
619 addAsyncWrite(p); | |
620 return SQLITE_OK; | |
621 } | |
622 | |
623 /* | |
624 ** Close the file. This just adds an entry to the write-op list, the file is | |
625 ** not actually closed. | |
626 */ | |
627 static int asyncClose(sqlite3_file *pFile){ | |
628 AsyncFileData *p = ((AsyncFile *)pFile)->pData; | |
629 | |
630 /* Unlock the file, if it is locked */ | |
631 async_mutex_enter(ASYNC_MUTEX_LOCK); | |
632 p->lock.eLock = 0; | |
633 async_mutex_leave(ASYNC_MUTEX_LOCK); | |
634 | |
635 addAsyncWrite(&p->closeOp); | |
636 return SQLITE_OK; | |
637 } | |
638 | |
639 /* | |
640 ** Implementation of sqlite3OsWrite() for asynchronous files. Instead of | |
641 ** writing to the underlying file, this function adds an entry to the end of | |
642 ** the global AsyncWrite list. Either SQLITE_OK or SQLITE_NOMEM may be | |
643 ** returned. | |
644 */ | |
645 static int asyncWrite( | |
646 sqlite3_file *pFile, | |
647 const void *pBuf, | |
648 int amt, | |
649 sqlite3_int64 iOff | |
650 ){ | |
651 AsyncFileData *p = ((AsyncFile *)pFile)->pData; | |
652 return addNewAsyncWrite(p, ASYNC_WRITE, iOff, amt, pBuf); | |
653 } | |
654 | |
655 /* | |
656 ** Read data from the file. First we read from the filesystem, then adjust | |
657 ** the contents of the buffer based on ASYNC_WRITE operations in the | |
658 ** write-op queue. | |
659 ** | |
660 ** This method holds the mutex from start to finish. | |
661 */ | |
662 static int asyncRead( | |
663 sqlite3_file *pFile, | |
664 void *zOut, | |
665 int iAmt, | |
666 sqlite3_int64 iOffset | |
667 ){ | |
668 AsyncFileData *p = ((AsyncFile *)pFile)->pData; | |
669 int rc = SQLITE_OK; | |
670 sqlite3_int64 filesize = 0; | |
671 sqlite3_file *pBase = p->pBaseRead; | |
672 sqlite3_int64 iAmt64 = (sqlite3_int64)iAmt; | |
673 | |
674 /* Grab the write queue mutex for the duration of the call */ | |
675 async_mutex_enter(ASYNC_MUTEX_QUEUE); | |
676 | |
677 /* If an I/O error has previously occurred in this virtual file | |
678 ** system, then all subsequent operations fail. | |
679 */ | |
680 if( async.ioError!=SQLITE_OK ){ | |
681 rc = async.ioError; | |
682 goto asyncread_out; | |
683 } | |
684 | |
685 if( pBase->pMethods ){ | |
686 sqlite3_int64 nRead; | |
687 rc = pBase->pMethods->xFileSize(pBase, &filesize); | |
688 if( rc!=SQLITE_OK ){ | |
689 goto asyncread_out; | |
690 } | |
691 nRead = MIN(filesize - iOffset, iAmt64); | |
692 if( nRead>0 ){ | |
693 rc = pBase->pMethods->xRead(pBase, zOut, (int)nRead, iOffset); | |
694 ASYNC_TRACE(("READ %s %d bytes at %d\n", p->zName, nRead, iOffset)); | |
695 } | |
696 } | |
697 | |
698 if( rc==SQLITE_OK ){ | |
699 AsyncWrite *pWrite; | |
700 char *zName = p->zName; | |
701 | |
702 for(pWrite=async.pQueueFirst; pWrite; pWrite = pWrite->pNext){ | |
703 if( pWrite->op==ASYNC_WRITE && ( | |
704 (pWrite->pFileData==p) || | |
705 (zName && pWrite->pFileData->zName==zName) | |
706 )){ | |
707 sqlite3_int64 nCopy; | |
708 sqlite3_int64 nByte64 = (sqlite3_int64)pWrite->nByte; | |
709 | |
710 /* Set variable iBeginIn to the offset in buffer pWrite->zBuf[] from | |
711 ** which data should be copied. Set iBeginOut to the offset within | |
712 ** the output buffer to which data should be copied. If either of | |
713 ** these offsets is a negative number, set them to 0. | |
714 */ | |
715 sqlite3_int64 iBeginOut = (pWrite->iOffset-iOffset); | |
716 sqlite3_int64 iBeginIn = -iBeginOut; | |
717 if( iBeginIn<0 ) iBeginIn = 0; | |
718 if( iBeginOut<0 ) iBeginOut = 0; | |
719 | |
720 filesize = MAX(filesize, pWrite->iOffset+nByte64); | |
721 | |
722 nCopy = MIN(nByte64-iBeginIn, iAmt64-iBeginOut); | |
723 if( nCopy>0 ){ | |
724 memcpy(&((char *)zOut)[iBeginOut], &pWrite->zBuf[iBeginIn], (size_t)nC
opy); | |
725 ASYNC_TRACE(("OVERREAD %d bytes at %d\n", nCopy, iBeginOut+iOffset)); | |
726 } | |
727 } | |
728 } | |
729 } | |
730 | |
731 asyncread_out: | |
732 async_mutex_leave(ASYNC_MUTEX_QUEUE); | |
733 if( rc==SQLITE_OK && filesize<(iOffset+iAmt) ){ | |
734 rc = SQLITE_IOERR_SHORT_READ; | |
735 } | |
736 return rc; | |
737 } | |
738 | |
739 /* | |
740 ** Truncate the file to nByte bytes in length. This just adds an entry to | |
741 ** the write-op list, no IO actually takes place. | |
742 */ | |
743 static int asyncTruncate(sqlite3_file *pFile, sqlite3_int64 nByte){ | |
744 AsyncFileData *p = ((AsyncFile *)pFile)->pData; | |
745 return addNewAsyncWrite(p, ASYNC_TRUNCATE, nByte, 0, 0); | |
746 } | |
747 | |
748 /* | |
749 ** Sync the file. This just adds an entry to the write-op list, the | |
750 ** sync() is done later by sqlite3_async_flush(). | |
751 */ | |
752 static int asyncSync(sqlite3_file *pFile, int flags){ | |
753 AsyncFileData *p = ((AsyncFile *)pFile)->pData; | |
754 return addNewAsyncWrite(p, ASYNC_SYNC, 0, flags, 0); | |
755 } | |
756 | |
757 /* | |
758 ** Read the size of the file. First we read the size of the file system | |
759 ** entry, then adjust for any ASYNC_WRITE or ASYNC_TRUNCATE operations | |
760 ** currently in the write-op list. | |
761 ** | |
762 ** This method holds the mutex from start to finish. | |
763 */ | |
764 int asyncFileSize(sqlite3_file *pFile, sqlite3_int64 *piSize){ | |
765 AsyncFileData *p = ((AsyncFile *)pFile)->pData; | |
766 int rc = SQLITE_OK; | |
767 sqlite3_int64 s = 0; | |
768 sqlite3_file *pBase; | |
769 | |
770 async_mutex_enter(ASYNC_MUTEX_QUEUE); | |
771 | |
772 /* Read the filesystem size from the base file. If pMethods is NULL, this | |
773 ** means the file hasn't been opened yet. In this case all relevant data | |
774 ** must be in the write-op queue anyway, so we can omit reading from the | |
775 ** file-system. | |
776 */ | |
777 pBase = p->pBaseRead; | |
778 if( pBase->pMethods ){ | |
779 rc = pBase->pMethods->xFileSize(pBase, &s); | |
780 } | |
781 | |
782 if( rc==SQLITE_OK ){ | |
783 AsyncWrite *pWrite; | |
784 for(pWrite=async.pQueueFirst; pWrite; pWrite = pWrite->pNext){ | |
785 if( pWrite->op==ASYNC_DELETE | |
786 && p->zName | |
787 && strcmp(p->zName, pWrite->zBuf)==0 | |
788 ){ | |
789 s = 0; | |
790 }else if( pWrite->pFileData && ( | |
791 (pWrite->pFileData==p) | |
792 || (p->zName && pWrite->pFileData->zName==p->zName) | |
793 )){ | |
794 switch( pWrite->op ){ | |
795 case ASYNC_WRITE: | |
796 s = MAX(pWrite->iOffset + (sqlite3_int64)(pWrite->nByte), s); | |
797 break; | |
798 case ASYNC_TRUNCATE: | |
799 s = MIN(s, pWrite->iOffset); | |
800 break; | |
801 } | |
802 } | |
803 } | |
804 *piSize = s; | |
805 } | |
806 async_mutex_leave(ASYNC_MUTEX_QUEUE); | |
807 return rc; | |
808 } | |
809 | |
810 /* | |
811 ** Lock or unlock the actual file-system entry. | |
812 */ | |
813 static int getFileLock(AsyncLock *pLock){ | |
814 int rc = SQLITE_OK; | |
815 AsyncFileLock *pIter; | |
816 int eRequired = 0; | |
817 | |
818 if( pLock->pFile ){ | |
819 for(pIter=pLock->pList; pIter; pIter=pIter->pNext){ | |
820 assert(pIter->eAsyncLock>=pIter->eLock); | |
821 if( pIter->eAsyncLock>eRequired ){ | |
822 eRequired = pIter->eAsyncLock; | |
823 assert(eRequired>=0 && eRequired<=SQLITE_LOCK_EXCLUSIVE); | |
824 } | |
825 } | |
826 | |
827 if( eRequired>pLock->eLock ){ | |
828 rc = pLock->pFile->pMethods->xLock(pLock->pFile, eRequired); | |
829 if( rc==SQLITE_OK ){ | |
830 pLock->eLock = eRequired; | |
831 } | |
832 } | |
833 else if( eRequired<pLock->eLock && eRequired<=SQLITE_LOCK_SHARED ){ | |
834 rc = pLock->pFile->pMethods->xUnlock(pLock->pFile, eRequired); | |
835 if( rc==SQLITE_OK ){ | |
836 pLock->eLock = eRequired; | |
837 } | |
838 } | |
839 } | |
840 | |
841 return rc; | |
842 } | |
843 | |
844 /* | |
845 ** Return the AsyncLock structure from the global async.pLock list | |
846 ** associated with the file-system entry identified by path zName | |
847 ** (a string of nName bytes). If no such structure exists, return 0. | |
848 */ | |
849 static AsyncLock *findLock(const char *zName, int nName){ | |
850 AsyncLock *p = async.pLock; | |
851 while( p && (p->nFile!=nName || memcmp(p->zFile, zName, nName)) ){ | |
852 p = p->pNext; | |
853 } | |
854 return p; | |
855 } | |
856 | |
857 /* | |
858 ** The following two methods - asyncLock() and asyncUnlock() - are used | |
859 ** to obtain and release locks on database files opened with the | |
860 ** asynchronous backend. | |
861 */ | |
862 static int asyncLock(sqlite3_file *pFile, int eLock){ | |
863 int rc = SQLITE_OK; | |
864 AsyncFileData *p = ((AsyncFile *)pFile)->pData; | |
865 | |
866 if( p->zName ){ | |
867 async_mutex_enter(ASYNC_MUTEX_LOCK); | |
868 if( p->lock.eLock<eLock ){ | |
869 AsyncLock *pLock = p->pLock; | |
870 AsyncFileLock *pIter; | |
871 assert(pLock && pLock->pList); | |
872 for(pIter=pLock->pList; pIter; pIter=pIter->pNext){ | |
873 if( pIter!=&p->lock && ( | |
874 (eLock==SQLITE_LOCK_EXCLUSIVE && pIter->eLock>=SQLITE_LOCK_SHARED) || | |
875 (eLock==SQLITE_LOCK_PENDING && pIter->eLock>=SQLITE_LOCK_RESERVED) || | |
876 (eLock==SQLITE_LOCK_RESERVED && pIter->eLock>=SQLITE_LOCK_RESERVED) || | |
877 (eLock==SQLITE_LOCK_SHARED && pIter->eLock>=SQLITE_LOCK_PENDING) | |
878 )){ | |
879 rc = SQLITE_BUSY; | |
880 } | |
881 } | |
882 if( rc==SQLITE_OK ){ | |
883 p->lock.eLock = eLock; | |
884 p->lock.eAsyncLock = MAX(p->lock.eAsyncLock, eLock); | |
885 } | |
886 assert(p->lock.eAsyncLock>=p->lock.eLock); | |
887 if( rc==SQLITE_OK ){ | |
888 rc = getFileLock(pLock); | |
889 } | |
890 } | |
891 async_mutex_leave(ASYNC_MUTEX_LOCK); | |
892 } | |
893 | |
894 ASYNC_TRACE(("LOCK %d (%s) rc=%d\n", eLock, p->zName, rc)); | |
895 return rc; | |
896 } | |
897 static int asyncUnlock(sqlite3_file *pFile, int eLock){ | |
898 int rc = SQLITE_OK; | |
899 AsyncFileData *p = ((AsyncFile *)pFile)->pData; | |
900 if( p->zName ){ | |
901 AsyncFileLock *pLock = &p->lock; | |
902 async_mutex_enter(ASYNC_MUTEX_QUEUE); | |
903 async_mutex_enter(ASYNC_MUTEX_LOCK); | |
904 pLock->eLock = MIN(pLock->eLock, eLock); | |
905 rc = addNewAsyncWrite(p, ASYNC_UNLOCK, 0, eLock, 0); | |
906 async_mutex_leave(ASYNC_MUTEX_LOCK); | |
907 async_mutex_leave(ASYNC_MUTEX_QUEUE); | |
908 } | |
909 return rc; | |
910 } | |
911 | |
912 /* | |
913 ** This function is called when the pager layer first opens a database file | |
914 ** and is checking for a hot-journal. | |
915 */ | |
916 static int asyncCheckReservedLock(sqlite3_file *pFile, int *pResOut){ | |
917 int ret = 0; | |
918 AsyncFileLock *pIter; | |
919 AsyncFileData *p = ((AsyncFile *)pFile)->pData; | |
920 | |
921 async_mutex_enter(ASYNC_MUTEX_LOCK); | |
922 for(pIter=p->pLock->pList; pIter; pIter=pIter->pNext){ | |
923 if( pIter->eLock>=SQLITE_LOCK_RESERVED ){ | |
924 ret = 1; | |
925 break; | |
926 } | |
927 } | |
928 async_mutex_leave(ASYNC_MUTEX_LOCK); | |
929 | |
930 ASYNC_TRACE(("CHECK-LOCK %d (%s)\n", ret, p->zName)); | |
931 *pResOut = ret; | |
932 return SQLITE_OK; | |
933 } | |
934 | |
935 /* | |
936 ** sqlite3_file_control() implementation. | |
937 */ | |
938 static int asyncFileControl(sqlite3_file *id, int op, void *pArg){ | |
939 switch( op ){ | |
940 case SQLITE_FCNTL_LOCKSTATE: { | |
941 async_mutex_enter(ASYNC_MUTEX_LOCK); | |
942 *(int*)pArg = ((AsyncFile*)id)->pData->lock.eLock; | |
943 async_mutex_leave(ASYNC_MUTEX_LOCK); | |
944 return SQLITE_OK; | |
945 } | |
946 } | |
947 return SQLITE_NOTFOUND; | |
948 } | |
949 | |
950 /* | |
951 ** Return the device characteristics and sector-size of the device. It | |
952 ** is tricky to implement these correctly, as this backend might | |
953 ** not have an open file handle at this point. | |
954 */ | |
955 static int asyncSectorSize(sqlite3_file *pFile){ | |
956 UNUSED_PARAMETER(pFile); | |
957 return 512; | |
958 } | |
959 static int asyncDeviceCharacteristics(sqlite3_file *pFile){ | |
960 UNUSED_PARAMETER(pFile); | |
961 return 0; | |
962 } | |
963 | |
964 static int unlinkAsyncFile(AsyncFileData *pData){ | |
965 AsyncFileLock **ppIter; | |
966 int rc = SQLITE_OK; | |
967 | |
968 if( pData->zName ){ | |
969 AsyncLock *pLock = pData->pLock; | |
970 for(ppIter=&pLock->pList; *ppIter; ppIter=&((*ppIter)->pNext)){ | |
971 if( (*ppIter)==&pData->lock ){ | |
972 *ppIter = pData->lock.pNext; | |
973 break; | |
974 } | |
975 } | |
976 if( !pLock->pList ){ | |
977 AsyncLock **pp; | |
978 if( pLock->pFile ){ | |
979 pLock->pFile->pMethods->xClose(pLock->pFile); | |
980 } | |
981 for(pp=&async.pLock; *pp!=pLock; pp=&((*pp)->pNext)); | |
982 *pp = pLock->pNext; | |
983 sqlite3_free(pLock); | |
984 }else{ | |
985 rc = getFileLock(pLock); | |
986 } | |
987 } | |
988 | |
989 return rc; | |
990 } | |
991 | |
992 /* | |
993 ** The parameter passed to this function is a copy of a 'flags' parameter | |
994 ** passed to this modules xOpen() method. This function returns true | |
995 ** if the file should be opened asynchronously, or false if it should | |
996 ** be opened immediately. | |
997 ** | |
998 ** If the file is to be opened asynchronously, then asyncOpen() will add | |
999 ** an entry to the event queue and the file will not actually be opened | |
1000 ** until the event is processed. Otherwise, the file is opened directly | |
1001 ** by the caller. | |
1002 */ | |
1003 static int doAsynchronousOpen(int flags){ | |
1004 return (flags&SQLITE_OPEN_CREATE) && ( | |
1005 (flags&SQLITE_OPEN_MAIN_JOURNAL) || | |
1006 (flags&SQLITE_OPEN_TEMP_JOURNAL) || | |
1007 (flags&SQLITE_OPEN_DELETEONCLOSE) | |
1008 ); | |
1009 } | |
1010 | |
1011 /* | |
1012 ** Open a file. | |
1013 */ | |
1014 static int asyncOpen( | |
1015 sqlite3_vfs *pAsyncVfs, | |
1016 const char *zName, | |
1017 sqlite3_file *pFile, | |
1018 int flags, | |
1019 int *pOutFlags | |
1020 ){ | |
1021 static sqlite3_io_methods async_methods = { | |
1022 1, /* iVersion */ | |
1023 asyncClose, /* xClose */ | |
1024 asyncRead, /* xRead */ | |
1025 asyncWrite, /* xWrite */ | |
1026 asyncTruncate, /* xTruncate */ | |
1027 asyncSync, /* xSync */ | |
1028 asyncFileSize, /* xFileSize */ | |
1029 asyncLock, /* xLock */ | |
1030 asyncUnlock, /* xUnlock */ | |
1031 asyncCheckReservedLock, /* xCheckReservedLock */ | |
1032 asyncFileControl, /* xFileControl */ | |
1033 asyncSectorSize, /* xSectorSize */ | |
1034 asyncDeviceCharacteristics /* xDeviceCharacteristics */ | |
1035 }; | |
1036 | |
1037 sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData; | |
1038 AsyncFile *p = (AsyncFile *)pFile; | |
1039 int nName = 0; | |
1040 int rc = SQLITE_OK; | |
1041 int nByte; | |
1042 AsyncFileData *pData; | |
1043 AsyncLock *pLock = 0; | |
1044 char *z; | |
1045 int isAsyncOpen = doAsynchronousOpen(flags); | |
1046 | |
1047 /* If zName is NULL, then the upper layer is requesting an anonymous file. | |
1048 ** Otherwise, allocate enough space to make a copy of the file name (along | |
1049 ** with the second nul-terminator byte required by xOpen). | |
1050 */ | |
1051 if( zName ){ | |
1052 nName = (int)strlen(zName); | |
1053 } | |
1054 | |
1055 nByte = ( | |
1056 sizeof(AsyncFileData) + /* AsyncFileData structure */ | |
1057 2 * pVfs->szOsFile + /* AsyncFileData.pBaseRead and pBaseWrite */ | |
1058 nName + 2 /* AsyncFileData.zName */ | |
1059 ); | |
1060 z = sqlite3_malloc(nByte); | |
1061 if( !z ){ | |
1062 return SQLITE_NOMEM; | |
1063 } | |
1064 memset(z, 0, nByte); | |
1065 pData = (AsyncFileData*)z; | |
1066 z += sizeof(pData[0]); | |
1067 pData->pBaseRead = (sqlite3_file*)z; | |
1068 z += pVfs->szOsFile; | |
1069 pData->pBaseWrite = (sqlite3_file*)z; | |
1070 pData->closeOp.pFileData = pData; | |
1071 pData->closeOp.op = ASYNC_CLOSE; | |
1072 | |
1073 if( zName ){ | |
1074 z += pVfs->szOsFile; | |
1075 pData->zName = z; | |
1076 pData->nName = nName; | |
1077 memcpy(pData->zName, zName, nName); | |
1078 } | |
1079 | |
1080 if( !isAsyncOpen ){ | |
1081 int flagsout; | |
1082 rc = pVfs->xOpen(pVfs, pData->zName, pData->pBaseRead, flags, &flagsout); | |
1083 if( rc==SQLITE_OK | |
1084 && (flagsout&SQLITE_OPEN_READWRITE) | |
1085 && (flags&SQLITE_OPEN_EXCLUSIVE)==0 | |
1086 ){ | |
1087 rc = pVfs->xOpen(pVfs, pData->zName, pData->pBaseWrite, flags, 0); | |
1088 } | |
1089 if( pOutFlags ){ | |
1090 *pOutFlags = flagsout; | |
1091 } | |
1092 } | |
1093 | |
1094 async_mutex_enter(ASYNC_MUTEX_LOCK); | |
1095 | |
1096 if( zName && rc==SQLITE_OK ){ | |
1097 pLock = findLock(pData->zName, pData->nName); | |
1098 if( !pLock ){ | |
1099 int nByte = pVfs->szOsFile + sizeof(AsyncLock) + pData->nName + 1; | |
1100 pLock = (AsyncLock *)sqlite3_malloc(nByte); | |
1101 if( pLock ){ | |
1102 memset(pLock, 0, nByte); | |
1103 if( async.bLockFiles && (flags&SQLITE_OPEN_MAIN_DB) ){ | |
1104 pLock->pFile = (sqlite3_file *)&pLock[1]; | |
1105 rc = pVfs->xOpen(pVfs, pData->zName, pLock->pFile, flags, 0); | |
1106 if( rc!=SQLITE_OK ){ | |
1107 sqlite3_free(pLock); | |
1108 pLock = 0; | |
1109 } | |
1110 } | |
1111 if( pLock ){ | |
1112 pLock->nFile = pData->nName; | |
1113 pLock->zFile = &((char *)(&pLock[1]))[pVfs->szOsFile]; | |
1114 memcpy(pLock->zFile, pData->zName, pLock->nFile); | |
1115 pLock->pNext = async.pLock; | |
1116 async.pLock = pLock; | |
1117 } | |
1118 }else{ | |
1119 rc = SQLITE_NOMEM; | |
1120 } | |
1121 } | |
1122 } | |
1123 | |
1124 if( rc==SQLITE_OK ){ | |
1125 p->pMethod = &async_methods; | |
1126 p->pData = pData; | |
1127 | |
1128 /* Link AsyncFileData.lock into the linked list of | |
1129 ** AsyncFileLock structures for this file. | |
1130 */ | |
1131 if( zName ){ | |
1132 pData->lock.pNext = pLock->pList; | |
1133 pLock->pList = &pData->lock; | |
1134 pData->zName = pLock->zFile; | |
1135 } | |
1136 }else{ | |
1137 if( pData->pBaseRead->pMethods ){ | |
1138 pData->pBaseRead->pMethods->xClose(pData->pBaseRead); | |
1139 } | |
1140 if( pData->pBaseWrite->pMethods ){ | |
1141 pData->pBaseWrite->pMethods->xClose(pData->pBaseWrite); | |
1142 } | |
1143 sqlite3_free(pData); | |
1144 } | |
1145 | |
1146 async_mutex_leave(ASYNC_MUTEX_LOCK); | |
1147 | |
1148 if( rc==SQLITE_OK ){ | |
1149 pData->pLock = pLock; | |
1150 } | |
1151 | |
1152 if( rc==SQLITE_OK && isAsyncOpen ){ | |
1153 rc = addNewAsyncWrite(pData, ASYNC_OPENEXCLUSIVE, (sqlite3_int64)flags,0,0); | |
1154 if( rc==SQLITE_OK ){ | |
1155 if( pOutFlags ) *pOutFlags = flags; | |
1156 }else{ | |
1157 async_mutex_enter(ASYNC_MUTEX_LOCK); | |
1158 unlinkAsyncFile(pData); | |
1159 async_mutex_leave(ASYNC_MUTEX_LOCK); | |
1160 sqlite3_free(pData); | |
1161 } | |
1162 } | |
1163 if( rc!=SQLITE_OK ){ | |
1164 p->pMethod = 0; | |
1165 }else{ | |
1166 incrOpenFileCount(); | |
1167 } | |
1168 | |
1169 return rc; | |
1170 } | |
1171 | |
1172 /* | |
1173 ** Implementation of sqlite3OsDelete. Add an entry to the end of the | |
1174 ** write-op queue to perform the delete. | |
1175 */ | |
1176 static int asyncDelete(sqlite3_vfs *pAsyncVfs, const char *z, int syncDir){ | |
1177 UNUSED_PARAMETER(pAsyncVfs); | |
1178 return addNewAsyncWrite(0, ASYNC_DELETE, syncDir, (int)strlen(z)+1, z); | |
1179 } | |
1180 | |
1181 /* | |
1182 ** Implementation of sqlite3OsAccess. This method holds the mutex from | |
1183 ** start to finish. | |
1184 */ | |
1185 static int asyncAccess( | |
1186 sqlite3_vfs *pAsyncVfs, | |
1187 const char *zName, | |
1188 int flags, | |
1189 int *pResOut | |
1190 ){ | |
1191 int rc; | |
1192 int ret; | |
1193 AsyncWrite *p; | |
1194 sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData; | |
1195 | |
1196 assert(flags==SQLITE_ACCESS_READWRITE | |
1197 || flags==SQLITE_ACCESS_READ | |
1198 || flags==SQLITE_ACCESS_EXISTS | |
1199 ); | |
1200 | |
1201 async_mutex_enter(ASYNC_MUTEX_QUEUE); | |
1202 rc = pVfs->xAccess(pVfs, zName, flags, &ret); | |
1203 if( rc==SQLITE_OK && flags==SQLITE_ACCESS_EXISTS ){ | |
1204 for(p=async.pQueueFirst; p; p = p->pNext){ | |
1205 if( p->op==ASYNC_DELETE && 0==strcmp(p->zBuf, zName) ){ | |
1206 ret = 0; | |
1207 }else if( p->op==ASYNC_OPENEXCLUSIVE | |
1208 && p->pFileData->zName | |
1209 && 0==strcmp(p->pFileData->zName, zName) | |
1210 ){ | |
1211 ret = 1; | |
1212 } | |
1213 } | |
1214 } | |
1215 ASYNC_TRACE(("ACCESS(%s): %s = %d\n", | |
1216 flags==SQLITE_ACCESS_READWRITE?"read-write": | |
1217 flags==SQLITE_ACCESS_READ?"read":"exists" | |
1218 , zName, ret) | |
1219 ); | |
1220 async_mutex_leave(ASYNC_MUTEX_QUEUE); | |
1221 *pResOut = ret; | |
1222 return rc; | |
1223 } | |
1224 | |
1225 /* | |
1226 ** Fill in zPathOut with the full path to the file identified by zPath. | |
1227 */ | |
1228 static int asyncFullPathname( | |
1229 sqlite3_vfs *pAsyncVfs, | |
1230 const char *zPath, | |
1231 int nPathOut, | |
1232 char *zPathOut | |
1233 ){ | |
1234 int rc; | |
1235 sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData; | |
1236 rc = pVfs->xFullPathname(pVfs, zPath, nPathOut, zPathOut); | |
1237 | |
1238 /* Because of the way intra-process file locking works, this backend | |
1239 ** needs to return a canonical path. The following block assumes the | |
1240 ** file-system uses unix style paths. | |
1241 */ | |
1242 if( rc==SQLITE_OK ){ | |
1243 int i, j; | |
1244 char *z = zPathOut; | |
1245 int n = (int)strlen(z); | |
1246 while( n>1 && z[n-1]=='/' ){ n--; } | |
1247 for(i=j=0; i<n; i++){ | |
1248 if( z[i]=='/' ){ | |
1249 if( z[i+1]=='/' ) continue; | |
1250 if( z[i+1]=='.' && i+2<n && z[i+2]=='/' ){ | |
1251 i += 1; | |
1252 continue; | |
1253 } | |
1254 if( z[i+1]=='.' && i+3<n && z[i+2]=='.' && z[i+3]=='/' ){ | |
1255 while( j>0 && z[j-1]!='/' ){ j--; } | |
1256 if( j>0 ){ j--; } | |
1257 i += 2; | |
1258 continue; | |
1259 } | |
1260 } | |
1261 z[j++] = z[i]; | |
1262 } | |
1263 z[j] = 0; | |
1264 } | |
1265 | |
1266 return rc; | |
1267 } | |
1268 static void *asyncDlOpen(sqlite3_vfs *pAsyncVfs, const char *zPath){ | |
1269 sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData; | |
1270 return pVfs->xDlOpen(pVfs, zPath); | |
1271 } | |
1272 static void asyncDlError(sqlite3_vfs *pAsyncVfs, int nByte, char *zErrMsg){ | |
1273 sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData; | |
1274 pVfs->xDlError(pVfs, nByte, zErrMsg); | |
1275 } | |
1276 static void (*asyncDlSym( | |
1277 sqlite3_vfs *pAsyncVfs, | |
1278 void *pHandle, | |
1279 const char *zSymbol | |
1280 ))(void){ | |
1281 sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData; | |
1282 return pVfs->xDlSym(pVfs, pHandle, zSymbol); | |
1283 } | |
1284 static void asyncDlClose(sqlite3_vfs *pAsyncVfs, void *pHandle){ | |
1285 sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData; | |
1286 pVfs->xDlClose(pVfs, pHandle); | |
1287 } | |
1288 static int asyncRandomness(sqlite3_vfs *pAsyncVfs, int nByte, char *zBufOut){ | |
1289 sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData; | |
1290 return pVfs->xRandomness(pVfs, nByte, zBufOut); | |
1291 } | |
1292 static int asyncSleep(sqlite3_vfs *pAsyncVfs, int nMicro){ | |
1293 sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData; | |
1294 return pVfs->xSleep(pVfs, nMicro); | |
1295 } | |
1296 static int asyncCurrentTime(sqlite3_vfs *pAsyncVfs, double *pTimeOut){ | |
1297 sqlite3_vfs *pVfs = (sqlite3_vfs *)pAsyncVfs->pAppData; | |
1298 return pVfs->xCurrentTime(pVfs, pTimeOut); | |
1299 } | |
1300 | |
1301 static sqlite3_vfs async_vfs = { | |
1302 1, /* iVersion */ | |
1303 sizeof(AsyncFile), /* szOsFile */ | |
1304 0, /* mxPathname */ | |
1305 0, /* pNext */ | |
1306 SQLITEASYNC_VFSNAME, /* zName */ | |
1307 0, /* pAppData */ | |
1308 asyncOpen, /* xOpen */ | |
1309 asyncDelete, /* xDelete */ | |
1310 asyncAccess, /* xAccess */ | |
1311 asyncFullPathname, /* xFullPathname */ | |
1312 asyncDlOpen, /* xDlOpen */ | |
1313 asyncDlError, /* xDlError */ | |
1314 asyncDlSym, /* xDlSym */ | |
1315 asyncDlClose, /* xDlClose */ | |
1316 asyncRandomness, /* xDlError */ | |
1317 asyncSleep, /* xDlSym */ | |
1318 asyncCurrentTime /* xDlClose */ | |
1319 }; | |
1320 | |
1321 /* | |
1322 ** This procedure runs in a separate thread, reading messages off of the | |
1323 ** write queue and processing them one by one. | |
1324 ** | |
1325 ** If async.writerHaltNow is true, then this procedure exits | |
1326 ** after processing a single message. | |
1327 ** | |
1328 ** If async.writerHaltWhenIdle is true, then this procedure exits when | |
1329 ** the write queue is empty. | |
1330 ** | |
1331 ** If both of the above variables are false, this procedure runs | |
1332 ** indefinately, waiting for operations to be added to the write queue | |
1333 ** and processing them in the order in which they arrive. | |
1334 ** | |
1335 ** An artifical delay of async.ioDelay milliseconds is inserted before | |
1336 ** each write operation in order to simulate the effect of a slow disk. | |
1337 ** | |
1338 ** Only one instance of this procedure may be running at a time. | |
1339 */ | |
1340 static void asyncWriterThread(void){ | |
1341 sqlite3_vfs *pVfs = (sqlite3_vfs *)(async_vfs.pAppData); | |
1342 AsyncWrite *p = 0; | |
1343 int rc = SQLITE_OK; | |
1344 int holdingMutex = 0; | |
1345 | |
1346 async_mutex_enter(ASYNC_MUTEX_WRITER); | |
1347 | |
1348 while( async.eHalt!=SQLITEASYNC_HALT_NOW ){ | |
1349 int doNotFree = 0; | |
1350 sqlite3_file *pBase = 0; | |
1351 | |
1352 if( !holdingMutex ){ | |
1353 async_mutex_enter(ASYNC_MUTEX_QUEUE); | |
1354 } | |
1355 while( (p = async.pQueueFirst)==0 ){ | |
1356 if( async.eHalt!=SQLITEASYNC_HALT_NEVER ){ | |
1357 async_mutex_leave(ASYNC_MUTEX_QUEUE); | |
1358 break; | |
1359 }else{ | |
1360 ASYNC_TRACE(("IDLE\n")); | |
1361 async_cond_wait(ASYNC_COND_QUEUE, ASYNC_MUTEX_QUEUE); | |
1362 ASYNC_TRACE(("WAKEUP\n")); | |
1363 } | |
1364 } | |
1365 if( p==0 ) break; | |
1366 holdingMutex = 1; | |
1367 | |
1368 /* Right now this thread is holding the mutex on the write-op queue. | |
1369 ** Variable 'p' points to the first entry in the write-op queue. In | |
1370 ** the general case, we hold on to the mutex for the entire body of | |
1371 ** the loop. | |
1372 ** | |
1373 ** However in the cases enumerated below, we relinquish the mutex, | |
1374 ** perform the IO, and then re-request the mutex before removing 'p' from | |
1375 ** the head of the write-op queue. The idea is to increase concurrency with | |
1376 ** sqlite threads. | |
1377 ** | |
1378 ** * An ASYNC_CLOSE operation. | |
1379 ** * An ASYNC_OPENEXCLUSIVE operation. For this one, we relinquish | |
1380 ** the mutex, call the underlying xOpenExclusive() function, then | |
1381 ** re-aquire the mutex before seting the AsyncFile.pBaseRead | |
1382 ** variable. | |
1383 ** * ASYNC_SYNC and ASYNC_WRITE operations, if | |
1384 ** SQLITE_ASYNC_TWO_FILEHANDLES was set at compile time and two | |
1385 ** file-handles are open for the particular file being "synced". | |
1386 */ | |
1387 if( async.ioError!=SQLITE_OK && p->op!=ASYNC_CLOSE ){ | |
1388 p->op = ASYNC_NOOP; | |
1389 } | |
1390 if( p->pFileData ){ | |
1391 pBase = p->pFileData->pBaseWrite; | |
1392 if( | |
1393 p->op==ASYNC_CLOSE || | |
1394 p->op==ASYNC_OPENEXCLUSIVE || | |
1395 (pBase->pMethods && (p->op==ASYNC_SYNC || p->op==ASYNC_WRITE) ) | |
1396 ){ | |
1397 async_mutex_leave(ASYNC_MUTEX_QUEUE); | |
1398 holdingMutex = 0; | |
1399 } | |
1400 if( !pBase->pMethods ){ | |
1401 pBase = p->pFileData->pBaseRead; | |
1402 } | |
1403 } | |
1404 | |
1405 switch( p->op ){ | |
1406 case ASYNC_NOOP: | |
1407 break; | |
1408 | |
1409 case ASYNC_WRITE: | |
1410 assert( pBase ); | |
1411 ASYNC_TRACE(("WRITE %s %d bytes at %d\n", | |
1412 p->pFileData->zName, p->nByte, p->iOffset)); | |
1413 rc = pBase->pMethods->xWrite(pBase, (void *)(p->zBuf), p->nByte, p->iOff
set); | |
1414 break; | |
1415 | |
1416 case ASYNC_SYNC: | |
1417 assert( pBase ); | |
1418 ASYNC_TRACE(("SYNC %s\n", p->pFileData->zName)); | |
1419 rc = pBase->pMethods->xSync(pBase, p->nByte); | |
1420 break; | |
1421 | |
1422 case ASYNC_TRUNCATE: | |
1423 assert( pBase ); | |
1424 ASYNC_TRACE(("TRUNCATE %s to %d bytes\n", | |
1425 p->pFileData->zName, p->iOffset)); | |
1426 rc = pBase->pMethods->xTruncate(pBase, p->iOffset); | |
1427 break; | |
1428 | |
1429 case ASYNC_CLOSE: { | |
1430 AsyncFileData *pData = p->pFileData; | |
1431 ASYNC_TRACE(("CLOSE %s\n", p->pFileData->zName)); | |
1432 if( pData->pBaseWrite->pMethods ){ | |
1433 pData->pBaseWrite->pMethods->xClose(pData->pBaseWrite); | |
1434 } | |
1435 if( pData->pBaseRead->pMethods ){ | |
1436 pData->pBaseRead->pMethods->xClose(pData->pBaseRead); | |
1437 } | |
1438 | |
1439 /* Unlink AsyncFileData.lock from the linked list of AsyncFileLock | |
1440 ** structures for this file. Obtain the async.lockMutex mutex | |
1441 ** before doing so. | |
1442 */ | |
1443 async_mutex_enter(ASYNC_MUTEX_LOCK); | |
1444 rc = unlinkAsyncFile(pData); | |
1445 async_mutex_leave(ASYNC_MUTEX_LOCK); | |
1446 | |
1447 if( !holdingMutex ){ | |
1448 async_mutex_enter(ASYNC_MUTEX_QUEUE); | |
1449 holdingMutex = 1; | |
1450 } | |
1451 assert_mutex_is_held(ASYNC_MUTEX_QUEUE); | |
1452 async.pQueueFirst = p->pNext; | |
1453 sqlite3_free(pData); | |
1454 doNotFree = 1; | |
1455 break; | |
1456 } | |
1457 | |
1458 case ASYNC_UNLOCK: { | |
1459 AsyncWrite *pIter; | |
1460 AsyncFileData *pData = p->pFileData; | |
1461 int eLock = p->nByte; | |
1462 | |
1463 /* When a file is locked by SQLite using the async backend, it is | |
1464 ** locked within the 'real' file-system synchronously. When it is | |
1465 ** unlocked, an ASYNC_UNLOCK event is added to the write-queue to | |
1466 ** unlock the file asynchronously. The design of the async backend | |
1467 ** requires that the 'real' file-system file be locked from the | |
1468 ** time that SQLite first locks it (and probably reads from it) | |
1469 ** until all asynchronous write events that were scheduled before | |
1470 ** SQLite unlocked the file have been processed. | |
1471 ** | |
1472 ** This is more complex if SQLite locks and unlocks the file multiple | |
1473 ** times in quick succession. For example, if SQLite does: | |
1474 ** | |
1475 ** lock, write, unlock, lock, write, unlock | |
1476 ** | |
1477 ** Each "lock" operation locks the file immediately. Each "write" | |
1478 ** and "unlock" operation adds an event to the event queue. If the | |
1479 ** second "lock" operation is performed before the first "unlock" | |
1480 ** operation has been processed asynchronously, then the first | |
1481 ** "unlock" cannot be safely processed as is, since this would mean | |
1482 ** the file was unlocked when the second "write" operation is | |
1483 ** processed. To work around this, when processing an ASYNC_UNLOCK | |
1484 ** operation, SQLite: | |
1485 ** | |
1486 ** 1) Unlocks the file to the minimum of the argument passed to | |
1487 ** the xUnlock() call and the current lock from SQLite's point | |
1488 ** of view, and | |
1489 ** | |
1490 ** 2) Only unlocks the file at all if this event is the last | |
1491 ** ASYNC_UNLOCK event on this file in the write-queue. | |
1492 */ | |
1493 assert( holdingMutex==1 ); | |
1494 assert( async.pQueueFirst==p ); | |
1495 for(pIter=async.pQueueFirst->pNext; pIter; pIter=pIter->pNext){ | |
1496 if( pIter->pFileData==pData && pIter->op==ASYNC_UNLOCK ) break; | |
1497 } | |
1498 if( !pIter ){ | |
1499 async_mutex_enter(ASYNC_MUTEX_LOCK); | |
1500 pData->lock.eAsyncLock = MIN( | |
1501 pData->lock.eAsyncLock, MAX(pData->lock.eLock, eLock) | |
1502 ); | |
1503 assert(pData->lock.eAsyncLock>=pData->lock.eLock); | |
1504 rc = getFileLock(pData->pLock); | |
1505 async_mutex_leave(ASYNC_MUTEX_LOCK); | |
1506 } | |
1507 break; | |
1508 } | |
1509 | |
1510 case ASYNC_DELETE: | |
1511 ASYNC_TRACE(("DELETE %s\n", p->zBuf)); | |
1512 rc = pVfs->xDelete(pVfs, p->zBuf, (int)p->iOffset); | |
1513 if( rc==SQLITE_IOERR_DELETE_NOENT ) rc = SQLITE_OK; | |
1514 break; | |
1515 | |
1516 case ASYNC_OPENEXCLUSIVE: { | |
1517 int flags = (int)p->iOffset; | |
1518 AsyncFileData *pData = p->pFileData; | |
1519 ASYNC_TRACE(("OPEN %s flags=%d\n", p->zBuf, (int)p->iOffset)); | |
1520 assert(pData->pBaseRead->pMethods==0 && pData->pBaseWrite->pMethods==0); | |
1521 rc = pVfs->xOpen(pVfs, pData->zName, pData->pBaseRead, flags, 0); | |
1522 assert( holdingMutex==0 ); | |
1523 async_mutex_enter(ASYNC_MUTEX_QUEUE); | |
1524 holdingMutex = 1; | |
1525 break; | |
1526 } | |
1527 | |
1528 default: assert(!"Illegal value for AsyncWrite.op"); | |
1529 } | |
1530 | |
1531 /* If we didn't hang on to the mutex during the IO op, obtain it now | |
1532 ** so that the AsyncWrite structure can be safely removed from the | |
1533 ** global write-op queue. | |
1534 */ | |
1535 if( !holdingMutex ){ | |
1536 async_mutex_enter(ASYNC_MUTEX_QUEUE); | |
1537 holdingMutex = 1; | |
1538 } | |
1539 /* ASYNC_TRACE(("UNLINK %p\n", p)); */ | |
1540 if( p==async.pQueueLast ){ | |
1541 async.pQueueLast = 0; | |
1542 } | |
1543 if( !doNotFree ){ | |
1544 assert_mutex_is_held(ASYNC_MUTEX_QUEUE); | |
1545 async.pQueueFirst = p->pNext; | |
1546 sqlite3_free(p); | |
1547 } | |
1548 assert( holdingMutex ); | |
1549 | |
1550 /* An IO error has occurred. We cannot report the error back to the | |
1551 ** connection that requested the I/O since the error happened | |
1552 ** asynchronously. The connection has already moved on. There | |
1553 ** really is nobody to report the error to. | |
1554 ** | |
1555 ** The file for which the error occurred may have been a database or | |
1556 ** journal file. Regardless, none of the currently queued operations | |
1557 ** associated with the same database should now be performed. Nor should | |
1558 ** any subsequently requested IO on either a database or journal file | |
1559 ** handle for the same database be accepted until the main database | |
1560 ** file handle has been closed and reopened. | |
1561 ** | |
1562 ** Furthermore, no further IO should be queued or performed on any file | |
1563 ** handle associated with a database that may have been part of a | |
1564 ** multi-file transaction that included the database associated with | |
1565 ** the IO error (i.e. a database ATTACHed to the same handle at some | |
1566 ** point in time). | |
1567 */ | |
1568 if( rc!=SQLITE_OK ){ | |
1569 async.ioError = rc; | |
1570 } | |
1571 | |
1572 if( async.ioError && !async.pQueueFirst ){ | |
1573 async_mutex_enter(ASYNC_MUTEX_LOCK); | |
1574 if( 0==async.pLock ){ | |
1575 async.ioError = SQLITE_OK; | |
1576 } | |
1577 async_mutex_leave(ASYNC_MUTEX_LOCK); | |
1578 } | |
1579 | |
1580 /* Drop the queue mutex before continuing to the next write operation | |
1581 ** in order to give other threads a chance to work with the write queue. | |
1582 */ | |
1583 if( !async.pQueueFirst || !async.ioError ){ | |
1584 async_mutex_leave(ASYNC_MUTEX_QUEUE); | |
1585 holdingMutex = 0; | |
1586 if( async.ioDelay>0 ){ | |
1587 pVfs->xSleep(pVfs, async.ioDelay*1000); | |
1588 }else{ | |
1589 async_sched_yield(); | |
1590 } | |
1591 } | |
1592 } | |
1593 | |
1594 async_mutex_leave(ASYNC_MUTEX_WRITER); | |
1595 return; | |
1596 } | |
1597 | |
1598 /* | |
1599 ** Install the asynchronous VFS. | |
1600 */ | |
1601 int sqlite3async_initialize(const char *zParent, int isDefault){ | |
1602 int rc = SQLITE_OK; | |
1603 if( async_vfs.pAppData==0 ){ | |
1604 sqlite3_vfs *pParent = sqlite3_vfs_find(zParent); | |
1605 if( !pParent || async_os_initialize() ){ | |
1606 rc = SQLITE_ERROR; | |
1607 }else if( SQLITE_OK!=(rc = sqlite3_vfs_register(&async_vfs, isDefault)) ){ | |
1608 async_os_shutdown(); | |
1609 }else{ | |
1610 async_vfs.pAppData = (void *)pParent; | |
1611 async_vfs.mxPathname = ((sqlite3_vfs *)async_vfs.pAppData)->mxPathname; | |
1612 } | |
1613 } | |
1614 return rc; | |
1615 } | |
1616 | |
1617 /* | |
1618 ** Uninstall the asynchronous VFS. | |
1619 */ | |
1620 void sqlite3async_shutdown(void){ | |
1621 if( async_vfs.pAppData ){ | |
1622 async_os_shutdown(); | |
1623 sqlite3_vfs_unregister((sqlite3_vfs *)&async_vfs); | |
1624 async_vfs.pAppData = 0; | |
1625 } | |
1626 } | |
1627 | |
1628 /* | |
1629 ** Process events on the write-queue. | |
1630 */ | |
1631 void sqlite3async_run(void){ | |
1632 asyncWriterThread(); | |
1633 } | |
1634 | |
1635 /* | |
1636 ** Control/configure the asynchronous IO system. | |
1637 */ | |
1638 int sqlite3async_control(int op, ...){ | |
1639 va_list ap; | |
1640 va_start(ap, op); | |
1641 switch( op ){ | |
1642 case SQLITEASYNC_HALT: { | |
1643 int eWhen = va_arg(ap, int); | |
1644 if( eWhen!=SQLITEASYNC_HALT_NEVER | |
1645 && eWhen!=SQLITEASYNC_HALT_NOW | |
1646 && eWhen!=SQLITEASYNC_HALT_IDLE | |
1647 ){ | |
1648 return SQLITE_MISUSE; | |
1649 } | |
1650 async.eHalt = eWhen; | |
1651 async_mutex_enter(ASYNC_MUTEX_QUEUE); | |
1652 async_cond_signal(ASYNC_COND_QUEUE); | |
1653 async_mutex_leave(ASYNC_MUTEX_QUEUE); | |
1654 break; | |
1655 } | |
1656 | |
1657 case SQLITEASYNC_DELAY: { | |
1658 int iDelay = va_arg(ap, int); | |
1659 if( iDelay<0 ){ | |
1660 return SQLITE_MISUSE; | |
1661 } | |
1662 async.ioDelay = iDelay; | |
1663 break; | |
1664 } | |
1665 | |
1666 case SQLITEASYNC_LOCKFILES: { | |
1667 int bLock = va_arg(ap, int); | |
1668 async_mutex_enter(ASYNC_MUTEX_QUEUE); | |
1669 if( async.nFile || async.pQueueFirst ){ | |
1670 async_mutex_leave(ASYNC_MUTEX_QUEUE); | |
1671 return SQLITE_MISUSE; | |
1672 } | |
1673 async.bLockFiles = bLock; | |
1674 async_mutex_leave(ASYNC_MUTEX_QUEUE); | |
1675 break; | |
1676 } | |
1677 | |
1678 case SQLITEASYNC_GET_HALT: { | |
1679 int *peWhen = va_arg(ap, int *); | |
1680 *peWhen = async.eHalt; | |
1681 break; | |
1682 } | |
1683 case SQLITEASYNC_GET_DELAY: { | |
1684 int *piDelay = va_arg(ap, int *); | |
1685 *piDelay = async.ioDelay; | |
1686 break; | |
1687 } | |
1688 case SQLITEASYNC_GET_LOCKFILES: { | |
1689 int *piDelay = va_arg(ap, int *); | |
1690 *piDelay = async.bLockFiles; | |
1691 break; | |
1692 } | |
1693 | |
1694 default: | |
1695 return SQLITE_ERROR; | |
1696 } | |
1697 return SQLITE_OK; | |
1698 } | |
1699 | |
1700 #endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_ASYNCIO) */ | |
1701 | |
OLD | NEW |